1
|
Platelets, a Key Cell in Inflammation and Atherosclerosis Progression. Cells 2022; 11:cells11061014. [PMID: 35326465 PMCID: PMC8947573 DOI: 10.3390/cells11061014] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/21/2022] Open
Abstract
Platelets play important roles in thrombosis-dependent obstructive cardiovascular diseases. In addition, it has now become evident that platelets also participate in the earliest stages of atherosclerosis, including the genesis of the atherosclerotic lesion. Moreover, while the link between platelet activity and hemostasis has been well established, the role of platelets as modulators of inflammation has only recently been recognized. Thus, through their secretory activities, platelets can chemically attract a diverse repertoire of cells to inflammatory foci. Although monocytes and lymphocytes act as key cells in the progression of an inflammatory event and play a central role in plaque formation and progression, there is also evidence that platelets can traverse the endothelium, and therefore be a direct mediator in the progression of atherosclerotic plaque. This review provides an overview of platelet interactions and regulation in atherosclerosis.
Collapse
|
2
|
Menter DG, Afshar-Kharghan V, Shen JP, Martch SL, Maitra A, Kopetz S, Honn KV, Sood AK. Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer Metastasis Rev 2022; 41:147-172. [PMID: 35022962 PMCID: PMC8754476 DOI: 10.1007/s10555-022-10019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023]
Abstract
We have established considerable expertise in studying the role of platelets in cancer biology. From this expertise, we were keen to recognize the numerous venous-, arterial-, microvascular-, and macrovascular thrombotic events and immunologic disorders are caused by severe, acute-respiratory-syndrome coronavirus 2 (SARS-CoV-2) infections. With this offering, we explore the evolutionary connections that place platelets at the center of hemostasis, immunity, and adaptive phylogeny. Coevolutionary changes have also occurred in vertebrate viruses and their vertebrate hosts that reflect their respective evolutionary interactions. As mammals adapted from aquatic to terrestrial life and the heavy blood loss associated with placentalization-based live birth, platelets evolved phylogenetically from thrombocytes toward higher megakaryocyte-blebbing-based production rates and the lack of nuclei. With no nuclei and robust RNA synthesis, this adaptation may have influenced viral replication to become less efficient after virus particles are engulfed. Human platelets express numerous receptors that bind viral particles, which developed from archetypal origins to initiate aggregation and exocytic-release of thrombo-, immuno-, angiogenic-, growth-, and repair-stimulatory granule contents. Whether by direct, evolutionary, selective pressure, or not, these responses may help to contain virus spread, attract immune cells for eradication, and stimulate angiogenesis, growth, and wound repair after viral damage. Because mammalian and marsupial platelets became smaller and more plate-like their biophysical properties improved in function, which facilitated distribution near vessel walls in fluid-shear fields. This adaptation increased the probability that platelets could then interact with and engulf shedding virus particles. Platelets also generate circulating microvesicles that increase membrane surface-area encounters and mark viral targets. In order to match virus-production rates, billions of platelets are generated and turned over per day to continually provide active defenses and adaptation to suppress the spectrum of evolving threats like SARS-CoV-2.
Collapse
Affiliation(s)
- David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Paul Shen
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie L Martch
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth V Honn
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University, 5101 Cass Ave. 430 Chemistry, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
3
|
Kanikarla Marie P, Fowlkes NW, Afshar-Kharghan V, Martch SL, Sorokin A, Shen JP, Morris VK, Dasari A, You N, Sood AK, Overman MJ, Kopetz S, Menter DG. The Provocative Roles of Platelets in Liver Disease and Cancer. Front Oncol 2021; 11:643815. [PMID: 34367949 PMCID: PMC8335590 DOI: 10.3389/fonc.2021.643815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Both platelets and the liver play important roles in the processes of coagulation and innate immunity. Platelet responses at the site of an injury are rapid; their immediate activation and structural changes minimize the loss of blood. The majority of coagulation proteins are produced by the liver—a multifunctional organ that also plays a critical role in many processes: removal of toxins and metabolism of fats, proteins, carbohydrates, and drugs. Chronic inflammation, trauma, or other causes of irreversible damage to the liver can dysregulate these pathways leading to organ and systemic abnormalities. In some cases, platelet-to-lymphocyte ratios can also be a predictor of disease outcome. An example is cirrhosis, which increases the risk of bleeding and prothrombotic events followed by activation of platelets. Along with a triggered coagulation cascade, the platelets increase the risk of pro-thrombotic events and contribute to cancer progression and metastasis. This progression and the resulting tissue destruction is physiologically comparable to a persistent, chronic wound. Various cancers, including colorectal cancer, have been associated with increased thrombocytosis, platelet activation, platelet-storage granule release, and thrombosis; anti-platelet agents can reduce cancer risk and progression. However, in cancer patients with pre-existing liver disease who are undergoing chemotherapy, the risk of thrombotic events becomes challenging to manage due to their inherent risk for bleeding. Chemotherapy, also known to induce damage to the liver, further increases the frequency of thrombotic events. Depending on individual patient risks, these factors acting together can disrupt the fragile balance between pro- and anti-coagulant processes, heightening liver thrombogenesis, and possibly providing a niche for circulating tumor cells to adhere to—thus promoting both liver metastasis and cancer-cell survival following treatment (that is, with minimal residual disease in the liver).
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie L Martch
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy You
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David George Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Tan S, Zhang J, Sun Y, Gisterå A, Sheng Z, Malmström RE, Hou M, Peng J, Ma C, Liao W, Li N. Platelets enhance CD4+ central memory T cell responses via platelet factor 4-dependent mitochondrial biogenesis and cell proliferation. Platelets 2021; 33:360-370. [PMID: 34137652 DOI: 10.1080/09537104.2021.1936479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Platelets regulate multiple aspects of CD4+ T cell immunity, and may exert distinct regulations among different T cell subsets. Our aim was to investigate how platelets regulate CD4+ central memory T cell (Tcm) responses. αCD3/αCD28-stimulated human CD4+ Tcm cells were cultured without or with platelets or platelet-derived mediators. Polyclonal stimulation induced cell proliferation and Th1 and Treg cell activation of Tcm cells. Platelet factor 4/PF4 neutralization abolished platelet-enhanced Tcm effector responses, whilst TGFβ neutralization only partially inhibited platelet-enhanced Treg cell activation. PF4 supplementation mimicked the effects of platelet co-cultures, while PF4 receptor CXCR3 blockade and CXCR3 knockdown with siRNAs inhibited or abolished PF4-enhanced Th1 and Treg cell responses. Platelet co-cultures or PF4-treatment increased Tcm cell proliferation, whilst CXCR3 blockade counteracted. PF4-enhanced Tcm proliferation and effector cell responses were associated with mitochondrial biogenesis. Overexpression of mitochondrial transcription factor A (TFAM) mimicked PF4 effects, and PF4 treatment attenuated Akt phosphorylation of activated Tcm cells, leading to mitochondrial biogenesis. Impacts of platelets and PF4 on Tcm proliferation were further confirmed by that CXCR3 knockdown/blockade counteracted PF4-enhanced Tcm cell proliferation. In conclusion, platelets enhance Th1 and Treg cell responses of CD4+ Tcm cells, via PF4-dependent mitochondrial biogenesis and cell proliferation of Tcm cells.
Collapse
Affiliation(s)
- Shuai Tan
- Karolinska Institutet, Stockholm, Sweden.,Clinical Epidemiology Unit, Clinical Pharmacology Group, Stockholm, Sweden
| | - Junhao Zhang
- Karolinska Institutet, Stockholm, Sweden.,Clinical Epidemiology Unit, Clinical Pharmacology Group, Stockholm, Sweden.,Nanfang Hospital, Department of Oncology, Southern Medical University, Guangzhou, China
| | - Yang Sun
- Shandong University Cheeloo Medical College, School of Basic Medicine, Department of Immunology, Jinan, China
| | - Anton Gisterå
- Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Zi Sheng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Rickard E Malmström
- Clinical Epidemiology Unit, Clinical Pharmacology Group, Stockholm, Sweden.,Department of Laboratory Medicine, Clinical Pharmacology, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunhong Ma
- Shandong University Cheeloo Medical College, School of Basic Medicine, Department of Immunology, Jinan, China
| | - Wangjun Liao
- Nanfang Hospital, Department of Oncology, Southern Medical University, Guangzhou, China
| | - Nailin Li
- Karolinska Institutet, Stockholm, Sweden.,Clinical Epidemiology Unit, Clinical Pharmacology Group, Stockholm, Sweden
| |
Collapse
|
5
|
Salas-Perdomo A, Miró-Mur F, Urra X, Justicia C, Gallizioli M, Zhao Y, Brait VH, Laredo C, Tudela R, Hidalgo A, Chamorro Á, Planas AM. T Cells Prevent Hemorrhagic Transformation in Ischemic Stroke by P-Selectin Binding. Arterioscler Thromb Vasc Biol 2019; 38:1761-1771. [PMID: 29903733 DOI: 10.1161/atvbaha.118.311284] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objective- Hemorrhagic transformation is a serious complication of ischemic stroke after recanalization therapies. This study aims to identify mechanisms underlying hemorrhagic transformation after cerebral ischemia/reperfusion. Approach and Results- We used wild-type mice and Selplg-/- and Fut7-/- mice defective in P-selectin binding and lymphopenic Rag2-/- mice. We induced 30-minute or 45-minute ischemia by intraluminal occlusion of the middle cerebral artery and assessed hemorrhagic transformation at 48 hours with a hemorrhage grading score, histological means, brain hemoglobin content, or magnetic resonance imaging. We depleted platelets and adoptively transferred T cells of the different genotypes to lymphopenic mice. Interactions of T cells with platelets in blood were studied by flow cytometry and image stream technology. We show that platelet depletion increased the bleeding risk only after large infarcts. Lymphopenia predisposed to hemorrhagic transformation after severe stroke, and adoptive transfer of T cells prevented hemorrhagic transformation in lymphopenic mice. CD4+ memory T cells were the subset of T cells binding P-selectin and platelets through functional P-selectin glycoprotein ligand-1. Mice defective in P-selectin binding had a higher hemorrhagic score than wild-type mice. Adoptive transfer of T cells defective in P-selectin binding into lymphopenic mice did not prevent hemorrhagic transformation. Conclusions- The study identifies lymphopenia as a previously unrecognized risk factor for secondary hemorrhagic transformation in mice after severe ischemic stroke. T cells prevent hemorrhagic transformation by their capacity to bind platelets through P-selectin. The results highlight the role of T cells in bridging immunity and hemostasis in ischemic stroke.
Collapse
Affiliation(s)
- Angélica Salas-Perdomo
- From the Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Spain (A.S.-P., C.J., M.G., A.M.P.)
| | - Francesc Miró-Mur
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain (F.M.-M., X.U., Á.C.).,Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (F.M.-M., X.U., C.J., M.G., Y.Z., V.H.B., C.L., Á.C., A.M.P.)
| | - Xabier Urra
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain (F.M.-M., X.U., Á.C.).,Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (F.M.-M., X.U., C.J., M.G., Y.Z., V.H.B., C.L., Á.C., A.M.P.)
| | - Carles Justicia
- From the Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Spain (A.S.-P., C.J., M.G., A.M.P.).,Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (F.M.-M., X.U., C.J., M.G., Y.Z., V.H.B., C.L., Á.C., A.M.P.)
| | - Mattia Gallizioli
- From the Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Spain (A.S.-P., C.J., M.G., A.M.P.).,Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (F.M.-M., X.U., C.J., M.G., Y.Z., V.H.B., C.L., Á.C., A.M.P.)
| | - Yashu Zhao
- Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (F.M.-M., X.U., C.J., M.G., Y.Z., V.H.B., C.L., Á.C., A.M.P.)
| | - Vanessa H Brait
- Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (F.M.-M., X.U., C.J., M.G., Y.Z., V.H.B., C.L., Á.C., A.M.P.)
| | - Carlos Laredo
- Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (F.M.-M., X.U., C.J., M.G., Y.Z., V.H.B., C.L., Á.C., A.M.P.)
| | - Raúl Tudela
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Biomedical Imaging Group, Barcelona, Spain (R.T.)
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.H.).,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität, Munich, Germany (A.H.)
| | - Ángel Chamorro
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain (F.M.-M., X.U., Á.C.).,Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (F.M.-M., X.U., C.J., M.G., Y.Z., V.H.B., C.L., Á.C., A.M.P.)
| | - Anna M Planas
- From the Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Spain (A.S.-P., C.J., M.G., A.M.P.).,Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (F.M.-M., X.U., C.J., M.G., Y.Z., V.H.B., C.L., Á.C., A.M.P.)
| |
Collapse
|
6
|
Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke — implications for treatment. Nat Rev Neurol 2019; 15:473-481. [DOI: 10.1038/s41582-019-0221-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 01/17/2023]
|
7
|
Carlow DA, Tra MC, Ziltener HJ. A cell-extrinsic ligand acquired by activated T cells in lymph node can bridge L-selectin and P-selectin. PLoS One 2018; 13:e0205685. [PMID: 30379850 PMCID: PMC6209203 DOI: 10.1371/journal.pone.0205685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/29/2018] [Indexed: 01/25/2023] Open
Abstract
P-selectin expressed on activated endothelia and platelets supports recruitment of leukocytes expressing P-selectin ligand to sites of inflammation. While monitoring P-selectin ligand expression on activated CD8+ T cells in murine adoptive transfer models, we observed two distinct ligands on responding donor cells, the canonical cell-intrinsic P-selectin ligand PSGL-1 and a second undocumented P-selectin ligand we provisionally named PSL2. PSL2 is unusual among selectin ligands in that it is cell-extrinsic, loaded onto L-selectin expressed by activated T cells but not L-selectin on resting naïve CD8+ T cells. PSL2 display is highest on activated T cells responding in peripheral lymph nodes and low on T cells responding in spleen suggesting that the original source of PSL2 is high endothelial venules, cells known to produce L-selectin ligands. PSL2 is a ligand for both P-selectin and L-selectin and can physically bridge the two selectins. The L-selectin/PSL2 complex can mediate P-selectin-dependent adherence of activated T cells to immobilized P-selectin or to activated platelets, either independently or cooperatively with PSGL-1. PSL2's capacity to bridge between L-selectin on activated T cells and P-selectin reveals an undocumented and unanticipated activity of cell-extrinsic selectin ligands in mediating selectin-selectin connectivity. The timing and circumstances of PSL2 detection on T cells, together with its capacity to support adherence to P-selectin-bearing substrates, are consistent with P-selectin engagement of both PSGL1 and the L-selectin/PSL2 complex during T cell recruitment. Engagement of PSGL-1 and L-selectin/PSL2 would likely deliver distinct signals known to be relevant in this process.
Collapse
Affiliation(s)
- Douglas A. Carlow
- The Biomedical Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Michelle C. Tra
- The Biomedical Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hermann J. Ziltener
- The Biomedical Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Huang Z, Liu Y, Yang C, Li X, Pan C, Rao J, Li N, Liao W, Lin L. Combined neutrophil/platelet/lymphocyte/differentiation score predicts chemosensitivity in advanced gastric cancer. BMC Cancer 2018; 18:515. [PMID: 29720123 PMCID: PMC5932840 DOI: 10.1186/s12885-018-4414-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022] Open
Abstract
Background Gastric cancer is common in developing regions, and we hope to find out an economical but practical prognostic indicator. It was reported that pre-treatment peripheral neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR), as well as differentiation status, were associated with cancer progression. Hence, we introduced a novel combined Neutrophil/platelet/lymphocyte/differentiation Score (cNPLDS) to improve the prediction value of palliative chemotherapeutic response in advanced gastric cancer. Methods According to statistical sample size estimation, 136 primary diagnosed unresectable advanced ptaients were included for a retrospective study. The follow-up end-point was progression free survival (PFS) during the first-line palliative chemotherapy. Differentiation stratified patients into well, medium and poor groups by score 1 to 3, while patients with neither elevated NLR and PLR, only one elevated, or both elevated were of the combined NLR-PLR score (cNPS) 1 to 3, respectively. The cNPLDS was calculated by multiplying the tumor differentiation score and cNPS. Results Determined by the receiver operating characteristic (ROC) curve, the optimal cut-off points for NLR and PLR were 3.04 and 223. Through univariate analysis and survival analysis, poor differentiation, high NLR, high PLR, high cNPS, and high cNPLDS respectively indicated inferior PFS during the first-line palliative chemotherapy. Patients were furhter classified into low to high risk groups by cNPLDS. Groups of elevated NLR, PLR, cNPS, and cNPLDS showed lower disease control rate. Compared to other parameters, cNPLDS significantly improved the accuracy in predicing the first-progression. Conclusions This study indicates that the novel parameter cNPLDS is superior to NLR or PLR alone, or even cNPS, in predicting the first-line chemosensitivity in advanced gastric cancer.
Collapse
Affiliation(s)
- Zhenhua Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yantan Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chen Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyin Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Changqie Pan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinjun Rao
- Key laboratory of new drug screening of Guangdong Province, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Nailin Li
- Department of Medicine-Solna, Karolinska Institute, Clinical Pharmacology Group, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Kanikarla-Marie P, Lam M, Sorokin AV, Overman MJ, Kopetz S, Menter DG. Platelet Metabolism and Other Targeted Drugs; Potential Impact on Immunotherapy. Front Oncol 2018; 8:107. [PMID: 29732316 PMCID: PMC5919962 DOI: 10.3389/fonc.2018.00107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
The role of platelets in cancer progression has been well recognized in the field of cancer biology. Emerging studies are elaborating further the additional roles and added extent that platelets play in promoting tumorigenesis. Platelets release factors that support tumor growth and also form heterotypic aggregates with tumor cells, which can provide an immune-evasive advantage. Their most critical role may be the inhibition of immune cell function that can negatively impact the body’s ability in preventing tumor establishment and growth. This review summarizes the importance of platelets in tumor progression, therapeutic response, survival, and finally the notion of immunotherapy modulation being likely to benefit from the inclusion of platelet inhibitors.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Lam
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey V Sorokin
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
10
|
Nieswandt B. Platelets guide lymphocytes to vascular injury sites. Thromb Haemost 2017; 108:207. [DOI: 10.1160/th12-07-0450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/02/2012] [Indexed: 11/05/2022]
|
11
|
Tseng CN, Chang YT, Lengquist M, Kronqvist M, Hedin U, Eriksson EE. Platelet adhesion on endothelium early after vein grafting mediates leukocyte recruitment and intimal hyperplasia in a murine model. Thromb Haemost 2017; 113:813-25. [DOI: 10.1160/th14-07-0608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/08/2014] [Indexed: 12/23/2022]
Abstract
SummaryIntimal hyperplasia (IH) is the substrate for accelerated atherosclerosis and limited patency of vein grafts. However, there is still no specific treatment targeting IH following graft surgery. In this study, we used a mouse model of vein grafting to investigate the potential for early intervention with platelet function for later development of graft IH. We transferred the inferior vena cava (IVC) from donor C57BL/6 mice to the carotid artery in recipients using a cuff technique. We found extensive endothelial injury and platelet adhesion one hour following grafting. Adhesion of leukocytes was distinct in areas of platelet adhesion. Platelet and leukocyte adhesion was strongly reduced in mice receiving a function-blocking antibody against the integrin αIIbβ3. This was followed by a reduction of IH one month following grafting. Depletion of platelets using antiserum also reduced IH at later time points. These findings indicate platelets as pivotal to leukocyte recruitment to the wall of vein grafts. In conclusion, the data also highlight early intervention of platelets and inflammation as potential treatment for later formation of IH and accelerated atherosclerosis following bypass surgery.
Collapse
|
12
|
Li N. CD4+ T cells in atherosclerosis: Regulation by platelets. Thromb Haemost 2017; 109:980-90. [DOI: 10.1160/th12-11-0819] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
SummaryAtherosclerosis is an inflammatory and thrombotic disease, in which both CD4+ T cells and platelets play important roles throughout all stages of atherogenesis. CD4+ T cells are the most abundant T cells present in atherosclerotic lesions. They are primarily seen as type 1 T helper (Th1) cells, while the other CD4+ T cell subsets Th2, Th17, and regulatory T (Treg) cells are also found in the lesions with lower frequencies. CD4+ T effector cells release various cytokines, which exert paracrine or autocrine effects among different CD4+ T cell subsets and other lesional cells and subsequently modulate inflammatory processes in the lesions. Platelets are instrumental in thrombosis and haemostasis, but also play important regulatory roles in immune response, inflammation, and angiogenesis. The present review summarises the current knowledge and/or understanding on how platelets regulate recruitment, activation, differentiation, and cytokine production of different CD4+ T cell subsets, as well as impacts of the platelet-CD4+ T cell interactions on atherogenesis. The research perspectives of platelet-CD4+ T cell interaction in atherosclerosis are also discussed.
Collapse
|
13
|
Brockman KS, Lai BFL, Kizhakkedathu JN, Santerre JP. Hemocompatibility of Degrading Polymeric Biomaterials: Degradable Polar Hydrophobic Ionic Polyurethane versus Poly(lactic-co-glycolic) Acid. Biomacromolecules 2017. [PMID: 28621927 DOI: 10.1021/acs.biomac.7b00456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of degradable polymers in vascular tissue regeneration has sparked the need to characterize polymer biocompatibility during degradation. While tissue compatibility has been frequently addressed, studies on polymer hemocompatibility during degradation are limited. The current study evaluated the differences in hemocompatibility (platelet response, complement activation, and coagulation cascade initiation) between as-made and hydrolyzed poly(lactic-co-glycolic) acid (PLGA) and degradable polar hydrophobic ionic polyurethane (D-PHI). Platelet activation decreased (in whole blood) and platelet adhesion decreased (in blood without leukocytes) for degraded versus as-made PLGA. D-PHI showed minimal hemocompatibility changes over degradation. Leukocytes played a major role in mediating platelet activation for samples and controls, as well as influencing platelet-polymer adhesion on the degraded materials. This study demonstrates the importance of assessing the blood compatibility of biomaterials over the course of degradation since the associated changes in surface chemistry and physical state could significantly change biomaterial hemocompatibility.
Collapse
Affiliation(s)
- Kathryne S Brockman
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3R5, Canada.,Institute of Biomaterials and Biomedical Engineering, Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto , Toronto, Ontario M5G 1M1, Canada
| | - Benjamin F L Lai
- Department of Pathology and Laboratory Medicine and Centre for Blood Research, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine and Centre for Blood Research, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada.,Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| | - J Paul Santerre
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3R5, Canada.,Institute of Biomaterials and Biomedical Engineering, Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto , Toronto, Ontario M5G 1M1, Canada.,Faculty of Dentistry, University of Toronto , Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
14
|
Menter DG, Kopetz S, Hawk E, Sood AK, Loree JM, Gresele P, Honn KV. Platelet "first responders" in wound response, cancer, and metastasis. Cancer Metastasis Rev 2017; 36:199-213. [PMID: 28730545 PMCID: PMC5709140 DOI: 10.1007/s10555-017-9682-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platelets serve as "first responders" during normal wounding and homeostasis. Arising from bone marrow stem cell lineage megakaryocytes, anucleate platelets can influence inflammation and immune regulation. Biophysically, platelets are optimized due to size and discoid morphology to distribute near vessel walls, monitor vascular integrity, and initiate quick responses to vascular lesions. Adhesion receptors linked to a highly reactive filopodia-generating cytoskeleton maximizes their vascular surface contact allowing rapid response capabilities. Functionally, platelets normally initiate rapid clotting, vasoconstriction, inflammation, and wound biology that leads to sterilization, tissue repair, and resolution. Platelets also are among the first to sense, phagocytize, decorate, or react to pathogens in the circulation. These platelet first responder properties are commandeered during chronic inflammation, cancer progression, and metastasis. Leaky or inflammatory reaction blood vessel genesis during carcinogenesis provides opportunities for platelet invasion into tumors. Cancer is thought of as a non-healing or chronic wound that can be actively aided by platelet mitogenic properties to stimulate tumor growth. This growth ultimately outstrips circulatory support leads to angiogenesis and intravasation of tumor cells into the blood stream. Circulating tumor cells reengage additional platelets, which facilitates tumor cell adhesion, arrest and extravasation, and metastasis. This process, along with the hypercoagulable states associated with malignancy, is amplified by IL6 production in tumors that stimulate liver thrombopoietin production and elevates circulating platelet numbers by thrombopoiesis in the bone marrow. These complex interactions and the "first responder" role of platelets during diverse physiologic stresses provide a useful therapeutic target that deserves further exploration.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA.
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Ernest Hawk
- Office of the Vice President Cancer Prevention & Population Science, M. D. Anderson Cancer Center, Unit 1370, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
| | - Anil K Sood
- Gynocologic Oncology & Reproductive Medicine, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Department of Cancer Biology, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Center for RNA Interference and Non-Coding RNA The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Via E. Dal Pozzo, 06126, Perugia, Italy
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
15
|
Blaas I, Heinz K, Würtinger P, Türkcan A, Tepeköylü C, Grimm M, Doppler C, Danzl K, Messner B, Bernhard D. Vein graft thrombi, a niche for smooth muscle cell colonization - a hypothesis to explain the asymmetry of intimal hyperplasia. J Thromb Haemost 2016; 14:1095-104. [PMID: 26875593 DOI: 10.1111/jth.13295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED Essentials Vein graft failure is the most frequent late onset complication of coronary artery bypass grafting. Cuff technique-based interposition mouse model including new anticoagulation regime was conducted. Early vein graft thrombi may serve as a niche for smooth muscle cell colonization. The focal character of early thrombi may form the basis for the asymmetry of intimal hyperplasia. SUMMARY Background Autologous saphenous veins are widely used in coronary artery bypass grafting; however, 10 years after surgery, 40% of grafts are completely occluded, and another 30% show reduced blood flow. Objective In the past, the central processes and signaling pathways responsible for this loss of patency have been identified. However, one central finding in the process of graft failure is so far not understood: the asymmetric character of intimal hyperplasia. It was the goal of the present study to address this aspect. Methods By the use of a cuff technique-based vein interposition mouse model with a new anticoagulation regime, alterations in vein grafts were analyzed 1 h, 1 day, 2 days, 3 days, 7 days and 21 days after reperfusion by means of immunolabeling, histochemistry, and high-resolution ultrasound. Results The novel and major finding of this study is that the vein graft thrombus may serve as a niche that is infiltrated and colonized by smooth muscle cells (SMCs). Fibroblast growth factor-1 and platelet-derived growth factor-B may be the SMC-attracting factors in the thrombus. The focal character of early thrombi may define the focal and asymmetric character of vein graft intimal hyperplasia. Conclusions Inhibiting the formation and reducing the size of early thrombi is an old concept for reducing vein graft failure. However, in light of the present new findings obtained under a clinic-like anticoagulation regime, early vein graft thrombus prevention/size reduction should be revisited in the prevention of graft failure.
Collapse
Affiliation(s)
- I Blaas
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - K Heinz
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - P Würtinger
- Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), Medical University of Innsbruck, Innsbruck, Austria
| | - A Türkcan
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - C Tepeköylü
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - M Grimm
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - C Doppler
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - K Danzl
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - B Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - D Bernhard
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Ed Rainger G, Chimen M, Harrison MJ, Yates CM, Harrison P, Watson SP, Lordkipanidzé M, Nash GB. The role of platelets in the recruitment of leukocytes during vascular disease. Platelets 2015. [PMID: 26196409 PMCID: PMC4673595 DOI: 10.3109/09537104.2015.1064881] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Besides their role in the formation of thrombus during haemostasis, it is becoming clear that platelets contribute to a number of other processes within the vasculature. Indeed, the integrated function of the thrombotic and inflammatory systems, which results in platelet-mediated recruitment of leukocytes, is now considered to be of great importance in the propagation, progression and pathogenesis of atherosclerotic disease of the arteries. There are three scenarios by which platelets can interact with leukocytes: (1) during haemostasis, when platelets adhere to and are activated on sub-endothelial matrix proteins exposed by vascular damage and then recruit leukocytes to a growing thrombus. (2) Platelets adhere to and are activated on stimulated endothelial cells and then bridge blood borne leukocytes to the vessel wall and. (3) Adhesion between platelets and leukocytes occurs in the blood leading to formation of heterotypic aggregates prior to contact with endothelial cells. In the following review we will not discuss leukocyte recruitment during haemostasis, as this represents a physiological response to tissue trauma that can progress, at least in its early stages, in the absence of inflammation. Rather we will deal with scenarios 2 and 3, as these pathways of platelet–leukocyte interactions are important during inflammation and in chronic inflammatory diseases such as atherosclerosis. Indeed, these interactions mean that leukocytes possess means of adhesion to the vessel wall under conditions that may not normally be permissive of leukocyte–endothelial cell adhesion, meaning that the disease process may be able to bypass the regulatory pathways which would ordinarily moderate the inflammatory response.
Collapse
Affiliation(s)
- G Ed Rainger
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The Medical School, The University of Birmingham , Birmingham , UK and
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Vajen T, Mause SF, Koenen RR. Microvesicles from platelets: novel drivers of vascular inflammation. Thromb Haemost 2015; 114:228-36. [PMID: 25994053 DOI: 10.1160/th14-11-0962] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/03/2015] [Indexed: 12/18/2022]
Abstract
Microvesicles are receiving increased attention not only as biomarkers but also as mediators of cell communication and as integral effectors of disease. Platelets present a major source of microvesicles and release these microvesicles either spontaneously or upon activation. Platelet-derived microvesicles retain many features of their parent cells and have been shown to exert modulatory effects on vascular and immune cells. Accordingly, microvesicles from platelets can be measured at increased levels in patients with cardiovascular disease or individuals at risk. In addition, isolated microvesicles from platelets were shown to exert immunomodulatory actions on various cell types. In this review the various aspects of platelet-derived microvesicles including release, clearance, measurement, occurrence during disease and relevance for the pathophysiology of vascular inflammation will be discussed.
Collapse
Affiliation(s)
| | | | - R R Koenen
- Rory R. Koenen, PhD, Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands, Tel.: +31 43 3881674, Fax: +31 43 3884159, E-mail:
| |
Collapse
|
18
|
Karshovska E, Zhao Z, Blanchet X, Schmitt MMN, Bidzhekov K, Soehnlein O, von Hundelshausen P, Mattheij NJ, Cosemans JMEM, Megens RTA, Koeppel TA, Schober A, Hackeng TM, Weber C, Koenen RR. Hyperreactivity of junctional adhesion molecule A-deficient platelets accelerates atherosclerosis in hyperlipidemic mice. Circ Res 2014; 116:587-99. [PMID: 25472975 DOI: 10.1161/circresaha.116.304035] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RATIONALE Besides their essential role in hemostasis, platelets also have functions in inflammation. In platelets, junctional adhesion molecule (JAM)-A was previously identified as an inhibitor of integrin αIIbβ3-mediated outside-in signaling and its genetic knockdown resulted in hyperreactivity. OBJECTIVE This gain-of-function was specifically exploited to investigate the role of platelet hyperreactivity in plaque development. METHODS AND RESULTS JAM-A-deficient platelets showed increased aggregation and cellular and sarcoma tyrosine-protein kinase activation. On αIIbβ3 ligation, JAM-A was shown to be dephosphorylated, which could be prevented by protein tyrosine phosphatase nonreceptor type 1 inhibition. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe(-/-)) background were fed a high-fat diet. After ≤12 weeks of diet, trJAM-A(-/-)apoe-/- mice showed increased aortic plaque formation when compared with trJAM-A(+/+) apoe(-/-) controls, and these differences were most evident at early time points. At 2 weeks, the plaques of the trJAM-A(-/-) apoe(-/-) animals revealed increased macrophage, T cell, and smooth muscle cell content. Interestingly, plasma levels of chemokines CC chemokine ligand 5 and CXC-chemokine ligand 4 were increased in the trJAM-A(-/-) apoe(-/-)mice, and JAM-A-deficient platelets showed increased binding to monocytes and neutrophils. Whole-blood perfusion experiments and intravital microscopy revealed increased recruitment of platelets and monocytes to the inflamed endothelium in blood of trJAM-A(-/-) apoe(-/-)mice. Notably, these proinflammatory effects of JAM-A-deficient platelets could be abolished by the inhibition of αIIbβ3 signaling in vitro. CONCLUSIONS Deletion of JAM-A causes a gain-of-function in platelets, with lower activation thresholds and increased inflammatory activities. This leads to an increase of plaque formation, particularly in early stages of the disease.
Collapse
Affiliation(s)
- Ela Karshovska
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Zhen Zhao
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Xavier Blanchet
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Martin M N Schmitt
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Kiril Bidzhekov
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Philipp von Hundelshausen
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Nadine J Mattheij
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Judith M E M Cosemans
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Remco T A Megens
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Thomas A Koeppel
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Andreas Schober
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Tilman M Hackeng
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Rory R Koenen
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.).
| |
Collapse
|
19
|
Zhu L, Huang Z, Stålesen R, Hansson GK, Li N. Platelets provoke distinct dynamics of immune responses by differentially regulating CD4+ T-cell proliferation. J Thromb Haemost 2014; 12:1156-65. [PMID: 24833264 DOI: 10.1111/jth.12612] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/12/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Platelets regulate responses of type 1 T helper (Th1), Th17, and regulatory T (Treg) cells. However, little is known about how platelets influence the dynamics of CD4(+) T-cell responses. OBJECTIVES To investigate the dynamics of platelet-regulated CD4(+) T-cell activation and cross-talk and their underlying mechanisms. METHODS AND RESULTS Human CD3/CD28-challenged CD4(+) T cells were cultured without or with autologous platelets. Th1, Th17, and Treg responses were monitored during 5 days. Platelets simultaneously enhanced activation of Th1, Th17, and Treg cells within 48-h coculture. Thereafter, platelets remained augmentative for Treg but turned suppressive for Th1/Th17 responses. Without platelets, FoxP3 blockade inhibited Treg activation, which subsequently enhanced Th1 activation. In platelet-T-cell cocultures, however, FoxP3 blockade had no effect on Treg or Th1 activation. Neutralization of platelet-derived transforming growth factor β, but not Treg-derived interleukin-10, enhanced Th1 activation. These data suggest that Treg cells have limited impact on, while platelets are the primary regulator for Th1 suppression during the second phase of coculture. Combining carboxyfluorescein succinimidyl ester and FoxP3 staining, platelets were found to enhance Treg response by promoting cell proliferation of FoxP3(+) T cells and to induce the suppression phrase of Th1 responses by inhibiting FoxP3(-) T-cell proliferation. The latter was markedly attenuated by TGFβ neutralization. CONCLUSIONS Platelets constantly promote Treg cell response but exert a biphasic regulation on Th1/Th17 activation, namely a transient enhancement followed by a secondary suppression. The distinct regulations are achieved by transforming growth factor β-mediated selective inhibition of FoxP3(-) T-cell proliferation. This represents a novel mechanism of platelet-regulated CD4(+) effector cell responses.
Collapse
Affiliation(s)
- L Zhu
- Clinical Pharmacology Unit, Department of Medicine-Solna, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|