1
|
Limami Y, Khalki L, Zaid N, Khyatti M, Turk JE, Ammara M, Mtairag EM, Oudghiri M, Naya A, Taberkant M, Zaid Y. Oxford-AstraZeneca ChAdOx1 COVID-19 Vaccine Does Not Alter Platelet Aggregation. Semin Thromb Hemost 2021; 48:109-111. [PMID: 33971677 DOI: 10.1055/s-0041-1728831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Youness Limami
- Research Center of Abulcasis, University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco.,Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Loubna Khalki
- Faculty of Medicine, Department of Biological Sciences, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Nabil Zaid
- Faculty of Sciences, Department of Biology, Mohammed V University in Rabat, Rabat, Morocco
| | - Meriem Khyatti
- Laboratory of Viral Oncology, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Joumana El Turk
- Faculty of Health Sciences, Department of Fundamental Sciences, International University of Casablanca, Casablanca, Morocco
| | - Mounia Ammara
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - El Mostafa Mtairag
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Mounia Oudghiri
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Abdallah Naya
- Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Mustapha Taberkant
- Department of Vascular Surgery, Mohammed V University in Rabat, Rabat, Morocco
| | - Younes Zaid
- Research Center of Abulcasis, University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco.,Department of Biology, Immunology and Biodiversity Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco.,Faculty of Sciences, Department of Biology, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Bedside Allogeneic Erythrocyte Washing with a Cell Saver to Remove Cytokines, Chemokines, and Cell-derived Microvesicles. Anesthesiology 2021; 134:395-404. [PMID: 33503656 DOI: 10.1097/aln.0000000000003689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Removal of cytokines, chemokines, and microvesicles from the supernatant of allogeneic erythrocytes may help mitigate adverse transfusion reactions. Blood bank-based washing procedures present logistical difficulties; therefore, we tested the hypothesis that on-demand bedside washing of allogeneic erythrocyte units is capable of removing soluble factors and is feasible in a clinical setting. METHODS There were in vitro and prospective, observation cohort components to this a priori planned substudy evaluating bedside allogeneic erythrocyte washing, with a cell saver, during cardiac surgery. Laboratory data were collected from the first 75 washed units given to a subset of patients nested in the intervention arm of a parent clinical trial. Paired pre- and postwash samples from the blood unit bags were centrifuged. The supernatant was aspirated and frozen at -70°C, then batch-tested for cell-derived microvesicles, soluble CD40 ligand, chemokine ligand 5, and neutral lipids (all previously associated with transfusion reactions) and cell-free hemoglobin (possibly increased by washing). From the entire cohort randomized to the intervention arm of the trial, bedside washing was defined as feasible if at least 75% of prescribed units were washed per protocol. RESULTS Paired data were available for 74 units. Washing reduced soluble CD40 ligand (median [interquartile range]; from 143 [1 to 338] ng/ml to zero), chemokine ligand 5 (from 1,314 [715 to 2,551] to 305 [179 to 488] ng/ml), and microvesicle numbers (from 6.90 [4.10 to 20.0] to 0.83 [0.33 to 2.80] × 106), while cell-free hemoglobin concentration increased from 72.6 (53.6 to 171.6) mg/dl to 210.5 (126.6 to 479.6) mg/dl (P < 0.0001 for each). There was no effect on neutral lipids. Bedside washing was determined as feasible for 80 of 81 patients (99%); overall, 293 of 314 (93%) units were washed per protocol. CONCLUSIONS Bedside erythrocyte washing was clinically feasible and greatly reduced concentrations of soluble factors thought to be associated with transfusion-related adverse reactions, increasing concentrations of cell-free hemoglobin while maintaining acceptable (less than 0.8%) hemolysis. EDITOR’S PERSPECTIVE
Collapse
|
3
|
Anka Idrissi D, Senhaji N, Aouiss A, Khalki L, Tijani Y, Zaid N, Marhoume FZ, Naya A, Oudghiri M, Kabine M, Zaid Y. IL-1 and CD40/CD40L platelet complex: elements of induction of Crohn's disease and new therapeutic targets. Arch Pharm Res 2021; 44:117-132. [PMID: 33394309 DOI: 10.1007/s12272-020-01296-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are chronic and multifactorial diseases that affect the intestinal tract, both characterized by recurrent inflammation of the intestinal mucosa, resulting in abdominal pain, diarrhea, vomiting and, rectal bleeding. Inflammatory bowel diseases (IBD) regroup these two disorders. The exact pathological mechanism of IBD remains ambiguous and poorly known. In genetically predisposed patients, defects in intestinal mucosal barrier are due to an uncontrolled inflammatory response to normal flora. In addition to the genetic predisposition, these defects could be triggered by environmental factors or by a specific lifestyle which is widely accepted as etiological hypothesis. The involvement of the CD40/CD40L platelet complex in the development of IBD has been overwhelmingly demonstrated. CD40L is climacteric in cell signalling in innate and adaptive immunity, the CD40L expression on the platelet cell surface gives them an immunological competence. The IL-1, a major inflammation mediator could be involved in different ways in the development of IBD. Here, we provide a comprehensive review regarding the role of platelet CD40/CD40L in the pathophysiological effect of IL-1 in the development of Crohn's disease (CD). This review could potentially help future approaches aiming to target these two pathways for therapeutic purposes and elucidate the immunological mechanisms driving gut inflammation.
Collapse
Affiliation(s)
- Doha Anka Idrissi
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Nezha Senhaji
- Laboratory of Genetic and Molecular Pathology, Faculty of Medicine, Hassan II University, Casablanca, Morocco
| | - Asmae Aouiss
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Loubna Khalki
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Youssef Tijani
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Nabil Zaid
- Faculty of Sciences, Department of Biology, Mohammed V University, Rabat, Morocco
| | - Fatima Zahra Marhoume
- Faculty of Sciences and Technology, Laboratory of Biochemistry and Neuroscience, Integrative and Computational Neuroscience Team, Hassan First University, Settat, Morocco
| | - Abdallah Naya
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Mounia Oudghiri
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Mostafa Kabine
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Younes Zaid
- Faculty of Sciences, Department of Biology, Mohammed V University, Rabat, Morocco. .,Research Center of Abulcasis, University of Health Sciences, Rabat, Morocco.
| |
Collapse
|
4
|
Zaid Y, Puhm F, Allaeys I, Naya A, Oudghiri M, Khalki L, Limami Y, Zaid N, Sadki K, Ben El Haj R, Mahir W, Belayachi L, Belefquih B, Benouda A, Cheikh A, Langlois MA, Cherrah Y, Flamand L, Guessous F, Boilard E. Platelets Can Associate with SARS-Cov-2 RNA and Are Hyperactivated in COVID-19. Circ Res 2020; 127:1404-1418. [PMID: 32938299 PMCID: PMC7641188 DOI: 10.1161/circresaha.120.317703] [Citation(s) in RCA: 349] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Rationale: In addition to the overwhelming lung inflammation that prevails in COVID-19, hypercoagulation and thrombosis contribute to the lethality of subjects infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Platelets are chiefly implicated in thrombosis. Moreover, they can interact with viruses and are an important source of inflammatory mediators. While a lower platelet count is associated with severity and mortality, little is known about platelet function during COVID-19. Objective: To evaluate the contribution of platelets to inflammation and thrombosis in COVID-19 patients. Methods and Results: Blood was collected from 115 consecutive COVID-19 patients presenting non-severe (n=71) and severe (n=44) respiratory symptoms. We document the presence of SARS-CoV-2 RNA associated with platelets of COVID-19 patients. Exhaustive assessment of cytokines in plasma and in platelets revealed the modulation of platelet-associated cytokine levels in both non-severe and severe COVID-19 patients, pointing to a direct contribution of platelets to the plasmatic cytokine load. Moreover, we demonstrate that platelets release their alpha- and dense-granule contents in both non-severe and severe forms of COVID-19. In comparison to concentrations measured in healthy volunteers, phosphatidylserine-exposing platelet extracellular vesicles were increased in non-severe, but not in severe cases of COVID-19. Levels of D-dimers, a marker of thrombosis, failed to correlate with any measured indicators of platelet activation. Functionally, platelets were hyperactivated in COVID-19 subjects presenting non-severe and severe symptoms, with aggregation occurring at suboptimal thrombin concentrations. Furthermore, platelets adhered more efficiently onto collagen-coated surfaces under flow conditions. Conclusions: Taken together, the data suggest that platelets are at the frontline of COVID-19 pathogenesis, as they release various sets of molecules through the different stages of the disease. Platelets may thus have the potential to contribute to the overwhelming thrombo-inflammation in COVID-19, and the inhibition of pathways related to platelet activation may improve the outcomes during COVID-19.
Collapse
Affiliation(s)
- Younes Zaid
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
- Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco (Y.Z., N.Z., K.S.)
- Immunology and Biodiversity Laboratory, Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco (Y.Z., A.N., M.O., Y.L.)
| | - Florian Puhm
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Canada (F.P., I.A., L.F., E.B.)
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, QC, Canada (F.P., I.A., L.F., E.B.)
| | - Isabelle Allaeys
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Canada (F.P., I.A., L.F., E.B.)
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, QC, Canada (F.P., I.A., L.F., E.B.)
| | - Abdallah Naya
- Immunology and Biodiversity Laboratory, Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco (Y.Z., A.N., M.O., Y.L.)
| | - Mounia Oudghiri
- Immunology and Biodiversity Laboratory, Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco (Y.Z., A.N., M.O., Y.L.)
| | - Loubna Khalki
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco (L.K., F.G.)
| | - Youness Limami
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
- Immunology and Biodiversity Laboratory, Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco (Y.Z., A.N., M.O., Y.L.)
| | - Nabil Zaid
- Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco (Y.Z., N.Z., K.S.)
| | - Khalid Sadki
- Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco (Y.Z., N.Z., K.S.)
| | - Rafiqua Ben El Haj
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Wissal Mahir
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Lamiae Belayachi
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Bouchra Belefquih
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Amina Benouda
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Amine Cheikh
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Marc-André Langlois
- Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Canada (M.-A.L.)
| | - Yahia Cherrah
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Louis Flamand
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Canada (F.P., I.A., L.F., E.B.)
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, QC, Canada (F.P., I.A., L.F., E.B.)
| | - Fadila Guessous
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco (L.K., F.G.)
- Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville (F.G.)
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Canada (F.P., I.A., L.F., E.B.)
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, QC, Canada (F.P., I.A., L.F., E.B.)
| |
Collapse
|
5
|
Oikonomou E, Leopoulou M, Theofilis P, Antonopoulos AS, Siasos G, Latsios G, Mystakidi VC, Antoniades C, Tousoulis D. A link between inflammation and thrombosis in atherosclerotic cardiovascular diseases: Clinical and therapeutic implications. Atherosclerosis 2020; 309:16-26. [PMID: 32858395 DOI: 10.1016/j.atherosclerosis.2020.07.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
The association between thrombosis and acute coronary syndromes is well established. Inflammation and activation of innate and adaptive immunity are another important factor implicated in atherosclerosis. However, the exact interactions between thrombosis and inflammation in atherosclerosis are less well understood. Accumulating data suggest a firm interaction between these two key pathophysiologic processes. Pro-inflammatory cytokines, such as tumor necrosis factor α, interleukin-6 and interleukin-1, have been implicated in the thrombotic cascade following plaque rupture and myocardial infarction. Furthermore, cell adhesion molecules accelerate not only atheromatosis but also thrombosis formation while activated platelets are able to trigger leukocyte adhesion and accumulation. Additionally, tissue factor, thrombin, and activated coagulation factors induce the release of pro-inflammatory cytokines such as prostaglandin and C reactive protein, which may further induce von Willebrand factor secretion. Treatments targeting immune activation (i.e. interleukin-1 inhibitors, colchicine, statins, etc.) may also beneficially modulate platelet activation while common anti-thrombotic therapies appear to attenuate the inflammatory process. Taken together in the context of cardiovascular diseases, thrombosis and inflammation should be studied and managed as a common entity under the concept of thrombo-inflammation.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Marianna Leopoulou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George Latsios
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vasiliki Chara Mystakidi
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
6
|
Bosmans LA, Bosch L, Kusters PJH, Lutgens E, Seijkens TTP. The CD40-CD40L Dyad as Immunotherapeutic Target in Cardiovascular Disease. J Cardiovasc Transl Res 2020; 14:13-22. [PMID: 32222950 PMCID: PMC7892683 DOI: 10.1007/s12265-020-09994-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Chronic inflammation drives the development of atherosclerosis. Despite optimal treatment of classical cardiovascular risk factors, a substantial portion of the population has elevated inflammatory biomarkers and develops atherosclerosis-related complications, indicating that a residual inflammatory risk drives atherosclerotic cardiovascular disease in these patients. Additional anti-inflammatory therapeutic strategies are therefore required. The co-stimulatory molecule CD40 and its ligand CD40L (CD154) have a central role in the regulation of the inflammatory response during the development of atherosclerosis by modulating the interaction between immune cells and between immune cells and non-immune cells. In this review, we discuss the role of the CD40-CD40L dyad in atherosclerosis, and we discuss recent studies on the therapeutic potential of novel CD40-CD40L targeting strategies in cardiovascular medicine.
Collapse
Affiliation(s)
- Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Lena Bosch
- Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal J H Kusters
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
França TT, Barreiros LA, Al-Ramadi BK, Ochs HD, Cabral-Marques O, Condino-Neto A. CD40 ligand deficiency: treatment strategies and novel therapeutic perspectives. Expert Rev Clin Immunol 2019; 15:529-540. [PMID: 30681380 DOI: 10.1080/1744666x.2019.1573674] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION CD40 ligand (CD40L) deficiency or X-linked Hyper-IgM syndrome is a severe primary immunodeficiency caused by mutations in the CD40L gene. Despite currently available treatments, CD40L-deficient patients remain susceptible to life-threatening infections and have poor long term survival. Areas covered: Here, we discuss clinical and immunological characteristics of CD40L deficiency as well as current therapeutic strategies used for patient management. This review highlights that beyond B cell defects, patients' susceptibility to opportunistic pathogens might be due to impaired T cell and innate immune responses. In this context, we discuss how better knowledge of CD40L function and regulation may result in the development of new treatments. Expert opinion: Despite the introduction of hematopoietic stem-cell transplantation, immunoglobulin replacement, granulocyte colony-stimulating factor (G-CSF) administration, and prophylactic antibiotic therapies, life-threatening infections still cause high morbidity and mortality among CD40L-deficient patients. The reasons for this inadequate response to current therapies remains poorly understood, but recent reports suggest the involvement of CD40L-CD40 interaction in early stages of the innate immune system ontogeny. The development of novel gene therapeutic approaches and the use of redirected immunotherapies represent alternative treatment methods that could offer reduced morbidity and mortality rates for patients with CD40L deficiency.
Collapse
Affiliation(s)
- Tabata T França
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| | - Lucila A Barreiros
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| | - Basel K Al-Ramadi
- b Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences , UAE University , Al Ain , United Arab Emirates
| | - Hans D Ochs
- c Department of Pediatrics , University of Washington School of Medicine, and Seattle Children's Research Institute , Seattle , WA , USA
| | - Otavio Cabral-Marques
- d Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine , University of Freiburg , Freiburg , Germany
| | - Antonio Condino-Neto
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| |
Collapse
|
8
|
Neoatherosclerosis after Drug-Eluting Stent Implantation: Roles and Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5924234. [PMID: 27446509 PMCID: PMC4944075 DOI: 10.1155/2016/5924234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/17/2023]
Abstract
In-stent neoatherosclerosis (NA), characterized by a relatively thin fibrous cap and large volume of yellow-lipid accumulation after drug-eluting stents (DES) implantation, has attracted much attention owing to its close relationship with late complications, such as revascularization and late stent thrombosis (ST). Accumulating evidence has demonstrated that more than one-third of patients with first-generation DES present with NA. Even in the advent of second-generation DES, NA still occurs. It is indicated that endothelial dysfunction induced by DES plays a critical role in neoatherosclerotic development. Upregulation of reactive oxygen species (ROS) induced by DES implantation significantly affects endothelial cells healing and functioning, therefore rendering NA formation. In light of the role of ROS in suppression of endothelial healing, combining antioxidant therapies with stenting technology may facilitate reestablishing a functioning endothelium to improve clinical outcome for patients with stenting.
Collapse
|
9
|
Bou Khzam L, Bouchereau O, Boulahya R, Hachem A, Zaid Y, Abou-Saleh H, Merhi Y. Early outgrowth cells versus endothelial colony forming cells functions in platelet aggregation. J Transl Med 2015; 13:353. [PMID: 26552480 PMCID: PMC4640203 DOI: 10.1186/s12967-015-0723-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022] Open
Abstract
Background Endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis, endothelial repair and cell-based therapies for cardiovascular diseases. We have previously shown that the recruitment of EPCs to sites of vascular lesions is facilitated by platelets where EPCs, in turn, modulate platelet function and thrombosis. However, EPCs encompass a heterogeneous population of progenitor cells that may exert different effects on platelet function. Recent evidence suggests the existence of two EPC subtypes: early outgrowth cells (EOCs) and endothelial colony-forming cells (ECFCs). We aimed at characterizing these two EPC subtypes and at identifying their role in platelet aggregation. Methods EOCs and ECFCs were generated from human peripheral blood mononuclear cells (PBMCs) seeded in conditioned media on fibronectin and collagen, respectively. The morphological, phenotypical and functional characteristics of EOCs and ECFCs were assessed by optical and confocal laser scanning microscopes, cell surface markers expression, and Matrigel tube formation. The impact of EOCs and ECFCs on platelet aggregation was monitored in collagen-induced optical aggregometry and compared with PBMCs and human umbilical vein endothelial cells (HUVECs). The levels of the anti-platelet agents’ nitric oxide (NO) and prostacyclin (PGI2) released from cultured cells as well as the expression of their respective producing enzymes NO synthases (NOS) and cyclooxygenases (COX) were also assessed. Results We showed that EOCs display a monocytic-like phenotype whereas ECFCs have an endothelial-like phenotype. We demonstrated that both EOCs and ECFCs and their supernatants inhibited platelet aggregation; however ECFCs were more efficient than EOCs. This could be related to the release of significantly higher amounts of NO and PGI2 from ECFCs, in comparison to EOCs. Indeed, ECFCs, like HUVECs, constitutively express the endothelial (eNOS)—and inducible (iNOS)—NOS isoforms, and COX-1 and weakly express COX-2, whereas EOCs do not constitutively express these NO and PGI2 producing enzymes. Conclusion The different morphological, phenotypic and more importantly the release of the anti-aggregating agents PGI2 and NO in each EPC subtype are implicated in their respective roles in platelet function and thus, may be linked to the increased efficiency of ECFCs in inhibiting platelet aggregation as compared to EOCs.
Collapse
Affiliation(s)
- Lara Bou Khzam
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada. .,Department of Biochemistry, Weill Cornell Medical College in Qatar, Doha, Qatar.
| | - Olivier Bouchereau
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada.
| | - Rahma Boulahya
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada.
| | - Ahmed Hachem
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada.
| | - Younes Zaid
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada.
| | | | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada. .,Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
10
|
Slattery ML, Lundgreen A, Torres-Mejia G, Wolff RK, Hines L, Baumgartner K, John EM. Diet and lifestyle factors modify immune/inflammation response genes to alter breast cancer risk and prognosis: the Breast Cancer Health Disparities Study. Mutat Res 2014; 770:19-28. [PMID: 25332681 PMCID: PMC4201121 DOI: 10.1016/j.mrfmmm.2014.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tumor necrosis factor-α (TNF) and toll-like receptors (TLR) are important mediators of inflammation. We examined 10 of these genes with respect to breast cancer risk and mortality in a genetically admixed population of Hispanic/Native American (NA) (2111 cases, 2597 controls) and non-Hispanic white (NHW) (1481 cases, 1585 controls) women. Additionally, we explored if diet and lifestyle factors modified associations with these genes. Overall, these genes (collectively) were associated with breast cancer risk among women with >70% NA ancestry (P(ARTP) = 0.0008), with TLR1 rs7696175 being the primary risk contributor (OR 1.77, 95% CI 1.25, 2.51). Overall, TLR1 rs7696175 (HR 1.40, 95% CI 1.03, 1.91; P(adj) = 0.032), TLR4 rs5030728 (HR 1.96, 95% CI 1.30, 2.95; P(adj) = 0.014), and TNFRSF1A rs4149578 (HR 2.71, 95% CI 1.28, 5.76; P(adj) = 0.029) were associated with increased breast cancer mortality. We observed several statistically significant interactions after adjustment for multiple comparisons, including interactions between our dietary oxidative balance score and CD40LG and TNFSF1A; between cigarette smoking and TLR1, TLR4, and TNF; between body mass index (BMI) among pre-menopausal women and TRAF2; and between regular use of aspirin/non-steroidal anti-inflammatory drugs and TLR3 and TRA2. In conclusion, our findings support a contributing role of certain TNF-α and TLR genes in both breast cancer risk and survival, particularly among women with higher NA ancestry. Diet and lifestyle factors appear to be important mediators of the breast cancer risk associated with these genes.
Collapse
Affiliation(s)
- Martha L. Slattery
- University of Utah, Department of Medicine, 383 Colorow, Salt Lake City, UT 84108. 801-585-6955
| | - Abbie Lundgreen
- University of Utah, Department of Medicine, 383 Colorow, Salt Lake City, UT 84108. 801-585-6955
| | - Gabriela Torres-Mejia
- Instituto Nacional de Salud Pública, Centro de Investigación en Salud Poblacional, Av. Universidad No. 655, Col. Sta. Ma. Ahuacatitlán, Cuernavaca Morelos CP 62100, México
| | - Roger K. Wolff
- University of Utah, Department of Medicine, 383 Colorow, Salt Lake City, UT 84108. 801-585-6955
| | - Lisa Hines
- University of Colorado at Colorado Springs, Department of Biology, Colorado Springs, CO 80918
| | - Kathy Baumgartner
- Department of Epidemiology and Population Health, School of Public Health & Information Sciences, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292
| | - Esther M. John
- Cancer Prevention Institute of California, Fremont, CA 94538, and Division of Epidemiology, Department of Health Research and Policy and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
11
|
Abstract
SIGNIFICANCE Reactive oxidant species (ROS) are highly reactive molecules produced by several cell lines including platelets and serve as second messenger for intracellular signaling. In recent years it became evident that ROS are also implicated in the thrombotic process. Statins are lipid lowering molecules which reduce serum cholesterol and retard atherosclerotic complication and its clinical sequelae. However there is evidence that statins may exert an antiplatelet effects by interfering with redox signaling. RECENT ADVANCES Experimental and clinical studies provided evidence that intra-platelet ROS formation is implicated in the process of thrombosis, as impaired ROS neutralization is associated with serious thrombotic complication and eventually death. Recent studies demonstrated that statins possess antiplatelet activity via inhibition of platelet NADPH oxidase-derived ROS formation. This effect results in down-regulation of isoprostanes, which are pro-aggregating molecules, and up-regulation of nitric oxide, which is a platelet inhibitor; such changes occurred immediately after statin's administration and were independent from lipid lowering property. CRITICAL ISSUES Experimental and clinical studies documented that statins possess an antithrombotic effects which may account for thrombotic-related vascular outcomes. This has been evidenced in clinical settings such as percutaneous coronary intervention, myocardial infarction and venous thrombosis. It is still unclear, however, if the statin's antithrombotic effect is dose-related. FUTURE DIRECTIONS Future studies should be addressed to analyze if the antiplatelet effect of statins may preferentially occur at high dosage of statins. Furthermore, the antiplatelet effects of statins could turn useful in clinical settings where the clinical efficacy of aspirin and other antiplatelet drugs are still uncertain.
Collapse
|
12
|
Bou Khzam L, Boulahya R, Abou-Saleh H, Hachem A, Zaid Y, Merhi Y. Soluble CD40 ligand stimulates the pro-angiogenic function of peripheral blood angiogenic outgrowth cells via increased release of matrix metalloproteinase-9. PLoS One 2013; 8:e84289. [PMID: 24358353 PMCID: PMC3865292 DOI: 10.1371/journal.pone.0084289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/14/2013] [Indexed: 12/21/2022] Open
Abstract
The role of endothelial progenitor cells in vascular repair is related to their incorporation at sites of vascular lesions, differentiation into endothelial cells, and release of various angiogenic factors specifically by a subset of early outgrowth endothelial progenitor cells (EOCs). It has been shown that patients suffering from cardiovascular disease exhibit increased levels of circulating and soluble CD40 ligand (sCD40L), which may influence the function of EOCs. We have previously shown that the inflammatory receptor CD40 is expressed on EOCs and its ligation with sCD40L impairs the anti-platelet function of EOCs. In the present study, we aimed at investigating the effect of sCD40L on the function of EOCs in endothelial repair. Human peripheral blood mononuclear cell-derived EOCs express CD40 and its adaptor proteins, the tumor necrosis factor receptor-associated factors; TRAF1, TRAF2 and TRAF3. Stimulation of EOCs with sCD40L increased the expression of TRAF1, binding of TRAF2 to CD40 and phosphorylation of p38 mitogen activated protein kinase (MAPK). In an in vitro wound healing assay, stimulation of EOCs with sCD40L increased the release of matrix metalloproteinase 9 (MMP-9) in a concentration-dependent manner and significantly enhanced the angiogenic potential of cultured human umbilical vein endothelial cells (HUVECs). Inhibition of p38 MAPK reversed sCD40L-induced MMP-9 release by EOCs, whereas inhibition of MMP-9 reversed their pro-angiogenic effect on HUVECs. This study reveals the existence of a CD40L/CD40/TRAF axis in EOCs and shows that sCD40L increases the pro-angiogenic function of EOCs on cultured HUVECs by inducing a significant increase in MMP-9 release via, at least, the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Lara Bou Khzam
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montréal, Québec, Canada
| | - Rahma Boulahya
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montréal, Québec, Canada
| | - Haissam Abou-Saleh
- Qatar Cardiovascular Research Center, Qatar Foundation-Education City, Doha, Qatar
| | - Ahmed Hachem
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montréal, Québec, Canada
| | - Younes Zaid
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montréal, Québec, Canada
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montréal, Québec, Canada
- Université de Montréal, Department of Medicine, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|