1
|
Pestana RMC, Alves MT, de Oliveira AN, Oliveira HHM, Soares CE, Sabino ADP, Silva LM, Simões R, Gomes KB. Interleukin-10 levels and the risk of thromboembolism according to COMPASS-Cancer associated thrombosis score in breast cancer patients prior to undergoing doxorubicin-based chemotherapy. Blood Coagul Fibrinolysis 2023; 34:70-74. [PMID: 35946469 DOI: 10.1097/mbc.0000000000001159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Venous thromboembolism (VTE) is an important cause of morbidity/mortality in cancer patients, and COMPASS-CAT score must be used to VTE-risk prediction. There is a relationship between cytokines and thrombus formation and/or resolution. This study aimed to investigate the VTE risk and cytokines level in breast cancer patients prior to chemotherapy with doxorubicin (DOXO). Eighty women with breast cancer and indication for DOXO treatment were selected. TNF, IL-1β, IL-6, and IL-10 were measured after the diagnosis and immediately before DOXO treatment. All 80 patients presented a high risk for VTE when evaluated by COMPASS-CAT model (score ≥7). A positive correlation was observed between IL-10 plasma levels and VTE risk score. Our data showed that higher IL-10 levels before chemotherapy are associated to increased risk of VTE in breast cancer patients. This finding suggests that IL-10 levels and the combination with COMPASS-CAT score could be good markers to predict increased risk of VTE in these patients.
Collapse
Affiliation(s)
- Rodrigo M C Pestana
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Michelle T Alves
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Cintia E Soares
- Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Adriano de P Sabino
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana M Silva
- Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Simões
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto de Hipertensão, Belo Horizonte, Minas Gerais, Brazil
- Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Karina B Gomes
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Claesen K, Sim Y, Bracke A, De bruyn M, De Hert E, Vliegen G, Hotterbeekx A, Vujkovic A, van Petersen L, De Winter FHR, Brosius I, Theunissen C, van Ierssel S, van Frankenhuijsen M, Vlieghe E, Vercauteren K, Kumar-Singh S, De Meester I, Hendriks D. Activation of the Carboxypeptidase U (CPU, TAFIa, CPB2) System in Patients with SARS-CoV-2 Infection Could Contribute to COVID-19 Hypofibrinolytic State and Disease Severity Prognosis. J Clin Med 2022; 11:jcm11061494. [PMID: 35329820 PMCID: PMC8954233 DOI: 10.3390/jcm11061494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral lower respiratory tract infection caused by the highly transmissible and pathogenic SARS-CoV-2 (severe acute respiratory-syndrome coronavirus-2). Besides respiratory failure, systemic thromboembolic complications are frequent in COVID-19 patients and suggested to be the result of a dysregulation of the hemostatic balance. Although several markers of coagulation and fibrinolysis have been studied extensively, little is known about the effect of SARS-CoV-2 infection on the potent antifibrinolytic enzyme carboxypeptidase U (CPU). Blood was collected longitudinally from 56 hospitalized COVID-19 patients and 32 healthy controls. Procarboxypeptidase U (proCPU) levels and total active and inactivated CPU (CPU+CPUi) antigen levels were measured. At study inclusion (shortly after hospital admission), proCPU levels were significantly lower and CPU+CPUi antigen levels significantly higher in COVID-19 patients compared to controls. Both proCPU and CPU+CPUi antigen levels showed a subsequent progressive increase in these patients. Hereafter, proCPU levels decreased and patients were, at discharge, comparable to the controls. CPU+CPUi antigen levels at discharge were still higher compared to controls. Baseline CPU+CPUi antigen levels (shortly after hospital admission) correlated with disease severity and the duration of hospitalization. In conclusion, CPU generation with concomitant proCPU consumption during early SARS-CoV-2 infection will (at least partly) contribute to the hypofibrinolytic state observed in COVID-19 patients, thus enlarging their risk for thrombosis. Moreover, given the association between CPU+CPUi antigen levels and both disease severity and duration of hospitalization, this parameter may be a potential biomarker with prognostic value in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Karen Claesen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.C.); (Y.S.); (A.B.); (M.D.b.); (E.D.H.); (G.V.); (I.D.M.)
| | - Yani Sim
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.C.); (Y.S.); (A.B.); (M.D.b.); (E.D.H.); (G.V.); (I.D.M.)
| | - An Bracke
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.C.); (Y.S.); (A.B.); (M.D.b.); (E.D.H.); (G.V.); (I.D.M.)
| | - Michelle De bruyn
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.C.); (Y.S.); (A.B.); (M.D.b.); (E.D.H.); (G.V.); (I.D.M.)
| | - Emilie De Hert
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.C.); (Y.S.); (A.B.); (M.D.b.); (E.D.H.); (G.V.); (I.D.M.)
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.C.); (Y.S.); (A.B.); (M.D.b.); (E.D.H.); (G.V.); (I.D.M.)
| | - An Hotterbeekx
- Molecular Pathology Group, Laboratory of Cell Biology & Histology, Faculty of Medical & Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (A.H.); (F.H.R.D.W.); (S.K.-S.)
| | - Alexandra Vujkovic
- Clinical Virology Unit, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (A.V.); (K.V.)
| | - Lida van Petersen
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (L.v.P.); (I.B.); (C.T.); (M.v.F.)
| | - Fien H. R. De Winter
- Molecular Pathology Group, Laboratory of Cell Biology & Histology, Faculty of Medical & Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (A.H.); (F.H.R.D.W.); (S.K.-S.)
| | - Isabel Brosius
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (L.v.P.); (I.B.); (C.T.); (M.v.F.)
| | - Caroline Theunissen
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (L.v.P.); (I.B.); (C.T.); (M.v.F.)
| | - Sabrina van Ierssel
- Department of General Internal Medicine, Infectious Diseases and Tropical Medicine, University Hospital Antwerp, 2650 Edegem, Belgium; (S.v.I.); (E.V.)
| | - Maartje van Frankenhuijsen
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (L.v.P.); (I.B.); (C.T.); (M.v.F.)
| | - Erika Vlieghe
- Department of General Internal Medicine, Infectious Diseases and Tropical Medicine, University Hospital Antwerp, 2650 Edegem, Belgium; (S.v.I.); (E.V.)
| | - Koen Vercauteren
- Clinical Virology Unit, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (A.V.); (K.V.)
| | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology & Histology, Faculty of Medical & Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (A.H.); (F.H.R.D.W.); (S.K.-S.)
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.C.); (Y.S.); (A.B.); (M.D.b.); (E.D.H.); (G.V.); (I.D.M.)
| | - Dirk Hendriks
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (K.C.); (Y.S.); (A.B.); (M.D.b.); (E.D.H.); (G.V.); (I.D.M.)
- Correspondence: ; Tel.: +32-3-265-27-27
| |
Collapse
|
3
|
Pleiotropic Effects of Atorvastatin Result in a Downregulation of the Carboxypeptidase U System (CPU, TAFIa, CPB2) in a Mouse Model of Advanced Atherosclerosis. Pharmaceutics 2021; 13:pharmaceutics13101731. [PMID: 34684024 PMCID: PMC8540817 DOI: 10.3390/pharmaceutics13101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022] Open
Abstract
Statins (hydroxymethyl-glutaryl-CoA-reductase inhibitors) lower procarboxypeptidase U (proCPU, TAFI, proCPB2). However, it is challenging to prove whether this is a lipid or non-lipid-related pleiotropic effect, since statin treatment decreases cholesterol levels in humans. In apolipoprotein E-deficient mice with a heterozygous mutation in the fibrillin-1 gene (ApoE−/−Fbn1C1039G+/−), a model of advanced atherosclerosis, statins do not lower cholesterol. Consequently, studying cholesterol-independent effects of statins can be achieved more straightforwardly in these mice. Female ApoE −/−Fbn1C1039G+/− mice were fed a Western diet (WD). At week 10 of WD, mice were divided into a WD group (receiving WD only) and a WD + atorvastatin group (receiving 10 mg/kg/day atorvastatin +WD) group. After 15 weeks, blood was collected from the retro-orbital plexus, and the mice were sacrificed. Total plasma cholesterol and C-reactive protein (CRP) were measured with commercially available kits. Plasma proCPU levels were determined with an activity-based assay. Total plasma cholesterol levels were not significantly different between both groups, while proCPU levels were significantly lower in the WD + atorvastatin group. Interestingly proCPU levels correlated with CRP and circulating monocytes. In conclusion, our results confirm that atorvastatin downregulates proCPU levels in ApoE−/−Fbn1C1039G+/− mice on a WD, and evidence was provided that this downregulation is a pleiotropic effect of atorvastatin treatment.
Collapse
|
4
|
Yoshida K, Takabayashi T, Imoto Y, Sakashita M, Kato Y, Narita N, Fujieda S. Increased Thrombin-Activatable Fibrinolysis Inhibitor in Response to Sublingual Immunotherapy for Allergic Rhinitis. Laryngoscope 2021; 131:2413-2420. [PMID: 33844301 DOI: 10.1002/lary.29563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS The objective of this study was to determine the role of thrombin-activatable fibrinolysis inhibitor (TAFI) as a candidate biomarker for therapeutic efficacy of sublingual immunotherapy (SLIT) and to identify the role of TAFI in the pathogenesis of allergic rhinitis (AR). STUDY DESIGN Retrospective cohort study and laboratory study. METHODS Serum was collected from patients with allergies to Japanese cedar pollen before, during, and after treatment with SLIT. We measured the levels of immunoreactive TAFI, C3a, and C5a in serum by enzyme-linked immunosorbent assay (ELISA) and assessed their relative impact on a combined symptom-medication score. We also examined the impact of TAFI on mast cells and fibroblasts in experiments performed in vitro. RESULTS Serum levels of TAFI increased significantly in response to SLIT. By contrast, serum C3a levels decreased significantly over time; we observed a significant negative correlation between serum levels of TAFI versus C3a and symptom-medication score. Mast cell degranulation was inhibited in response to TAFI, as it was the expression of both CCL11 and CCL5 in cultured fibroblasts. CONCLUSIONS High serum levels of TAFI may be induced by SLIT. TAFI may play a critical protective role in pathogenesis of AR by inactivating C3a and by inhibiting mast cell degranulation and chemokines expression in fibroblasts. LEVEL OF EVIDENCE 4 Laryngoscope, 2021.
Collapse
Affiliation(s)
- Kanako Yoshida
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| | - Tetsuji Takabayashi
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| | - Yoshimasa Imoto
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| | - Yukinori Kato
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| | - Norihiko Narita
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| |
Collapse
|
5
|
Komnenov D, Quaal H, Rossi NF. V 1a and V 1b vasopressin receptors within the paraventricular nucleus contribute to hypertension in male rats exposed to chronic mild unpredictable stress. Am J Physiol Regul Integr Comp Physiol 2021; 320:R213-R225. [PMID: 33264070 DOI: 10.1152/ajpregu.00245.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 01/06/2023]
Abstract
Depression is an independent nontraditional risk factor for cardiovascular disease and mortality. The chronic unpredictable mild stress (CMS) rat model is a validated model of depression. Within the paraventricular nucleus (PVN), vasopressin (VP) via V1aR and V1bR have been implicated in stress and neurocardiovascular dysregulation. We hypothesized that in conscious, unrestrained CMS rats versus control, unstressed rats, PVN VP results in elevated arterial pressure (MAP), heart rate, and renal sympathetic nerve activity (RSNA) via activation of V1aR and/or V1bR. Male rats underwent 4 wk of CMS or control conditions. They were then equipped with hemodynamic telemetry transmitters, PVN cannula, and left renal nerve electrode. V1aR or V1bR antagonism dose-dependently inhibited MAP after VP injection. V1aR or V1bR blockers at their ED50 doses did not alter baseline parameters in either control or CMS rats but attenuated the pressor response to VP microinjected into PVN by ∼50%. Combined V1aR and V1bR inhibition completely blocked the pressor response to PVN VP in control but not CMS rats. CMS rats required combined maximally inhibitory doses to block either endogenous VP within the PVN or responses to microinjected VP. Compared with unstressed control rats, CMS rats had higher plasma VP levels and greater abundance of V1aR and V1bR transcripts within PVN. Thus, the CMS rat model of depression results in higher resting MAP, heart rate, and RSNA, which can be mitigated by inhibiting vasopressinergic mechanisms involving both V1aR and V1bR within the PVN. Circulating VP may also play a role in the pressor response.
Collapse
Affiliation(s)
- Dragana Komnenov
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - Harrison Quaal
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - Noreen F Rossi
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
6
|
mRNA Post-Transcriptional Regulation by AU-Rich Element-Binding Proteins in Liver Inflammation and Cancer. Int J Mol Sci 2020; 21:ijms21186648. [PMID: 32932781 PMCID: PMC7554771 DOI: 10.3390/ijms21186648] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
AU-rich element-binding proteins (AUBPs) represent important post-transcriptional regulators of gene expression. AUBPs can bind to the AU-rich elements present in the 3'-UTR of more than 8% of all mRNAs and are thereby able to control the stability and/or translation of numerous target mRNAs. The regulation of the stability and the translation of mRNA transcripts by AUBPs are highly complex processes that occur through multiple mechanisms depending on the cell type and the cellular context. While AUBPs have been shown to be involved in inflammatory processes and the development of various cancers, their important role and function in the development of chronic metabolic and inflammatory fatty liver diseases (FLDs), as well as in the progression of these disorders toward cancers such as hepatocellular carcinoma (HCC), has recently started to emerge. Alterations of either the expression or activity of AUBPs are indeed significantly associated with FLDs and HCC, and accumulating evidence indicates that several AUBPs are deeply involved in a significant number of cellular processes governing hepatic metabolic disorders, inflammation, fibrosis, and carcinogenesis. Herein, we discuss our current knowledge of the roles and functions of AUBPs in liver diseases and cancer. The relevance of AUBPs as potential biomarkers for different stages of FLD and HCC, or as therapeutic targets for these diseases, are also highlighted.
Collapse
|
7
|
Dery KJ, Nakamura K, Kadono K, Hirao H, Kageyama S, Ito T, Kojima H, Kaldas FM, Busuttil RW, Kupiec‐Weglinski JW. Human Antigen R (HuR): A Regulator of Heme Oxygenase-1 Cytoprotection in Mouse and Human Liver Transplant Injury. Hepatology 2020; 72:1056-1072. [PMID: 31879990 PMCID: PMC8330638 DOI: 10.1002/hep.31093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIMS Ischemia-reperfusion injury (IRI) represents a risk factor in liver transplantation (LT). We have shown that overexpression of heme oxygenase-1 (HO-1) mitigates hepatic IRI in LT recipients. Here, we hypothesized that human antigen R (HuR), the stabilizer of adenylate-uridylate (AU)-rich mRNAs, is required for hepatoprotection in LT. APPROACH AND RESULTS In an experimental arm, HuR/HO-1 protein expression was correlated with hepatic IRI phenotype. In an in vitro inflammation mimic model of hepatic warm IRI, induction of HuR/HO-1 and cytoplasmic localization following cytokine preconditioning were detected in primary hepatocyte cultures, whereas HuR silencing caused negative regulation of HO-1, followed by enhanced cytotoxicity. Using the HuR-inhibitor, we showed that HuR likely regulates HO-1 through its 3' untranslated region and causes neutrophil activation (CD69+/lymphocyte antigen 6 complex locus G [Ly6-G]). HuR silencing in bone marrow-derived macrophages decreased HO-1 expression, leading to the induction of proinflammatory cytokines/chemokines. RNA sequencing of HuR silenced transcripts under in vitro warm IRI revealed regulation of genes thymus cell antigen 1 (THY1), aconitate decarboxylase 1 (ACOD1), and Prostaglandin E Synthase (PTGES). HuR, but not hypoxia-inducible protein alpha, positively regulated HO-1 in warm, but not cold, hypoxia/reoxygenation conditions. HuR modulated HO-1 in primary hepatocytes, neutrophils, and macrophages under reperfusion. Adjunctive inhibition of HuR diminished microtubule-associated proteins 1A/1B light chain 3B (LC3B), a marker for autophagosome, under HO-1 regulation, suggesting a cytoprotective mechanism in hepatic IR. In a clinical arm, hepatic biopsies from 51 patients with LT were analyzed at 2 hours after reperfusion. Graft HuR expression was negatively correlated with macrophage (CD80/CD86) and neutrophil (Cathepsin G) markers. Hepatic IRI increased HuR/HO-1 expression and inflammatory genes. High HuR-expressing liver grafts showed lower serum alanine aminotransferase/serum aspartate aminotransferase levels and improved LT survival. CONCLUSIONS This translational study identifies HuR as a regulator of HO-1-mediated cytoprotection in sterile liver inflammation and a biomarker of ischemic stress resistance in LT.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Kojiro Nakamura
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA,Department of SurgeryKyoto UniversityKyotoJapan,Department of SurgeryNishi‐Kobe Medical CenterKobeJapan
| | - Kentaro Kadono
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Hirofumi Hirao
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Shoichi Kageyama
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Takahiro Ito
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Hidenobu Kojima
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Fady M. Kaldas
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Ronald W. Busuttil
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Jerzy W. Kupiec‐Weglinski
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| |
Collapse
|
8
|
Human antigen R: A potential therapeutic target for liver diseases. Pharmacol Res 2020; 155:104684. [PMID: 32045667 DOI: 10.1016/j.phrs.2020.104684] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
Human antigen R (HuR), also known as HuA and embryonic lethal abnormal vision-like 1 (ELAVL1), is a ubiquitously expressed RNA binding protein and functions as an RNA regulator and mediates the expression of various proteins by diverse post-transcriptional mechanisms. HuR has been well characterized in the inflammatory responses and in the development of various cancers. The importance of HuR-mediated roles in cell signaling, inflammation, fibrogenesis and cancer development in the liver has attracted a great deal of attention. However, there is still a substantial gap between the current understanding of the potential roles of HuR in the progression of liver disease and whether HuR can be targeted for the treatment of liver diseases. In this review, we introduce the function and mechanistic characterization of HuR, and then focus on the physiopathological roles of HuR in the development of different liver diseases, including hepatic inflammation, alcoholic liver diseases, non-alcoholic fatty liver diseases, viral hepatitis, liver fibrosis and liver cancers. We also summarize existing approaches targeting HuR function. In conclusion, although characterizing the liver-specific HuR function and demonstrating the multi-level regulative networks of HuR in the liver are still required, emerging evidence supports the notion that HuR represents a potential therapeutic target for the treatment of chronic liver diseases.
Collapse
|
9
|
Leenaerts D, Loyau S, Mertens JC, Boisseau W, Michel JB, Lambeir AM, Jandrot-Perrus M, Hendriks D. Carboxypeptidase U (CPU, carboxypeptidase B2, activated thrombin-activatable fibrinolysis inhibitor) inhibition stimulates the fibrinolytic rate in different in vitro models. J Thromb Haemost 2018; 16:2057-2069. [PMID: 30053349 DOI: 10.1111/jth.14249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 01/26/2023]
Abstract
Essentials AZD9684 is a potent inhibitor of carboxypeptidase U (CPU, TAFIa, CPB2). The effect of AZD9684 on fibrinolysis was investigated in four in vitro systems. The CPU system also attenuates fibrinolysis in more advanced hemostatic systems. The size of the observed effect on fibrinolysis is dependent on the exact experimental conditions. SUMMARY Background Carboxypeptidase U (CPU, carboxypeptidase B2, activated thrombin-activatable fibrinolysis inhibitor) is a basic carboxypeptidase that attenuates fibrinolysis. This characteristic has raised interest in the scientific community and pharmaceutical industry for the development of inhibitors as profibrinolytic agents. Objectives Little is known about the contribution of CPU to clot resistance in more advanced hemostatic models, which include blood cells and shear stress. The aim of this study was to evaluate the effects of the CPU system in in vitro systems for fibrinolysis with different grades of complexity. Methods The contribution of the CPU system was evaluated in the following systems: (i) plasma clot lysis; (ii) rotational thromboelastometry (ROTEM) in whole blood; (iii) front lysis with confocal microscopy in platelet-free and platelet-rich plasma; and (iv) a microfluidic system with whole blood under arterial shear stress. Experiments were carried out in the presence or absence of AZD9684, a specific CPU inhibitor. Results During plasma clot lysis, addition of AZD9684 resulted in 33% faster lysis. In ROTEM, the lysis onset time was decreased by 38%. For both clot lysis and ROTEM, an AZD9684 dose-dependent response was observed. CPU inhibition in front lysis experiments resulted in 47% and 50% faster lysis for platelet-free plasma and platelet-rich plasma, respectively. Finally, a tendency for faster lysis was observed only in the microfluidic system when AZD9684 was added. Conclusions Overall, these experiments provide novel evidence that the CPU system can also modulate fibrinolysis in more advanced hemostatic systems. The extent of the effects appears to be dependent upon the exact experimental conditions.
Collapse
Affiliation(s)
- D Leenaerts
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - S Loyau
- Laboratory for Vascular Translational Sciences, U1148, Paris Diderot University, Paris, France
| | - J C Mertens
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - W Boisseau
- Laboratory for Vascular Translational Sciences, U1148, Paris Diderot University, Paris, France
| | - J B Michel
- Laboratory for Vascular Translational Sciences, U1148, Paris Diderot University, Paris, France
| | - A M Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - M Jandrot-Perrus
- Laboratory for Vascular Translational Sciences, U1148, Paris Diderot University, Paris, France
| | - D Hendriks
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
10
|
Mohamed HT, El-Husseiny N, El-Ghonaimy EA, Ibrahim SA, Bazzi ZA, Cavallo-Medved D, Boffa MB, El-Shinawi M, Mohamed MM. IL-10 correlates with the expression of carboxypeptidase B2 and lymphovascular invasion in inflammatory breast cancer: The potential role of tumor infiltrated macrophages. Curr Probl Cancer 2018; 42:215-230. [PMID: 29459177 DOI: 10.1016/j.currproblcancer.2018.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/26/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
Abstract
Pro-carboxypeptidase B2 (pro-CPB2) or thrombin-activatable fibrinolysis inhibitor (TAFI) is a glycoprotein encoded by the CPB2 gene and deregulated in several cancer types, including breast cancer. Thrombin binding to thrombomodulin (TM), encoded by THBD, is important for TAFI activation. CPB2 gene expression is influenced by genetic polymorphism and cytokines such as interleukin 10 (IL-10). Our previous results showed that tumor infiltrating monocytes/macrophages (CD14+/CD16+) isolated from inflammatory breast cancer (IBC) patients' secrete high levels of IL-10. The aim of the present study is to test genetic polymorphism and expression of CPB2 in healthy breast tissues and carcinoma tissues of non-IBC and IBC patients. Furthermore, to investigate whether IL-10 modulates the expression of CPB2 and THBD in vivo and in-vitro. We tested CPB2 Thr325Ile polymorphism using restriction fragment length polymorphism, (RFLP) technique in healthy and carcinoma breast tissues. The mRNA expression of CPB2, THBD and IL10 were assessed by RT-qPCR. Infiltration of CD14+ cells was assessed by immunohistochemistry. In addition, we investigated the correlation between infiltration of CD14+ cells and expression of IL10 and CPB2. Furthermore, we correlated IL10 expression with the expression of both CPB2 and THBD in breast carcinoma tissues. Finally, we validated the role of recombinant IL-10 in regulating the expression of CPB2 and THBD using different breast cancer cell lines. Our results showed that CPB2 genotypes carrying the high-risk allele [Thr/Ile (CT) and Ile/Ile (TT)] were more frequent in both IBC and non-IBC patients compared to control group. CPB2 genotypes did not show any statistical correlation with CPB2 mRNA expression levels or patients' clinical pathological properties. Interestingly, CPB2 and IL10 expression were significantly higher and positively correlated with the incidence of CD14+ cells in carcinoma tissues of IBC as compared to non-IBC. On the other hand, THBD expression was significantly lower in IBC carcinoma versus non-IBC tissues. Based on molecular subtypes, CPB2 and IL10 expression were significantly higher in triple negative (TN) as compared to hormonal positive (HP) carcinoma tissues of IBC. Moreover, CPB2 expression was positively correlated with presence of lymphovascular invasion and the expression of IL10 in carcinoma tissues of IBC patients. Furthermore, recombinant human IL-10 stimulated CPB2 expression in SUM-149 (IBC cell line) but not in MDA-MB-231 (non-IBC cell line), while there was no significant effect THBD expression. In conclusion, carcinoma tissues of IBC patients are characterized by higher expression of CPB2 and lower expression of THBD. Moreover, CPB2 positively correlates with IL10 mRNA expression, incidence of CD14+ cells and lymphovascular invasion in IBC patients. IL-10 stimulated CPB2 expression in TN-IBC cell line suggests a relevant role of CPB2 in the aggressive phenotype of IBC.
Collapse
Affiliation(s)
| | - Noura El-Husseiny
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Zainab A Bazzi
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Dora Cavallo-Medved
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Michael B Boffa
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Breast-Gynecological International Cancer Society, Cairo, Egypt
| | - Mona Mostafa Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt; Breast-Gynecological International Cancer Society, Cairo, Egypt.
| |
Collapse
|
11
|
Lema I, Amazit L, Lamribet K, Fagart J, Blanchard A, Lombès M, Cherradi N, Viengchareun S. RNA-binding protein HuR enhances mineralocorticoid signaling in renal KC3AC1 cells under hypotonicity. Cell Mol Life Sci 2017; 74:4587-4597. [PMID: 28744670 PMCID: PMC11107542 DOI: 10.1007/s00018-017-2594-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 02/03/2023]
Abstract
Mineralocorticoid receptor (MR) mediates the sodium-retaining action of aldosterone in the distal nephron. Herein, we decipher mechanisms by which hypotonicity increases MR expression in renal principal cells. We identify HuR (human antigen R), an mRNA-stabilizing protein, as an important posttranscriptional regulator of MR expression. Hypotonicity triggers a rapid and reversible nuclear export of HuR in renal KC3AC1 cells, as quantified by high-throughput microscopy. We also identify a key hairpin motif in the 3'-untranslated region of MR transcript, pivotal for the interaction with HuR and its stabilizing function. Next, we show that hypotonicity increases MR recruitment onto Sgk1 promoter, a well-known MR target gene, thereby enhancing aldosterone responsiveness. Our data shed new light on the crucial role of HuR as a stabilizing factor for the MR transcript and provide evidence for a short autoregulatory loop in which expression of a nuclear receptor transcriptionally regulating water and sodium balance is controlled by osmotic tone.
Collapse
Affiliation(s)
- Ingrid Lema
- Inserm U1185, Faculté de Médecine Paris-Sud, Université Paris-Saclay, 63 rue Gabriel Peri, 94276, Le Kremlin-Bicêtre, France
| | - Larbi Amazit
- Inserm U1185, Faculté de Médecine Paris-Sud, Université Paris-Saclay, 63 rue Gabriel Peri, 94276, Le Kremlin-Bicêtre, France
- UMS 32, 94276, Le Kremlin-Bicêtre, France
| | - Khadija Lamribet
- Inserm U1185, Faculté de Médecine Paris-Sud, Université Paris-Saclay, 63 rue Gabriel Peri, 94276, Le Kremlin-Bicêtre, France
| | - Jérôme Fagart
- Inserm U1185, Faculté de Médecine Paris-Sud, Université Paris-Saclay, 63 rue Gabriel Peri, 94276, Le Kremlin-Bicêtre, France
| | - Anne Blanchard
- Inserm, Centre d'Investigations Cliniques 9201, 75015, Paris, France
| | - Marc Lombès
- Inserm U1185, Faculté de Médecine Paris-Sud, Université Paris-Saclay, 63 rue Gabriel Peri, 94276, Le Kremlin-Bicêtre, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, 94275, Le Kremlin-Bicêtre, France.
| | - Nadia Cherradi
- Institut National de la Santé et de la Recherche Médicale, Inserm U1036, 38000, Grenoble, France.
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, 38000, Grenoble, France.
- Université Grenoble Alpes, Unité Mixte de Recherche-S1036, 38000, Grenoble, France.
| | - Say Viengchareun
- Inserm U1185, Faculté de Médecine Paris-Sud, Université Paris-Saclay, 63 rue Gabriel Peri, 94276, Le Kremlin-Bicêtre, France.
| |
Collapse
|
12
|
Reduced thrombin activatable fibrinolysis inhibitor and enhanced proinflammatory cytokines in acute coronary syndrome. Med Intensiva 2016; 41:475-482. [PMID: 28038785 DOI: 10.1016/j.medin.2016.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE A study was made of the changes in the serum levels of thrombin activatable fibrinolysis inhibitor (TAFI), proinflammatory cytokines and acute phase proteins in the acute stage of acute coronary syndrome (ACS), in order to explore the possibility of using TAFI as a biomarker for ACS risk assessment. METHODS A total of 211 patients with ACS were enrolled, and healthy subjects were used as controls. Blood samples were taken within 24h after admission. Serum TAFI levels were determined by immunoturbidimetry. Serum levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were determined by enzyme linked immunosorbent assay (ELISA). Procalcitonin (PCT) and C-reactive protein (CRP) levels were measured by gold-immunochromatographic assay. RESULTS Serum TAFI levels in ACS patients were significantly decreased versus the controls. The IL-1β, IL-6, TNF-α, PCT and CRP levels were markedly higher in the ACS patients than in the controls. Correlation analysis revealed a strong negative correlation between TAFI concentration and the IL-1β, IL-6, TNF-а, PCT and CRP levels in ACS patients and in controls. Multivariate logistic regression analysis suggested decreased serum TAFI to be an independent risk factor for ACS (OR 9.459; 95% CI 2.306-38.793; P=0.002). The area under the receiver operating characteristic (ROC) curve for TAFI was 0.872 (95% CI 0.787-0.909; P<0.001). The optimum TAFI cutoff point for the prediction of ACS was 24μg/ml, with a sensitivity of 75.83% and a specificity of 72.57%. CONCLUSION These findings suggest that TAFI can be useful as a potential biomarker for ACS risk assessment.
Collapse
|