1
|
Song L, Zhang B, Li R, Duan Y, Chi Y, Xu Y, Hua X, Xu Q. Significance of neutrophil extracellular traps-related gene in the diagnosis and classification of atherosclerosis. Apoptosis 2024; 29:605-619. [PMID: 38367202 DOI: 10.1007/s10495-023-01923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2023] [Indexed: 02/19/2024]
Abstract
Atherosclerosis (AS) is a pathological process associated with various cardiovascular diseases. Upon different stimuli, neutrophils release reticular complexes known as neutrophil extracellular traps (NETs). Numerous researches have indicated a strong correlation between NETs and AS. However, its role in cardiovascular disease requires further investigation. By utilizing a machine learning algorithm, we examined the genes associated with NETs that were expressed differently in individuals with AS compared to normal controls. As a result, we identified four distinct genes. A nomogram model was built to forecast the incidence of AS. Additionally, we conducted analysis on immune infiltration, functional enrichment and consensus clustering in AS samples. The findings indicated that individuals with AS could be categorized into two groups, exhibiting notable variations in immune infiltration traits among the groups. Furthermore, to measure the NETs model, the principal component analysis algorithm was developed and cluster B outperformed cluster A in terms of NETs. Additionally, there were variations in the expression of multiple chemokines between the two subtypes. By studying AS NETs, we acquired fresh knowledge about the molecular patterns and immune mechanisms implicated, which could open up new possibilities for AS immunotherapy.
Collapse
Affiliation(s)
- Liantai Song
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Boyu Zhang
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Reng Li
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Yibing Duan
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Yifan Chi
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Yangyi Xu
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Xucong Hua
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Qian Xu
- Department of Biochemistry, Chengde Medical University, Chengde, 067000, Hebei, People's Republic of China.
| |
Collapse
|
2
|
Guan T, Emschermann F, Schories C, Groga-Bada P, Martus P, Borst O, Gawaz M, Geisler T, Rath D, Chatterjee M. Platelet SR-PSOX/CXCL16-CXCR6 Axis Influences Thrombotic Propensity and Prognosis in Coronary Artery Disease. Int J Mol Sci 2022; 23:ijms231911066. [PMID: 36232370 PMCID: PMC9570123 DOI: 10.3390/ijms231911066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Platelets express the transmembrane chemokine SR-PSOX/CXCL16, proteolytic cleavage of which generates the sCXCL16 soluble-(s) chemokine. The sCXCL16 engages CXCR6 on platelets to synergistically propagate degranulation, aggregation and thrombotic response. Currently, we have investigated the pro-thrombotic and prognostic association of platelet CXCL16−CXCR6 axis in CAD-(n = 240; CCS n = 62; ACS n = 178) patients. Platelet surface-associated-CXCL16 and CXCR6 surface expression ascertained by flow cytometry correlated significantly with platelet activation markers (CD62P denoting degranulation and PAC-1 binding denoting α2bβ3-integrin activation). Higher platelet CXCL16 surface association (1st quartile vs. 2nd−4th quartiles) corresponded to significantly elevated collagen-induced platelet aggregation assessed by whole blood impedance aggregometry. Platelet-CXCL16 and CXCR6 expression did not alter with dyslipidemia, triglyceride, total cholesterol, or LDL levels, but higher (>median) plasma HDL levels corresponded with decreased platelet-CXCL16 and CXCR6. Although platelet-CXCL16 and CXCR6 expression did not change significantly with or correlate with troponin I levels, they corresponded with higher Creatine Kinase-(CK) activity and progressively deteriorating left ventricular ejection fraction (LVEF) at admission. Elevated-(4th quartile) platelet-CXCL16 (p = 0.023) and CXCR6 (p = 0.030) measured at admission were significantly associated with a worse prognosis. However, after Cox-PH regression analysis, only platelet-CXCL16 was ascertained as an independent predictor for all-cause of mortality. Therefore, the platelet CXCL16−CXCR6 axis may influence thrombotic propensity and prognosis in CAD patients.
Collapse
Affiliation(s)
- Tianyun Guan
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Frederic Emschermann
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Christoph Schories
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Patrick Groga-Bada
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biostatistics, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Tobias Geisler
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
- Correspondence: (D.R.); (M.C.); Tel.: +49-7071-2974944 (M.C.)
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried Müller Straße 10, 72076 Tübingen, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, University Hospital Tübingen, Wilhelmstrasse 56, 72074 Tübingen, Germany
- Correspondence: (D.R.); (M.C.); Tel.: +49-7071-2974944 (M.C.)
| |
Collapse
|
3
|
Evans BR, Yerly A, van der Vorst EPC, Baumgartner I, Bernhard SM, Schindewolf M, Döring Y. Inflammatory Mediators in Atherosclerotic Vascular Remodeling. Front Cardiovasc Med 2022; 9:868934. [PMID: 35600479 PMCID: PMC9114307 DOI: 10.3389/fcvm.2022.868934] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/11/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerotic vascular disease remains the most common cause of ischemia, myocardial infarction, and stroke. Vascular function is determined by structural and functional properties of the arterial vessel wall, which consists of three layers, namely the adventitia, media, and intima. Key cells in shaping the vascular wall architecture and warranting proper vessel function are vascular smooth muscle cells in the arterial media and endothelial cells lining the intima. Pathological alterations of this vessel wall architecture called vascular remodeling can lead to insufficient vascular function and subsequent ischemia and organ damage. One major pathomechanism driving this detrimental vascular remodeling is atherosclerosis, which is initiated by endothelial dysfunction allowing the accumulation of intimal lipids and leukocytes. Inflammatory mediators such as cytokines, chemokines, and modified lipids further drive vascular remodeling ultimately leading to thrombus formation and/or vessel occlusion which can cause major cardiovascular events. Although it is clear that vascular wall remodeling is an elementary mechanism of atherosclerotic vascular disease, the diverse underlying pathomechanisms and its consequences are still insufficiently understood.
Collapse
Affiliation(s)
- Bryce R. Evans
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anaïs Yerly
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Emiel P. C. van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Molecular Cardiovascular Research (IMCAR) and Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Iris Baumgartner
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sarah Maike Bernhard
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- *Correspondence: Yvonne Döring
| |
Collapse
|
4
|
Márquez AB, van der Vorst EPC, Maas SL. Key Chemokine Pathways in Atherosclerosis and Their Therapeutic Potential. J Clin Med 2021; 10:3825. [PMID: 34501271 PMCID: PMC8432216 DOI: 10.3390/jcm10173825] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
The search to improve therapies to prevent or treat cardiovascular diseases (CVDs) rages on, as CVDs remain a leading cause of death worldwide. Here, the main cause of CVDs, atherosclerosis, and its prevention, take center stage. Chemokines and their receptors have long been known to play an important role in the pathophysiological development of atherosclerosis. Their role extends from the initiation to the progression, and even the potential regression of atherosclerotic lesions. These important regulators in atherosclerosis are therefore an obvious target in the development of therapeutic strategies. A plethora of preclinical studies have assessed various possibilities for targeting chemokine signaling via various approaches, including competitive ligands and microRNAs, which have shown promising results in ameliorating atherosclerosis. Developments in the field also include detailed imaging with tracers that target specific chemokine receptors. Lastly, clinical trials revealed the potential of various therapies but still require further investigation before commencing clinical use. Although there is still a lot to be learned and investigated, it is clear that chemokines and their receptors present attractive yet extremely complex therapeutic targets. Therefore, this review will serve to provide a general overview of the connection between various chemokines and their receptors with atherosclerosis. The different developments, including mouse models and clinical trials that tackle this complex interplay will also be explored.
Collapse
Affiliation(s)
- Andrea Bonnin Márquez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
5
|
Gencer S, Evans BR, van der Vorst EP, Döring Y, Weber C. Inflammatory Chemokines in Atherosclerosis. Cells 2021; 10:cells10020226. [PMID: 33503867 PMCID: PMC7911854 DOI: 10.3390/cells10020226] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a long-term, chronic inflammatory disease of the vessel wall leading to the formation of occlusive or rupture-prone lesions in large arteries. Complications of atherosclerosis can become severe and lead to cardiovascular diseases (CVD) with lethal consequences. During the last three decades, chemokines and their receptors earned great attention in the research of atherosclerosis as they play a key role in development and progression of atherosclerotic lesions. They orchestrate activation, recruitment, and infiltration of immune cells and subsequent phenotypic changes, e.g., increased uptake of oxidized low-density lipoprotein (oxLDL) by macrophages, promoting the development of foam cells, a key feature developing plaques. In addition, chemokines and their receptors maintain homing of adaptive immune cells but also drive pro-atherosclerotic leukocyte responses. Recently, specific targeting, e.g., by applying cell specific knock out models have shed new light on their functions in chronic vascular inflammation. This article reviews recent findings on the role of immunomodulatory chemokines in the development of atherosclerosis and their potential for targeting.
Collapse
Affiliation(s)
- Selin Gencer
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.G.); (E.P.C.v.d.V.); (Y.D.)
| | - Bryce R. Evans
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (B.R.E.)
| | - Emiel P.C. van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.G.); (E.P.C.v.d.V.); (Y.D.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.G.); (E.P.C.v.d.V.); (Y.D.)
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (B.R.E.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.G.); (E.P.C.v.d.V.); (Y.D.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
- Correspondence:
| |
Collapse
|
6
|
Coenen DM, Heinzmann ACA, Karel MFA, Cosemans JMEM, Koenen RR. The multifaceted contribution of platelets in the emergence and aftermath of acute cardiovascular events. Atherosclerosis 2021; 319:132-141. [PMID: 33468314 DOI: 10.1016/j.atherosclerosis.2020.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is an underlying cause of a broad array of cardiovascular diseases characterized by plaques, arterial wall thickening initiated by hyperlipidemia, pro-inflammatory signals, endothelial dysfunction and the influx of inflammatory cells. By still incompletely characterized mechanisms, these plaques can destabilize or erode, leading to thrombosis and blood vessel occlusion and becomes clinically manifest as angina pectoris, myocardial infarction (MI) or stroke. Among the several blood cell types that are involved in the development of atherosclerosis, the role of platelets during the thrombotic occlusion of ruptured or eroded plaques is well established and clinically exploited as evident by the extensive use of platelet inhibitors. However, there is increasing evidence that platelets are also involved in the earlier stages of atheroma development by exhibiting pro-inflammatory activities. The scope of this review is to describe the role of platelets in the initiation and propagation stages of atherosclerosis and beyond; in atherothrombotic complications.
Collapse
Affiliation(s)
- Daniëlle M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Alexandra C A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Mieke F A Karel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Molecular Drivers of Platelet Activation: Unraveling Novel Targets for Anti-Thrombotic and Anti-Thrombo-Inflammatory Therapy. Int J Mol Sci 2020; 21:ijms21217906. [PMID: 33114406 PMCID: PMC7662962 DOI: 10.3390/ijms21217906] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally-partly a consequence of increased population size and ageing-and are major contributors to reduced quality of life. Platelets play a major role in hemostasis and thrombosis. While platelet activation and aggregation are essential for hemostasis at sites of vascular injury, uncontrolled platelet activation leads to pathological thrombus formation and provokes thrombosis leading to myocardial infarction or stroke. Platelet activation and thrombus formation is a multistage process with different signaling pathways involved to trigger platelet shape change, integrin activation, stable platelet adhesion, aggregation, and degranulation. Apart from thrombotic events, thrombo-inflammation contributes to organ damage and dysfunction in CVDs and is mediated by platelets and inflammatory cells. Therefore, in the past, many efforts have been made to investigate specific signaling pathways in platelets to identify innovative and promising approaches for novel antithrombotic and anti-thrombo-inflammatory strategies that do not interfere with hemostasis. In this review, we focus on some of the most recent data reported on different platelet receptors, including GPIb-vWF interactions, GPVI activation, platelet chemokine receptors, regulation of integrin signaling, and channel homeostasis of NMDAR and PANX1.
Collapse
|
8
|
Provenzale I, Brouns SLN, van der Meijden PEJ, Swieringa F, Heemskerk JWM. Whole Blood Based Multiparameter Assessment of Thrombus Formation in Standard Microfluidic Devices to Proxy In Vivo Haemostasis and Thrombosis. MICROMACHINES 2019; 10:mi10110787. [PMID: 31744132 PMCID: PMC6915499 DOI: 10.3390/mi10110787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
Microfluidic assays are versatile tests which, using only small amounts of blood, enable high throughput analyses of platelet function in several minutes. In combination with fluorescence microscopy, these flow tests allow real-time visualisation of platelet activation with the possibility of examining combinatorial effects of wall shear rate, coagulation and modulation by endothelial cells. In particular, the ability to use blood and blood cells from healthy subjects or patients makes this technology promising, both for research and (pre)clinical diagnostic purposes. In the present review, we describe how microfluidic devices are used to assess the roles of platelets in thrombosis and haemostasis. We place emphasis on technical aspects and on experimental designs that make the concept of "blood-vessel-component-on-a-chip" an attractive, rapidly developing technology for the study of the complex biological processes of blood coagulability in the presence of flow.
Collapse
Affiliation(s)
- Isabella Provenzale
- Correspondence: (I.P.); (J.W.M.H.); Tel.: +31-43-3881671 or +31-43-3881674 (J.W.M.H.)
| | | | | | | | - Johan W. M. Heemskerk
- Correspondence: (I.P.); (J.W.M.H.); Tel.: +31-43-3881671 or +31-43-3881674 (J.W.M.H.)
| |
Collapse
|
9
|
Linke B, Meyer Dos Santos S, Picard-Willems B, Keese M, Harder S, Geisslinger G, Scholich K. CXCL16/CXCR6-mediated adhesion of human peripheral blood mononuclear cells to inflamed endothelium. Cytokine 2019. [DOI: 10.1016/j.cyto.2017.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Bakogiannis C, Sachse M, Stamatelopoulos K, Stellos K. Platelet-derived chemokines in inflammation and atherosclerosis. Cytokine 2019; 122:154157. [DOI: 10.1016/j.cyto.2017.09.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/31/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022]
|
11
|
Andersen T, Ueland T, Ghukasyan Lakic T, Åkerblom A, Bertilsson M, Aukrust P, Michelsen AE, James SK, Becker RC, Storey RF, Wallentin L, Siegbahn A, Kontny F. C-X-C Ligand 16 Is an Independent Predictor of Cardiovascular Death and Morbidity in Acute Coronary Syndromes. Arterioscler Thromb Vasc Biol 2019; 39:2402-2410. [PMID: 31554419 DOI: 10.1161/atvbaha.119.312633] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The chemokine CXCL16 (C-X-C motif ligand 16) is a scavenger receptor for OxLDL (oxidized low-density lipoproteins) and involved in inflammation at sites of atherosclerosis. This study aimed to investigate the association of CXCL16 with clinical outcome in patients with acute coronary syndrome. Approach and Results: Serial measurements of CXCL16 were performed in a subgroup of 5142 patients randomized in the PLATO trial (Platelet Inhibition and Patient Outcome). Associations between CXCL16 and a composite of cardiovascular death, spontaneous myocardial infarction or stroke, and the individual components were assessed by multivariable Cox regression analyses. The hazard ratio per 50% increase in admission levels of CXCL16 analyzed as continuous variable was 1.64 (95% CI, 1.44-1.88), P<0.0001. This association remained statistically significant after adjustment for randomized treatment, clinical variables, CRP (C-reactive protein), leukocytes, cystatin C, NT-proBNP (N-terminal pro-brain natriuretic peptide), troponin T, GDF-15 (growth differentiation factor 15), and other biomarkers; hazard ratio 1.23 (1.05-1.45), P=0.0126. The admission level of CXCL16 was independently associated with cardiovascular death (1.50 [1.17-1.92], P=0.0014) but not with ischemic events alone, in fully adjusted analyses. No statistically independent association was found between CXCL16 measured at 1 month, or change in CXCL16 from admission to 1 month, and clinical outcomes. CONCLUSIONS In patients with acute coronary syndrome, admission level of CXCL16 is independently related to adverse clinical outcomes, mainly driven by an association to cardiovascular death. Thus, CXCL16 measurement may enhance risk stratification in patients with this condition. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT00391872.
Collapse
Affiliation(s)
- Thomas Andersen
- From the Department of Anaesthesiology, Stavanger University Hospital, Norway (T.A.)
| | - Thor Ueland
- Research Institute of Internal Medicine, the National Hospital (T.U., P.A., A.E.M.), University of Oslo, Norway.,K.G. Jebsen Inflammatory Research Centre (T.U., P.A.), University of Oslo, Norway.,Faculty of Medicine (T.U., P.A., A.E.M), University of Oslo, Norway.,K.G. Jebsen - Thrombosis Research and Expertise Centre (TREC), University of Tromsø, Norway (T.U., P.A.)
| | - Tatevik Ghukasyan Lakic
- Uppsala Clinical Research Centre (T.G.L., A.Å., M.B., S.K.J., L.W.), Uppsala University, Sweden
| | - Axel Åkerblom
- Uppsala Clinical Research Centre (T.G.L., A.Å., M.B., S.K.J., L.W.), Uppsala University, Sweden.,Department of Medical Sciences, Cardiology (A.Å., S.K.J., L.W.), Uppsala University, Sweden
| | - Maria Bertilsson
- Uppsala Clinical Research Centre (T.G.L., A.Å., M.B., S.K.J., L.W.), Uppsala University, Sweden
| | - Pål Aukrust
- Research Institute of Internal Medicine, the National Hospital (T.U., P.A., A.E.M.), University of Oslo, Norway.,K.G. Jebsen Inflammatory Research Centre (T.U., P.A.), University of Oslo, Norway.,Faculty of Medicine (T.U., P.A., A.E.M), University of Oslo, Norway.,K.G. Jebsen - Thrombosis Research and Expertise Centre (TREC), University of Tromsø, Norway (T.U., P.A.).,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Norway (P.A.)
| | - Annika E Michelsen
- Research Institute of Internal Medicine, the National Hospital (T.U., P.A., A.E.M.), University of Oslo, Norway.,Faculty of Medicine (T.U., P.A., A.E.M), University of Oslo, Norway
| | - Stefan K James
- Uppsala Clinical Research Centre (T.G.L., A.Å., M.B., S.K.J., L.W.), Uppsala University, Sweden.,Department of Medical Sciences, Cardiology (A.Å., S.K.J., L.W.), Uppsala University, Sweden
| | - Richard C Becker
- Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.)
| | - Robert F Storey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, United Kingdom (R.F.S.)
| | - Lars Wallentin
- Uppsala Clinical Research Centre (T.G.L., A.Å., M.B., S.K.J., L.W.), Uppsala University, Sweden.,Department of Medical Sciences, Cardiology (A.Å., S.K.J., L.W.), Uppsala University, Sweden
| | - Agneta Siegbahn
- Department of Medical Sciences, Clinical Chemistry (A.S.), Uppsala University, Sweden
| | - Frederic Kontny
- Department of Cardiology, Stavanger University Hospital, Norway (F.K.).,Drammen Heart Centre, Norway (F.K.)
| |
Collapse
|
12
|
Gawaz M, Borst O. The Role of Platelets in Atherothrombosis. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
|
14
|
Liang H, Zhang Z, He L, Wang Y. CXCL16 regulates cisplatin-induced acute kidney injury. Oncotarget 2017; 7:31652-62. [PMID: 27191747 PMCID: PMC5077966 DOI: 10.18632/oncotarget.9386] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023] Open
Abstract
The pathogenesis of cisplatin-induced acute kidney injury (AKI) is characterized by tubular cell apoptosis and inflammation. However, the molecular mechanisms are not fully understood. We found that CXCL16 was induced in renal tubular epithelial cells in response to cisplatin-induced AKI. Therefore, we investigated whether CXCL16 played a role in cisplatin–induced tubular cell apoptosis and inflammation. Wild-type and CXCL16 knockout mice were administrated with vehicle or cisplatin at 20 mg/kg by intraperitoneal injection. CXCL16 knockout mice had lower blood urea nitrogen and less tubular damage following cisplatin-induced AKI as compared with wild-type mice. Genetic disruption of CXCL16 reduced tubular epithelial cell apoptosis and decreased caspase-3 activation. Furthermore, CXCL16 deficiency inhibited infiltration of macrophages and T cells into the kidneys following cisplatin treatment, which was associated with reduced expression of the proinflammatory cytokines in the kidneys. Taken together, our results indicate that CXCL16 plays a crucial role in the pathogenesis of cisplatin–induced AKI through regulation of apoptosis and inflammation and maybe a novel therapeutic target for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Hua Liang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-Sen University, Foshan, China
| | - Zhengmao Zhang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Liqun He
- Section of Nephrology, Department of Medicine, Shuguang Hospital, Shanghai, China
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Center for Translational Research on Inflammatory Diseases and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| |
Collapse
|
15
|
Sarkar S, Bailey E, Go YY, Cook RF, Kalbfleisch T, Eberth J, Chelvarajan RL, Shuck KM, Artiushin S, Timoney PJ, Balasuriya UBR. Allelic Variation in CXCL16 Determines CD3+ T Lymphocyte Susceptibility to Equine Arteritis Virus Infection and Establishment of Long-Term Carrier State in the Stallion. PLoS Genet 2016; 12:e1006467. [PMID: 27930647 PMCID: PMC5145142 DOI: 10.1371/journal.pgen.1006467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/05/2016] [Indexed: 12/25/2022] Open
Abstract
Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of horses and other equid species. Following natural infection, 10-70% of the infected stallions can become persistently infected and continue to shed EAV in their semen for periods ranging from several months to life. Recently, we reported that some stallions possess a subpopulation(s) of CD3+ T lymphocytes that are susceptible to in vitro EAV infection and that this phenotypic trait is associated with long-term carrier status following exposure to the virus. In contrast, stallions not possessing the CD3+ T lymphocyte susceptible phenotype are at less risk of becoming long-term virus carriers. A genome wide association study (GWAS) using the Illumina Equine SNP50 chip revealed that the ability of EAV to infect CD3+ T lymphocytes and establish long-term carrier status in stallions correlated with a region within equine chromosome 11. Here we identified the gene and mutations responsible for these phenotypes. Specifically, the work implicated three allelic variants of the equine orthologue of CXCL16 (EqCXCL16) that differ by four non-synonymous nucleotide substitutions (XM_00154756; c.715 A → T, c.801 G → C, c.804 T → A/G, c.810 G → A) within exon 1. This resulted in four amino acid changes with EqCXCL16S (XP_001504806.1) having Phe, His, Ile and Lys as compared to EqCXL16R having Tyr, Asp, Phe, and Glu at 40, 49, 50, and 52, respectively. Two alleles (EqCXCL16Sa, EqCXCL16Sb) encoded identical protein products that correlated strongly with long-term EAV persistence in stallions (P<0.000001) and are required for in vitro CD3+ T lymphocyte susceptibility to EAV infection. The third (EqCXCL16R) was associated with in vitro CD3+ T lymphocyte resistance to EAV infection and a significantly lower probability for establishment of the long-term carrier state (viral persistence) in the male reproductive tract. EqCXCL16Sa and EqCXCL16Sb exert a dominant mode of inheritance. Most importantly, the protein isoform EqCXCL16S but not EqCXCL16R can function as an EAV cellular receptor. Although both molecules have equal chemoattractant potential, EqCXCL16S has significantly higher scavenger receptor and adhesion properties compared to EqCXCL16R.
Collapse
Affiliation(s)
- Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ernest Bailey
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (UBRB); (EB)
| | - Yun Young Go
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - R. Frank Cook
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ted Kalbfleisch
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - John Eberth
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - R. Lakshman Chelvarajan
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kathleen M. Shuck
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sergey Artiushin
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter J. Timoney
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Udeni B. R. Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (UBRB); (EB)
| |
Collapse
|