1
|
Ma Y, Duan L, Reisch B, Kimmig R, Iannaccone A, Gellhaus A. Impact of the Immunomodulatory Factor Soluble B7-H4 in the Progress of Preeclampsia by Inhibiting Essential Functions of Extravillous Trophoblast Cells. Cells 2024; 13:1372. [PMID: 39195262 DOI: 10.3390/cells13161372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
A key aspect of preeclampsia pathophysiology is the reduced invasiveness of trophoblasts and the impairment of spiral artery remodelling. Understanding the causes of altered trophoblast function is critical to understand the development of preeclampsia. B7-H4, a checkpoint molecule, controls a wide range of processes, including T-cell activation, cytokine release, and tumour progression. Our previous findings indicated that B7-H4 levels are elevated in both maternal blood and placental villous tissue during the early stages of preeclampsia. Here, we investigated the function of B7-H4 in trophoblast physiology. Recombinant B7-H4 protein was used to treat human SGHPL-5 extravillous trophoblast cells. Biological functions were investigated using MTT, wound healing, and transwell assays. Signalling pathways were analysed by immunoblotting and immunofluorescence. The functionality of B7-H4 was further confirmed by immunoblotting and immunohistochemical analysis in placental tissues from control and preeclamptic patients following therapeutic plasma exchange (TPE) or standard of care treatment. This study showed that B7-H4 inhibited the proliferation, migration, and invasion capacities of SGHPL-5 extravillous cells while promoting apoptosis by downregulating the PI3K/Akt/STAT3 signalling pathway. These results were consistently confirmed in placental tissues from preterm controls compared to early-onset preeclamptic placental tissues from patients treated with standard of care or TPE treatment. B7-H4 may play a role in the development of preeclampsia by inhibiting essential functions of extravillous trophoblast cells during placental development. One possible mechanism by which TPE improves pregnancy outcomes in preeclampsia is through the elimination of B7-H4 amongst other factors.
Collapse
Affiliation(s)
- Yuyang Ma
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Liyan Duan
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Beatrix Reisch
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Antonella Iannaccone
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
2
|
Mao J, Feng Y, Zheng Y, Gao Y, Zhang L, Sun X, Wu Y, Zhu X, Ma F. GPR65 inhibits human trophoblast cell adhesion through upregulation of MYLK and downregulation of fibronectin via cAMP-ERK signaling in a low pH environment. Cell Commun Signal 2023; 21:238. [PMID: 37723567 PMCID: PMC10506227 DOI: 10.1186/s12964-023-01249-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/28/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Extravillous trophoblasts (EVTs) are essential cells during the formation of the placenta, with the major function of invading the maternal decidua, anchoring the developing placenta to the uterus, remodeling uterine arteries, and regulating immune responses to prevent rejection. During early pregnancy, the decidua undergoes a hypoxic and acidic microenvironment, which has been shown to participate in tumor cell migration, invasion, growth, and angiogenesis. Nevertheless, the mechanisms by which EVTs sense and respond to the acidic microenvironment, thereby executing their functions, remain poorly understood. METHODS The effects of G protein-coupled receptor 65 (GPR65) on cell adhesion and other cellular functions were tested using JAR spheroids, mouse blastocysts, and HTR-8/SVneo cells. Specifically, we employed HTR-8/SVneo cells for gene overexpression and silencing to investigate the underlying mechanism of GPR65's impact on trophoblast cell function under acidic conditions. Additionally, villus tissue samples obtained from early pregnancy loss patients were utilized to explore the potential association between GPR65 and its related signaling pathway molecules with the disease. RESULTS This study identified GPR65 expression widely in trophoblasts, with the highest level in EVTs. Importantly, optimal GPR65 levels are required for maintaining normal adhesion, migration, and invasion, whereas overexpression of GPR65 inhibits these functions by activating the cAMP-ERK signaling pathway, upregulating myosin light chain kinase (MYLK) and MYLK3 expression, and subsequently downregulating fibronectin. Consistently, elevated expression of GPR65, MYLK, and MYLK3 is observed in patients suffering from early pregnancy loss. CONCLUSIONS This work offers insights into the suppressive effects of GPR65 on EVT function under acidic conditions and highlights a putative target for therapeutic intervention in early pregnancy complications. Video Abstract.
Collapse
Affiliation(s)
- Jia Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Feng
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yayun Zheng
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaqiu Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Linyu Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinrui Sun
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilun Wu
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaofeng Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Expression profile of genes related to pregnancy maintenance in Dromedary Camel during the first trimester. Anim Reprod Sci 2023; 251:107211. [PMID: 36990016 DOI: 10.1016/j.anireprosci.2023.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
So far, few signals involved in embryo-maternal dialogue have been identified in pregnant she-camel. Our objective was to investigate expression profiles of genes relevant to uterine extracellular matrix remodeling (ITGB4, SLCO2A1, FOS, and JUN), uterine tissue vascularization, and placental formation (VEGFA, PGF, and PDGFA), embryonic growth and development (IGF1 and PTEN), plus cell death of uterine tissue (BCL2) in early pregnant versus non-pregnant she-camels. Forty genital tracts (20 pregnant and 20 non-pregnant) and blood samples were collected from abattoirs. Total RNA was extracted from uterine tissues and qRT-PCR was conducted for candidate genes. Serum concentrations of progesterone (P4) and estradiol17-β (E2) were measured. Expression of ITGB4, FOS, and PGF genes increased (P < 0.001) in the right uterine horn of pregnant versus non-pregnant she-camels. Moreover, JUN, SLCO2A1, VEGFA, and PTEN mRNAs were up-regulated (P < 0.001) in various segments of uterine tissues in pregnant groups. The PDGFA transcript was over-expressed (P < 0.001) in both uterine horns of pregnant groups. Additionally, IGF1 was higher (P < 0.001) in the right horn and the uterine body of pregnant groups, and expression of BCL2 was increased (P < 0.001) in the pregnant uterine body. Moreover, serum concentrations of P4 were higher (P < 0.001) and E2 lower (P < 0.05) in pregnant she-camels. Taken together, the fine-tuning of genes related to implantation, matrix formation, vascularization, and placental formation is highly required for successful pregnancy in she-camels.
Collapse
|
4
|
Paul M, Chakraborty S, Islam S, Ain R. Trans-differentiation of trophoblast stem cells: implications in placental biology. Life Sci Alliance 2023; 6:6/3/e202201583. [PMID: 36574992 PMCID: PMC9797987 DOI: 10.26508/lsa.202201583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Trophoblast invasion is a hallmark of hemochorial placentation. Invasive trophoblast cells replace the endothelial cells of uterine spiral arteries. The mechanism by which the invasive trophoblast cells acquire this phenotype is unknown. Here, we demonstrate that, during differentiation, a small population of trophoblast stem (TS) cells trans-differentiate into a hybrid cell type expressing markers of both trophoblast (TC) and endothelial (EC) cells. In addition, a compendium of EC-specific genes was found to be associated with TS cell differentiation. Using functional annotation, these genes were categorized into angiogenesis, cell adhesion molecules, and apoptosis-related genes. HES1 repressed transcription of EC genes in TS cells. Interestingly, differentiated TCs secrete TRAIL, but its receptor DR4 is expressed only in ECs and not in TCs. TRAIL induced apoptosis in EC but not in TC. Co-culture of ECs with TC induced apoptosis in ECs via extrinsic apoptotic pathway. These results highlight that (a) TS cells possess the potential to trans-differentiate into "trophendothelial" phenotype, regulated by HES1 and (b) trophoblast differentiation-induced TRAIL secretion directs preferential demise of ECs located in their vicinity.
Collapse
Affiliation(s)
- Madhurima Paul
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shreeta Chakraborty
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,National Institutes of Health, Bethesda, MD, USA
| | - Safirul Islam
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,School of Biotechnology, Presidency University, Kolkata, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
5
|
Rusidzé M, Gargaros A, Fébrissy C, Dubucs C, Weyl A, Ousselin J, Aziza J, Arnal JF, Lenfant F. Estrogen Actions in Placental Vascular Morphogenesis and Spiral Artery Remodeling: A Comparative View between Humans and Mice. Cells 2023; 12:cells12040620. [PMID: 36831287 PMCID: PMC9954071 DOI: 10.3390/cells12040620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Estrogens, mainly 17β-estradiol (E2), play a critical role in reproductive organogenesis, ovulation, and fertility via estrogen receptors. E2 is also a well-known regulator of utero-placental vascular development and blood-flow dynamics throughout gestation. Mouse and human placentas possess strikingly different morphological configurations that confer important reproductive advantages. However, the functional interplay between fetal and maternal vasculature remains similar in both species. In this review, we briefly describe the structural and functional characteristics, as well as the development, of mouse and human placentas. In addition, we summarize the current knowledge regarding estrogen actions during utero-placental vascular morphogenesis, which includes uterine angiogenesis, the control of trophoblast behavior, spiral artery remodeling, and hemodynamic adaptation throughout pregnancy, in both mice and humans. Finally, the estrogens that are present in abnormal placentation are also mentioned. Overall, this review highlights the importance of the actions of estrogens in the physiology and pathophysiology of placental vascular development.
Collapse
Affiliation(s)
- Mariam Rusidzé
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Adrien Gargaros
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Chanaëlle Fébrissy
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Charlotte Dubucs
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Ariane Weyl
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jessie Ousselin
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jacqueline Aziza
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jean-François Arnal
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Françoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Correspondence:
| |
Collapse
|
6
|
Ghorbanpour SM, Richards C, Pienaar D, Sesperez K, Aboulkheyr Es H, Nikolic VN, Karadzov Orlic N, Mikovic Z, Stefanovic M, Cakic Z, Alqudah A, Cole L, Gorrie C, McGrath K, Kavurma MM, Ebrahimi Warkiani M, McClements L. A placenta-on-a-chip model to determine the regulation of FKBPL and galectin-3 in preeclampsia. Cell Mol Life Sci 2023; 80:44. [PMID: 36652019 PMCID: PMC9849194 DOI: 10.1007/s00018-022-04648-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 01/19/2023]
Abstract
Preeclampsia is a pregnancy-specific cardiovascular disorder, involving significant maternal endothelial dysfunction. Although inappropriate placentation due to aberrant angiogenesis, inflammation and shallow trophoblast invasion are the root causes of preeclampsia, pathogenic mechanisms are poorly understood, particularly in early pregnancy. Here, we first confirm the abnormal expression of important vascular and inflammatory proteins, FK506-binding protein-like (FKBPL) and galectin-3 (Gal-3), in human plasma and placental tissues from women with preeclampsia and normotensive controls. We then employ a three-dimensional microfluidic placental model incorporating human umbilical vein endothelial cells (HUVECs) and a first trimester trophoblast cell line (ACH-3P) to investigate FKBPL and Gal-3 signaling in inflammatory conditions. In human samples, both circulating (n = 17 controls; n = 30 preeclampsia) and placental (n ≥ 6) FKBPL and Gal-3 levels were increased in preeclampsia compared to controls (plasma: FKBPL, p < 0.0001; Gal-3, p < 0.01; placenta: FKBPL, p < 0.05; Gal-3, p < 0.01), indicative of vascular dysfunction in preeclampsia. In our placenta-on-a-chip model, we show that endothelial cells are critical for trophoblast-mediated migration and that trophoblasts effectively remodel endothelial vascular networks. Inflammatory cytokine tumour necrosis factor-α (10 ng/mL) modulates both FKBPL and Gal-3 signaling in conjunction with trophoblast migration and impairs vascular network formation (p < 0.005). Our placenta-on-a-chip recapitulates aspects of inappropriate placental development and vascular dysfunction in preeclampsia.
Collapse
Affiliation(s)
- Sahar Masoumeh Ghorbanpour
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Heart Research Institute, Sydney, NSW, Australia
| | - Claire Richards
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Dillan Pienaar
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kimberly Sesperez
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Hamidreza Aboulkheyr Es
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Valentina N Nikolic
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Nis, Niš, Serbia
| | - Natasa Karadzov Orlic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zeljko Mikovic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Stefanovic
- Department of Internal Medicine-Gynaecology, Faculty of Medicine, University of Nis, Niš, Serbia
- Department of Gynaecology and Obstetrics, Clinical Centre Nis, Niš, Serbia
| | - Zoran Cakic
- Department of Gynaecology and Obstetrics, General Hospital of Leskovac, Leskovac, Serbia
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Louise Cole
- Australian Institute of Microbiology and Infection, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Catherine Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kristine McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Mary M Kavurma
- Heart Research Institute,The University of Sydney, Sydney, NSW, Australia
| | - Majid Ebrahimi Warkiani
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Korenevsky AV, Gert TN, Berezkina ME, Sinyavin SA, Mikhailova VA, Markova KL, Simbirtsev AS, Selkov SA, Sokolov DI. Protein Fractions of Natural Killer Cell Lysates Affect the Phenotype, Proliferation and Migration of Endothelial Cells in vitro. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Zhang W, Li S, Lou J, Li H, Liu M, Dong N, Wu Q. Atrial natriuretic peptide promotes uterine decidualization and a TRAIL-dependent mechanism in spiral artery remodeling. J Clin Invest 2021; 131:e151053. [PMID: 34473650 DOI: 10.1172/jci151053] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is an important hormone in cardiovascular biology. It is activated by the protease corin. In pregnancy, ANP and corin promote uterine spiral artery remodeling, but the underlying mechanism remains unknown. Here we report an ANP function in uterine decidualization and TNF-related apoptosis-inducing ligand-dependent (TRAIL-dependent) death in spiral arterial smooth muscle cells (SMCs) and endothelial cells (ECs). In ANP- or corin-deficient mice, uterine decidualization markers and TRAIL expression were decreased, whereas in cultured human endometrial stromal cells (HESCs), ANP increased decidualization and TRAIL expression. In uterine spiral arteries from pregnant wild-type mice, SMC and EC loss occurred sequentially before trophoblast invasion. In culture, TRAIL from decidualized HESCs induced apoptosis in uterine SMCs, but not in ECs with low TRAIL receptor expression. Subsequently, cyclophilin B was identified from apoptotic SMCs that upregulated endothelial TRAIL receptor and caused apoptosis in ECs. These results indicate that ANP promotes decidualization and TRAIL expression in endometrial stromal cells, contributing to sequential events in remodeling of spiral arteries, including SMC death and cyclophilin B release, which in turn induces TRAIL receptor expression and apoptosis in ECs.
Collapse
Affiliation(s)
- Wei Zhang
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shuo Li
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jinglei Lou
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hui Li
- Central Laboratory and Department of Obstetrics and Gynecology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Rattila S, Kleefeldt F, Ballesteros A, Beltrame JS, L Ribeiro M, Ergün S, Dveksler G. Pro-angiogenic effects of pregnancy-specific glycoproteins in endothelial and extravillous trophoblast cells. Reproduction 2021; 160:737-750. [PMID: 33065549 DOI: 10.1530/rep-20-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 01/23/2023]
Abstract
We previously reported that binding to heparan sulfate (HS) is required for the ability of the placentally secreted pregnancy-specific glycoprotein 1 (PSG1) to induce endothelial tubulogenesis. PSG1 is composed of four immunoglobulin-like domains but which domains of the protein bind to HS remains unknown. To analyze the interaction of PSG1 with HS, we generated several recombinant proteins, including the individual domains, chimeric proteins between two PSG1 domains, and mutants. Using flow cytometric and surface plasmon resonance studies, we determined that the B2 domain of PSG1 binds to HS and that the positively charged amino acids encompassed between amino acids 43-59 are required for this interaction. Furthermore, we showed that the B2 domain of PSG1 is required for the increase in the formation of tubes by endothelial cells (EC) including a human endometrial EC line and two extravillous trophoblast (EVT) cell lines and for the pro-angiogenic activity of PSG1 observed in an aortic ring assay. PSG1 enhanced the migration of ECs while it increased the expression of matrix metalloproteinase-2 in EVTs, indicating that the pro-angiogenic effect of PSG1 on these two cell types may be mediated by different mechanisms. Despite differences in amino acid sequence, we observed that all human PSGs bound to HS proteoglycans and confirmed that at least two other members of the family, PSG6 and PSG9, induce tube formation. These findings contribute to a better understanding of the pro-angiogenic activity of human PSGs and strongly suggest conservation of this function among all PSG family members.
Collapse
Affiliation(s)
- Shemona Rattila
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jimena S Beltrame
- Laboratory of Physiology and Pharmacology of Reproduction, Centre for Pharmacological and Botanical Studies (CONICET - School of Medicine, University of Buenos Aires), Buenos Aires, Argentina
| | - Maria L Ribeiro
- Laboratory of Physiology and Pharmacology of Reproduction, Centre for Pharmacological and Botanical Studies (CONICET - School of Medicine, University of Buenos Aires), Buenos Aires, Argentina
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Varberg KM, Soares MJ. Paradigms for investigating invasive trophoblast cell development and contributions to uterine spiral artery remodeling. Placenta 2021; 113:48-56. [PMID: 33985793 DOI: 10.1016/j.placenta.2021.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Uterine spiral arteries are extensively remodeled during placentation to ensure sufficient delivery of maternal blood to the developing fetus. Uterine spiral arterial remodeling is complex, as cells originating from both mother and developing conceptus interact at the maternal interface to regulate the extracellular matrix remodeling and vasculature restructuring necessary for successful placentation. Despite this complexity, one mechanism critical to spiral artery remodeling is trophoblast cell invasion into the maternal compartment. Invasive trophoblast cells include both interstitial and endovascular populations that exhibit spatiotemporal differences in uterine invasion, including proximity to uterine spiral arteries. Interstitial trophoblast cells invade the uterine parenchyma where they are interspersed among stromal cells. Endovascular trophoblast cells infiltrate uterine spiral arteries, replace endothelial cells, adopt a pseudo-endothelial cell phenotype, and engineer vessel remodeling. Impaired trophoblast cell invasion and, consequently, insufficient uterine spiral arterial remodeling can lead to the development of pregnancy disorders, such as preeclampsia, intrauterine growth restriction, and premature birth. This review provides insights into invasive trophoblast cells and their function during normal placentation as well as in settings of disease.
Collapse
Affiliation(s)
- Kaela M Varberg
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA; Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy Kansas City, Missouri 64108, USA.
| |
Collapse
|
11
|
Kasture V, Sahay A, Joshi S. Cell death mechanisms and their roles in pregnancy related disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:195-225. [PMID: 34090615 DOI: 10.1016/bs.apcsb.2021.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy and apoptosis are catabolic pathways essential for homeostasis. They play a crucial role for normal placental and fetal development. These cell death mechanisms are exaggerated in placental disorders such as preeclampsia, intrauterine growth restriction (IUGR) and gestational diabetes mellitus (GDM). Apoptosis is widely studied, highly controlled and regulated whereas; autophagy is an orderly degradation and recycling of the cellular components. Cellular senescence may be initiated by a variety of stimuli, including hypoxia, oxidative stress, reduction in survival signals and nutrition deprivation. Apoptosis is regulated by two types of pathways intrinsic and extrinsic. Extrinsic pathway is initiated by apoptosis inducing cells such as macrophages, natural killer cells whereas; intrinsic pathway is initiated in response to DNA damage, cell injury and lack of oxygen. In autophagy, the cell or organelles undergo lysosomal degradation. Placental apoptosis increases as the gestation progresses while autophagy plays a role in trophoblast differentiation and invasion. In pregnancy disorders like preeclampsia and IUGR, proapoptotic markers such as caspase 3, 8, BAX are higher and antiapoptotic markers like Bcl-2 are lower. In GDM, apoptotic markers are reduced resulting in increased placental mass and fetal macrosomia. Apoptosis in the pathological pregnancies is also influenced by the reduced levels of micronutrients and long chain polyunsaturated fatty acids resulting in disturbed placental biology. This chapter describes the role of various key molecular events involved in cellular senescence and the various factors influencing them. This will help identify future therapeutic strategies for better management of these processes.
Collapse
Affiliation(s)
- Vaishali Kasture
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Akriti Sahay
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana Joshi
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
12
|
The Role of Arachidonic and Linoleic Acid Derivatives in Pathological Pregnancies and the Human Reproduction Process. Int J Mol Sci 2020; 21:ijms21249628. [PMID: 33348841 PMCID: PMC7766587 DOI: 10.3390/ijms21249628] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the available literature review was to focus on the role of the proinflammatory mediators of AA and LA derivatives in pathological conditions related to reproduction and pregnancy. Arachidonic (AA) and linoleic acid (LA) derivatives play important roles in human fertility and the course of pathological pregnancies. Recent studies have demonstrated that uncontrolled inflammation has a significant impact on reproduction, spermatogenesis, endometriosis, polycystic ovary syndrome (PCOS) genesis, implantation, pregnancy and labor. In addition, cyclooxygenase-mediated prostaglandins and AA metabolite levels are higher in women’s ovarian tissue when suffering from PCOS. It has been demonstrated that abnormal cyclooxygenase-2 (COX-2) levels are associated with ovulation failure, infertility, and implantation disorders and the increase in 9-HODE/13-HODE was a feature recognized in PCOS patients. Maintaining inflammation without neutrophil participation allows pregnant women to tolerate the fetus, while excessive inflammatory activation may lead to miscarriages and other pathological complications in pregnancies. Additionally AA and LA derivatives play an important role in pregnancy pathologies, e.g., gestational diabetes mellitus, preeclampsia (PE), and fetal growth, among others. The pathogenesis of PE and other pathological states in pregnancy involving eicosanoids have not been fully identified. A significant expression of 15-LOX-1,2 was found in women with PE, leading to an increase in the synthesis of AA and LA derivatives, such as hydroxyeicozatetraenoic acids (HETE) and hydroxyoctadecadiene acids (HODE). Synthesis of the metabolites 5-, 8-, 12-, and 15-HETE increased in the placenta, while 20-HETE increased only in umbilical cord blood in women with preeclampsia compared to normal pregnancies. In obese women with gestational diabetes mellitus (GDM) an increase in epoxygenase products in the cytochrome P450 (CYP) and the level of 20-HETE associated with the occurrence of insulin resistance (IR) were found. In addition, 12- and 20-HETE levels were associated with arterial vasoconstriction and epoxyeicosatrienoic acids (EETs) with arterial vasodilatation and uterine relaxation. Furthermore, higher levels of 5- and 15-HETE were associated with premature labor. By analyzing the influence of free fatty acids (FFA) and their derivatives on male reproduction, it was found that an increase in the AA in semen reduces its amount and the ratio of omega-6 to omega-3 fatty acids showed higher values in infertile men compared to the fertile control group. There are several studies on the role of HETE/HODE in relation to male fertility. 15-Hydroperoxyeicosatetraenoic acid may affect the integrity of the membrane and sperm function. Moreover, the incubation of sperm with physiologically low levels of prostaglandins (PGE2/PGF2α) improves the functionality of human sperm. Undoubtedly, these problems are still insufficiently understood and require further research. However, HETE and HODE could serve as predictive and diagnostic biomarkers for pregnancy pathologies (especially in women with risk factors for overweight and obesity). Such knowledge may be helpful in finding new treatment strategies for infertility and the course of high-risk pregnancies.
Collapse
|
13
|
Chen DB, Magness RR. Vascular smooth muscle cells during spiral artery remodeling in early human pregnancy†. Biol Reprod 2020; 104:252-254. [PMID: 33300560 DOI: 10.1093/biolre/ioaa220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dong-Bao Chen
- Department of Obstetrics & Gynecology, University of California, Irvine, CA, USA
| | - Ronald R Magness
- Department of Obstetrics & Gynecology, Perinatal Research Laboratories, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
14
|
Bakrania BA, Spradley FT, Drummond HA, LaMarca B, Ryan MJ, Granger JP. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr Physiol 2020; 11:1315-1349. [PMID: 33295016 PMCID: PMC7959189 DOI: 10.1002/cphy.c200008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE), a hypertensive disorder, occurs in 3% to 8% of pregnancies in the United States and affects over 200,000 women and newborns per year. The United States has seen a 25% increase in the incidence of PE, largely owing to increases in risk factors, including obesity and cardiovascular disease. Although the etiology of PE is not clear, it is believed that impaired spiral artery remodeling of the placenta reduces perfusion, leading to placental ischemia. Subsequently, the ischemic placenta releases antiangiogenic and pro-inflammatory factors, such as cytokines, reactive oxygen species, and the angiotensin II type 1 receptor autoantibody (AT1-AA), among others, into the maternal circulation. These factors cause widespread endothelial activation, upregulation of the endothelin system, and vasoconstriction. In turn, these changes affect the function of multiple organ systems including the kidneys, brain, liver, and heart. Despite extensive research into the pathophysiology of PE, the only treatment option remains early delivery of the baby and importantly, the placenta. While premature delivery is effective in ameliorating immediate risk to the mother, mounting evidence suggests that PE increases risk of cardiovascular disease later in life for both mother and baby. Notably, these women are at increased risk of hypertension, heart disease, and stroke, while offspring are at risk of obesity, hypertension, and neurological disease, among other complications, later in life. This article aims to discuss the current understanding of the diagnosis and pathophysiology of PE, as well as associated organ damage, maternal and fetal outcomes, and potential therapeutic avenues. © 2021 American Physiological Society. Compr Physiol 11:1315-1349, 2021.
Collapse
Affiliation(s)
- Bhavisha A. Bakrania
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Frank T. Spradley
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Heather A. Drummond
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babbette LaMarca
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J. Ryan
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Joey P. Granger
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
15
|
Hasan S, Alshaikh B, Yusuf K. Serum levels of soluble Fas and Fas ligand in pregnant women who smoke. Am J Reprod Immunol 2020; 85:e13382. [PMID: 33247994 DOI: 10.1111/aji.13382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
PROBLEM Cigarette smoking during pregnancy is associated with reduced incidence of preeclampsia. Mechanisms of this association are poorly understood. Cytokines, angiogenic, and anti-angiogenic factors are involved in the pathogenesis of preeclampsia. During normal pregnancy, Fas ligand (FasL) present on trophoblasts induces apoptosis of Fas bearing maternal immune cells. In preeclampsia, trophoblasts show increased apoptosis with reduced expression of FasL. We determined serum levels of cytokines, angiogenic (placental growth factor), anti-angiogenic factors (soluble endoglin, soluble fms-like tyrosine kinase-1), soluble Fas (sFas), and soluble FasL (sFasL) in smoking and non-smoking pregnant women. METHODS Using enzyme-linked immunosorbent and multiplex assays, we prospectively analyzed serum levels of angiogenic, anti-angiogenic factors, cytokines, sFas and sFasL in normotensive smoking and non-smoking mothers. Exclusion criteria included maternal hypertension, auto-immune disorders, rupture of membranes, evidence of labor, and drug use. RESULTS Of 100 women recruited to the study, 51 were in the non-smoking and 49 in the smoking group. Except for lower maternal age in the smoking group, there was no difference in gestation, BMI, gravidity, or ethnicity between the two groups. Levels of angiogenic, anti-angiogenic factors, cytokines, and sFas were similar between the two groups but sFasL levels were significantly higher in smoking group (38 pg/ml vs. 16 pg/ml, p < .001) and remained significant after controlling for confounders. CONCLUSION Our study demonstrates higher sFasL levels in pregnant women who smoke. Higher sFasL may explain the reduced incidence of preeclampsia in pregnant mothers who smoke by inducing apoptosis of immune cells which may otherwise induce trophoblast apoptosis.
Collapse
Affiliation(s)
- Sean Hasan
- Department of Pediatrics, Alberta Health Services, Calgary, AB, Canada
| | - Belal Alshaikh
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kamran Yusuf
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Katakura S, Takao T, Arase T, Yoshimasa Y, Tomisato S, Uchida S, Masuda H, Uchida H, Tanaka M, Maruyama T. UDP-glucose, a cellular danger signal, and nucleotide receptor P2Y14 enhance the invasion of human extravillous trophoblast cells. Placenta 2020; 101:194-203. [PMID: 33011563 DOI: 10.1016/j.placenta.2020.09.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
INTRODUCTION P2Y14, one of the P2Y purinergic G-protein coupled receptors, is expressed in a variety of cells and tissues. Its ligand, UDP-glucose (UDPG), is released from damaged and stress-stimulated cells and acts as a danger signal via P2Y14. Thus, P2Y14 plays an important role in immunological defense systems. Here, we aimed to elucidate the expression, localization, and role of P2Y14 in human trophoblasts and the placenta. METHODS Human chorionic villus and placental tissues were subjected to immunostaining for P2Y14 protein and an extravillous trophoblast (EVT) marker, HLA-G. We examined the expression of P2Y14 and the effect of UDPG on cell proliferation and invasion in an EVT cell line, HTR-8/SVneo, using an MTS assay and a Transwell assay, respectively. We tested the effect of UDPG on cell invasion in P2Y14-underexpressing HTR-8/SVneo clones established by the lentiviral introduction of shRNA for P2RY14 mRNA. RESULTS Immunostaining revealed that P2Y14 was exclusively expressed by EVTs. P2RY14 mRNA and P2Y14 protein were expressed in HTR-8/SVneo cells. UDPG did not affect cell proliferation but it did enhance invasion. Inhibition of P2Y14 and decreasing the expression of P2Y14 suppressed UDPG-mediated invasive activity. CONCLUSIONS These results showed that EVT selectively expressed P2Y14 and that P2Y14 was positively involved in UDPG-enhanced EVT invasion. It suggests the possible existence of a danger signal-mediated physiological system at the fetomaternal interface where UDPG released from maternal tissues through destruction by EVT invasion may accelerate EVT invasion, allowing EVTs to undergo successful placentation and vascular remodeling.
Collapse
Affiliation(s)
- Satomi Katakura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoka Takao
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Toru Arase
- Department of Obstetrics and Gynecology, Keiyu Hospital, Yokohama, Japan
| | - Yushi Yoshimasa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Shoko Tomisato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Sayaka Uchida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Uchida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
17
|
Sun M, Liu S, Gao J, Meng T, Xing X, Chen C, Chen H, Luo Y. Cyclin G2 Is Involved in the Proliferation of Placental Trophoblast Cells and Their Interactions with Endothelial Cells. Med Sci Monit 2020; 26:e926414. [PMID: 32941407 PMCID: PMC7521070 DOI: 10.12659/msm.926414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Remodeling of maternal spiral arteries after embryo implantation relies on well-regulated trophoblast functions. Although cyclin G2 (CCNG2) is thought to be involved in placental development and function, its role in trophoblasts and the mechanisms underlying placental development and function remain unclear. The present study investigated the potential role of CCNG2 in trophoblast cell proliferation and their interactions with endothelial cells. Material/Methods CCNG2 levels were modified by stable infection of HTR8/SVneo cells with lentiviruses overexpressing and silencing CCNG2. Cell proliferation was measured using CCK-8 assays. Network formation assays were performed using trophoblasts alone and co-cultured trophoblasts and endothelial cells to measure angiogenesis of trophoblasts and trophoblast-endothelial interactions. Levels of angiogenic factors (VEGF and sFlt-1) in the supernatant were measured by ELISA, and the expression of cell cycle regulatory (cyclin D1) and invasive (MMP2, MMP3, MMP9) markers implicated in artery remodeling were measured by western blotting. Results Ectopic expression of CCNG2 blocked the proliferation of HTR8/SVneo cells, as well as their abilities to form networks and integrate into human umbilical vein endothelial cells, whereas CCNG2 inhibition had the opposite effects. CCNG2 upregulation significantly reduced the expression of VEGF, cyclin D1, MMP2, MMP3, and MMP9, but enhanced the expression of sFlt-1. In contrast, CCNG2 downregulation had the opposite effects. Conclusions CCNG2 plays a critical role in trophoblast proliferation and trophoblast-endothelial cell interactions by significant affecting cell cycle, angiogenic, and invasive markers. CCNG2 may thus be a novel marker for the treatment of placental disorders.
Collapse
Affiliation(s)
- Manni Sun
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Shenghuan Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Chen Chen
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Haiying Chen
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
18
|
Gibbens J, Spencer SK, Solis L, Bowles T, Kyle PB, Szczepanski JL, Dumas JP, Robinson R, Wallace K. Fas ligand neutralization attenuates hypertension, endothelin-1, and placental inflammation in an animal model of HELLP syndrome. Am J Physiol Regul Integr Comp Physiol 2020; 319:R195-R202. [PMID: 32640833 DOI: 10.1152/ajpregu.00272.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutralization of FasL is linked to suppression of hypertension, placental inflammation, and endothelin system activation in an animal model of hemolysis, elevated liver enzymes, low platelets (HELLP) syndrome. During HELLP syndrome the placenta has been reported to serve as the primary source of Fas ligand (FasL), which has an impact on inflammation and hypertension during pregnancy and is dysregulated in women with severe preeclampsia and HELLP syndrome. We hypothesize that neutralization of FasL during pregnancy in an animal model of HELLP syndrome decreases inflammation and placental apoptosis, improves endothelial damage, and improves hypertension. On gestational day (GD) 12, rats were chronically infused with placental antiangiogenic factors sFlt-1 and sEng to induce HELLP syndrome. To neutralize FasL, MFL4 or FasL antibody was infused into a subset of HELLP or normal pregnant rats on GD13. IgG infusion into another group of NP and HELLP rats on GD13 was used as a control for FasL antibody, and all rats were euthanized on GD19 after blood pressure measurement. Plasma and placentas were collected to assess inflammation, apoptosis, and the degree of placental debris activation of endothelial cells. Administration of MFL4 to HELLP rats significantly decreased blood pressure compared with untreated HELLP rats and HELLP rats infused with IgG and improved the biochemistry of HELLP syndrome. Both circulating and placental FasL were significantly attenuated in response to MFL4 infusion, as were levels of placental and circulating TNFα when compared with untreated HELLP rats and HELLP rats infused with IgG. Endothelial cells exposed to placental debris and media from HP + MFL4 rats secreted significantly less endothelin-1 compared with stimulated endothelial cells from HELLP placentas. Neutralization of FasL is associated with decreased MAP and improvement in placental inflammation and endothelial damage in an animal model of HELLP syndrome.
Collapse
Affiliation(s)
- Jacob Gibbens
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shauna-Kay Spencer
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lucia Solis
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Teylor Bowles
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Patrick B Kyle
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jamie L Szczepanski
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - John Polk Dumas
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Reanna Robinson
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kedra Wallace
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
19
|
Abbas Y, Turco MY, Burton GJ, Moffett A. Investigation of human trophoblast invasion in vitro. Hum Reprod Update 2020; 26:501-513. [PMID: 32441309 PMCID: PMC7473396 DOI: 10.1093/humupd/dmaa017] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In humans, inadequate trophoblast invasion into the decidua is associated with the 'great obstetrical syndromes' which include pre-eclampsia, foetal growth restriction (FGR) and stillbirth. The mechanisms regulating invasion remain poorly understood, although interactions with the uterine environment are clearly of central importance. Extravillous trophoblast (EVT) cells invade the uterus and transform the spiral arteries. Progress in understanding how they invade has been limited due to the lack of good in vitro models. Firstly, there are no non-malignant cell lines that have an EVT phenotype. Secondly, the invasion assays used are of limited use for the small numbers of primary EVT available from first-trimester placentas. We discuss recent progress in this field with the generation of new EVT lines and invasion assays using microfluidic technology. OBJECTIVE AND RATIONALE Our aim is to describe the established models used to study human trophoblast invasion in vivo and in vitro. The difficulties of obtaining primary cells and cell lines that recapitulate the phenotype of EVT are discussed together with the advantages and pitfalls of the different invasion assays. We compare these traditional end point assays to microfluidic assays where the dynamics of migration can be measured. SEARCH METHODS Relevant studies were identified by PubMed search, last updated on February 2020. A search was conducted to determine the number of journal articles published using the cell lines JEG-3, BeWo, JAR, HTR-8/Svneo, Swan-71 and primary human extravillous trophoblast in the last 5 years. OUTCOMES Deep trophoblast invasion into the maternal decidua is a particular feature of human pregnancy. This invasion needs to be finely regulated to allocate resources between mother and baby. A reliable source of EVT is needed to study in vitro how the uterine environment regulates this process. First, we critically discuss the issues with the trophoblast cell lines currently used; for example, most of them lack expression of the defining marker of EVT, HLA-G. Recently, advances in human stem cell and organoid technology have been applied to extraembryonic tissues to develop trophoblast cell lines that can grow in two (2D) and three dimensions (3D) and differentiate to EVT. This means that the 'trophoblast' cell lines currently in use should rapidly become obsolete. Second, we critically discuss the problems with assays to study trophoblast invasion. These lack physiological relevance and have simplified migration dynamics. Microfluidic assays are a powerful tool to study cell invasion because they require only a few cells, which are embedded in 3D in an extracellular matrix. Their major advantage is real-time monitoring of cell movement, enabling detailed analysis of the dynamics of trophoblast migration. WIDER IMPLICATIONS Trophoblast invasion in the first trimester of pregnancy remains poorly understood despite the importance of this process in the pathogenesis of pre-eclampsia, FGR, stillbirth and recurrent miscarriage. The new technologies described here will allow investigation into this critical process.
Collapse
Affiliation(s)
- Yassen Abbas
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Margherita Y Turco
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
| | - Graham J Burton
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
20
|
Meyer N, Zenclussen AC. Immune Cells in the Uterine Remodeling: Are They the Target of Endocrine Disrupting Chemicals? Front Immunol 2020; 11:246. [PMID: 32140155 PMCID: PMC7043066 DOI: 10.3389/fimmu.2020.00246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Sufficient uterine remodeling is essential for fetal survival and development. Pathologies related to poor remodeling have a negative impact on maternal and fetal health even years after birth. Research of the last decades yielded excellent studies demonstrating the key role of immune cells in the remodeling processes. This review summarizes the current knowledge about the relevance of immune cells for uterine remodeling during pregnancy and further discusses immunomodulatory effects of man-made endocrine disrupting chemicals on immune cells.
Collapse
Affiliation(s)
- Nicole Meyer
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
21
|
Raguema N, Moustadraf S, Bertagnolli M. Immune and Apoptosis Mechanisms Regulating Placental Development and Vascularization in Preeclampsia. Front Physiol 2020; 11:98. [PMID: 32116801 PMCID: PMC7026478 DOI: 10.3389/fphys.2020.00098] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Preeclampsia is the most severe type of hypertensive disorder of pregnancy, affecting one in 10 pregnancies worldwide and increasing significantly maternal and neonatal morbidity and mortality. Women developing preeclampsia display an array of symptoms encompassing uncontrolled hypertension and proteinuria, with neurological symptoms including seizures at the end of pregnancy. The main causes of preeclampsia are still unknown. However, abnormal placentation and placenta vascularization seem to be common features in preeclampsia, also leading to fetal growth restriction mainly due to reduced placental blood flow and chronic hypoxia. An over activation of maternal immunity cells against the trophoblasts, the main cells forming the placenta, has been recently shown as an important mechanism triggering trophoblast apoptosis and death. This response will further disrupt the remodeling of maternal uterine arteries, in a first stage, and the formation of new placental vessels in a later stage. A consequent chronic hypoxia stress will further contribute to increase placental stress and exacerbate systemic circulatory changes in the mother. The molecular mechanisms driving these processes of apoptosis and anti-angiogenesis are also not well-understood. In this review, we group main evidences suggesting potential targets and molecules that should be better investigated in preeclampsia. This knowledge will contribute to improve therapies targeting a better placenta formation, having a positive impact on maternal disease prevention and on fetal development.
Collapse
Affiliation(s)
- Nozha Raguema
- Laboratory of Maternal-Child Health, Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Sarah Moustadraf
- Laboratory of Maternal-Child Health, Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Mariane Bertagnolli
- Laboratory of Maternal-Child Health, Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
| |
Collapse
|
22
|
Treissman J, Yuan V, Baltayeva J, Le HT, Castellana B, Robinson WP, Beristain AG. Low oxygen enhances trophoblast column growth by potentiating differentiation of the extravillous lineage and promoting LOX activity. Development 2020; 147:dev.181263. [PMID: 31871275 DOI: 10.1242/dev.181263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Early placental development and the establishment of the invasive trophoblast lineage take place within a low oxygen environment. However, conflicting and inconsistent findings have obscured the role of oxygen in regulating invasive trophoblast differentiation. In this study, the effect of hypoxic, normoxic and atmospheric oxygen on invasive extravillous pathway progression was examined using a human placental explant model. Here, we show that exposure to low oxygen enhances extravillous column outgrowth and promotes the expression of genes that align with extravillous trophoblast (EVT) lineage commitment. By contrast, supra-physiological atmospheric levels of oxygen promote trophoblast proliferation while simultaneously stalling EVT progression. Low oxygen-induced EVT differentiation coincided with elevated transcriptomic levels of lysyl oxidase (LOX) in trophoblast anchoring columns, in which functional experiments established a role for LOX activity in promoting EVT column outgrowth. The findings of this work support a role for low oxygen in potentiating the differentiation of trophoblasts along the extravillous pathway. In addition, these findings generate insight into new molecular processes controlled by oxygen during early placental development.
Collapse
Affiliation(s)
- Jenna Treissman
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Victor Yuan
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Jennet Baltayeva
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Hoa T Le
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Barbara Castellana
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Wendy P Robinson
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Alexander G Beristain
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada .,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| |
Collapse
|
23
|
Zhang Y, Chen X. lncRNA FOXD2-AS1 affects trophoblast cell proliferation, invasion and migration through targeting miRNA. ZYGOTE 2020; 28:1-8. [PMID: 31928563 DOI: 10.1017/s0967199419000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The abnormal expression of lncRNAs and miRNAs has been found in the placentas of patients with preeclampsia (PE). Therefore, we determined the role of lncRNA FOXD2-AS1/miR-3127 in trophoblast cells. The expression of lncRNA FOXD2-AS1 was detected by qRT-PCR. The proliferation, migration and invasion ability of trophoblast cells were evaluated using CCK-8, wound healing and transwell assays. The target gene of lncRNA FOXD2-AS1 was determined by StarBase and luciferase reporter assays. Western blotting was used to analyze the expression of matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9). The results showed that FOXD2-AS1 affected trophoblast cell viability in vitro, while the expression of miR-3127 was decreased. FOXD2-AS1 silencing decreased the promotion effects on trophoblast cell induced by miR-3127 inhibition. In addition, FOXD2-AS1 and miR-3127 presented the same effect on MMP2 and MMP9 levels. lncRNA FOXD2-AS1 modulated trophoblast cell proliferation, invasion and migration through downregulating miR-3127 expression. Therefore, lncRNA FOXD2-AS1 could act as a latent therapeutic marker in preeclampsia.
Collapse
Affiliation(s)
| | - Xiaoqin Chen
- Obstetrics Department, Huai'an First People's Hospital, Huaian, Jiangsu, 223300, China
| |
Collapse
|
24
|
Vilotic A, Jovanovic Krivokuca M, Stefanoska I, Vrzic Petronijevic S, Petronijevic M, Vicovac L. Macrophage migration inhibitory factor is involved in endovascular trophoblast cell function in vitro. EXCLI JOURNAL 2019; 18:Doc1007. [PMID: 31762725 PMCID: PMC6868918 DOI: 10.17179/excli2019-1630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine abundantly present at the feto-maternal interface proposed to play a role in establishment of pregnancy. We have previously shown that pharmacological inhibition of enzymatic activity of MIF decreases extravillous trophoblast invasion and migration in vitro. This study aimed to further elucidate potential role of endogenous trophoblast MIF, and to assess its importance for endovascular trophoblast cell function in particular. Attenuation of MIF by siRNA reduced HTR-8/SVneo cell invasion through Matrigel (59 % of control), expression of integrin α1 (86 % of control) and levels of MMP2 and MMP9 (87 % and 57 % of control, respectively). MIF specific siRNA reduced the ability of HTR-8/SVneo to differentiate in to endothelial-like phenotype, as determined by Matrigel tube formation assay. The total tube length was decreased to 68.6 %, while the number of branching points was reduced to 57.8 % of control. HTR-8/SVneo cell capacity to integrate into HUVEC monolayers was reduced by knock-down of MIF. This could be partly caused by reduced N-cadherin expression to 63 % of control, which decreased with knock-down of MIF, as the expression of this protein was recently shown essential for trophoblast-endothelial interaction. These novel findings indicate a novel role for trophoblast MIF in spiral artery remodeling process.
Collapse
Affiliation(s)
- Aleksandra Vilotic
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Milica Jovanovic Krivokuca
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Ivana Stefanoska
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | | | - Miloš Petronijevic
- Clinic of Obstetrics and Gynecology, Clinical Center of Serbia, Koste Todorovica 26, 11000 Belgrade, Serbia
| | - Ljiljana Vicovac
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
25
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
26
|
Lee KM, Seo HW, Kwon MS, Han AR, Lee SK. SIRT1 negatively regulates invasive and angiogenic activities of the extravillous trophoblast. Am J Reprod Immunol 2019; 82:e13167. [PMID: 31295378 DOI: 10.1111/aji.13167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/08/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
PROBLEM Dysregulation of extravillous trophoblast (EVT) invasion leads to pregnancy complications, such as pre-eclampsia, fetal growth restriction, and placenta accreta. The aim of this study was to explore the role of SIRT1 in EVT invasion and its underlying mechanism. METHOD OF STUDY SIRT1-specific siRNA was transfected into Swan 71 cells, an immortalized first trimester trophoblast cell line. The Boyden chamber invasion assay, the scratch wound healing assay, and cell proliferation assay were performed. The expression levels of epithelial-to-mesenchymal transition (EMT) markers, matrix metalloproteinase-2 (MMP-2), MMP-9, p-Akt, Akt, p-p38MAPK, p38MAPK, p-ERK, ERK, p-JNK, JNK, Fas, and Fas ligand (FasL) were examined by western blot. Tube formation assay was conducted by using Matrigel. RESULTS SIRT1 knockdown by siRNA significantly enhanced invasion and migration as well as the expression of MMP-2, MMP-9, and EMT markers in Swan 71 cells, but reduced proliferation. The effects of SIRT1 knockdown on invasion, migration, proliferation, and endothelial-like tube formation in Swan 71 cells were reversely regulated by blockade of Akt and p38MAPK signaling. In addition, SIRT1 knockdown markedly promoted colocalization of Swan 71 cells to human umbilical vein endothelial cell (HUVEC) networks and induced reduction in Fas and enhancement of FasL. Conditioned media of SIRT1 knockdown-Swan 71 cells caused reduction in cell proliferation and augmentation of cytotoxicity along with increased Fas expression in HUVECs. CONCLUSION Our results suggest that SIRT1 may be associated with placental development by controlling EVT invasion and spiral artery remodeling via modulation of EMT, MMP-2, MMP-9, Akt/p38MAPK signaling, and Fas/FasL.
Collapse
Affiliation(s)
- Ki Mo Lee
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| | - Hee Won Seo
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| | - Myoung-Seung Kwon
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| | - Ae-Ra Han
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| |
Collapse
|
27
|
Beltrame JS, Scotti L, Sordelli MS, Cañumil VA, Franchi AM, Parborell F, Ribeiro ML. Lysophosphatidic acid induces the crosstalk between the endovascular human trophoblast and endothelial cells in vitro. J Cell Physiol 2019; 234:6274-6285. [PMID: 30362520 DOI: 10.1002/jcp.27358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/17/2018] [Indexed: 12/29/2022]
Abstract
Spiral artery remodeling at the maternal-fetal interface is crucial for successful pregnancy and requires the interaction between the first trimester trophoblast and the endothelial cells of the maternal vessels. However, the precise mechanism of this dialog has yet to be determined. The current study investigated whether lysophosphatidic acid (LPA) modulates trophoblast-endothelial crosstalk in vitro. HTR-8/SVneo trophoblast cell line (H8) was seeded on top of Geltrex, incubated with LPA or LPA + NS-398 (selective cyclooxygenase-2 inhibitor), LPA + 1400W (selective inducible nitric oxide synthase inhibitor) or LPA + IL-6 neutralizing antibody and assayed for tube formation to model the acquisition of trophoblast endovascular phenotype. The supernatants were collected and used as conditioned media (CM). To test trophoblast-endothelial crosstalk, the endothelial cell line EA.hy926 was incubated with trophoblast CM. The CM from LPA-induced tubulogenesis stimulated endothelial cells migration and did not modify the apoptosis. Soluble factors derived from cyclooxygenase-2 and IL-6 pathways were involved in H8-EA.hy926 interaction under the LPA effect. Moreover, LPA increased the levels of IL-6 mRNA by cyclooxygenase-2 pathway in H8 cells. Collectively, LPA promotes trophoblast-endothelial crosstalk in vitro and induces the release of trophoblast soluble factors that stimulate endothelial cells migration without changes in apoptosis. The evidence presented here provides new insights about an active role of LPA as a lipid mediator regulating vascular remodeling at the maternal-fetal interface.
Collapse
Affiliation(s)
- Jimena S Beltrame
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFyBO) (CONICET - Facultad de Medicina, Universidad de Buenos Aires), Paraguay 2155, 16th floor, Buenos Aires, Argentina
| | - Leopoldina Scotti
- Laboratorio de Estudios de la Fisiopatología del Ovario, Instituto de Biología y Medicina Experimental (IByME) - (CONICET), Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Micaela S Sordelli
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFyBO) (CONICET - Facultad de Medicina, Universidad de Buenos Aires), Paraguay 2155, 16th floor, Buenos Aires, Argentina
| | - Vanesa A Cañumil
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFyBO) (CONICET - Facultad de Medicina, Universidad de Buenos Aires), Paraguay 2155, 16th floor, Buenos Aires, Argentina
| | - Ana M Franchi
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO) (CONICET - Facultad de Medicina, Universidad de Buenos Aires), Paraguay 2155, 16th floor, Buenos Aires, Argentina
| | - Fernanda Parborell
- Laboratorio de Estudios de la Fisiopatología del Ovario, Instituto de Biología y Medicina Experimental (IByME) - (CONICET), Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - María L Ribeiro
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFyBO) (CONICET - Facultad de Medicina, Universidad de Buenos Aires), Paraguay 2155, 16th floor, Buenos Aires, Argentina
| |
Collapse
|
28
|
Baykus Y, Ustebay S, Deniz R, Ugur K, Yavuzkir Ş, Aydin S. Direct laboratory evidence that pregnancy-induced hypertension might be associated with increased catecholamines and decreased renalase concentrations in the umbilical cord and mother’s blood. J LAB MED 2019; 43:77-85. [DOI: 10.1515/labmed-2018-0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Abstract
Background
Renalase (RNL) is a controversial enzyme as to whether it oxidizes catecholamines (CAs) (as is generally accepted) in the blood or not. CAs (dopamine [DPMN], epinephrine [EPI] and norepinephrine [NEPI]) are associated with hypertension, including pregnancy-induced hypertension, which occurs in 8–10% of all pregnancies. Therefore, the aim of the study was to compare CAs and renalase concentration in (i) normotensive controls (C), (ii) patients with preeclampsia (PE) and (iii) patients with severe preeclampsia (SPE), which is one of the well-known symptoms of hypertension.
Methods
This case-control study involved 90 women divided into three groups – 30 C, 30 PE and 30 SPE – whose age and body mass indexes (BMIs) were similar. A total of 270 blood samples (90 maternal samples, 90 umbilical cord artery samples and 90 umbilical cord vein samples) were obtained. CAs and RNL concentrations of the biological samples were measured by enzyme-linked immunosorbent assay (ELISA).
Results
Comparing the amounts of CAs, RNL and systolic blood pressure (SBP)/diastolic blood pressure (DBP) between healthy control pregnant women and pregnant women with PE and SPE (SBP/DBP was 120/80 mm Hg for C, above 140/90 mm Hg for PE and above 160/110 mm Hg for SPE), the levels of CAs were significantly increased whereas RNL was reduced. The correlation between SBP/DBP and the amount of RNL in pregnant women with PE and SPE was negative.
Conclusions
These novel results are evidence that hypertension seen in PE and SPE is directly related to increased levels of CAs and reduced RNL concentrations. The use of RNL preparations may be preferred in future to prevent maternal and perinatal morbidity and mortality due to pregnancy-induced hypertension.
Collapse
|
29
|
Haram K, Mortensen JH, Myking O, Roald B, Magann EF, Morrison JC. Early development of the human placenta and pregnancy complications. J Matern Fetal Neonatal Med 2019; 33:3538-3545. [PMID: 30810433 DOI: 10.1080/14767058.2019.1578745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An adequately sized placenta at a suitable site with appropriate depth and centripetal progression of implantation are the major factors for optimal fetal development. The cytotrophoblasts surround the blastocyst fuses at the site of the uterine attachment. This forms a second layer of multinucleated syncytiotrophoblasts that constitutes the inner epithelial boundary of the chorionic villous against the intervillous space. In a normal pregnancy, extravillous cytotrophoblasts (EVT) invade and obstruct the spiral arteries and remodel them. Vacuoles in the syncytial cell layer fuse and develop the intervillous space. The inner cell mass (embryoblast) gives rise to the umbilical cord and the mesenchyme in the chorionic villi. Vasculogenesis starts with the formation of hemangioblastic cords in this mesenchyme. The trophoblastic cell columns anchor the placenta. A variety of molecular pathways participate in the placentation process. Placental morphogenesis occurs mainly through complex cellular interactions between the chorionic villous and the extravillous cytotrophoblasts. The formation of the normal structure of the chorionic villi, syncytiotrophoblast layer and vasculature is essential for placental function, hormone production, and regulation of fetal growth. At each stage of placental development, genetic variants, exposure to infection, poor vascular function, oxidative stress, or failure of normal development can all lead to abnormal formation resulting in the clinical complications of pregnancy such as fetal growth disorders, neonatal neurologic abnormalities, placental adhesions, and inflammatory problems as well as maternal disease such as preeclampsia.
Collapse
Affiliation(s)
- Kjell Haram
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Jan Helge Mortensen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.,Department of Public Health and Primary Health Care, University of Bergen, Bergen, Norway
| | - Ole Myking
- Department of Internal Medicine, Section of Endocrinology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Bodil Roald
- Department of Pathology, Center for Pediatric and Pregnancy Related Pathology, Oslo University Hospital, Oslo, Norway
| | - Everett F Magann
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John C Morrison
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
30
|
Sagrillo-Fagundes L, Bienvenue-Pariseault J, Legembre P, Vaillancourt C. An insight into the role of the death receptor CD95 throughout pregnancy: Guardian, facilitator, or foe. Birth Defects Res 2019; 111:197-211. [PMID: 30702213 DOI: 10.1002/bdr2.1470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 12/24/2022]
Abstract
The prototype death receptor CD95 (Fas) and its ligand, CD95L (FasL), have been thoroughly studied due to their role in immune homeostasis and elimination of infected and transformed cells. The fact that CD95 is present in female reproductive cells and modulated during embryogenesis and pregnancy has raised interest in its role in immune tolerance to the fetoplacental unit. CD95 has been shown to be critical for proper embryonic formation and survival. Moreover, altered expression of CD95 or its ligand causes autoimmunity and has also been directly involved in recurrent pregnancy losses and pregnancy disorders. The objective of this review is to summarize studies that evaluate the mechanisms involved in the activation of CD95 to provide an updated global view of its effect on the regulation of the maternal immune system. Modulation of the CD95 system components may be the immune basis of several common pregnancy disorders.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Josianne Bienvenue-Pariseault
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Patrick Legembre
- Oncogenesis, Stress & Signaling Laboratory INSERM ERL440, Centre Eugène Marquis, Inserm U1242, Equipe Ligue Contre Le Cancer, Rennes, France
| | - Cathy Vaillancourt
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| |
Collapse
|
31
|
Kuo CY, Shevchuk M, Opfermann J, Guo T, Santoro M, Fisher JP, Kim PCW. Trophoblast-endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model. Biotechnol Bioeng 2019; 116:181-192. [PMID: 30298908 PMCID: PMC6289739 DOI: 10.1002/bit.26850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023]
Abstract
Trophoblast invasion and remodeling of the maternal spiral arteries are required for pregnancy success. Aberrant endothelium-trophoblast crosstalk may lead to preeclampsia, a pregnancy complication that has serious effects on both the mother and the baby. However, our understanding of the mechanisms involved in this pathology remains elementary because the current in vitro models cannot describe trophoblast-endothelium interactions under dynamic culture. In this study, we developed a dynamic three-dimensional (3D) placenta model by bioprinting trophoblasts and an endothelialized lumen in a perfusion bioreactor. We found the 3D printed perfusion bioreactor system significantly augmented responses of endothelial cells by encouraging network formations and expressions of angiogenic markers, cluster of differentiation 31 (CD31), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), and vascular endothelial growth factor A (VEGFA). Bioprinting favored colocalization of trophoblasts with endothelial cells, similar to in vivo observations. Additional analysis revealed that trophoblasts reduced the angiogenic responses by reducing network formation and motility rates while inducing apoptosis of endothelial cells. Moreover, the presence of endothelial cells appeared to inhibit trophoblast invasion rates. These results clearly demonstrated the utility and potential of bioprinting and perfusion bioreactor system to model trophoblast-endothelium interactions in vitro. Our bioprinted placenta model represents a crucial step to develop advanced research approach that will expand our understanding and treatment options of preeclampsia and other pregnancy-related pathologies.
Collapse
Affiliation(s)
- Che-Ying Kuo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD
| | - Mariya Shevchuk
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD
| | - Justin Opfermann
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC
| | - Ting Guo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD
| | - Marco Santoro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD
| | - Peter CW Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC
- School of Medicine and Health Sciences, The George Washington University, Washington, DC
| |
Collapse
|
32
|
Raguema N, Zitouni H, Ben Ali Gannoun M, Benletaifa D, Almawi WY, Mahjoub T, Lavoie JL. FAS A-670G and Fas ligand IVS2nt A 124G polymorphisms are significantly increased in women with pre-eclampsia and may contribute to HELLP syndrome: a case-controlled study. BJOG 2018; 125:1758-1764. [PMID: 30066360 DOI: 10.1111/1471-0528.15412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We evaluated the association between the Fas-670A/G and the Fas ligand FasL IVS2nt 124 A/G polymorphisms and the risk of pre-eclampsia and its complications. DESIGN A case-controlled study. SETTING University Hospitals in most areas of Tunisia. POPULATION We recruited 300 pregnant women who developed pre-eclampsia and 300 age-matched healthy pregnant women from the same hospital. METHODS Genotyping of Fas-670A/G and the FasL IVS2nt 124A/G gene polymorphisms were conducted using polymerase chain reaction-restriction fragment length polymorphism among our cohort. MAIN OUTCOME MEASURES Fisher's exact test was used to compare the statistical differences between groups for categorical variables and Student t tests were used for continuous variables. RESULTS The frequency of the Fas-670G gene variant was significantly increased in women with pre-eclampsia (42%) compared with control women (30%; P < 0.001). Also, a statistically significant difference was obtained in the distribution of the FasL IVS2nt 124G gene variant when comparing women with pre-eclampsia (43%) with controls (30%; P < 0.001). Interestingly, we found that the carriage of Fas-670G was associated with increased liver enzymes, suggesting an increased prevalence of the haemolysis, elevated liver enzymes and low platelets (HELLP) syndrome, a pre-eclampsia complication. CONCLUSION The Fas-670G and FasL IVS2nt 124G polymorphisms are associated with a higher risk of pre-eclampsia and its complications. TWEETABLE ABSTRACT Polymorphisms in the Fas and FasL genes are associated with increased risk of pre-eclampsia and HELLP syndrome.
Collapse
Affiliation(s)
- N Raguema
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Faculty of Sciences of Bizerte, University of Carthage, Jarzouna- Bizerte, Tunisia.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montréal, QC, Canada
| | - H Zitouni
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Faculty of Sciences of Bizerte, University of Carthage, Jarzouna- Bizerte, Tunisia
| | - M Ben Ali Gannoun
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Faculty of Sciences of Bizerte, University of Carthage, Jarzouna- Bizerte, Tunisia
| | - D Benletaifa
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| | - W Y Almawi
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - T Mahjoub
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - J L Lavoie
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
33
|
James-Allan LB, Whitley GS, Leslie K, Wallace AE, Cartwright JE. Decidual cell regulation of trophoblast is altered in pregnancies at risk of pre-eclampsia. J Mol Endocrinol 2018; 60:239-246. [PMID: 29437882 PMCID: PMC5854865 DOI: 10.1530/jme-17-0243] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/07/2018] [Indexed: 12/23/2022]
Abstract
Successful implantation and placentation are dependent on the interaction between decidual stromal cells (DSC) and extravillous trophoblast (EVT) cells. The extent of trophoblast invasion relies on communication between the placenta and maternal decidua. The cyclical process of decidualisation induces a transformation of endometrial fibroblasts to secretory DSC; these secreted products have many functions including the control of trophoblast invasion. Inadequate trophoblast invasion and remodelling of the uterine vessels (the spiral arteries) are associated with pregnancy disorders such as pre-eclampsia. Uterine artery Doppler resistance index (RI) in the first trimester of pregnancy can be used as a proxy measure of remodelling. DSC were isolated from pregnancies with normal (normal RI) or impaired (high RI) spiral artery remodelling. Following isolation, DSC were re-decidualised using cAMP and MPA and secretion of the decidualisation markers IGFBP-1 and prolactin assessed. We examined the impact of DSC-secreted factors on trophoblast cell function, using the EVT cell line SGHPL-4. We demonstrated that DSC exposed to decidual factors were able to re-decidualise in vitro and that the chemoattraction of trophoblasts by DSC is impaired in pregnancies with high RI. This study provides new insights into the role that DSC play in regulating EVT functions during the first trimester of pregnancy. This is the first study to demonstrate that DSC from pregnancies with impaired vascular remodelling in the first trimester secrete factors that inhibit the directional movement of trophoblast cells. This finding may be important in understanding aberrant trophoblast invasion in pregnancies where vascular remodelling is impaired.
Collapse
Affiliation(s)
- L B James-Allan
- Molecular and Clinical Sciences Research InstituteSt. George's, University of London, London, UK
| | - G S Whitley
- Molecular and Clinical Sciences Research InstituteSt. George's, University of London, London, UK
| | - K Leslie
- Molecular and Clinical Sciences Research InstituteSt. George's, University of London, London, UK
- Fetal Medicine UnitSt. George's Hospital, London, UK
| | - A E Wallace
- Molecular and Clinical Sciences Research InstituteSt. George's, University of London, London, UK
| | - J E Cartwright
- Molecular and Clinical Sciences Research InstituteSt. George's, University of London, London, UK
| |
Collapse
|
34
|
Zhang Y, Liu H, Shi X, Qiao F, Zeng W, Feng L, Deng D, Liu H, Wu Y. Maspin impairs the function of endothelial cells: an implying pathway of preeclampsia. BMC Pregnancy Childbirth 2017; 17:328. [PMID: 28962595 PMCID: PMC5622509 DOI: 10.1186/s12884-017-1525-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Backgroud Widespread endothelial injury contributes to the occurrence of preeclampsia. Maspin, first identified as a tumor suppressor, plays a critical role in cell invasion and angiogenesis. Our previous studies found that the expression of maspin was increased in preeclampsic placenta. In this research, we studied the function of human umbilical vein endothelial cells (HUVECs) to explore the role and possible mechanism of maspin gene in the pathogenesis of preeclampsia. Methods HUVECs were treated with different concentration of recombinant human maspin protein (r-maspin) during normoxia and hypoxia, we detected the proliferation, apoptosis, migration and tube formation of HUVECs. We also assessed nitride oxide (NO) synthesis and the expression of matrix metalloproteinase 2 (MMP2) to further explore the underlying molecular mechanism. Results There was only slight maspin expression at mRNA level in HUVECs. Treated HUVECs with r-maspin, the proliferation of HUVECs was significantly promoted both under normoxia and hypoxia. The tubes formed by HUVECs were significantly inhibited and NO synthesis was significantly reduced by r-maspin. Meantime, r-maspin also inhibited MMP2 expression and activity in HUVECs. However, there was no significant change in the migration and apoptosis of HUVECs. Conclusions Maspin may be an important participant for mediating endothelial function and ultimately leads to the occurence of preeclamsia.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Liu
- Department of Urology, Wuhan Third Hospital, Guanggu on campus, Wuhan, Hubei, China
| | - Xinwei Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuyuan Qiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongrui Deng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haiyi Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
35
|
Kamei R, Tanaka HY, Kawano T, Morii C, Tanaka S, Nishihara H, Iwata C, Kano MR. Regulation of endothelial Fas expression as a mechanism of promotion of vascular integrity by mural cells in tumors. Cancer Sci 2017; 108:1080-1088. [PMID: 28247971 PMCID: PMC5448593 DOI: 10.1111/cas.13216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/18/2017] [Accepted: 02/23/2017] [Indexed: 11/29/2022] Open
Abstract
Angiogenesis is a multi‐step process that culminates in vascular maturation whereby nascent vessels stabilize to become functional, and mural cells play an essential role in this process. Recent studies have shown that mural cells in tumors also promote and maintain vascular integrity, with wide‐reaching clinical implications including the regulation of tumor growth, metastases, and drug delivery. Various regulatory signaling pathways have been hitherto implicated, but whether regulation of Fas‐dependent apoptotic mechanisms is involved has not yet been fully investigated. We first compared endothelial FAS staining in human pancreatic ductal adenocarcinomas and colon carcinomas and show that the latter, characterized by lower mural cell coverage of tumor vasculature, demonstrated higher expression of FAS than the former. Next, in an in vitro coculture system of MS‐1 and 10T1/2 cells as endothelial and mural cells respectively, we show that mural cells decreased endothelial Fas expression. Then, in an in vivo model in which C26 colon carcinoma cells were inoculated together with MS‐1 cells alone or with the further addition of 10T1/2 cells, we demonstrate that mural cells prevented hemorrhage. Finally, knockdown of endothelial Fas sufficiently recapitulated the protection against hemorrhage seen with the addition of mural cells. These results together suggest that regulation of endothelial Fas signaling is involved in the promotion of vascular integrity by mural cells in tumors.
Collapse
Affiliation(s)
- Ryosuke Kamei
- Medical Scientist Training Program, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyoshi Y Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takao Kawano
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chiharu Morii
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Sayaka Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Nishihara
- Laboratory of Translational Pathology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Caname Iwata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsunobu R Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
36
|
Strategies for investigating the maternal-fetal interface in the first trimester of pregnancy: What can we learn about pathology? Placenta 2017; 60:145-149. [PMID: 28506493 PMCID: PMC5730536 DOI: 10.1016/j.placenta.2017.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022]
Abstract
The pathologies of the pregnancy complications pre-eclampsia (PE) and fetal growth restriction (FGR) are established in the first trimester of human pregnancy. In a normal pregnancy, decidual spiral arteries are transformed into wide diameter, non-vasoactive vessels capable of meeting the increased demands of the developing fetus for nutrients and oxygen. Disruption of this transformation is associated with PE and FGR. Very little is known of how these first trimester changes are regulated normally and even less is known about how they are compromised in complicated pregnancies. Interactions between maternal and placental cells are essential for pregnancy to progress and this review will summarise the challenges in investigating this area. We will discuss how first trimester studies of pregnancies with an increased risk of developing PE/FGR have started to provide valuable information about pregnancy at this most dynamic and crucial time. We will discuss where there is scope to progress these studies further by refining the ability to identify compromised pregnancies at an early stage, by integrating information from many cell types from the same pregnancy, and by improving our methods for modelling the maternal-fetal interface in vitro. Pathology of PE/FGR begins in the first trimester. Investigating pregnancies with increased risk of PE/FGR is giving valuable information. This will improve further with advances in identifying compromised pregnancies.
Collapse
|
37
|
James JL, Chamley LW, Clark AR. Feeding Your Baby In Utero: How the Uteroplacental Circulation Impacts Pregnancy. Physiology (Bethesda) 2017; 32:234-245. [DOI: 10.1152/physiol.00033.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 11/22/2022] Open
Abstract
The utero-placental circulation links the maternal and fetal circulations during pregnancy, ensuring adequate gas and nutrient exchange, and consequently fetal growth. However, our understanding of this circulatory system remains incomplete. Here, we discuss how the utero-placental circulation is established, how it changes dynamically during pregnancy, and how this may impact on pregnancy success, highlighting how we may address knowledge gaps through advances in imaging and computational modeling approaches.
Collapse
Affiliation(s)
- Joanna L. James
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand; and
| | - Lawrence W. Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand; and
| | - Alys R. Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Choudhury RH, Dunk CE, Lye SJ, Aplin JD, Harris LK, Jones RL. Extravillous Trophoblast and Endothelial Cell Crosstalk Mediates Leukocyte Infiltration to the Early Remodeling Decidual Spiral Arteriole Wall. THE JOURNAL OF IMMUNOLOGY 2017; 198:4115-4128. [PMID: 28396316 DOI: 10.4049/jimmunol.1601175] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/14/2017] [Indexed: 12/16/2022]
Abstract
Decidual spiral arteriole (SpA) remodeling is essential to ensure optimal uteroplacental blood flow during human pregnancy, yet very little is known about the regulatory mechanisms. Uterine decidual NK (dNK) cells and macrophages infiltrate the SpAs and are proposed to initiate remodeling before colonization by extravillous trophoblasts (EVTs); however, the trigger for their infiltration is unknown. Using human first trimester placenta, decidua, primary dNK cells, and macrophages, we tested the hypothesis that EVTs activate SpA endothelial cells to secrete chemokines that have the potential to recruit maternal immune cells into SpAs. Gene array, real-time PCR, and ELISA analyses showed that treatment of endothelial cells with EVT conditioned medium significantly increased production of two chemokines, CCL14 and CXCL6. CCL14 induced chemotaxis of both dNK cells and decidual macrophages, whereas CXCL6 also induced dNK cell migration. Analysis of the decidua basalis from early pregnancy demonstrated expression of CCL14 and CXCL6 by endothelial cells in remodeling SpAs, and their cognate receptors are present in both dNK cells and macrophages. Neutralization studies identified IL-6 and CXCL8 as factors secreted by EVTs that induce endothelial cell CCL14 and CXCL6 expression. This study has identified intricate crosstalk between EVTs, SpA cells, and decidual immune cells that governs their recruitment to SpAs in the early stages of remodeling and has identified potential key candidate factors involved. This provides a new understanding of the interactions between maternal and fetal cells during early placentation and highlights novel avenues for research to understand defective SpA remodeling and consequent pregnancy pathology.
Collapse
Affiliation(s)
- Ruhul H Choudhury
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, United Kingdom; .,Academic Health Science Centre, St. Mary's Hospital, Manchester M13 9WL, United Kingdom
| | - Caroline E Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada; and
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada; and
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, United Kingdom.,Academic Health Science Centre, St. Mary's Hospital, Manchester M13 9WL, United Kingdom
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, United Kingdom.,Academic Health Science Centre, St. Mary's Hospital, Manchester M13 9WL, United Kingdom.,Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, United Kingdom.,Academic Health Science Centre, St. Mary's Hospital, Manchester M13 9WL, United Kingdom
| |
Collapse
|
39
|
Embryonic/fetal mortality and intrauterine growth restriction is not exclusive to the CBA/J sub-strain in the CBA × DBA model. Sci Rep 2016; 6:35138. [PMID: 27767070 PMCID: PMC5073309 DOI: 10.1038/srep35138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/19/2016] [Indexed: 11/24/2022] Open
Abstract
Inbred strains of mice are powerful models for understanding human pregnancy complications. For example, the exclusive mating of CBA/J females to DBA/2J males increases fetal resorption to 20–35% with an associated decline in placentation and maintenance of maternal Th1 immunity. More recently other complications of pregnancy, IUGR and preeclampsia, have been reported in this model. The aim of this study was to qualify whether the CBA/CaH substrain female can substitute for CBA/J to evoke a phenotype of embryonic/fetal mortality and IUGR. (CBA/CaH × DBA/2J) F1 had significantly higher embryonic/fetal mortality mortality (p = 0.0063), smaller fetuses (p < 0.0001), and greater prevalence of IUGR (<10th percentile; 47% vs 10%) than (CBA/CaH × Balb/c) F1. Placentae from IUGR fetuses from all mating groups were significantly smaller (p < 0.0001) with evidence of thrombosis and fibrosis when compared to normal-weight fetuses ( > 10th percentile). In addition, placentae of “normal-weight” (CBA/CaH × DBA/2J) F1 were significantly smaller (p < 0.0006) with a greater proportion of labyrinth (p = 0.0128) and an 11-fold increase in F4/80 + macrophage infiltration (p < 0.0001) when compared to placentae of (CBA/CaH × Balb/c) F1. In conclusion, the embryonic/fetal mortality and IUGR phenotype is not exclusive to CBA/J female mouse, and CBA/CaH females can be substituted to provide a model for the assessment of novel therapeutics.
Collapse
|
40
|
The role of decidual NK cells in pregnancies with impaired vascular remodelling. J Reprod Immunol 2016; 119:81-84. [PMID: 27680579 DOI: 10.1016/j.jri.2016.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022]
Abstract
The pathologies of the dangerous pregnancy complications pre-eclampsia (PE) and fetal growth restriction (FGR) are established in the first trimester of human pregnancy yet we know little of how this happens. Finely tuned interactions between maternal and placental cells are essential for pregnancy to progress without complications; however, the precise nature of this cross-talk and how it can go wrong are crucial questions that remain to be answered. This review summarises recent studies examining the role played by natural killer cells in regulating normal placentation and remodelling. Their involvement when it is impaired in PE/FGR pregnancies will additionally be discussed.
Collapse
|
41
|
First trimester trophoblasts forming endothelial-like tubes in vitro emulate a ‘blood vessel development’ gene expression profile. Gene Expr Patterns 2016; 21:103-10. [DOI: 10.1016/j.gep.2016.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 01/02/2023]
|
42
|
Hypoxia induced HIF-1/HIF-2 activity alters trophoblast transcriptional regulation and promotes invasion. Eur J Cell Biol 2015; 94:589-602. [DOI: 10.1016/j.ejcb.2015.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 01/19/2023] Open
|
43
|
Dong H, Yu C, Mu J, Zhang J, Lin W. Role of EFNB2/EPHB4 signaling in spiral artery development during pregnancy: An appraisal. Mol Reprod Dev 2015; 83:12-8. [PMID: 26501487 DOI: 10.1002/mrd.22593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 10/22/2015] [Indexed: 12/30/2022]
Abstract
EFNB2 and EPHB4, which belong to a large tyrosine kinase receptor superfamily, are molecular markers of arterial and venous blood vessels, respectively. EFNB2/EPHB4 signaling plays an important role in physiological and pathological angiogenesis, and its role in tumor vessel development has been extensively studied. Pregnancy and tumors share similar features, including continuous cell proliferation and increased demand for a blood supply. Our previous studies showed that Efnb2 and Ephb4 were expressed dynamically in the spiral arteries, uterine natural killer cells, and trophoblasts during mouse gestation Days 6.5-12.5. Moreover, uterine natural killer cells and trophoblasts are required for the modification of spiral arteries. Oxygen tension within the pregnant uterus, which contributes to the vascular development, also affects EFNB2 and EPHB4 expression. Considering the role of EFNB2/EPHB4 signaling in embryonic and tumor vascular development, and its dynamic expression in the decidua and placenta, we hypothesize that EFNB2 and EPHB4 are involved in the regulation of spiral artery remodeling. Investigating this hypothesis will help clarify the mechanisms of pathological pregnancy that may underlie abnormal spiral artery development.
Collapse
Affiliation(s)
- Hongmei Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chaoran Yu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jiao Mu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ji Zhang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Lin
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
44
|
Spradley FT, Palei AC, Granger JP. Immune Mechanisms Linking Obesity and Preeclampsia. Biomolecules 2015; 5:3142-76. [PMID: 26569331 PMCID: PMC4693273 DOI: 10.3390/biom5043142] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/07/2015] [Accepted: 10/20/2015] [Indexed: 12/19/2022] Open
Abstract
Preeclampsia (PE) is characterized by hypertension occurring after the twentieth week of pregnancy. It is a significant contributor to maternal and perinatal morbidity and mortality in developing countries and its pervasiveness is increasing within developed countries including the USA. However, the mechanisms mediating the pathogenesis of this maternal disorder and its rising prevalence are far from clear. A major theory with strong experimental evidence is that placental ischemia, resulting from inappropriate remodeling and widening of the maternal spiral arteries, stimulates the release of soluble factors from the ischemic placenta causing maternal endothelial dysfunction and hypertension. Aberrant maternal immune responses and inflammation have been implicated in each of these stages in the cascade leading to PE. Regarding the increased prevalence of this disease, it is becoming increasingly evident from epidemiological data that obesity, which is a state of chronic inflammation in itself, increases the risk for PE. Although the specific mechanisms whereby obesity increases the rate of PE are unclear, there are strong candidates including activated macrophages and natural killer cells within the uterus and placenta and activation in the periphery of T helper cells producing cytokines including TNF-α, IL-6 and IL-17 and the anti-angiogenic factor sFlt-1 and B cells producing the agonistic autoantibodies to the angiotensin type 1 receptor (AT1-aa). This review will focus on the immune mechanisms that have been implicated in the pathogenesis of hypertension in PE with an emphasis on the potential importance of inflammatory factors in the increased risk of developing PE in obese pregnancies.
Collapse
Affiliation(s)
- Frank T Spradley
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Women's Health Research Center, The University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Ana C Palei
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Women's Health Research Center, The University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Joey P Granger
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, Women's Health Research Center, The University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
45
|
Kumar P, Thirkill TL, Ji J, Monte LH, Douglas GC. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation. PLoS One 2015; 10:e0135089. [PMID: 26266541 PMCID: PMC4533975 DOI: 10.1371/journal.pone.0135089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/16/2015] [Indexed: 12/21/2022] Open
Abstract
Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2) and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts) and a villous pathway (giving rise to multinucleated syncytiotrophoblast). Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries. We tested the idea that sodium butyrate (an epigenetic modulator) induces trophoblast differentiation in early gestation rhesus monkey trophoblasts through activation of the Wnt/β-catenin pathway. The results show that syncytiotrophoblast formation was increased by butyrate, accompanied by nuclear accumulation of β-catenin, and increased expression of EnvV2 and galectin-1 (two factors thought to be involved in trophoblast fusion). Surprisingly, the expression of GCM1 and syncytin-2 was not affected by sodium butyrate. When trophoblasts were incubated with lithium chloride, a GSK3 inhibitor that mimics Wnt activation, nuclear accumulation of β-catenin also occurred but differentiation into syncytiotrophoblast was not observed. Instead the cells differentiated to mononucleated spindle-shaped cells and showed molecular and behavioral characteristics of endovascular trophoblasts. Another highly specific inhibitor of GSK3, CHIR99021, failed to induce endovascular trophoblast characteristics. These observations suggest that activation of the Wnt/β-catenin pathway correlates with both trophoblast differentiation pathways, but that additional factors determine specific cell fate decisions. Other experiments suggested that the differential effects of sodium butyrate and lithium chloride might be explained by their effects on TNFα production. The results provide valuable tools to manipulate trophoblast differentiation in vitro and to better understand the differentiation pathways that occur during early gestation.
Collapse
Affiliation(s)
- Priyadarsini Kumar
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Twanda L. Thirkill
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Jennifer Ji
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Louise H. Monte
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Gordon C. Douglas
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Patel S, Kilburn B, Imudia A, Armant DR, Skafar DF. Estradiol Elicits Proapoptotic and Antiproliferative Effects in Human Trophoblast Cells. Biol Reprod 2015; 93:74. [PMID: 26246219 DOI: 10.1095/biolreprod.115.129114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/31/2015] [Indexed: 12/29/2022] Open
Abstract
During the first trimester of pregnancy, appropriate regulation of estradiol (E2) is essential for normal placental development. Previous studies demonstrate that premature elevation in E2 concentrations can lead to abnormal placentation, but have not fully elaborated the mechanism of this effect in the first-trimester trophoblast. Our aim was to determine whether E2 elicits trophoblast cell death or inhibits proliferation. The first-trimester human cytotrophoblast cell line HTR-8/SVneo was cultured in phenol red-free medium containing charcoal-stripped serum and treated with 17beta-E2 at concentrations between 0 and 100 nM. TUNEL and invasion assays indicated that E2 significantly increased cell death and reduced cell invasion at 10 nM, and nuclear Ki67 expression revealed that it decreased cell proliferation at 1 nM. A similar effect on cell death was observed in first-trimester placental explants. The E2 antagonist fulvestrant blocked all effects of E2. Immunohistochemistry showed that protein expression of proapoptotic caspases 3, 8, and 9 increased at E2 concentrations of 25 nM and greater, whereas expression of antiapoptotic BCL2-alpha decreased at E2 concentrations of 10 nM and greater. Additionally, treatments with estrogen receptor (ER) alpha-specific and ERbeta-specific agonists at concentrations between 0 and 1000 nM indicated that only ERalpha mediates E2's effects, although immunohistochemistry and Western immunoblotting showed that HTR-8/SVneo cells and placental explants express both ERalpha and ERbeta. Taken together, these findings reveal the interplay between elevated serum E2 and apoptosis in the first trimester of pregnancy. These factors could be associated with pregnancy complications including infertility and uteroplacental insufficiency.
Collapse
Affiliation(s)
- Shivali Patel
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Brian Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Anthony Imudia
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, Florida
| | - D Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan Program in Reproductive and Adult Endocrinology, NICHD, NIH, Bethesda, Maryland
| | - Debra F Skafar
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
47
|
Fraser R, Whitley GSJ, Thilaganathan B, Cartwright JE. Decidual natural killer cells regulate vessel stability: implications for impaired spiral artery remodelling. J Reprod Immunol 2015; 110:54-60. [PMID: 26004035 PMCID: PMC4502446 DOI: 10.1016/j.jri.2015.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 04/08/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022]
Abstract
Decidual NK (dNK) cells are present during uterine spiral artery remodelling, an event that is crucial for successful placentation and the provision of an adequate blood supply to the developing fetus. Spiral artery remodelling is impaired in the pregnancy complication pre-eclampsia. Although dNK cells are known to play active roles at the maternal-fetal interface, little is known about their effect on endothelial integrity, an important component of vessel stability. We present a study in which we have modelled dNK-endothelium interactions, using first-trimester dNK cells isolated from both normal pregnancies and those with impaired spiral artery remodelling. dNK cells were isolated from first-trimester pregnancies, screened by uterine artery Doppler ultrasound to determine resistance indices (RI) that relate to the extent of spiral artery remodelling. dNK culture supernatant from normal-RI pregnancies (but not high-RI pregnancies) destabilised endothelial tube-like structures in Matrigel, and normal-RI dNK cells induced endothelial intercellular adhesion molecule-1 and tumour necrosis factor-α expression to a greater extent than high-RI dNK cells. We have established a functional role for dNK cells in the disruption of endothelial structures and have suggested how impairment of this process may be contributing to the reduced vessel remodelling in pregnancies with a high uterine artery resistance index. These findings have implications for our understanding of the pathology of pre-eclampsia and other pregnancy disorders where remodelling is impaired.
Collapse
Affiliation(s)
- Rupsha Fraser
- Institute of Cardiovascular and Cell Sciences, St. George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | - Guy St J Whitley
- Institute of Cardiovascular and Cell Sciences, St. George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | - Baskaran Thilaganathan
- Fetal Medicine Unit, St. George's Hospital, Blackshaw Road, London SW17 0QT, United Kingdom
| | - Judith E Cartwright
- Institute of Cardiovascular and Cell Sciences, St. George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| |
Collapse
|
48
|
Andrade D, Kim M, Blanco LP, Karumanchi SA, Koo GC, Redecha P, Kirou K, Alvarez AM, Mulla MJ, Crow MK, Abrahams VM, Kaplan MJ, Salmon JE. Interferon-α and angiogenic dysregulation in pregnant lupus patients who develop preeclampsia. Arthritis Rheumatol 2015; 67:977-87. [PMID: 25603823 DOI: 10.1002/art.39029] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/08/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To investigate whether an elevated interferon-α (IFNα) level early in pregnancy is associated with poor pregnancy outcomes and to examine the relationship of an elevated IFNα level to angiogenic imbalance. METHODS Women were enrolled in a longitudinal case-control study of pregnant patients with lupus. Serum samples obtained monthly throughout pregnancy were assayed for IFNα and for the antiangiogenic factor soluble Flt-1 and the proangiogenic factor placenta growth factor (PlGF). Each of 28 patients with systemic lupus erythematosus (SLE) with a poor pregnancy outcome was matched to an SLE patient with an uncomplicated pregnancy and to a pregnant healthy control. The effects of IFNα and/or soluble Flt-1 on human endothelial cells and endothelial cell-trophoblast interactions were assessed. RESULTS Compared to SLE patients with uncomplicated pregnancies, patients with preeclampsia had increased IFNα levels before clinical symptoms. Patients without autoimmune disease who developed preeclampsia did not have increased IFNα levels. In SLE patients with low IFNα levels, marked angiogenic imbalance (higher soluble Flt-1, lower PlGF, and higher soluble Flt-1:PlGF ratios) preceded maternal manifestations of preeclampsia, whereas in SLE patients with high IFNα levels, preeclampsia occurred without evidence of systemic angiogenic imbalance. Treatment of human endothelial cells with soluble Flt-1 induced expression of sFLT1 messenger RNA, and IFNα dramatically amplified responses to soluble Flt-1. In a model of spiral artery transformation, only the combination of IFNα and soluble Flt-1 disrupted the ability of trophoblast cells to remodel endothelial tube structures. CONCLUSION Our findings identify a new mechanism by which IFNα induces an antiangiogenic milieu and increases the sensitivity of endothelial cells to soluble Flt-1, and suggest that elevated IFNα levels may contribute to the pathogenesis of preeclampsia in some pregnant patients with SLE.
Collapse
Affiliation(s)
- Danieli Andrade
- Hospital for Special Surgery and Weill Cornell Medical College, New York, New York
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Changes in Functional Activity of JEG-3 Trophoblast Cell Line in the Presence of Factors Secreted by Placenta. Arch Med Res 2015; 46:245-56. [PMID: 26003221 DOI: 10.1016/j.arcmed.2015.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/12/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Cells in the maternal-fetal interface secrete cytokines that regulate proliferation, migration, and trophoblast invasion during the first trimester of pregnancy and the limitation of these processes during the third trimester. The aim of the study was to evaluate the influence of factors secreted by human placenta during the first and third trimester of pregnancy on cytokine receptor expression and proliferative and migratory activity of JEG-3 trophoblast cells. METHODS The research was conducted using the explant conditioned media of placentas obtained from healthy women with elective termination of pregnancy at 9-11 weeks and placentas of women whose pregnancy progressed without complications at 38-39 weeks. Assessment of surface molecule expression was performed using FACS Canto II flow cytometer (BD, USA). The proliferative activity of JEG-3 trophoblast cells was evaluated by dyeing with crystal violet vital dye. The migration activity of JEG-3 was evaluated using 24-well insert plates with polycarbonate inserts (pore size 8 microns). RESULTS Expression of CD116, CD118, CD119, IFNγ-R2, CD120b, CD183, CD192, CD295, EGFR, and TGFβ-R2 on JEG-3 was higher when the cells were incubated in the presence of the third trimester placental factors in comparison with the first trimester placental factors. Factors secreted by the placenta during the third trimester of pregnancy had more pronounced stimulatory effect on the proliferation and migration of trophoblast in comparison with baseline levels and with the effect of the first trimester placental factors. CONCLUSIONS The findings suggest that the behavior of trophoblasts in vitro might not be representative of in vivo behavior in the absence of additional local factors that influence the trophoblast in vivo.
Collapse
|
50
|
Rätsep MT, Felker AM, Kay VR, Tolusso L, Hofmann AP, Croy BA. Uterine natural killer cells: supervisors of vasculature construction in early decidua basalis. Reproduction 2015; 149:R91-102. [DOI: 10.1530/rep-14-0271] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mammalian pregnancy involves tremendousde novomaternal vascular construction to adequately support conceptus development. In early mouse decidua basalis (DB), maternal uterine natural killer (uNK) cells oversee this process directing various aspects during the formation of supportive vascular networks. The uNK cells recruited to early implantation site DB secrete numerous factors that act in the construction of early decidual vessels (neoangiogenesis) as well as in the alteration of the structural components of newly developing and existing vessels (pruning and remodeling). Although decidual and placental development sufficient to support live births occur in the absence of normally functioning uNK cells, development and structure of implantation site are optimized through the presence of normally activated uNK cells. Human NK cells are also recruited to early decidua. Gestational complications including recurrent spontaneous abortion, fetal growth restriction, preeclampsia, and preterm labor are linked with the absence of human NK cell activation via paternally inherited conceptus transplantation antigens. This review summarizes the roles that mouse uNK cells normally play in decidual neoangiogenesis and spiral artery remodeling in mouse pregnancy and briefly discusses changes in early developmental angiogenesis due to placental growth factor deficiency.
Collapse
|