1
|
Han G, Zhang Y, Li H. The Combination Treatment of Curcumin and Probucol Protects Chondrocytes from TNF- α Induced Inflammation by Enhancing Autophagy and Reducing Apoptosis via the PI3K-Akt-mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5558066. [PMID: 34257809 PMCID: PMC8249126 DOI: 10.1155/2021/5558066] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by cholesterol accumulation in chondrocytes, cartilage degeneration, as well as extracellular matrix (ECM) destruction, and joint dysfunction. Curcumin, a chemical that can reduce cholesterol levels in OA patients, also can inhibit the progression of OA. However, a high concentration of curcumin may also trigger apoptosis in normal chondrocytes. Besides curcumin, probucol that is found can also effectively decrease the cholesterol level in OA patients. Considering that high cholesterol is a risk factor of OA, it is speculated that the combination treatment of curcumin and probucol may be effective in the prevention of OA. To investigate the possible effects of such two chemicals on OA pathophysiology, chondrocyte apoptosis and autophagy behavior under inflammatory cytokine stress were studied, and specifically, the PI3K-Akt-mTOR signaling pathway was studied. Methods. Cell proliferation, colony formation, and EdU assay were performed to identify the cytotoxicity of curcumin and probucol on chondrocytes. Transwell assay was conducted to evaluate chondrocyte migration under TNF-α inflammation stress. Immunofluorescence, JC-1, flow cytometry, RT-PCR, and western blot were used to investigate the signal variations related to autophagy and apoptosis in chondrocytes and cartilage. A histological study was carried out on OA cartilage. Glycosaminoglycan (GAG) release was determined to evaluate the ECM degradation under stress. Results. Compared with a single intervention with curcumin or probucol, a combined treatment of these two chemicals is more effective in terms of protecting chondrocytes from stress injury induced by inflammatory cytokines. The promoted protection may be attributed to the inhibition of apoptosis and the blockage of the autophagy-related PI3K/Akt/mTOR pathway. Such results were also verified in vitro by immunofluorescence staining of OA chondrocytes and in vivo by immunohistochemistry staining of cartilage. Besides, in vivo studies also showed that when applied in combination, curcumin and probucol could block the PI3K-AKT-mTOR signaling pathway; promote COL-II expression; suppress P62, MMP-3, and MMP-13 expression; and inhibit TNF-α-stimulated cartilage degradation. Moreover, the combined medication could help reduce the release of ECM GAGs in OA cartilage and alleviate the severity of OA. Conclusion. A combined treatment of curcumin and probucol could be used to protect chondrocytes from inflammatory cytokine stress via inhibition of the autophagy-related PI3K/Akt/mTOR pathway both in vitro and in vivo, which might be of potential pharmaceutical value for OA prevention and therapy.
Collapse
Affiliation(s)
- Guangtao Han
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
2
|
A Timing Effect of 17-β Estradiol on Atherosclerotic Lesion Development in Female ApoE -/- Mice. Int J Mol Sci 2020; 21:ijms21134710. [PMID: 32630298 PMCID: PMC7369926 DOI: 10.3390/ijms21134710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
Differences in size or composition of existing plaques at the initiation of estrogen (E2) therapy may underpin evidence of increased risk of atherosclerosis-associated clinical sequelae. We investigated whether E2 had divergent effects on actively-growing versus established-advanced atherosclerotic lesions. Eight weeks of subcutaneous bi-weekly injections of 3 µg/g 17β-estradiol (n = 18) or vehicle control (n = 22) were administered to female Apolipoprotein null-mice aged 25- or 45 weeks old. Histological assessment of lesion size within the brachiocephalic artery was conducted. Lesion composition was also assessed with acellular, calcification and fibrosis areas measured and other cellular features (intimal thickening, foam cells, lipid pools and cholesterol) scored (0–3) for severity. The comparison showed increased lesion size and calcified area with advancing age but no effect of E2. However, subtle changes in composition were observed following E2. Within the younger group, E2 increased intima thickening and acceleration of calcification. In the older group, E2 increased the thickness of the lesion cap. Therefore, this study shows different effects of E2 depending on the underlying stage of lesion development at the time of initiation of treatment. These divergent changes help explain the controversy of the adverse effects of E2 treatment in cardiovascular disease.
Collapse
|
3
|
Suzuki H, Kume A, Herbas MS. Potential of Vitamin E Deficiency, Induced by Inhibition of α-Tocopherol Efflux, in Murine Malaria Infection. Int J Mol Sci 2018; 20:ijms20010064. [PMID: 30586912 PMCID: PMC6337606 DOI: 10.3390/ijms20010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023] Open
Abstract
Although epidemiological and experimental studies have suggested beneficial effects of vitamin E deficiency on malaria infection, it has not been clinically applicable for the treatment of malaria owing to the significant content of vitamin E in our daily food. However, since α-tocopherol transfer protein (α-TTP) has been shown to be a determinant of vitamin E level in circulation, manipulation of α-tocopherol levels by α-TTP inhibition was considered as a potential therapeutic strategy for malaria. Knockout studies in mice indicated that inhibition of α-TTP confers resistance against malaria infections in murines, accompanied by oxidative stress-induced DNA damage in the parasite, arising from vitamin E deficiency. Combination therapy with chloroquine and α-TTP inhibition significantly improved the survival rates in murines with malaria. Thus, clinical application of α-tocopherol deficiency could be possible, provided that α-tocopherol concentration in circulation is reduced. Probucol, a recently found drug, induced α-tocopherol deficiency in circulation and was effective against murine malaria. Currently, treatment of malaria relies on the artemisinin-based combination therapy (ACT); however, when mice infected with malarial parasites were treated with probucol and dihydroartemisinin, the beneficial effect of ACT was pronounced. Protective effects of vitamin E deficiency might be extended to manage other parasites in future.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro 080-8555, Japan.
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.
| | - Aiko Kume
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro 080-8555, Japan.
| | - Maria Shirely Herbas
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro 080-8555, Japan.
| |
Collapse
|
4
|
Zhang M, Hou Y, Shen Y, Guo X, Shang D, Zhang D. Probucol reverses homocysteine induced inflammatory monocytes differentiation and oxidative stress. Eur J Pharmacol 2018; 818:67-73. [PMID: 29055785 DOI: 10.1016/j.ejphar.2017.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
Reactive oxygen species have been demonstrated to involve in homocysteine-induced Ly-6Chi monocytes differentiation. Probucol is an anti-oxidant agent that has been used to treat atherosclerosis. We sought to evaluate the effect and potential mechanism of probucol on homocysteine-induced inflammatory monocytes differentiation. The primary mouse splenocytes suspensions were initiated by recombinant interferon-γ and cultured with L-homocysteine in the presence or absence of probucol. The cells were co-incubated with monoclonal antibodies to CD11b-PE and Ly-6C FITC. Flow cytometry analysis was performed on BD FACS caliber. Data were analyzed using the FlowJo software. Mononuclear cells were gated according to the lower granular and larger size, distinguished with granulocytes and lymphocytes. Monocytes were defined as CD11b+ mononuclear cells and further divided into three groups based on their Ly-6C expressions, Ly-6Chi, Ly-6Cmid and Ly-6Clow subsets. The productions of reactive oxygen species in monocytes subsets were detected by 2',7'-dichlorofluorescein-diacetate (DCFH-DA) containing monocytes were marked as DCFH-DA+ cells in both Ly-6C+ and Ly-6C- subsets. The activity of nicotinamide adenine dinucleotide phosphate oxidase in THP-1 cells was measured by assay kit on enzyme-labelling instrument. L-homocysteine promoted inflammatory monocytes differentiation and its reactive oxygen species productions in dose-dependent manner. Probucol dose-dependently suppressed the differentiation and reactive oxygen species productions of inflammatory monocytes induced by L-homocysteine. Furthermore, the increased NADPH oxidase activity induced by L-homocysteine was significantly reversed by probucol in THP-1 cells. Probucol prevented L-homocysteine-induced inflammatory monocytes differentiation and its reactive oxygen species generation probably through inhibiting NADPH oxidase activity.
Collapse
Affiliation(s)
- Minli Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, PR China.
| | - Yuchen Hou
- Department of Cardiology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, PR China.
| | - Yali Shen
- Department of Cardiology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, PR China.
| | - Xu Guo
- Department of Cardiology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, PR China.
| | - Deshu Shang
- Department of Cell Biology, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City 110122, Liaoning Province, PR China.
| | - Daqing Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, PR China.
| |
Collapse
|
5
|
Daugherty A, Tall AR, Daemen MJ, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Circ Res 2017; 121:e53-e79. [DOI: 10.1161/res.0000000000000169] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
6
|
Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2017; 37:e131-e157. [PMID: 28729366 DOI: 10.1161/atv.0000000000000062] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
7
|
Di Marco E, Gray S, Chew P, Kennedy K, Cooper M, Schmidt H, Jandeleit-Dahm K. Differential effects of NOX4 and NOX1 on immune cell-mediated inflammation in the aortic sinus of diabetic ApoE−/− mice. Clin Sci (Lond) 2016; 130:1363-1374. [DOI: 10.1042/cs20160249] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Oxidative stress and inflammation are central mediators of atherosclerosis particularly in the context of diabetes. The potential interactions between the major producers of vascular reactive oxygen species (ROS), NADPH oxidase (NOX) enzymes and immune-inflammatory processes remain to be fully elucidated. In the present study we investigated the roles of the NADPH oxidase subunit isoforms, NOX4 and NOX1, in immune cell activation and recruitment to the aortic sinus atherosclerotic plaque in diabetic ApoE−/− mice. Plaque area analysis showed that NOX4- and NOX1-derived ROS contribute to atherosclerosis in the aortic sinus following 10 weeks of diabetes. Immunohistochemical staining of the plaques revealed that NOX4-derived ROS regulate T-cell recruitment. In addition, NOX4-deficient mice showed a reduction in activated CD4+ T-cells in the draining lymph nodes of the aortic sinus coupled with reduced pro-inflammatory gene expression in the aortic sinus. Conversely, NOX1-derived ROS appeared to play a more important role in macrophage accumulation. These findings demonstrate distinct roles for NOX4 and NOX1 in immune-inflammatory responses that drive atherosclerosis in the aortic sinus of diabetic mice.
Collapse
Affiliation(s)
- Elyse Di Marco
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
- Department of Medicine, Monash University, Melbourne, Australia
| | - Stephen P. Gray
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
- Department of Medicine, Monash University, Melbourne, Australia
| | - Phyllis Chew
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Kit Kennedy
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Mark E. Cooper
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Harald H.H.W. Schmidt
- Department of Pharmacology & Cardiovascular Research Institute Maastricht (CARIM), Faculty of Medicine, Health & Life Science, Maastricht University, The Netherlands
| | - Karin A.M. Jandeleit-Dahm
- Diabetic Complications Division, Baker IDI Heart & Diabetes Institute, Melbourne, Australia
- Department of Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Probucol Protects Against Atherosclerosis Through Lipid-lowering and Suppressing Immune Maturation of CD11c+ Dendritic Cells in STZ-induced Diabetic LDLR-/- Mice. J Cardiovasc Pharmacol 2016; 65:620-7. [PMID: 25714599 PMCID: PMC4461394 DOI: 10.1097/fjc.0000000000000234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Probucol, an agent characterized by lipid-lowering and antioxidant property, retards atherosclerosis effectively. To test the hypothesis that probucol might act its antiatherosclerotic role by suppressing immune maturation of dendritic cells (DCs), 7-week-old LDLR−/− mice were rendered diabetic with streptozotocin (STZ) and then fed either a high-fat diet only or added with 0.5% (wt/wt) probucol for 4 months, and human monocyte-derived dendritic cells were preincubated with or without probucol and stimulated by oxidized low-density lipoprotein. In STZ-induced diabetic LDLR−/− mice, probucol treatment significantly lowered plasma total cholesterol and high-density lipoprotein-cholesterol levels; regressed aortic atherosclerotic lesions; reduced splenic CD40, CD80, CD86, MHC-II expression, and plasma IL-12p70 production; and decreased the expression of CD11c+ DCs within atherosclerotic lesions. In vitro, oxidized low-density lipoprotein promoted human monocyte–derived dendritic cells maturation; stimulated CD40, CD86, CD1a, HLA-DR expression; increased tumor necrosis factor-α production; and decreased IL-4 production. However, these effects were obviously inhibited by probucol pretreatment. In conclusion, our study indicated that probucol effectively retarded atherosclerosis at least partly through lipid-lowering and inhibiting immune maturation of CD11c+ DCs in STZ-induced diabetic LDLR−/− mice.
Collapse
|
9
|
Pallebage-Gamarallage M, Takechi R, Lam V, Elahy M, Mamo J. Pharmacological modulation of dietary lipid-induced cerebral capillary dysfunction: Considerations for reducing risk for Alzheimer's disease. Crit Rev Clin Lab Sci 2015; 53:166-83. [PMID: 26678521 DOI: 10.3109/10408363.2015.1115820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing body of evidence suggests that cerebrovascular dysfunction and microvessel disease precede the evolution of hallmark pathological features that characterise Alzheimer's disease (AD), consistent with a causal association for onset or progression. Recent studies, principally in genetically unmanipulated animal models, suggest that chronic ingestion of diets enriched in saturated fats and cholesterol may compromise blood-brain barrier (BBB) integrity resulting in inappropriate blood-to-brain extravasation of plasma proteins, including lipid macromolecules that may be enriched in amyloid-β (Aβ). Brain parenchymal retention of blood proteins and lipoprotein bound Aβ is associated with heightened neurovascular inflammation, altered redox homeostasis and nitric oxide (NO) metabolism. Therefore, it is a reasonable proposition that lipid-lowering agents may positively modulate BBB integrity and by extension attenuate risk or progression of AD. In addition to their robust lipid lowering properties, reported beneficial effects of lipid-lowering agents were attributed to their pleiotropic properties via modulation of inflammation, oxidative stress, NO and Aβ metabolism. The review is a contemporary consideration of a complex body of literature intended to synthesise focussed consideration of mechanisms central to regulation of BBB function and integrity. Emphasis is given to dietary fat driven significant epidemiological evidence consistent with heightened risk amongst populations consuming greater amounts of saturated fats and cholesterol. In addition, potential neurovascular benefits associated with the use of hypolipidemic statins, probucol and fenofibrate are also presented in the context of lipid-lowering and pleiotropic properties.
Collapse
Affiliation(s)
- Menuka Pallebage-Gamarallage
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - Ryusuke Takechi
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - Virginie Lam
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - Mina Elahy
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - John Mamo
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| |
Collapse
|
10
|
Wang J, Sjöberg S, Tang TT, Oörni K, Wu W, Liu C, Secco B, Tia V, Sukhova GK, Fernandes C, Lesner A, Kovanen PT, Libby P, Cheng X, Shi GP. Cathepsin G activity lowers plasma LDL and reduces atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2174-83. [PMID: 25092171 DOI: 10.1016/j.bbadis.2014.07.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/08/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
Cathepsin G (CatG), a serine protease present in mast cells and neutrophils, can produce angiotensin-II (Ang-II) and degrade elastin. Here we demonstrate increased CatG expression in smooth muscle cells (SMCs), endothelial cells (ECs), macrophages, and T cells from human atherosclerotic lesions. In low-density lipoprotein (LDL) receptor-deficient (Ldlr(-/-)) mice, the absence of CatG reduces arterial wall elastin degradation and attenuates early atherosclerosis when mice consume a Western diet for 3months. When mice consume this diet for 6months, however, CatG deficiency exacerbates atherosclerosis in aortic arch without affecting lesion inflammatory cell content or extracellular matrix accumulation, but raises plasma total cholesterol and LDL levels without affecting high-density lipoprotein (HDL) or triglyceride levels. Patients with atherosclerosis also have significantly reduced plasma CatG levels that correlate inversely with total cholesterol (r=-0.535, P<0.0001) and LDL cholesterol (r=-0.559, P<0.0001), but not with HDL cholesterol (P=0.901) or triglycerides (P=0.186). Such inverse correlations with total cholesterol (r=-0.504, P<0.0001) and LDL cholesterol (r=-0.502, P<0.0001) remain significant after adjusting for lipid lowering treatments among this patient population. Human CatG degrades purified human LDL, but not HDL. This study suggests that CatG promotes early atherogenesis through its elastinolytic activity, but suppresses late progression of atherosclerosis by degrading LDL without affecting HDL or triglycerides.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sara Sjöberg
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ting-Ting Tang
- Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China
| | - Katariina Oörni
- Wihuri Research Institute, Biomedicum Helsinki 1, 00290 Helsinki, Finland
| | - Wenxue Wu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Conglin Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Blandine Secco
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Viviane Tia
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Cleverson Fernandes
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Adam Lesner
- Department of Chemistry, University of Gdansk, Wita Stwosza 63, 80-952 Gdansk, Poland
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki 1, 00290 Helsinki, Finland
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xiang Cheng
- Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Tanous D, Hime N, Stocker R. Anti-atherosclerotic and anti-diabetic properties of probucol and related compounds. Redox Rep 2013; 13:48-59. [DOI: 10.1179/135100008x259196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Wang J, Sjöberg S, Tia V, Secco B, Chen H, Yang M, Sukhova GK, Shi GP. Pharmaceutical stabilization of mast cells attenuates experimental atherogenesis in low-density lipoprotein receptor-deficient mice. Atherosclerosis 2013; 229:304-9. [PMID: 23880180 DOI: 10.1016/j.atherosclerosis.2013.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/19/2013] [Accepted: 05/22/2013] [Indexed: 01/25/2023]
Abstract
Mast cells (MCs) contribute to atherogenesis by releasing pro-inflammatory mediators to activate vascular cells and other inflammatory cells. This study examined whether MC activation or stabilization affects diet-induced atherosclerosis in low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice. When Ldlr(-/-) mice consumed an atherogenic diet for 3 or 6 months, MC activation with compound 48/80 (C48/80) increased aortic arch intima and total lesion areas, and plasma total cholesterol, LDL, and triglyceride levels, whereas MC stabilization with cromolyn reduced these parameters. There were significant differences in arch intima and total lesion areas, and plasma total cholesterol, LDL, and triglyceride levels between C48/80-treated and cromolyn-treated mice. To examine a therapeutic application of cromolyn in atherosclerosis, we fed Ldlr(-/-) mice an atherogenic diet for 3 months followed by giving mice cromolyn for additional 3 months. Cromolyn did not affect aortic arch intima area, but significantly reduced lipid deposition in the thoracic-abdominal aortas. In aortic arches, however, cromolyn treatment significantly reduced lesion contents of Mac-3(+) macrophages, CD4(+) T cells, activated MCs, and lesion cell proliferation. While plasma total cholesterol and LDL levels increased and high-density lipoprotein (HDL) levels decreased from 3 months to 6 months of an atherogenic diet, cromolyn treatment decreased significantly plasma total cholesterol, LDL, and triglyceride levels and increased HDL levels above those of 3-month time point. These observations demonstrate that MC stabilization reduces lesion inflammation, ameliorates plasma lipid profiles, and may serve as a potential therapy for this cardiovascular disease.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
SHENG LIN, JIAO BO, SHAO LIJUAN, BI SHAOJIE, CHENG CHAO, ZHANG JINGBO, JIANG YIHAO. Probucol inhibits hydrogen peroxide to induce apoptosis of vascular smooth muscle cells. Mol Med Rep 2013; 7:1185-90. [DOI: 10.3892/mmr.2013.1299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/31/2012] [Indexed: 11/06/2022] Open
|
14
|
Lönn ME, Dennis JM, Stocker R. Actions of "antioxidants" in the protection against atherosclerosis. Free Radic Biol Med 2012; 53:863-84. [PMID: 22664312 DOI: 10.1016/j.freeradbiomed.2012.05.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/05/2012] [Accepted: 05/16/2012] [Indexed: 02/07/2023]
Abstract
This review addresses the role of oxidative processes in atherosclerosis and its resulting cardiovascular disease by focusing on the outcome of antioxidant interventions. Although there is unambiguous evidence for the presence of heightened oxidative stress and resulting damage in atherosclerosis, it remains to be established whether this represents a cause or a consequence of the disease. This critical question is complicated further by the increasing realization that oxidative processes, including those related to signaling, are part of normal cell function. Overall, the results from animal interventions suggest that antioxidants provide benefit neither generally nor consistently. Where benefit is observed, it appears to be achieved at least in part via modulation of biological processes such as increase in nitric oxide bioavailability and induction of protective enzymes such as heme oxygenase-1, rather than via inhibition of oxidative processes and lipid oxidation in the arterial wall. Exceptions to this may be situations of multiple/excessive stress, the relevance of which for humans is not clear. This interpretation is consistent with the overall disappointing outcome of antioxidant interventions in humans and can be rationalized by the spatial compartmentalization of cellular oxidative signaling and/or damage, complex roles of oxidant-producing enzymes, and the multifactorial nature of atherosclerosis.
Collapse
Affiliation(s)
- Maria E Lönn
- Centre for Vascular Research, School of Medical Sciences (Pathology), and Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
15
|
Jiagang D, Wang H, Liu Y, Li C, Hao E, Du Z, Bao C, Lv J, Wang Y. Anti-Atherosclerotic Effects Mediated by the Combination of Probucol and Amygdalin in Apolipoprotein E-Knockout Mice Fed with a High Fat Diet. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/javaa.2012.20.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Hunt NH. Redox pioneer: professor Roland Stocker. Antioxid Redox Signal 2011; 15:3101-5. [PMID: 21609251 DOI: 10.1089/ars.2010.3842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dr. Roland Stocker (Ph.D. 1985) is recognized here as a Redox Pioneer, because he has published one article on antioxidant/redox biology as first author that has been cited over 1000 times and has published another 32 articles, each cited over 100 times. Dr. Stocker received his undergraduate education at the Federal Institute of Technology Zürich, Switzerland (1975-1981), followed by postgraduate training at the Australian National University Canberra, Australia (1982-1985) and postdoctoral training at the University of California, Berkeley (1986-1987), and the University of Berne, Switzerland (1987-1988). Dr. Stocker's top scientific contributions are in the following areas: (i) molecular action and interaction of nonproteinaceous antioxidants, particularly bilirubin, α-tocopherol, and ubiquinol-10; (ii) lipoprotein lipid oxidation and its inhibition, with a particular focus on how α-tocopherol affects these processes; (iii) the role of arterial lipoprotein lipid oxidation in atherosclerosis and related diseases; (iv) modes of antiatherosclerotic action of probucol and the involvement of heme oxygenase-1 in vascular protection; and (v) the regulation of indoleamine 2,3-dioxygenase and its contribution to vascular tone and blood pressure in inflammatory diseases.
Collapse
Affiliation(s)
- Nicholas H Hunt
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
17
|
Cheng TM, Mao SJT, Lai ST, Chang CC, Yang MC, Chen NC, Chou SC, Pan JP. Haemoglobin-induced oxidative stress is associated with both endogenous peroxidase activity and H2O2 generation from polyunsaturated fatty acids. Free Radic Res 2010; 45:303-16. [PMID: 21034361 DOI: 10.3109/10715762.2010.532492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Patients with increased haemolytic haemoglobin (Hb) have 10-20-times greater incidence of cardiovascular mortality. The objective of this study was to evaluate the role of Hb peroxidase activity in LDL oxidation. The role of Hb in lipid peroxidation, H(2)O(2) generation and intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was assessed using NaN(3), a peroxidase inhibitor, catalase, a H(2)O(2) decomposing enzyme and human umbilical vein endothelial cells (HUVECs), respectively. Hb induced H(2)O(2) production by reacting with LDL, linoleate and cell membrane lipid extracts. Hb-induced LDL oxidation was inhibited by NaN(3) and catalase. Furthermore, Hb stimulated ICAM-1 and VCAM-1 expression, which was inhibited by the antioxidant, probucol. Thus, the present study suggests that the peroxidase activity of Hb produces atherogenic, oxidized LDL and oxidized polyunsaturated fatty acids (PUFAs) in the cell membrane and reactive oxygen species (ROS) formation mediated Hb-induced ICAM-1 and VCAM-1 expression.
Collapse
Affiliation(s)
- Tsai-Mu Cheng
- College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Loke WM, Proudfoot JM, Hodgson JM, McKinley AJ, Hime N, Magat M, Stocker R, Croft KD. Specific Dietary Polyphenols Attenuate Atherosclerosis in Apolipoprotein E–Knockout Mice by Alleviating Inflammation and Endothelial Dysfunction. Arterioscler Thromb Vasc Biol 2010; 30:749-57. [DOI: 10.1161/atvbaha.109.199687] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objective—
Animal and clinical studies have suggested that polyphenols in fruits, red wine, and tea may delay the development of atherosclerosis through their antioxidant and anti-inflammatory properties. We investigated whether individual dietary polyphenols representing different polyphenolic classes, namely quercetin (flavonol), (−)-epicatechin (flavan-3-ol), theaflavin (dimeric catechin), sesamin (lignan), or chlorogenic acid (phenolic acid), reduce atherosclerotic lesion formation in the apolipoprotein E (ApoE)
−/−
gene–knockout mouse.
Methods and Results—
Quercetin and theaflavin (64-mg/kg body mass daily) significantly attenuated atherosclerotic lesion size in the aortic sinus and thoracic aorta (
P
<0.05 versus ApoE
−/−
control mice). Quercetin significantly reduced aortic F
2
-isoprostane, vascular superoxide, vascular leukotriene B
4
, and plasma-sP-selectin concentrations; and augmented vascular endothelial NO synthase activity, heme oxygenase-1 protein, and urinary nitrate excretion (
P
<0.05 versus control ApoE
−/−
mice). Theaflavin showed similar, although less extensive, significant effects. Although (−)-epicatechin significantly reduced F
2
-isoprostane, superoxide, and endothelin-1 production (
P
<0.05 versus control ApoE
−/−
mice), it had no significant effect on lesion size. Sesamin and chlorogenic acid treatments exerted no significant effects. Quercetin, but not (−)-epicatechin, significantly increased the expression of heme oxygenase-1 protein in lesions versus ApoE
−/−
controls.
Conclusion—
Specific dietary polyphenols, in particular quercetin and theaflavin, may attenuate atherosclerosis in ApoE
−/−
gene–knockout mice by alleviating inflammation, improving NO bioavailability, and inducing heme oxygenase-1. These data suggest that the cardiovascular protection associated with diets rich in fruits, vegetables, and some beverages may in part be the result of flavonoids, such as quercetin.
Collapse
Affiliation(s)
- Wai Mun Loke
- From the School of Medicine and Pharmacology (W.M.L., J.M.P., J.M.H., and K.D.C.), University of Western Australia, Perth; School of Biomedical, Biomolecular, and Chemical Sciences (W.M.L. and A.J.M.), University of Western Australia, Perth; and the Department of Pathology (N.H., M.M., and R.S.), Centre for Vascular Research, Sydney University, New South Wales, Australia
| | - Julie M. Proudfoot
- From the School of Medicine and Pharmacology (W.M.L., J.M.P., J.M.H., and K.D.C.), University of Western Australia, Perth; School of Biomedical, Biomolecular, and Chemical Sciences (W.M.L. and A.J.M.), University of Western Australia, Perth; and the Department of Pathology (N.H., M.M., and R.S.), Centre for Vascular Research, Sydney University, New South Wales, Australia
| | - Jonathan M. Hodgson
- From the School of Medicine and Pharmacology (W.M.L., J.M.P., J.M.H., and K.D.C.), University of Western Australia, Perth; School of Biomedical, Biomolecular, and Chemical Sciences (W.M.L. and A.J.M.), University of Western Australia, Perth; and the Department of Pathology (N.H., M.M., and R.S.), Centre for Vascular Research, Sydney University, New South Wales, Australia
| | - Allan J. McKinley
- From the School of Medicine and Pharmacology (W.M.L., J.M.P., J.M.H., and K.D.C.), University of Western Australia, Perth; School of Biomedical, Biomolecular, and Chemical Sciences (W.M.L. and A.J.M.), University of Western Australia, Perth; and the Department of Pathology (N.H., M.M., and R.S.), Centre for Vascular Research, Sydney University, New South Wales, Australia
| | - Neil Hime
- From the School of Medicine and Pharmacology (W.M.L., J.M.P., J.M.H., and K.D.C.), University of Western Australia, Perth; School of Biomedical, Biomolecular, and Chemical Sciences (W.M.L. and A.J.M.), University of Western Australia, Perth; and the Department of Pathology (N.H., M.M., and R.S.), Centre for Vascular Research, Sydney University, New South Wales, Australia
| | - Maria Magat
- From the School of Medicine and Pharmacology (W.M.L., J.M.P., J.M.H., and K.D.C.), University of Western Australia, Perth; School of Biomedical, Biomolecular, and Chemical Sciences (W.M.L. and A.J.M.), University of Western Australia, Perth; and the Department of Pathology (N.H., M.M., and R.S.), Centre for Vascular Research, Sydney University, New South Wales, Australia
| | - Roland Stocker
- From the School of Medicine and Pharmacology (W.M.L., J.M.P., J.M.H., and K.D.C.), University of Western Australia, Perth; School of Biomedical, Biomolecular, and Chemical Sciences (W.M.L. and A.J.M.), University of Western Australia, Perth; and the Department of Pathology (N.H., M.M., and R.S.), Centre for Vascular Research, Sydney University, New South Wales, Australia
| | - Kevin D. Croft
- From the School of Medicine and Pharmacology (W.M.L., J.M.P., J.M.H., and K.D.C.), University of Western Australia, Perth; School of Biomedical, Biomolecular, and Chemical Sciences (W.M.L. and A.J.M.), University of Western Australia, Perth; and the Department of Pathology (N.H., M.M., and R.S.), Centre for Vascular Research, Sydney University, New South Wales, Australia
| |
Collapse
|
19
|
Stocker R. Molecular mechanisms underlying the antiatherosclerotic and antidiabetic effects of probucol, succinobucol, and other probucol analogues. Curr Opin Lipidol 2009; 20:227-35. [PMID: 19373083 DOI: 10.1097/mol.0b013e32832aee68] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW New therapies for the management of cardiovascular disease remain highly desirable, yet the recently developed agents, such as the cholesterylester transfer protein inhibitor torcetrapib, the antidiabetic agent rosiglitazone, and anti-inflammatory inhibitors of cyclooxygenase-2, have failed. In this review, the more recent developments in the molecular mechanisms underlying the beneficial activities of probucol and related compounds are described. RECENT FINDINGS In-vivo and in-vitro studies have revealed that several of the protective activities of probucol can be explained by the ability of this drug to induce the enzyme heme oxygenase-1. It is now apparent that the sulfur atoms, rather than the phenol moieties of probucol, are required for its antiatherogenic and antirestenotic activities. Compounds related to probucol that have improved efficacy without the adverse effects offer promise as novel therapies of cardiovascular disease. Recent results suggest these compounds may also be used for the prevention of type-2 diabetes, a disease that is increasing in prevalence and importance worldwide. SUMMARY The development of derivatives of probucol targeting anti-inflammatory and antioxidant processes, perhaps via induction of heme oxygenase-1, may add to the armamentarium of current agents used in treatment of atherosclerotic disease and diabetes.
Collapse
Affiliation(s)
- Roland Stocker
- Centre for Vascular Research, School of Medical Sciences (Pathology) and Bosch Institute, The University of Sydney, Sydney, Australia.
| |
Collapse
|
20
|
ATP-binding cassette transporter A1 is involved in hepatic alpha-tocopherol secretion. J Nutr Biochem 2009; 21:451-6. [PMID: 19427182 DOI: 10.1016/j.jnutbio.2009.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/15/2009] [Accepted: 02/03/2009] [Indexed: 01/23/2023]
Abstract
Vitamin E (alpha-tocopherol) is an essential fat-soluble nutrient with antioxidant properties. alpha-Tocopherol transfer protein (alpha-TTP), the product of the gene responsible for familial isolated vitamin E deficiency, plays an important role in maintaining the plasma alpha-tocopherol level by mediating the secretion of alpha-tocopherol by the liver. However, the mechanisms underlying hepatic alpha-tocopherol secretion are not fully understood. This study was undertaken to elucidate the mechanism of alpha-tocopherol re-efflux from hepatocytes, the cells that have the most important role in regulating plasma-alpha-tocopherol concentrations. From in vitro experiments using [(3)H]alpha-tocopheryl acetate and McARH7777 cells that stably express alpha-tocopherol transfer protein (alpha-TTP), the following results were obtained. First, addition of apolipoprotein A-I (apoA-I), a direct acceptor of the ATP-binding cassette transporter A1 (ABCA1)-secreted lipids, increased alpha-tocopherol secretion in a dose-dependent manner. Second, probucol, an antiatherogenic compound reported to be an inactivator of ABCA1 reduced hepatic alpha-tocopherol secretion. Third, ABCA1-RNAi suppressed hepatic alpha-tocopherol secretion. In a mouse in vivo experiment, addition of 1% probucol to the diet decreased plasma alpha-tocopherol concentrations. These results strongly suggest that ABCA1 is substantially involved in hepatic alpha-tocopherol secretion.
Collapse
|
21
|
Goodman CA, Horvath D, Stathis C, Mori T, Croft K, Murphy RM, Hayes A. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. J Appl Physiol (1985) 2009; 107:144-54. [PMID: 19423840 DOI: 10.1152/japplphysiol.00040.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies report that depletion and repletion of muscle taurine (Tau) to endogenous levels affects skeletal muscle contractility in vitro. In this study, muscle Tau content was raised above endogenous levels by supplementing male Sprague-Dawley rats with 2.5% (wt/vol) Tau in drinking water for 2 wk, after which extensor digitorum longus (EDL) muscles were examined for in vitro contractile properties, fatigue resistance, and recovery from fatigue after two different high-frequency stimulation bouts. Tau supplementation increased muscle Tau content by approximately 40% and isometric twitch force by 19%, shifted the force-frequency relationship upward and to the left, increased specific force by 4.2%, and increased muscle calsequestrin protein content by 49%. Force at the end of a 10-s (100 Hz) continuous tetanic stimulation was 6% greater than controls, while force at the end of the 3-min intermittent high-frequency stimulation bout was significantly higher than controls, with a 12% greater area under the force curve. For 1 h after the 10-s continuous stimulation, tetanic force in Tau-supplemented muscles remained relatively stable while control muscle force gradually deteriorated. After the 3-min intermittent bout, tetanic force continued to slowly recover over the next 1 h, while control muscle force again began to decline. Tau supplementation attenuated F(2)-isoprostane production (a sensitive indicator of reactive oxygen species-induced lipid peroxidation) during the 3-min intermittent stimulation bout. Finally, Tau transporter protein expression was not altered by the Tau supplementation. Our results demonstrate that raising Tau content above endogenous levels increases twitch and subtetanic and specific force in rat fast-twitch skeletal muscle. Also, we demonstrate that raising Tau protects muscle function during high-frequency in vitro stimulation and the ensuing recovery period and helps reduce oxidative stress during prolonged stimulation.
Collapse
Affiliation(s)
- Craig A Goodman
- School of Human Movement, Recreation and Performance, Victoria University, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Van Antwerpen P, Néve J, Moreau P, Boudjeltia KZ, Vanhaeverbeek M, Prévost M, Babar S, Legssyer I, Moguilevsky N, Ducobu J. Probucol Does not Inhibit Myeloperoxidase-Dependent Low-Density Lipoprotein Oxidation as a Potent Protective Effect in Atherosclerosis. J Cardiovasc Pharmacol 2007; 50:350-1. [PMID: 17878766 DOI: 10.1097/fjc.0b013e31809501dc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Wu BJ, Di Girolamo N, Beck K, Hanratty CG, Choy K, Hou JY, Ward MR, Stocker R. Probucol [4,4′-[(1-Methylethylidene)bis(thio)]bis-[2,6-bis(1,1-dimethylethyl)phenol]] Inhibits Compensatory Remodeling and Promotes Lumen Loss Associated with Atherosclerosis in Apolipoprotein E-Deficient Mice. J Pharmacol Exp Ther 2007; 321:477-84. [PMID: 17293560 DOI: 10.1124/jpet.106.118612] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Probucol [4,4'-[(1-methylethylidene)bis(thio)]bis-[2,6-bis(1,1-dimethylethyl)phenol]] was withdrawn from the United States market because it failed to inhibit atherosclerosis in human femoral arteries, yet the drug was shown subsequently to inhibit atherosclerosis in human carotid arteries, and probucol monosuccinate ester is presently being tested in a phase III clinical trial as an antiatherosclerotic compound based on its anti-inflammatory properties. Inflammatory macrophages are implicated in arterial remodeling associated with atherosclerosis, and probucol inhibits experimental atherosclerosis in part by decreasing macrophages in lesions. However, the impact of probucol on remodeling is unknown, although such knowledge could help explain why the drug's benefit on human atherosclerosis is controversial. We therefore examined the effect of probucol on remodeling of the common carotid artery in apolipoprotein E-deficient mice. We observed that during de novo atherosclerosis, plaque growth was fully compensated by expansive remodeling, such that lumen area was unaffected. Early lesions were composed almost entirely of macrophages, and their contribution to lesion area progressively decreased thereafter. Probucol significantly decreased plaque area, expression of vascular cell adhesion molecule-1, and proliferation of intimal cells, resulting in delayed macrophage accumulation in the vessel. Probucol also decreased the production and activity of matrix metalloproteinases-2 and -9, independent of the plasmin protease system, and this was associated with an inhibition of expansive remodeling, resulting in lumen loss. These studies show that probucol attenuates compensatory remodeling associated with de novo atherosclerosis, probably via its anti-inflammatory properties. Our findings suggest that lumen volume is not a suitable surrogate to assess the antiatherosclerotic activity of probucol and related drugs.
Collapse
Affiliation(s)
- Ben J Wu
- Centre for Vascular Research and Inflammatory Diseases Research Unit, School of Medical Sciences, University of New South Wales, and Royal North Shore Hospital, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Glaros EN, Kim WS, Wu BJ, Suarna C, Quinn CM, Rye KA, Stocker R, Jessup W, Garner B. Inhibition of atherosclerosis by the serine palmitoyl transferase inhibitor myriocin is associated with reduced plasma glycosphingolipid concentration. Biochem Pharmacol 2006; 73:1340-6. [PMID: 17239824 DOI: 10.1016/j.bcp.2006.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/04/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
Glycosphingolipids (GSL) have been implicated as potential atherogenic lipids. Inhibition of hepatic serine palmitoyl transferase (SPT) reduces plasma sphingomyelin (SM) levels in the absence of changes in cholesterol or triglyceride (TG) concentration and this leads to a reduction of atherosclerosis in apolipoprotein-E gene knockout (apoE(-/-)) mice. The possibility that the reduced atherosclerosis resulting from SPT inhibition is associated with decreases in plasma GSL concentration has not been examined and was the primary aim of this investigation. We show that intraperitoneal delivery of the SPT inhibitor myriocin for 9 weeks inhibits atherosclerosis in apoE(-/-) mice fed a high fat diet. Lesion inhibition was most pronounced at the aortic arch and distal sites of the thoracic and abdominal aorta. There was also a trend towards a reduction in lesion area at the aortic root. Myriocin treatment resulted in significant reductions in both plasma SM and GSL concentration of 42% and 25%, as assessed by enzymatic and HPLC methods, respectively. Moreover, SM and GSL concentrations were significantly correlated, indicating that SPT inhibition suppresses the synthesis of both these sphingolipids concomitantly. The inhibition of atherosclerosis induced by myriocin was not associated with changes in plasma cholesterol or TG concentrations or lipoprotein profiles as determined by FPLC. These data indicate that therapeutic reduction of plasma SM and/or GSL concentrations may offer a novel treatment for atherosclerosis.
Collapse
Affiliation(s)
- Elias N Glaros
- Prince of Wales Medical Research Institute, Randwick, NSW 2031, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Suarna C, Wu BJ, Choy K, Mori T, Croft K, Cynshi O, Stocker R. Protective effect of vitamin E supplements on experimental atherosclerosis is modest and depends on preexisting vitamin E deficiency. Free Radic Biol Med 2006; 41:722-30. [PMID: 16895792 DOI: 10.1016/j.freeradbiomed.2006.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/05/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
Vitamin E has failed to protect humans from cardiovascular disease outcome, yet its role in experimental atherosclerosis remains less clear. A previous study (Proc. Natl. Acad. Sci. USA 97:13830-13834; 2000) showed that vitamin E deficiency caused by disruption of the alpha-tocopherol transfer protein gene (Ttpa) is associated with a modest increase in atherosclerosis in apolipoprotein E gene deficient (Apoe(-/-)) mice. Here we confirm this finding and report that in Apoe(-/-)Ttpa(-/-) mice dietary alpha-tocopherol (alphaT) supplements restored circulating and aortic levels of alphaT, and decreased atherosclerosis in the aortic root to a level comparable to that seen in Apoe(-/-) mice. However, such dietary supplements did not decrease disease in Apoe(-/-) mice, whereas dietary supplements with a synthetic vitamin E analog (BO-653), either alone or in combination with alphaT, decreased atherosclerosis in Apoe(-/-) and in Apoe(-/-)Ttpa(-/-) mice. Differences in atherosclerosis were not associated with changes in the arterial concentrations of F(2)-isoprostanes and cholesterylester hydro(pero)xides, nor were they reflected in the resistance of plasma lipids to ex vivo oxidation. These results show that vitamin E at best has a modest effect on experimental atherosclerosis in hyperlipidemic mice, and only in situations of severe vitamin E deficiency and independent of lipid oxidation in the vessel wall.
Collapse
Affiliation(s)
- Cacang Suarna
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Wu BJ, Kathir K, Witting PK, Beck K, Choy K, Li C, Croft KD, Mori TA, Tanous D, Adams MR, Lau AK, Stocker R. Antioxidants protect from atherosclerosis by a heme oxygenase-1 pathway that is independent of free radical scavenging. ACTA ACUST UNITED AC 2006; 203:1117-27. [PMID: 16606673 PMCID: PMC2118288 DOI: 10.1084/jem.20052321] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Oxidative stress is implicated in atherogenesis, yet most clinical trials with antioxidants, particularly vitamin E, have failed to protect against atherosclerotic diseases. A striking exception is probucol, which retards atherosclerosis in carotid arteries and restenosis of coronary arteries after angioplasty. Because probucol has in vitro cellular-protective effects independent of inhibiting lipid oxidation, we investigated the mode of action of probucol in vivo. We used three models of vascular disease: apolipoprotein E–deficient mice, a model of atherosclerosis; rabbit aortic balloon injury, a model of restenosis; and carotid injury in obese Zucker rats, a model of type 2 diabetes. Unexpectedly, we observed that the phenol moieties of probucol were insufficient, whereas its sulphur atoms were required for protection. Probucol and its sulphur-containing metabolite, but not a sulphur-free phenolic analogue, protected via cell-specific effects on inhibiting macrophage accumulation, stimulating reendothelialization, and inhibiting vascular smooth muscle cell proliferation. These processes were mediated via induction of heme oxygenase-1 (HO-1), an activity not shared by vitamin E. Our findings identify HO-1 as the molecular target of probucol. They indicate 2-electron rather than radical (1-electron) oxidants as important contributors to atherogenesis, and point to novel lead compounds for therapeutic intervention against atherosclerotic diseases.
Collapse
Affiliation(s)
- Ben J Wu
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, and Department of Haematology, Prince of Wales Hospital, Sydney NSW 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|