1
|
Durumutla HB, Haller A, Noble G, Prabakaran AD, McFarland K, Latimer H, Akinborewa O, Namjou-Khales B, Hui DY, Quattrocelli M. The human glucocorticoid receptor variant rs6190 promotes blood cholesterol and atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625727. [PMID: 39677678 PMCID: PMC11642783 DOI: 10.1101/2024.11.27.625727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Elevated cholesterol poses a significant cardiovascular risk, particularly in older women. The glucocorticoid receptor (GR), a crucial nuclear transcription factor that regulates the metabolism of virtually all major nutrients, harbors a still undefined role in cholesterol regulation. Here, we report that a coding single nucleotide polymorphism (SNP) in the gene encoding the GR, rs6190, associated with increased cholesterol levels in women according to UK Biobank and All Of Us datasets. In SNP-genocopying transgenic mice, we found that the rs6190 SNP enhanced hepatic GR activity to transactivate Pcsk9 and Bhlhe40, negative regulators of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) receptors in liver respectively. Accordingly, in mice the rs6190 SNP was sufficient to elevate circulating cholesterol levels across all lipoprotein fractions and the risk and severity of atherosclerotic lesions on the pro-atherogenic hAPOE*2/*2 background. The SNP effect on atherosclerosis was blocked by in vivo knockdown of Pcsk9 and Bhlhe40 in liver. Remarkably, we found that this mechanism was conserved in human hepatocyte-like cells using CRISPR-engineered, SNP-genocopying human induced pluripotent stem cells (hiPSCs). Taken together, our study leverages a non-rare human variant to uncover a novel GR-dependent mechanism contributing to atherogenic risk, particularly in women.
Collapse
Affiliation(s)
- Hima Bindu Durumutla
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Dept. Pediatrics; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - April Haller
- Deparent of Pathology; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Greta Noble
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Ashok Daniel Prabakaran
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kevin McFarland
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hannah Latimer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Olukunle Akinborewa
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Bahram Namjou-Khales
- Dept. Pediatrics; University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - David Y. Hui
- Dept. Pediatrics; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
2
|
Sun G, Zhao C, Han J, Wu S, Chen Y, Yao J, Li L. Regulatory mechanisms of steroid hormone receptors on gene transcription through chromatin interaction and enhancer reprogramming. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01011-y. [PMID: 39543064 DOI: 10.1007/s13402-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Regulation of steroid hormone receptors (SHRs) on transcriptional reprogramming is crucial for breast cancer progression. SHRs, including estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) play key roles in remodeling the transcriptome of breast cancer cells. However, the molecular mechanisms by which SHRs regulate chromatin landscape in enhancer regions and transcription factor interactions remain largely unknown. In this review, we summarized the regulatory effects of 3 types of SHRs (AR, PR, and GR) on gene transcription through chromatin interactions and enhancer reprogramming. Specifically, AR and PR exhibit bi-directional regulatory effects (both inhibitory and promoting) on ER-mediated gene transcription, while GR modulates the transcription of pro-proliferation genes in ER-positive breast cancer cells. In addition, we have presented four enhancer reprogramming mechanisms (transcription factor cooperation, pioneer factor binding, dynamic assisted loading, and tethering) and the multiple enhancer-promoter contact models. Based on these mechanisms and models, this review proposes that the combination of multiple therapy strategies such as agonists/antagonists of SHRs plus endocrine therapy and the adoption of the latest sequencing technologies are expected to improve the efficacy of ER positive breast cancer treatment.
Collapse
Affiliation(s)
- Ge Sun
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Chunguang Zhao
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Jing Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Shaoya Wu
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yan Chen
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jing Yao
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Li Li
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
3
|
Glucocorticoids increase tissue cell protection against pore-forming toxins from pathogenic bacteria. Commun Biol 2023; 6:186. [PMID: 36807406 PMCID: PMC9938277 DOI: 10.1038/s42003-023-04568-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Many species of pathogenic bacteria damage tissue cells by secreting toxins that form pores in plasma membranes. Here we show that glucocorticoids increase the intrinsic protection of tissue cells against pore-forming toxins. Dexamethasone protected several cell types against the cholesterol-dependent cytolysin, pyolysin, from Trueperella pyogenes. Dexamethasone treatment reduced pyolysin-induced leakage of potassium and lactate dehydrogenase, limited actin cytoskeleton alterations, reduced plasma membrane blebbing, and prevented cytolysis. Hydrocortisone and fluticasone also protected against pyolysin-induced cell damage. Furthermore, dexamethasone protected HeLa and A549 cells against the pore-forming toxins streptolysin O from Streptococcus pyogenes, and alpha-hemolysin from Staphylococcus aureus. Dexamethasone cytoprotection was not associated with changes in cellular cholesterol or activating mitogen-activated protein kinase (MAPK) cell stress responses. However, cytoprotection was dependent on the glucocorticoid receptor and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR). Collectively, our findings imply that glucocorticoids could be exploited to limit tissue damage caused by pathogens secreting pore-forming toxins.
Collapse
|
4
|
He P, Gelissen IC, Ammit AJ. Regulation of ATP binding cassette transporter A1 (ABCA1) expression: cholesterol-dependent and - independent signaling pathways with relevance to inflammatory lung disease. Respir Res 2020; 21:250. [PMID: 32977800 PMCID: PMC7519545 DOI: 10.1186/s12931-020-01515-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
The role of the ATP binding cassette transporter A1 (ABCA1) in maintaining cellular lipid homeostasis in cardiovascular disease is well established. More recently, the important beneficial role played by ABCA1 in modulating pathogenic disease mechanisms, such as inflammation, in a broad range of chronic conditions has been realised. These studies position ABCA1 as a potential therapeutic target in a diverse range of diseases where inflammation is an underlying cause. Chronic respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD) are driven by inflammation, and as such, there is now a growing recognition that we need a greater understanding of the signaling pathways responsible for regulation of ABCA1 expression in this clinical context. While the signaling pathways responsible for cholesterol-mediated ABCA1 expression have been clearly delineated through decades of studies in the atherosclerosis field, and thus far appear to be translatable to the respiratory field, less is known about the cholesterol-independent signaling pathways that can modulate ABCA1 expression in inflammatory lung disease. This review will identify the various signaling pathways and ligands that are associated with the regulation of ABCA1 expression and may be exploited in future as therapeutic targets in the setting of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Patrick He
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ingrid C Gelissen
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Analysis of Low Molecular Weight Substances and Related Processes Influencing Cellular Cholesterol Efflux. Pharmaceut Med 2020; 33:465-498. [PMID: 31933239 PMCID: PMC7101889 DOI: 10.1007/s40290-019-00308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholesterol efflux is the key process protecting the vascular system from the development of atherosclerotic lesions. Various extracellular and intracellular events affect the ability of the cell to efflux excess cholesterol. To explore the possible pathways and processes that promote or inhibit cholesterol efflux, we applied a combined cheminformatic and bioinformatic approach. We performed a comprehensive analysis of published data on the various substances influencing cholesterol efflux and found 153 low molecular weight substances that are included in the Chemical Entities of Biological Interest (ChEBI) database. Pathway enrichment was performed for substances identified within the Reactome database, and 45 substances were selected in 93 significant pathways. The most common pathways included the energy-dependent processes related to active cholesterol transport from the cell, lipoprotein metabolism and lipid transport, and signaling pathways. The activators and inhibitors of cholesterol efflux were non-uniformly distributed among the different pathways: the substances influencing ‘biological oxidations’ activate cholesterol efflux and the substances influencing ‘Signaling by GPCR and PTK6’ inhibit efflux. This analysis may be used in the search and design of efflux effectors for therapies targeting structural and functional high-density lipoprotein deficiency.
Collapse
|
6
|
Ospina-Quintero L, Jaramillo JC, Tabares-Guevara JH, Ramírez-Pineda JR. Reformulating Small Molecules for Cardiovascular Disease Immune Intervention: Low-Dose Combined Vitamin D/Dexamethasone Promotes IL-10 Production and Atheroprotection in Dyslipidemic Mice. Front Immunol 2020; 11:743. [PMID: 32395119 PMCID: PMC7197409 DOI: 10.3389/fimmu.2020.00743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
The targeting of proinflammatory pathways has a prophylactic and therapeutic potential on atherosclerotic cardiovascular diseases (CVD). An alternative/complementary strategy is the promotion of endogenous atheroprotective mechanisms that are impaired during atherosclerosis progression, such as the activity of tolerogenic dendritic cells (tolDC) and regulatory T cells (Treg). There is a need to develop novel low cost, safe and effective tolDC/Treg-inducing formulations that are atheroprotective and that can be of easy translation into clinical settings. We found that apolipoprotein E-deficient (ApoE–/–) mice treated with a low-dose combined formulation of Vitamin D and Dexamethasone (VitD/Dexa), delivered repetitively and subcutaneously (sc) promoted interleukin-10 (IL-10) production by dendritic cells and other antigen presenting cells in the lymph nodes draining the site of injection and the spleens. Expectedly, the treatment also increased the numbers of IL-10-producing CD4+ T cells. Concomitantly, the frequency of IFNγ-producing CD4+ and CD8+ T cells in the spleen, and the IFNγ response of splenocytes to polyclonal stimulation ex vivo were lower after VitD/Dexa treatment, indicating a reduced proatherogenic Th1 response. Interestingly, VitD/Dexa-treated mice had smaller atherosclerotic lesions, with reduced lipid content and lower inflammatory infiltrate of macrophages and T cells in the aortic root. No hypolipidemic or antioxidant effect could be detected, suggesting that a dominantly immunomodulatory mechanism of atheroprotection was engaged under the low-dose sc VitD/Dexa conditions used. Finally, no evidence of clinical, biochemical or immune toxicity was observed in treated ApoE–/– mice and, most importantly, C57BL/6 mice latently infected with Leishmania parasites and treated with an identical VitD/Dexa dose/scheme showed no clinical or microbiological signs of disease reactivation, suggesting the absence of general immunosuppression. Altogether, these results indicate that a non-toxic, non-immunosuppressive, low-dose of VitD/Dexa, administered subcutaneously and repetitively, exerts atheroprotective effects in dyslipidemic mice, apparently due to the induction of an IL-10-producing network of lymphoid and myeloid immune cells. These well known, widely available, and inexpensive small molecules can be easily co-formulated into a simple and accessible agent with a potential use as a prophylactic or therapeutic immune intervention for CVD and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laura Ospina-Quintero
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| | - Julio C Jaramillo
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| | - Jorge H Tabares-Guevara
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| | - José R Ramírez-Pineda
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
7
|
Jeries H, Volkova N, Grajeda-Iglesias C, Najjar M, Rosenblat M, Aviram M, Hayek T. Prednisone and Its Active Metabolite Prednisolone Attenuate Lipid Accumulation in Macrophages. J Cardiovasc Pharmacol Ther 2019; 25:174-186. [PMID: 31648564 DOI: 10.1177/1074248419883591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Synthetic forms of glucocorticoids (GCs; eg, prednisone, prednisolone) are anti-inflammatory drugs that are widely used in clinical practice. The role of GCs in cardiovascular diseases, including atherosclerosis, is highly controversial, and their impact on macrophage foam cell formation is still unknown. We investigated the effects of prednisone and prednisolone on macrophage oxidative stress and lipid metabolism. METHODS AND RESULTS C57BL/6 mice were intraperitoneally injected with prednisone or prednisolone (5 mg/kg) for 4 weeks, followed by lipid metabolism analyses in the aorta and peritoneal macrophages. We also analyzed the effect of serum samples obtained from 9 healthy human volunteers before and after oral administration of prednisone (20 mg for 5 days) on J774A.1 macrophage atherogenicity. Finally, J774A.1 macrophages, human monocyte-derived macrophages, and fibroblasts were incubated with increasing concentrations (0-200 ng/mL) of prednisone or prednisolone, followed by determination of cellular oxidative status, and triglyceride and cholesterol metabolism. Prednisone and prednisolone treatment resulted in a significant reduction in triglyceride and cholesterol accumulation in macrophages, as observed in vivo, ex vivo, and in vitro. These effects were associated with GCs' inhibitory effect on triglyceride- and cholesterol-biosynthesis rates, through downregulation of diacylglycerol acyltransferase 1 and HMG-CoA reductase expression. Glucocorticoid-induced reduction of cellular lipid accumulation was mediated by the GC receptors on the macrophages, because the GC-receptor antagonist (RU486) abolished these effects. In fibroblasts, unlike macrophages, GCs showed no effects. CONCLUSION Prednisone and prednisolone exhibit antiatherogenic activity by protecting macrophages from lipid accumulation and foam cell formation.
Collapse
Affiliation(s)
- Helana Jeries
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nina Volkova
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Claudia Grajeda-Iglesias
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Mahmoud Najjar
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, Israel
| | - Mira Rosenblat
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michael Aviram
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tony Hayek
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
8
|
Li JZ, Cao TH, Han JC, Qu H, Jiang SQ, Xie BD, Yan XL, Wu H, Liu XL, Zhang F, Leng XP, Kang K, Jiang SL. Comparison of adipose‑ and bone marrow‑derived stem cells in protecting against ox‑LDL‑induced inflammation in M1‑macrophage‑derived foam cells. Mol Med Rep 2019; 19:2660-2670. [PMID: 30720126 PMCID: PMC6423631 DOI: 10.3892/mmr.2019.9922] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023] Open
Abstract
Adipose‑derived stem cells (ADSCs) and bone marrow‑derived stem cells (BMSCs) are considered to be prospective sources of mesenchymal stromal cells (MSCs), that can be used in cell therapy for atherosclerosis. The present study investigated whether ADSCs co‑cultured with M1 foam macrophages via treatment with oxidized low‑density lipoprotein (ox‑LDL) would lead to similar or improved anti‑inflammatory effects compared with BMSCs. ADSCs, peripheral blood monocytes, BMSCs and ox‑LDL were isolated from ten coronary heart disease (CHD) patients. After three passages, the supernatants of the ADSCs and BMSCs were collected and systematically analysed by liquid chromatography‑quadrupole time‑of‑flight‑mass spectrometry (6530; Agilent Technologies, Inc., Santa Clara, CA, USA). Cis‑9, trans‑11 was deemed to be responsible for the potential differences in the metabolic characteristics of ADSCs and BMSCs. These peripheral blood monocytes were characterized using flow cytometry. Following peripheral blood monocytes differentiation into M1 macrophages, the formation of M1 foam macrophages was achieved through treatment with ox‑LDL. Overall, 2x106 ADSCs, BMSCs or BMSCs+cis‑9, trans‑11 were co‑cultured with M1 foam macrophages. Anti‑inflammatory capability, phagocytic activity, anti‑apoptotic capability and cell viability assays were compared among these groups. It was demonstrated that the accumulation of lipid droplets decreased following ADSCs, BMSCs or BMSCs+cis‑9, trans‑11 treatment in M1 macrophages derived from foam cells. Consistently, ADSCs exhibited great advantageous anti‑inflammatory capabilities, phagocytic activity, anti‑apoptotic capability activity and cell viability over BMSCs or BMSCs+cis‑9, trans‑11. Additionally, BMSCs+cis‑9, trans‑11 also demonstrated marked improvement in anti‑inflammatory capability, phagocytic activity, anti‑apoptotic capability activity and cell viability in comparison with BMSCs. The present results indicated that ADSCs would be more appropriate for transplantation to treat atherosclerosis than BMSCs alone or BMSCs+cis‑9, trans‑11. This may be an important mechanism to regulate macrophage immune function.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Tian-Hui Cao
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Jin-Cheng Han
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Hui Qu
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Shuang-Quan Jiang
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Bao-Dong Xie
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Xiao-Long Yan
- Division of Thoracic Surgery, Tang Du Hospital of Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hua Wu
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Xiang-Lan Liu
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Fan Zhang
- Division of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiao-Ping Leng
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Kai Kang
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Shu-Lin Jiang
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
9
|
Takiguchi S, Ayaori M, Yakushiji E, Nishida T, Nakaya K, Sasaki M, Iizuka M, Uto-Kondo H, Terao Y, Yogo M, Komatsu T, Ogura M, Ikewaki K. Hepatic Overexpression of Endothelial Lipase Lowers High-Density Lipoprotein but Maintains Reverse Cholesterol Transport in Mice: Role of Scavenger Receptor Class B Type I/ATP-Binding Cassette Transporter A1-Dependent Pathways. Arterioscler Thromb Vasc Biol 2018; 38:1454-1467. [PMID: 29748333 PMCID: PMC6039415 DOI: 10.1161/atvbaha.118.311056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 04/11/2018] [Indexed: 01/06/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Reverse cholesterol transport (RCT) is a major mechanism by which HDL (high-density lipoprotein) protects against atherosclerosis. Endothelial lipase (EL) reportedly reduces HDL levels, which, in theory, would increase atherosclerosis. However, it remains unclear whether EL affects RCT in vivo. Approach and Results— Adenoviral vectors expressing EL or luciferase were intravenously injected into mice, and a macrophage RCT assay was performed. As expected, hepatic EL overexpression markedly reduced HDL levels. In parallel, plasma 3H-cholesterol counts from the EL-expressing mice decreased by 85% compared with control. Surprisingly, there was no difference in fecal 3H-cholesterol excretion between the groups. Kinetic studies revealed increased catabolism/hepatic uptake of 3HDL-cholesteryl ether, resulting in no change in fecal HDL-cholesteryl ester excretion in the mice. To explore underlying mechanisms for the preservation of RCT despite low HDL levels in the EL-expressing mice, we investigated the effects of hepatic SR-BI (scavenger receptor class B type I) knockdown. RCT assay revealed that knockdown of SR-BI alone reduced fecal excretion of macrophage-derived 3H-cholesterol. Interestingly, hepatic EL overexpression under SR-BI inhibition further attenuated fecal tracer counts as compared with control. Finally, we observed that EL overexpression enhanced in vivo RCT under pharmacological inhibition of hepatic ABCA1 (ATP-binding cassette transporter A1) by probucol. Conclusions— Hepatic EL expression compensates for reduced macrophage-derived cholesterol efflux to plasma because of low HDL levels by promoting cholesterol excretion to bile/feces via an SR-BI pathway, maintaining overall RCT in vivo. In contrast, EL-modified HDL might negatively regulate RCT via hepatic ABCA1. Despite extreme hypoalphalipoproteinemia, RCT is maintained in EL-expressing mice via SR-BI/ABCA1-dependent pathways.
Collapse
Affiliation(s)
- Shunichi Takiguchi
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Makoto Ayaori
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Emi Yakushiji
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Takafumi Nishida
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Kazuhiro Nakaya
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Makoto Sasaki
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Maki Iizuka
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Harumi Uto-Kondo
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Yoshio Terao
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Makiko Yogo
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Tomohiro Komatsu
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center, Osaka, Japan (M.O.)
| | - Katsunori Ikewaki
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| |
Collapse
|
10
|
Xu D, Luo HW, Hu W, Hu SW, Yuan C, Wang GH, Zhang L, Yu H, Magdalou J, Chen LB, Wang H. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring. FASEB J 2018; 32:5563-5576. [PMID: 29718709 DOI: 10.1096/fj.201701557r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9ac and H3K14ac) and expression of HMGCR. This GC-dependent cholesterol metabolism programming effect was sustained through adulthood, leading to the occurrence of hypercholesterolemia.-Xu, D., Luo, H. W., Hu, W., Hu, S. W., Yuan, C., Wang, G. H., Zhang, L., Yu, H., Magdalou, J., Chen, L. B., Wang, H. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.
Collapse
Affiliation(s)
- Dan Xu
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Hanwen W Luo
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Department of Orthopedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wen Hu
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Shuwei W Hu
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Chao Yuan
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Guihua H Wang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Hong Yu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jacques Magdalou
- Unité Mixte de Recherche (UMR) 7365, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy, France
| | - Liaobin B Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.,Department of Orthopedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
11
|
Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res 2017; 353:6-15. [PMID: 28238834 DOI: 10.1016/j.yexcr.2017.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/31/2017] [Accepted: 02/19/2017] [Indexed: 02/04/2023]
Abstract
ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses.
Collapse
|
12
|
Song G, Wu X, Zhang P, Yu Y, Yang M, Jiao P, Wang N, Song H, Wu Y, Zhang X, Liu H, Qin S. High-density lipoprotein inhibits ox-LDL-induced adipokine secretion by upregulating SR-BI expression and suppressing ER Stress pathway. Sci Rep 2016; 6:30889. [PMID: 27468698 PMCID: PMC4965769 DOI: 10.1038/srep30889] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) in adipocytes can modulate adipokines secretion. The aim of this study was to explore the protective effect of high-density lipoprotein (HDL) on oxidized low-density lipoprotein (ox-LDL)-induced ERS-C/EBP homologous protein (CHOP) pathway-mediated adipokine secretion. Our results showed that serum adipokines, including visfatin, resistin and TNF-α, correlated inversely with serum HDL cholesterol level in patients with abdominal obesity. In vitro, like ERS inhibitor 4-phenylbutyric acid (PBA), HDL inhibited ox-LDL- or tunicamycin (TM, an ERS inducer)-induced increase in visfatin and resistin secretion. Moreover, HDL inhibited ox-LDL-induced free cholesterol (FC) accumulation in whole cell lysate and in the endoplasmic reticulum. Additionally, like PBA, HDL inhibited ox-LDL- or TM-induced activation of ERS response as assessed by the decreased phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α and reduced nuclear translocation of activating transcription factor 6 as well as the downregulation of Bip and CHOP. Furthermore, HDL increased scavenger receptor class B type I (SR-BI) expression and SR-BI siRNA treatment abolished the inhibitory effects of HDL on ox-LDL-induced FC accumulation and CHOP upregulation. These data indicate that HDL may suppress ox-LDL-induced FC accumulation in adipocytes through upregulation of SR-BI, subsequently preventing ox-LDL-induced ER stress-CHOP pathway-mediated adipocyte inflammation.
Collapse
Affiliation(s)
- Guohua Song
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, TaiShan Medical University, Taian, China
| | - Xia Wu
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, TaiShan Medical University, Taian, China.,Institute of Nursing, TaiShan Medical University, Taian, China.,Central Hospital of Taian City, Taian, China
| | - Pu Zhang
- Central Hospital of Taian City, Taian, China
| | - Yang Yu
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, TaiShan Medical University, Taian, China
| | - Mingfeng Yang
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, TaiShan Medical University, Taian, China
| | - Peng Jiao
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, TaiShan Medical University, Taian, China
| | - Ni Wang
- Maternal and child health hospital of Daiyue District, Taian, China
| | - Haiming Song
- Maternal and child health hospital of Daiyue District, Taian, China
| | - You Wu
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, TaiShan Medical University, Taian, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, 050000, China
| | - Huaxia Liu
- Institute of Nursing, TaiShan Medical University, Taian, China
| | - Shucun Qin
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, TaiShan Medical University, Taian, China
| |
Collapse
|
13
|
Hegyi Z, Homolya L. Functional Cooperativity between ABCG4 and ABCG1 Isoforms. PLoS One 2016; 11:e0156516. [PMID: 27228027 PMCID: PMC4882005 DOI: 10.1371/journal.pone.0156516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
ABCG4 belongs to the ABCG subfamily, the members of which are half transporters composed of a single transmembrane and a single nucleotide-binding domain. ABCG proteins have a reverse domain topology as compared to other mammalian ABC transporters, and have to form functional dimers, since the catalytic sites for ATP binding and hydrolysis, as well as the transmembrane domains are composed of distinct parts of the monomers. Here we demonstrate that ABCG4 can form homodimers, but also heterodimers with its closest relative, ABCG1. Both the full-length and the short isoforms of ABCG1 can dimerize with ABCG4, whereas the ABCG2 multidrug transporter is unable to form a heterodimer with ABCG4. We also show that contrary to that reported in some previous studies, ABCG4 is predominantly localized to the plasma membrane. While both ABCG1 and ABCG4 have been suggested to be involved in lipid transport or regulation, in accordance with our previous results regarding the long version of ABCG1, here we document that the expression of both the short isoform of ABCG1 as well as ABCG4 induce apoptosis in various cell types. This apoptotic effect, as a functional read-out, allowed us to demonstrate that the dimerization between these half transporters is not only a physical interaction but functional cooperativity. Given that ABCG4 is predominantly expressed in microglial-like cells and endothelial cells in the brain, our finding of ABCG4-induced apoptosis may implicate a new role for this protein in the clearance mechanisms within the central nervous system.
Collapse
Affiliation(s)
- Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
14
|
Song G, Zong C, Zhang Z, Yu Y, Yao S, Jiao P, Tian H, Zhai L, Zhao H, Tian S, Zhang X, Wu Y, Sun X, Qin S. Molecular hydrogen stabilizes atherosclerotic plaque in low-density lipoprotein receptor-knockout mice. Free Radic Biol Med 2015; 87:58-68. [PMID: 26117323 DOI: 10.1016/j.freeradbiomed.2015.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/30/2015] [Accepted: 06/04/2015] [Indexed: 12/22/2022]
Abstract
Hydrogen (H(2)) attenuates the development of atherosclerosis in mouse models. We aimed to examine the effects of H(2) on atherosclerotic plaque stability. Low-density lipoprotein receptor-knockout (LDLR(-/-)) mice fed an atherogenic diet were dosed daily with H(2) and/or simvastatin. In vitro studies were carried out in an oxidized-LDL (ox-LDL)-stimulated macrophage-derived foam cell model treated with or without H(2). H(2) or simvastatin significantly enhanced plaque stability by increasing levels of collagen, as well as reducing macrophage and lipid levels in plaques. The decreased numbers of dendritic cells and increased numbers of regulatory T cells in plaques further supported the stabilizing effect of H(2) or simvastatin. Moreover, H(2) treatment decreased serum ox-LDL level and apoptosis in plaques with concomitant inhibition of endoplasmic reticulum stress (ERS) and reduction of reactive oxygen species (ROS) accumulation in the aorta. In vitro, like the ERS inhibitor 4-phenylbutyric acid, H(2) inhibited ox-LDL- or tunicamycin (an ERS inducer)-induced ERS response and cell apoptosis. In addition, like the ROS scavenger N-acetylcysteine, H(2) inhibited ox-LDL- or Cu(2+) (an ROS inducer)-induced reduction in cell viability and increase in cellular ROS. Also, H(2) increased Nrf2 (NF-E2-related factor-2, an important factor in antioxidant signaling) activation and Nrf2 small interfering RNA abolished the protective effect of H(2) on ox-LDL-induced cellular ROS production. The inhibitory effects of H(2) on the apoptosis of macrophage-derived foam cells, which take effect by suppressing the activation of the ERS pathway and by activating the Nrf2 antioxidant pathway, might lead to an improvement in atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Guohua Song
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, TaiShan Medical University, Tai'an 271000, China; Heart Center of TaiShan Medical University, Tai'an 271000, China.
| | - Chuanlong Zong
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, TaiShan Medical University, Tai'an 271000, China; Heart Center of TaiShan Medical University, Tai'an 271000, China
| | - Zhaoqiang Zhang
- College of Basic Medical Sciences, TaiShan Medical University, Tai'an 271000, China
| | - Yang Yu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, TaiShan Medical University, Tai'an 271000, China; Heart Center of TaiShan Medical University, Tai'an 271000, China
| | - Shutong Yao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, TaiShan Medical University, Tai'an 271000, China; College of Basic Medical Sciences, TaiShan Medical University, Tai'an 271000, China
| | - Peng Jiao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, TaiShan Medical University, Tai'an 271000, China
| | - Hua Tian
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, TaiShan Medical University, Tai'an 271000, China
| | - Lei Zhai
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, TaiShan Medical University, Tai'an 271000, China
| | - Hui Zhao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, TaiShan Medical University, Tai'an 271000, China
| | - Shuyan Tian
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, TaiShan Medical University, Tai'an 271000, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardiocerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Yun Wu
- Heart Center of TaiShan Medical University, Tai'an 271000, China
| | - Xuejun Sun
- Department of Diving Medicine, Second Military Medical University, Shanghai, China
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, TaiShan Medical University, Tai'an 271000, China; Heart Center of TaiShan Medical University, Tai'an 271000, China.
| |
Collapse
|
15
|
Du Y, Wang L, Si S, Yang Y, Hong B. A novel compound 4010B-30 upregulates apolipoprotein A-I gene expression through activation of PPARγ in HepG2 cells. Atherosclerosis 2015; 239:589-98. [DOI: 10.1016/j.atherosclerosis.2015.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 01/31/2023]
|
16
|
Abstract
Glucocorticoids (GCs) and their cognate, intracellular receptor, the glucocorticoid receptor (GR) have been characterized as critical checkpoints in the hormonal control of energy homeostasis in mammals. Whereas physiological levels of GCs are required for proper metabolic control, aberrant GC action has been linked to a variety of severe metabolic diseases, including type 2 diabetes and obesity. As a member of the nuclear receptor superfamily of transcription factors, the GR translocates into the cell nucleus upon GC binding where it serves as a transcriptional regulator of distinct GC-responsive target genes that are in many cases associated with lipid regulatory pathways and thereby intricately control both physiological and pathophysiological systemic lipid homeostasis. Thus, this chapter focuses on the current knowledge of GC/GR function in lipid handling and its implications for systemic metabolic dysfunction.
Collapse
|
17
|
LI XIUYING, ZHOU YUANDA, YU CHAO, YANG HUI, ZHANG CHENGZHI, YE YUN, XIAO SHUNLIN. Paeonol suppresses lipid accumulation in macrophages via upregulation of the ATP-binding cassette transporter A1 and downregulation of the cluster of differentiation 36. Int J Oncol 2014; 46:764-74. [DOI: 10.3892/ijo.2014.2757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/23/2014] [Indexed: 11/06/2022] Open
|
18
|
Duan Y, Fu W, Wang S, Ni Y, Zhao R. Cholesterol deregulation induced by chronic corticosterone (CORT) stress in pectoralis major of broiler chickens. Comp Biochem Physiol A Mol Integr Physiol 2014; 176:59-64. [DOI: 10.1016/j.cbpa.2014.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 12/31/2022]
|
19
|
Out C, Dikkers A, Laskewitz A, Boverhof R, van der Ley C, Kema IP, Wolters H, Havinga R, Verkade HJ, Kuipers F, Tietge UJF, Groen AK. Prednisolone increases enterohepatic cycling of bile acids by induction of Asbt and promotes reverse cholesterol transport. J Hepatol 2014; 61:351-7. [PMID: 24681341 DOI: 10.1016/j.jhep.2014.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 02/21/2014] [Accepted: 03/19/2014] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Glucocorticoids, produced by the adrenal gland under control of the hypothalamic-pituitary-adrenal axis, exert their metabolic actions largely via activation of the glucocorticoid receptor (GR). Synthetic glucocorticoids are widely used as anti-inflammatory and immunosuppressive drugs but their application is hampered by adverse metabolic effects. Recently, it has been shown that GR may regulate several genes involved in murine bile acid (BA) and cholesterol metabolism, yet the physiological relevance hereof is controversial. The aim of this study is to provide a mechanistic basis for effects of prednisolone on BA and cholesterol homeostasis in mice. METHODS Male BALB/c mice were treated with prednisolone (12.5mg/kg/day) for 7days by subcutaneous implantation of slow-release pellets, followed by extensive metabolic profiling. RESULTS Sustained prednisolone treatment induced the expression of the apical sodium-dependent bile acid transporter (Asbt) in the ileum, which stimulated BA absorption. This resulted in elevated plasma BA levels and enhanced biliary BA secretion. Concomitantly, both biliary cholesterol and phospholipid secretion rates were increased. Enhanced BA reabsorption suppressed hepatic BA synthesis, as evident from hepatic gene expression, reduced plasma C4 levels and reduced fecal BA loss. Plasma HDL cholesterol levels were elevated in prednisolone-treated mice, which likely contributed to the stimulated flux of cholesterol from intraperitoneally injected macrophage foam cells into feces. CONCLUSIONS Sustained prednisolone treatment increases enterohepatic recycling of BA, leading to elevated plasma levels and reduced synthesis in the absence of cholestasis. Under these conditions, prednisolone promotes macrophage-derived reverse cholesterol transport.
Collapse
Affiliation(s)
- Carolien Out
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands.
| | - Arne Dikkers
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Anke Laskewitz
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Renze Boverhof
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | | | - Ido P Kema
- Department of Laboratory Medicine, Groningen, The Netherlands
| | - Henk Wolters
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Rick Havinga
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Henkjan J Verkade
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Folkert Kuipers
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands; Department of Laboratory Medicine, Groningen, The Netherlands
| | - Uwe J F Tietge
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Albert K Groen
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands; Department of Laboratory Medicine, Groningen, The Netherlands
| |
Collapse
|
20
|
Uto-Kondo H, Ayaori M, Nakaya K, Takiguchi S, Yakushiji E, Ogura M, Terao Y, Ozasa H, Sasaki M, Komatsu T, Sotherden GM, Hosoai T, Sakurada M, Ikewaki K. Citrulline increases cholesterol efflux from macrophages in vitro and ex vivo via ATP-binding cassette transporters. J Clin Biochem Nutr 2014; 55:32-9. [PMID: 25120277 PMCID: PMC4078065 DOI: 10.3164/jcbn.13-76] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 04/13/2014] [Indexed: 01/27/2023] Open
Abstract
Reverse cholesterol transport (RCT) is a mechanism critical to the anti-atherogenic property of HDL. Although citrulline contributes to the amelioration of atherosclerosis via endothelial nitric oxide production, it remains unclear whether it affects RCT. This study was undertaken to clarify the effects of citrulline on expressions of specific transporters such as ATP binding cassette transporters (ABC)A1 and ABCG1, and the cholesterol efflux from macrophages to apolipoprotein (apo) A-I or HDL in vitro and ex vivo. Citrulline increased ABCA1 and ABCG1 mRNA and protein levels in THP-1 macrophages, translating into enhanced apoA-I- and HDL-mediated cholesterol efflux. In the human crossover study, 8 healthy male volunteers (age 30-49 years) consumed either 3.2 g/day citrulline or placebo for 1 week. Citrulline consumption brought about significant increases in plasma levels of citrulline and arginine. Supporting the in vitro data, monocyte-derived macrophages (MDM) differentiated under autologous post-citrulline sera demonstrated enhancement of both apoA-I- and HDL-mediated cholesterol efflux through increased ABCA1 and ABCG1 expressions, compared to MDM differentiated under pre-citrulline sera. However, the placebo did not modulate these parameters. Therefore, in addition to improving endothelium function, citrulline might have an anti-atherogenic property by increasing RCT of HDL.
Collapse
Affiliation(s)
- Harumi Uto-Kondo
- Division of Anti-aging and Vascular Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Makoto Ayaori
- Division of Anti-aging and Vascular Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Kazuhiro Nakaya
- Division of Anti-aging and Vascular Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Shunichi Takiguchi
- Division of Anti-aging and Vascular Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Emi Yakushiji
- Division of Anti-aging and Vascular Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Masatsune Ogura
- Division of Anti-aging and Vascular Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Yoshio Terao
- Division of Cardiology, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hideki Ozasa
- Division of Cardiology, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Makoto Sasaki
- Division of Anti-aging and Vascular Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Tomohiro Komatsu
- Division of Anti-aging and Vascular Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Grace Megumi Sotherden
- Division of Anti-aging and Vascular Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Tamaki Hosoai
- Division of Anti-aging and Vascular Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Masami Sakurada
- Tokorozawa Heart Center, 2-6-61 Kamiarai, Tokorozawa, Saitama 359-1142, Japan
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
21
|
Xu X, Li Q, Pang L, Huang G, Huang J, Shi M, Sun X, Wang Y. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway. Biochem Biophys Res Commun 2013; 441:321-6. [PMID: 24140409 DOI: 10.1016/j.bbrc.2013.10.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nagy ZS, Czimmerer Z, Nagy L. Nuclear receptor mediated mechanisms of macrophage cholesterol metabolism. Mol Cell Endocrinol 2013; 368:85-98. [PMID: 22546548 DOI: 10.1016/j.mce.2012.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Macrophages comprise a family of multi-faceted phagocytic effector cells that differentiate "in situ" from circulating monocytes to exert various functions including clearance of foreign pathogens as well as debris derived from host cells. Macrophages also possess the ability to engulf and metabolize lipids and this way connect lipid metabolism and inflammation. The molecular link between these processes is provided by certain members of the nuclear receptor family. For instance, peroxisome proliferator activated receptors (PPAR) and liver X receptors (LXR) are able to sense the dynamically changing lipid environment and translate it to gene expression changes in order to modulate the cellular phenotype. Atherosclerosis embodies both sides of this coin: it is a disease in which macrophages with altered cholesterol metabolism keep the arteries in a chronically inflamed state. A large body of publications has accumulated during the past few decades describing the role of nuclear receptors in the regulation of macrophage cholesterol homeostasis, their contribution to the formation of atherosclerotic plaques and their crosstalk with inflammatory pathways. This review will summarize the most recent findings from this field narrowly focusing on the contribution of various nuclear receptors to macrophage cholesterol metabolism.
Collapse
Affiliation(s)
- Zsuzsanna S Nagy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen Medical and Health Science Center, H-4032 Debrecen, Nagyerdei krt 98, Hungary.
| | | | | |
Collapse
|
23
|
Celastrus orbiculatus Thunb. Decreases Athero-Susceptibility in Lipoproteins and the Aorta of Guinea Pigs Fed High Fat Diet. Lipids 2013; 48:619-31. [DOI: 10.1007/s11745-013-3773-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/04/2013] [Indexed: 11/26/2022]
|
24
|
Kipari T, Hadoke PWF, Iqbal J, Man TY, Miller E, Coutinho AE, Zhang Z, Sullivan KM, Mitic T, Livingstone DEW, Schrecker C, Samuel K, White CI, Bouhlel MA, Chinetti-Gbaguidi G, Staels B, Andrew R, Walker BR, Savill JS, Chapman KE, Seckl JR. 11β-hydroxysteroid dehydrogenase type 1 deficiency in bone marrow-derived cells reduces atherosclerosis. FASEB J 2013; 27:1519-31. [PMID: 23303209 PMCID: PMC3606528 DOI: 10.1096/fj.12-219105] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
11β-Hydroxysteroid dehydrogenase type-1 (11β-HSD1) converts inert cortisone into active cortisol, amplifying intracellular glucocorticoid action. 11β-HSD1 deficiency improves cardiovascular risk factors in obesity but exacerbates acute inflammation. To determine the effects of 11β-HSD1 deficiency on atherosclerosis and its inflammation, atherosclerosis-prone apolipoprotein E-knockout (ApoE-KO) mice were treated with a selective 11β-HSD1 inhibitor or crossed with 11β-HSD1-KO mice to generate double knockouts (DKOs) and challenged with an atherogenic Western diet. 11β-HSD1 inhibition or deficiency attenuated atherosclerosis (74–76%) without deleterious effects on plaque structure. This occurred without affecting plasma lipids or glucose, suggesting independence from classical metabolic risk factors. KO plaques were not more inflamed and indeed had 36% less T-cell infiltration, associated with 38% reduced circulating monocyte chemoattractant protein-1 (MCP-1) and 36% lower lesional vascular cell adhesion molecule-1 (VCAM-1). Bone marrow (BM) cells are key to the atheroprotection, since transplantation of DKO BM to irradiated ApoE-KO mice reduced atherosclerosis by 51%. 11β-HSD1-null macrophages show 76% enhanced cholesterol ester export. Thus, 11β-HSD1 deficiency reduces atherosclerosis without exaggerated lesional inflammation independent of metabolic risk factors. Selective 11β-HSD1 inhibitors promise novel antiatherosclerosis effects over and above their benefits for metabolic risk factors via effects on BM cells, plausibly macrophages.—Kipari, T., Hadoke, P. W. F., Iqbal, J., Man, T. Y., Miller, E., Coutinho, A. E., Zhang, Z., Sullivan, K. M., Mitic, T., Livingstone, D. E. W., Schrecker, C., Samuel, K., White, C. I., Bouhlel, M. A., Chinetti-Gbaguidi, G., Staels, B., Andrew, R., Walker, B. R., Savill, J. S., Chapman, K. E., Seckl, J. R. 11β-hydroxysteroid dehydrogenase type 1 deficiency in bone marrow-derived cells reduces atherosclerosis.
Collapse
Affiliation(s)
- Tiina Kipari
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Luo MJ, Thieringer R, Springer MS, Wright SD, Hermanowski-Vosatka A, Plump A, Balkovec JM, Cheng K, Ding GJ, Kawka DW, Koo GC, Grand CBL, Luo Q, Maletic MM, Malkowitz L, Shah K, Singer I, Waddell ST, Wu KK, Yuan J, Zhu J, Stepaniants S, Yang X, Lum PY, Wang IM. 11β-HSD1 inhibition reduces atherosclerosis in mice by altering proinflammatory gene expression in the vasculature. Physiol Genomics 2012; 45:47-57. [PMID: 23170035 DOI: 10.1152/physiolgenomics.00109.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is implicated in the etiology of metabolic syndrome. We previously showed that pharmacological inhibition of 11β-HSD1 ameliorated multiple facets of metabolic syndrome and attenuated atherosclerosis in ApoE-/- mice. However, the molecular mechanism underlying the atheroprotective effect was not clear. In this study, we tested whether and how 11β-HSD1 inhibition affects vascular inflammation, a major culprit for atherosclerosis and its associated complications. ApoE-/- mice were treated with an 11β-HSD1 inhibitor for various periods of time. Plasma lipids and aortic cholesterol accumulation were quantified. Several microarray studies were carried out to examine the effect of 11β-HSD1 inhibition on gene expression in atherosclerotic tissues. Our data suggest 11β-HSD1 inhibition can directly modulate atherosclerotic plaques and attenuate atherosclerosis independently of lipid lowering effects. We identified immune response genes as the category of mRNA most significantly suppressed by 11β-HSD1 inhibition. This anti-inflammatory effect was further confirmed in plaque macrophages and smooth muscle cells procured by laser capture microdissection. These findings in the vascular wall were corroborated by reduction in circulating MCP1 levels after 11β-HSD1 inhibition. Taken together, our data suggest 11β-HSD1 inhibition regulates proinflammatory gene expression in atherosclerotic tissues of ApoE-/- mice, and this effect may contribute to the attenuation of atherosclerosis in these animals.
Collapse
Affiliation(s)
- Mingjuan J Luo
- Cardiovascular Disease Department, Merck Research Laboratories, Rahway, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Silvennoinen R, Escola-Gil JC, Julve J, Rotllan N, Llaverias G, Metso J, Valledor AF, He J, Yu L, Jauhiainen M, Blanco-Vaca F, Kovanen PT, Lee-Rueckert M. Acute Psychological Stress Accelerates Reverse Cholesterol Transport via Corticosterone-Dependent Inhibition of Intestinal Cholesterol Absorption. Circ Res 2012; 111:1459-69. [DOI: 10.1161/circresaha.112.277962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rationale:
Psychological stress is associated with an increased risk of cardiovascular diseases. However, the connecting mechanisms of the stress-inducing activation of the hypothalamic-pituitary-adrenal axis with atherosclerosis are not well-understood.
Objective:
To study the effect of acute psychological stress on reverse cholesterol transport (RCT), which transfers peripheral cholesterol to the liver for its ultimate fecal excretion.
Methods and Results:
C57Bl/6J mice were exposed to restraint stress for 3 hours to induce acute psychological stress. RCT in vivo was quantified by measuring the transfer of [
3
H]cholesterol from intraperitoneally injected mouse macrophages to the lumen of the small intestine within the stress period. Surprisingly, stress markedly increased the contents of macrophage-derived [
3
H]cholesterol in the intestinal lumen. In the stressed mice, intestinal absorption of [
14
C]cholesterol was significantly impaired, the intestinal mRNA expression level of peroxisome proliferator–activated receptor-α increased, and that of the sterol influx transporter Niemann-Pick C1–like 1 decreased. The stress-dependent effects on RCT rate and peroxisome proliferator–activated receptor-α gene expression were fully mimicked by administration of the stress hormone corticosterone (CORT) to nonstressed mice, and they were blocked by the inhibition of CORT synthesis in stressed mice. Moreover, the intestinal expression of Niemann-Pick C1–like 1 protein decreased when circulating levels of CORT increased. Of note, when either peroxisome proliferator-activated receptor α or liver X receptor α knockout mice were exposed to stress, the RCT rate remained unchanged, although plasma CORT increased. This indicates that activities of both transcription factors were required for the RCT-accelerating effect of stress.
Conclusions:
Acute psychological stress accelerated RCT by compromising intestinal cholesterol absorption. The present results uncover a novel functional connection between the hypothalamic-pituitary-adrenal axis and RCT that can be triggered by a stress-induced increase in circulating CORT.
Collapse
Affiliation(s)
- Reija Silvennoinen
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Joan Carles Escola-Gil
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Josep Julve
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Noemi Rotllan
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Gemma Llaverias
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Jari Metso
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Annabel F. Valledor
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Jianming He
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Liqing Yu
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Matti Jauhiainen
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Francisco Blanco-Vaca
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Petri T. Kovanen
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Miriam Lee-Rueckert
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| |
Collapse
|
27
|
Zhao Z, Song G, Tian H, Yu Y, Tian X, Liu J, Yao S, Luo T, Qin S. Triacetyl-3-hydroxyphenyladenosine, a derivative of cordycepin, attenuates atherosclerosis in apolipoprotein E-knockout mice. Exp Biol Med (Maywood) 2012; 237:1262-72. [DOI: 10.1258/ebm.2012.011401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cholesterol-modulating, immune-regulating and anti-inflammatory properties of cordycepin are well documented. Here we examined the effects of triacetyl-3-hydroxyphenyladenosine (THPA), a derivative of cordycepin, on the development of atherosclerosis (AS) in apolipoprotein E-knockout (apoE-/-) mice. The atherosclerotic lesion formation displayed by the oil red O staining-positive area was reduced significantly in either the aortic root section or the whole aorta en face in THPA-administrated apoE-/- mice. Plasma analysis by enzymatic method or enzyme-linked immunosorbent assay (ELISA) showed that high-density lipoprotein-cholesterol (HDL-C) was decreased, whereas apolipoprotein A-I (apoA-I) levels were markedly increased by THPA. In addition, ELISA and spectrophotometric measurement showed that plasma levels of tumor necrosis factor-α, interleukin-1 and malondialdehyde were decreased in mice treated with THPA. Realtime polymerase chain reaction detection disclosed that the expression of several transporters involved in reverse cholesterol transport was induced by THPA, and the expression of hepatic ABCA1 and apoA-I, which play roles in the maturation of HDL-C, was also elevated in the THPA-treated groups. Moreover, THPA enhanced the expression of endothelial nitric oxide synthase (NOS), and reduced the expression of inducible NOS and lectin-like oxidized LDL receptor-1 in the aorta, suggesting that THPA can exert endothelial protection effects. In addition, the expression or activation of several proinflammatory factors in the aorta was suppressed by THPA. In conclusion, our results reveal the inhibitory effects of THPA on AS in apoE-/- mice.
Collapse
Affiliation(s)
- Zhenmei Zhao
- Institute of Atherosclerosis, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
| | - Guohua Song
- Institute of Atherosclerosis, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
| | - Hua Tian
- Institute of Atherosclerosis, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
| | - Yang Yu
- Institute of Atherosclerosis, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
| | - Xiangyu Tian
- Institute of Atherosclerosis, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
| | - Jia Liu
- Institute of Atherosclerosis, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
| | - Shutong Yao
- Institute of Atherosclerosis, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
| | - Tian Luo
- Institute of Atherosclerosis, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
| | - Shucun Qin
- Institute of Atherosclerosis, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, No. 2 YingSheng East Road, Shandong 271000, P R China
| |
Collapse
|
28
|
Iizuka M, Ayaori M, Uto-Kondo H, Yakushiji E, Takiguchi S, Nakaya K, Hisada T, Sasaki M, Komatsu T, Yogo M, Kishimoto Y, Kondo K, Ikewaki K. Astaxanthin enhances ATP-binding cassette transporter A1/G1 expressions and cholesterol efflux from macrophages. J Nutr Sci Vitaminol (Tokyo) 2012; 58:96-104. [PMID: 22790567 DOI: 10.3177/jnsv.58.96] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ATP-binding cassette transporters (ABC) A1 and G1 are key molecules in cholesterol efflux from macrophages, which is an initial step of reverse cholesterol transport (RCT), a major anti-atherogenic property of high-density lipoprotein (HDL). Astaxanthin is one of the naturally occurring carotenoids responsible for the pink-red pigmentation in a variety of living organisms. Although astaxanthin is known to be a strong antioxidant, it remains unclear through what mechanism of action it affects cholesterol homeostasis in macrophages. We therefore investigated the effects of astaxanthin on cholesterol efflux and ABCA1/G1 expressions in macrophages. Astaxanthin enhanced both apolipoprotein (apo) A-I- and HDL-mediated cholesterol efflux from RAW264.7 cells. In supporting these enhanced cholesterol efflux mechanisms, astaxanthin promoted ABCA1/G1 expression in various macrophages. In contrast, peroxisome proliferator-activated receptor γ, liver X receptor (LXR) α and LXRβ levels remained unchanged by astaxanthin. An experiment using actinomycin D demonstrated that astaxanthin transcriptionally induced ABCA1/G1 expression, and oxysterol depletion caused by overexpression of cholesterol sulfotransferase further revealed that these inductions in ABCA1/G1 were independent of LXR-mediated pathways. Finally, we performed luciferase assays using human ABCA1/G1 promoter-reporter constructs to reveal that astaxanthin activated both promoters irrespective of the presence or absence of LXR-responsive elements, indicating LXR-independence of these activations. In conclusion, astaxanthin increased ABCA1/G1 expression, thereby enhancing apoA-I/HDL-mediated cholesterol efflux from the macrophages in an LXR-independent manner. In addition to the anti-oxidative properties, the potential cardioprotective properties of astaxanthin might therefore be associated with an enhanced anti-atherogenic function of HDL.
Collapse
Affiliation(s)
- Maki Iizuka
- Institute of Environmental Science for Human Life, Ochanomizu University, 2-1-1, Otsuka, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ayaori M, Yakushiji E, Ogura M, Nakaya K, Hisada T, Uto-Kondo H, Takiguchi S, Terao Y, Sasaki M, Komatsu T, Iizuka M, Yogo M, Uehara Y, Kagechika H, Nakanishi T, Ikewaki K. Retinoic acid receptor agonists regulate expression of ATP-binding cassette transporter G1 in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:561-72. [PMID: 22353356 DOI: 10.1016/j.bbalip.2012.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/23/2012] [Accepted: 02/06/2012] [Indexed: 01/08/2023]
Abstract
ABC transporter G1 (ABCG1) plays a pivotal role in HDL-mediated cholesterol efflux and atherogenesis. We investigated whether, and how, retinoic acid receptors (RARs) regulate ABCG1 expression in macrophages. All-trans retinoic acid (ATRA), an RAR ligand, increased ABCG1 protein levels and apoA-I/HDL-mediated cholesterol efflux from the macrophages. Both ATRA and other RAR agonists, TTNPB and Am580, increased major transcripts driven by promoter B upstream of exon 5, though minor transcripts driven by promoter A upstream of exon 1 were only increased by ATRA. The stimulatory effects of ATRA on ABCG1 expression were completely abolished in the presence of RAR/RXR antagonists but were only partially canceled in the presence of an LXR antagonist. Adenovirus with overexpressed oxysterol sulfotransferase abolished the LXR pathway, as previously reported, and ATRA-responsiveness in ABCA1/ABCG1 expressions were respectively attenuated by 38 and 22% compared to the control virus. Promoter assays revealed that ABCG1 levels were regulated more by promoter B than promoter A, and ATRA activated promoter B in a liver X receptor-responsive element (LXRE)-dependent manner. Further, LXRE-B in intron 7, but not LXRE-A in intron 5, enhanced ATRA responsiveness under overexpression of all RAR isoforms-RARα/β/γ. In contrast, the activation of promoter B by TTNPB depended on LXRE-B and RARα, but not on RARβ/γ. Finally, chromatin immunoprecipitation and gel-shift assays revealed a specific and direct repeat 4-dependent binding of RARα to LXRE-B. In conclusion, RAR ligands increase ABCA1/G1 expression and apoA-I/HDL-mediated cholesterol efflux from macrophages, and modulate ABCG1 promoter activity via LXRE-dependent mechanisms.
Collapse
Affiliation(s)
- Makoto Ayaori
- Division of Anti-aging, Department of Internal Medicine, National Defense Medical College, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Song G, Tian H, Qin S, Sun X, Yao S, Zong C, Luo Y, Liu J, Yu Y, Sang H, Wang X. Hydrogen decreases athero-susceptibility in apolipoprotein B-containing lipoproteins and aorta of apolipoprotein E knockout mice. Atherosclerosis 2011; 221:55-65. [PMID: 22209213 DOI: 10.1016/j.atherosclerosis.2011.11.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/31/2011] [Accepted: 11/30/2011] [Indexed: 12/11/2022]
Abstract
OBJECTIVE It is to characterize the underlying molecular mechanisms of the anti-atherosclerotic effects of hydrogen (dihydrogen; H(2)), a novel antioxidant. In particular, to examine the effects of hydrogen on athero-susceptibility in lipoproteins and aorta of apolipoprotein E knockout (apoE-/-) mice. METHODS AND RESULTS Plasma analysis by enzymatic method and spectrophotometric measurement showed that eight weeks intraperitoneally injection of hydrogen-saturated saline remarkably decreased plasma total and non-high-density lipoprotein (non-HDL) cholesterol, and malondialdehyde in apoE-/- mice fed either chow or high fat diet. Western blot analysis showed hydrogen treatment reduced the contents of apolipoprotein B (apoB), a major protein constituent of non-HDL in either plasma or hepatic tissues. Moreover, ELISA assay revealed that the production of tumor necrosis factor-α and interleukin-6 were significantly suppressed by hydrogen in RAW264.7 macrophages, after stimulation with the isolated non-HDL from treated or untreated mice. Immunohistochemistry of aortic valve sections revealed that hydrogen suppressed the expression of several proinflammatory factors and decreased vessel wall infiltration of macrophages. Besides, real-time PCR and Western blot analysis disclosed that hepatic scavenger receptor class B type I (SR-BI), ATP-binding cassette (ABC) transporters ABCG8, ABCB4, ABCB11, and macrophage SR-BI, were all induced by hydrogen treatment. Finally arterial wall lipid disposition displayed by oil red O staining was reduced significantly in aortic root and whole aorta en face in hydrogen administrated mice. In addition, hydrogen significantly improved HDL functionality in C57BL/6J mice assessed in two independent ways, namely (i) stimulation of cholesterol efflux from macrophage foam cells by measuring HDL-induced [(3)H]cholesterol efflux, and (ii) protection against LDL oxidation as a measure of Cu(2+)-induced TBARS formation. CONCLUSION These results reveal that administration of hydrogen-saturated saline decreases athero-susceptibility in apoB-containing lipoprotein and aortic atherosclerosis in apoE-/- mice and improves HDL functionality in C57BL/6J mice.
Collapse
Affiliation(s)
- Guohua Song
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, TaiShan Medical University, ShanDong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ozasa H, Ayaori M, Iizuka M, Terao Y, Uto-Kondo H, Yakushiji E, Takiguchi S, Nakaya K, Hisada T, Uehara Y, Ogura M, Sasaki M, Komatsu T, Horii S, Mochizuki S, Yoshimura M, Ikewaki K. Pioglitazone enhances cholesterol efflux from macrophages by increasing ABCA1/ABCG1 expressions via PPARγ/LXRα pathway: Findings from in vitro and ex vivo studies. Atherosclerosis 2011; 219:141-50. [DOI: 10.1016/j.atherosclerosis.2011.07.113] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 07/17/2011] [Accepted: 07/25/2011] [Indexed: 11/24/2022]
|
32
|
Terao Y, Ayaori M, Ogura M, Yakushiji E, Uto-Kondo H, Hisada T, Ozasa H, Takiguchi S, Nakaya K, Sasaki M, Komatsu T, Iizuka M, Horii S, Mochizuki S, Yoshimura M, Ikewaki K. Effect of sulfonylurea agents on reverse cholesterol transport in vitro and vivo. J Atheroscler Thromb 2011; 18:513-30. [PMID: 21636950 DOI: 10.5551/jat.7641] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Reverse cholesterol transport (RCT) is a critical mechanism for the anti-atherogenic property of HDL. The inhibitory effect of the sulfonylurea agent (SUA) glibenclamide on ATP binding-cassette transporter (ABC) A1 may decrease HDL function but it remains unclear whether it attenuates RCT in vivo. We therefore investigated how the SUAs glibenclamide and glimepiride affected the functionality of ABCA1/ABCG1 and scavenger receptor class B type I (SR-BI) expression in macrophages in vitro and overall RCT in vivo. METHODS RAW264.7, HEK293 and BHK-21 cells were used for in vitro studies. To investigate RCT in vivo, 3H-cholesterol-labeled and acetyl LDL-loaded RAW264.7 cells were injected into mice. RESULTS High dose (500µM) of glibenclamide inhibited ABCA1 function and apolipoprotein A-I (apoA-I)-mediated cholesterol efflux, and attenuated ABCA1 expression. Although glimepiride maintained apoA-I-mediated cholesterol efflux from RAW264.7 cells, like glibenclamide, it inhibited ABCA1-mediated cholesterol efflux from transfected HEK293 cells. Similarly, the SUAs inhibited SR-BI-mediated cholesterol efflux from transfected BHK-21 cells. High doses of SUAs increased ABCG1 expression in RAW264.7 cells, promoting HDL-mediated cholesterol efflux in an ABCG1-independent manner. Low doses (0.1-100 µM) of SUAs did not affect cholesterol efflux from macrophages despite dose-dependent increases in ABCA1/G1 expression. Furthermore, they did not change RCT or plasma lipid levels in mice. CONCLUSION High doses of SUAs inhibited the functionality of ABCA1/SR-BI, but not ABCG1. At lower doses, they had no unfavorable effects on cholesterol efflux or overall RCT in vivo. These results indicate that SUAs do not have adverse effects on atherosclerosis contrary to previous findings for glibenclamide.
Collapse
Affiliation(s)
- Yoshio Terao
- Division of Anti-aging, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Song G, Liu J, Zhao Z, Yu Y, Tian H, Yao S, Li G, Qin S. Simvastatin reduces atherogenesis and promotes the expression of hepatic genes associated with reverse cholesterol transport in apoE-knockout mice fed high-fat diet. Lipids Health Dis 2011; 10:8. [PMID: 21241519 PMCID: PMC3031258 DOI: 10.1186/1476-511x-10-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/18/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Statins are first-line pharmacotherapeutic agents for hypercholesterolemia treatment in humans. However the effects of statins on atherosclerosis in mouse models are very paradoxical. In this work, we wanted to evaluate the effects of simvastatin on serum cholesterol, atherogenesis, and the expression of several factors playing important roles in reverse cholesterol transport (RCT) in apoE-/- mice fed a high-fat diet. RESULTS The atherosclerotic lesion formation displayed by oil red O staining positive area was reduced significantly by 35% or 47% in either aortic root section or aortic arch en face in simvastatin administrated apoE-/- mice compared to the control. Plasma analysis by enzymatic method or ELISA showed that high-density lipoprotein-cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) contents were remarkably increased by treatment with simvastatin. And plasma lecithin-cholesterol acyltransferase (LCAT) activity was markedly increased by simvastatin treatment. Real-time PCR detection disclosed that the expression of several transporters involved in reverse cholesterol transport, including macrophage scavenger receptor class B type I, hepatic ATP-binding cassette (ABC) transporters ABCG5, and ABCB4 were induced by simvastatin treatment, the expression of hepatic ABCA1 and apoA-I, which play roles in the maturation of HDL-C, were also elevated in simvastatin treated groups. CONCLUSIONS We demonstrated the anti-atherogenesis effects of simvastatin in apoE-/- mice fed a high-fat diet. We confirmed here for the first time simvastatin increased the expression of hepatic ABCB4 and ABCG5, which involved in secretion of cholesterol and bile acids into the bile, besides upregulated ABCA1 and apoA-I. The elevated HDL-C level, increased LCAT activity and the stimulation of several transporters involved in RCT may all contribute to the anti-atherosclerotic effect of simvastatin.
Collapse
Affiliation(s)
- Guohua Song
- Institute of Atherosclerosis, Taishan Medical University, Taian, Shandong 271000, China
| | - Jia Liu
- Institute of Atherosclerosis, Taishan Medical University, Taian, Shandong 271000, China
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenmei Zhao
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yang Yu
- Institute of Atherosclerosis, Taishan Medical University, Taian, Shandong 271000, China
| | - Hua Tian
- Institute of Atherosclerosis, Taishan Medical University, Taian, Shandong 271000, China
| | - Shutong Yao
- Institute of Atherosclerosis, Taishan Medical University, Taian, Shandong 271000, China
| | - Guoli Li
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shucun Qin
- Institute of Atherosclerosis, Taishan Medical University, Taian, Shandong 271000, China
| |
Collapse
|
34
|
Contribution of D4-F to ABCA1 Expression and Cholesterol Efflux in THP-1 Macrophage-derived Foam Cells. J Cardiovasc Pharmacol 2010; 56:309-19. [DOI: 10.1097/fjc.0b013e3181edaf69] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Nakaya K, Ayaori M, Uto-Kondo H, Hisada T, Ogura M, Yakushiji E, Takiguchi S, Terao Y, Ozasa H, Sasaki M, Komatsu T, Ohsuzu F, Ikewaki K. Cilostazol enhances macrophage reverse cholesterol transport in vitro and in vivo. Atherosclerosis 2010; 213:135-41. [PMID: 20723893 DOI: 10.1016/j.atherosclerosis.2010.07.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 06/21/2010] [Accepted: 07/19/2010] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Recent failure of an HDL-cholesterol raising strategy using a cholesteryl ester transfer protein inhibitor highlights the importance of the anti-atherogenic function rather than plasma concentration of HDL. Cilostazol, a selective inhibitor of phosphodiesterase 3, has been widely used in patients with atherosclerotic diseases and is known to increase HDL-cholesterol. However, it remains unclear whether cilostazol enhances anti-atherogenic properties by promoting reverse cholesterol transport (RCT), a major anti-atherogenic function of HDL. METHODS AND RESULTS We observed that treatment of THP-1 macrophages, human monocyte-derived macrophages, and RAW264.7 cells with cilostazol increased ABCA1 and ABCG1 expression in a concentration-dependent manner, translating into enhanced apoA-I- and HDL-mediated cholesterol efflux from the macrophages. However, other cyclic AMP (cAMP)-elevating agents did not increase ABCA1 gene expression in THP-1 macrophages. Cilostazol did not change intracellular cAMP levels in THP-1 macrophages and RAW264.7 cells, and a protein kinase A (PKA) inhibitor did not affect cilostazol-induced ABCA1 and ABCG1 expression. To further investigate RCT in vivo, (3)H-cholesterol-labeled and acetyl LDL-loaded RAW264.7 cells were intraperitoneally injected into mice and the appearance of the (3)H-tracer was monitored in plasma, liver, and feces. Supporting the in vitro data, cilostazol was found to significantly increase (3)H-tracer levels in both plasma and feces. CONCLUSIONS These findings indicate that cilostazol might provide anti-atherosclerotic effects by promoting RCT through increased ABCA1/G1 expression in macrophages.
Collapse
Affiliation(s)
- Kazuhiro Nakaya
- Division of Anti-aging, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Uto-Kondo H, Ayaori M, Ogura M, Nakaya K, Ito M, Suzuki A, Takiguchi SI, Yakushiji E, Terao Y, Ozasa H, Hisada T, Sasaki M, Ohsuzu F, Ikewaki K. Coffee consumption enhances high-density lipoprotein-mediated cholesterol efflux in macrophages. Circ Res 2010; 106:779-87. [PMID: 20075335 DOI: 10.1161/circresaha.109.206615] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE Association of habitual coffee consumption with coronary heart disease morbidity and mortality has not been established. We hypothesized that coffee may enhance reverse cholesterol transport (RCT) as the antiatherogenic properties of high-density lipoprotein (HDL). OBJECTIVE This study was to investigate whether the phenolic acids of coffee and coffee regulates RCT from macrophages in vitro, ex vivo and in vivo. METHODS AND RESULTS Caffeic acid and ferulic acid, the major phenolic acids of coffee, enhanced cholesterol efflux from THP-1 macrophages mediated by HDL, but not apoA-I. Furthermore, these phenolic acids increased both the mRNA and protein levels of ATP-binding cassette transporter (ABC)G1 and scavenger receptor class B type I (SR-BI), but not ABCA1. Eight healthy volunteers were recruited for the ex vivo study, and blood samples were taken before and 30 minutes after consumption of coffee or water in a crossover study. The mRNA as well as protein levels of ABCG1, SR-BI, and cholesterol efflux by HDL were increased in the macrophages differentiated under autologous sera obtained after coffee consumption compared to baseline sera. Finally, effects of coffee and phenolic acid on in vivo RCT were assessed by intraperitoneally injecting [(3)H]cholesterol-labeled acetyl low-density lipoprotein-loaded RAW264.7 cells into mice, then monitoring appearance of (3)H tracer in plasma, liver, and feces. Supporting in vitro and ex vivo data, ferulic acid was found to significantly increase the levels of (3)H tracer in feces. CONCLUSIONS Coffee intake might have an antiatherogenic property by increasing ABCG1 and SR-BI expression and enhancing HDL-mediated cholesterol efflux from the macrophages via its plasma phenolic acids.
Collapse
Affiliation(s)
- Harumi Uto-Kondo
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hu YW, Wang Q, Ma X, Li XX, Liu XH, Xiao J, Liao DF, Xiang J, Tang CK. TGF-β1 Up-Regulates Expression of ABCA1, ABCG1 and SR-BI through Liver X Receptor α Signaling Pathway in THP-1 Macrophage-Derived Foam Cells. J Atheroscler Thromb 2010; 17:493-502. [DOI: 10.5551/jat.3152] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yan-Wei Hu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
- Laboratory Medicine Center, Nangfang Hospital, Southern Medical University
| | - Qian Wang
- Laboratory Medicine Center, Nangfang Hospital, Southern Medical University
| | - Xin Ma
- Department of Anesthesiology, the First Affiliated Hospital of University of South China
| | - Xiao-Xu Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
| | - Xie-Hong Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
| | - Ji Xiao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
| | - Duan-Fang Liao
- Institute of Pharmacy and Pharmacology, Life Science Research Center, University of South China
| | - Jim Xiang
- Research Unit, Health Research Division, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
| |
Collapse
|
38
|
Nieuwenhuis B, Lüth A, Chun J, Huwiler A, Pfeilschifter J, Schäfer-Korting M, Kleuser B. Involvement of the ABC-transporter ABCC1 and the sphingosine 1-phosphate receptor subtype S1P(3) in the cytoprotection of human fibroblasts by the glucocorticoid dexamethasone. J Mol Med (Berl) 2009; 87:645-57. [PMID: 19370318 DOI: 10.1007/s00109-009-0468-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 03/24/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
Abstract
Glucocorticoids (GC) represent the most commonly used drugs for the treatment of acute and chronic inflammatory skin diseases. However, the topical long-term therapy of GC is limited by the occurrence of skin atrophy. Most interestingly, although GC inhibit proliferation of human fibroblasts, they exert a pronounced anti-apoptopic action. In the present study, we further elucidated the molecular mechanism of the GC dexamethasone (Dex) to protect human fibroblasts from programmed cell death. Dex not only significantly alters the expression of the cytosolic isoenzyme sphingosine kinase 1 but also initiated an enhanced intracellular formation of the sphingolipid sphingosine 1-phosphate (S1P). Investigations using S1P (3) ((-/-)) -fibroblasts revealed that this S1P-receptor subtype is essential for the Dex-induced cytoprotection. Moreover, we demonstrate that the ATP-binding cassette (ABC)-transporter ABCC1 is upregulated by Dex and may represent a crucial carrier to transport S1P from the cytosol to the S1P(3)-receptor subtype.
Collapse
Affiliation(s)
- Barbara Nieuwenhuis
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Ma X, Hu YW, Mo ZC, Li XX, Liu XH, Xiao J, Yin WD, Liao DF, Tang CK. NO-1886 Up-regulates Niemann–Pick C1 Protein (NPC1) Expression Through Liver X Receptor α Signaling Pathway in THP-1 Macrophage-Derived Foam Cells. Cardiovasc Drugs Ther 2009; 23:199-206. [DOI: 10.1007/s10557-009-6165-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Eicosapentaenoic acid reduces ABCA1 serine phosphorylation and impairs ABCA1-dependent cholesterol efflux through cyclic AMP/protein kinase A signaling pathway in THP-1 macrophage-derived foam cells. Atherosclerosis 2008; 204:e35-43. [PMID: 19070858 DOI: 10.1016/j.atherosclerosis.2008.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 11/02/2008] [Accepted: 11/04/2008] [Indexed: 11/22/2022]
Abstract
ABCA1 is a key mediator of cholesterol efflux to apoA-I in cholesterol loaded macrophages, a first step of RCT in vivo. Unsaturated fatty acids can inhibit cholesterol efflux from macrophages by increasing degradation of ABCA1. However, the detailed mechanisms of ABCA1 regulation by unsaturated fatty acids are not fully understood. In the present study, we investigated the effects of EPA on ABCA1 expression and ABCA1-dependent cholesterol efflux and examined the role of cAMP/PKA pathway on the regulation of ABCA1 by EPA in THP-1 macrophage-derived foam cells. Results showed that EPA significantly destabilized ABCA1 protein and reduced ABCA1-dependent cholesterol efflux but had no effect on ABCA1 mRNA expression. We also revealed that EPA markedly reduced cAMP level and PKA activity and ABCA1 serine phosphorylation. PKA-specific activation by PKA agonist markedly compensated the down-regulation of ABCA1 serine phosphorylation and ABCA1-mediated cholesterol efflux by EPA, while, siRNA of PKA leaded to reduce of ABCA1 serine phosphorylation and ABCA1-mediated cholesterol efflux more significantly than EPA. However, EPA-Induced enhancement of degradation rate of ABCA1 protein did not change by treatment with PKA agonist or PKA-siRNA. These results provide evidence that EPA may have dual negative effects on ABCA1 activity by decreasing ABCA1 protein level and by reducing PKA-mediated ABCA1 serine phosphorylation in THP-1 macrophage-derived foam cells.
Collapse
|
41
|
Tang W, Norlin M, Wikvall K. Glucocorticoid receptor-mediated upregulation of human CYP27A1, a potential anti-atherogenic enzyme. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:718-23. [PMID: 18817892 DOI: 10.1016/j.bbalip.2008.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/18/2008] [Accepted: 08/28/2008] [Indexed: 11/26/2022]
Abstract
Sterol 27-hydroxylase (CYP27A1) is required for the hepatic conversion of cholesterol into bile acids and for production of 27-hydroxycholesterol which affects cholesterol homeostasis in several ways. Dexamethasone increases hepatic bile acid biosynthesis and CYP27A1-mediated enzyme activity in HepG2 cells. This study examines the mechanism of the dexamethasone-induced effect on the human CYP27A1 promoter. Dexamethasone treatment of HepG2 cells overexpressed with glucocorticoid receptor alpha (GRalpha) increased the CYP27A1 promoter activity more than four-fold as compared with untreated cells. The GR-antagonist mifepristone almost completely abolished the dexamethasone-induced effect on the promoter activity. Progressive deletion analysis of the CYP27A1 promoter indicated that sequences involved in GR-mediated induction by dexamethasone are present in a region between -1094 and -792. Several putative GRE sites could be found in this region and EMSA experiments revealed that two of these could bind GR. Site-directed mutagenesis of GR-binding sequences in the CYP27A1 promoter identified a GRE at -824/-819 important for GR-mediated regulation of the transcriptional activity. Endogenous and pharmacological glucocorticoids may have a strong impact on several aspects of cholesterol homeostasis and other processes related to CYP27A1-mediated metabolism. The glucocorticoid-mediated induction of human CYP27A1 transcription is of particular interest due to the anti-atherogenic properties ascribed to this enzyme.
Collapse
Affiliation(s)
- Wanjin Tang
- Department of Pharmaceutical Biosciences, Division of Biochemistry, Box 578, University of Uppsala, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
42
|
Iwamoto N, Abe-Dohmae S, Ayaori M, Tanaka N, Kusuhara M, Ohsuzu F, Yokoyama S. ATP-Binding Cassette Transporter A1 Gene Transcription Is Downregulated by Activator Protein 2α. Circ Res 2007; 101:156-65. [PMID: 17556657 DOI: 10.1161/circresaha.107.151746] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) is a rate-limiting factor for high-density lipoprotein (HDL) biogenesis. The ABCA1 gene expression is known to be upregulated by various transcriptional factors. However, negative regulation factors would be better targets for pharmacological modulation of HDL biogenesis. Doxazosin, an α
1
-adrenoceptor blocker, increased ABCA1 mRNA, its protein, and apolipoprotein A-I–mediated HDL biogenesis in THP-1 macrophages and CHO-K1 cells, independent of α
1
-adrenoceptor blockade. Analysis of the human ABCA1 promoter indicated that the region between the positions −368 and −147 that contains an activator protein (AP)2-binding site responsible for the effects of doxazosin. Overexpression of AP2α inhibited ABCA1 transcription in a dose-dependent fashion. Mutation in the AP2-binding site caused increase of the basal promoter activity and canceling both the transactivation by doxazosin and the trans-repression by AP2α. Doxazosin had no effect on ABCA1 mRNA level in HepG2 cells, which lack endogenous AP2α, and it reversed the inhibitory effect of AP2α expression in this type of cells. Chromatin immunoprecipitation and gel shift assays revealed that doxazosin reduced specific binding of AP2α to the ABCA1 promoter, as it suppressed phosphorylation of AP2α. Finally, doxazosin increased ABCA1 expression and plasma HDL in mice. We thus concluded that AP2α negatively regulates the ABCA1 gene transcription. Doxazosin inhibits AP2α activity independent of α
1
-adrenoceptor blockade and increases the ABCA1 expression and HDL biogenesis. AP2α is a potent pharmacological target for the increase of HDL.
Collapse
Affiliation(s)
- Noriyuki Iwamoto
- Biochemistry Department, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Sporstøl M, Mousavi SA, Eskild W, Roos N, Berg T. ABCA1, ABCG1 and SR-BI: hormonal regulation in primary rat hepatocytes and human cell lines. BMC Mol Biol 2007; 8:5. [PMID: 17241464 PMCID: PMC1790708 DOI: 10.1186/1471-2199-8-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 01/22/2007] [Indexed: 11/18/2022] Open
Abstract
Background Scavenger receptor type B class I (SR-BI), ABC transporter A1 (ABCA1) -and G1 (ABCG1) all play important roles in the reverse cholesterol transport. Reverse cholesterol transport is a mechanism whereby the body can eliminate excess cholesterol. Here, the regulation of SR-BI, ABCA1, and ABCG1 by dexamethasone (a synthetic glucocorticoid) and insulin were studied in order to gain more insight into the role of these two hormones in the cholesterol metabolism. Results By use of real time RT-PCR and Western blotting we examined the expression of our target genes. The results show that SR-BI, ABCA1 and ABCG1 mRNA expression increased in response to dexamethasone while insulin treatment reduced the expression in primary rat hepatocytes. The stimulatory effect of dexamethasone was reduced by the addition of the anti-glucocorticoid mifepristone. In HepG2 cells and THP-1 macrophages, however, the effect of dexamethasone was absent or inhibitory with no significant change in the presence of mifepristone. The latter observation may be a result of the low protein expression of glucocorticoid receptor (GR) in these cell lines. Conclusion Our results illustrates that insulin and glucocorticoids, two hormones crucial in the carbohydrate metabolism, also play an important role in the regulation of genes central in reverse cholesterol transport. We found a marked difference in mRNA expression between the primary cells and the two established cell lines when studying the effect of dexamethasone which may result from the varying expression levels of GR.
Collapse
Affiliation(s)
- Marita Sporstøl
- Programme for Cell Biology, Department of Molecular Biosciences, University of Oslo, Norway
| | - Seyed Ali Mousavi
- Programme for Cell Biology, Department of Molecular Biosciences, University of Oslo, Norway
| | - Winnie Eskild
- Programme for Cell Biology, Department of Molecular Biosciences, University of Oslo, Norway
| | - Norbert Roos
- Programme for Cell Biology, Department of Molecular Biosciences, University of Oslo, Norway
| | - Trond Berg
- Programme for Cell Biology, Department of Molecular Biosciences, University of Oslo, Norway
| |
Collapse
|
44
|
Nakaya K, Ayaori M, Hisada T, Sawada S, Tanaka N, Iwamoto N, Ogura M, Yakushiji E, Kusuhara M, Nakamura H, Ohsuzu F. Telmisartan Enhances Cholesterol Efflux from THP-1 Macrophages by Activating PPARγ. J Atheroscler Thromb 2007; 14:133-41. [PMID: 17587765 DOI: 10.5551/jat.14.133] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The ATP binding cassette transporters A1 and G1 (ABCA1/G1) and scavenger receptor class B type I (SR-BI) are key molecules in cholesterol efflux and atherogenesis. These genes are regulated by peroxisome proliferator-activated receptor gamma (PPARgamma) and liver X receptor (LXR). Telmisartan is an angiotensin type 1 receptor blocker which has been reported to act as a ligand for PPARgamma. We investigated whether PPARgamma-activating ARBs affect the expression of these genes and cholesterol efflux from macrophages. METHODS AND RESULTS Telmisartan increased ABCA1, ABCG1 and SR-BI mRNA levels in THP-1 macrophages in a dose- and time-dependent fashion. It also increased their protein levels and enhanced apoA-I- and HDL-mediated cholesterol efflux from macrophages. The knockdown of PPARgamma by siRNA abolished the telmisartan-induced expression of these genes. The knockdown of LXRalpha resulted in the complete and partial abolishment of telmisartan-induced ABCA1 and ABCG1 expression, respectively. We also demonstrated that telmisartan-induced SR-BI expression was dependent on the PPARgamma pathway but not on the LXRalpha pathway. A luciferase assay using an ABCA1 promoter construct showed that telmisartan activated ABCA1 transcription, which was abolished if the LXR binding element was mutated, indicating that increased ABCA1 transcription by telmisartan is LXR-dependent. CONCLUSION Our results showed that telmisartan enhanced both apoA-I- and HDL-mediated cholesterol efflux from macrophages by increasing ABCA1, ABCG1 and SR-BI expression via PPARgamma-dependent and LXR-dependent/independent pathways.
Collapse
Affiliation(s)
- Kazuhiro Nakaya
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|