1
|
Ntekoumes D, Song J, Liu H, Amelung C, Guan Y, Gerecht S. Acute Three-Dimensional Hypoxia Regulates Angiogenesis. Adv Healthc Mater 2025; 14:e2403860. [PMID: 39623803 PMCID: PMC11729260 DOI: 10.1002/adhm.202403860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Indexed: 01/15/2025]
Abstract
Hypoxia elicits a multitude of tissue responses depending on the severity and duration of the exposure. While chronic hypoxia is shown to impact development, regeneration, and cancer, the understanding of the threats of acute (i.e., short-term) hypoxia is limited mainly due to its transient nature. Here, a novel gelatin-dextran (Gel-Dex) hydrogel is established that decouples hydrogel formation and oxygen consumption and thus facilitates 3D sprouting from endothelial spheroids and, subsequently, induces hypoxia "on-demand." The Gel-Dex platform rapidly achieves acute moderate hypoxic conditions without compromising its mechanical properties. Acute exposure to hypoxia leads to increased endothelial cell migration and proliferation, promoting the total length and number of vascular sprouts. This work finds that the enhanced angiogenic response is mediated by reactive oxygen species, independently of hypoxia-inducible factors. Reactive oxygen species-dependent matrix metalloproteinases activity mediated angiogenic sprouting is observed following acute hypoxia. Overall, the Gel-Dex hydrogel offers a novel platform to study how "on-demand" acute moderate hypoxia impacts angiogenesis, with broad applicability to the development of novel sensing technologies.
Collapse
Affiliation(s)
- Dimitris Ntekoumes
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Jiyeon Song
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Haohao Liu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Connor Amelung
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Ya Guan
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Sharon Gerecht
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
2
|
Alruwaili N, Kandhi S, Froogh G, Kelly MR, Sun D, Wolin MS. Superoxide-Mediated Upregulation of MMP9 Participates in BMPR2 Destabilization and Pulmonary Hypertension Development. Antioxidants (Basel) 2023; 12:1961. [PMID: 38001814 PMCID: PMC10669489 DOI: 10.3390/antiox12111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND AND AIMS we previously reported in studies on organoid-cultured bovine pulmonary arteries that pulmonary hypertension (PH) conditions of exposure to hypoxia or endothelin-1 caused a loss of a cartilage oligomeric matrix protein (COMP) stabilization of bone morphogenetic protein receptor-2 (BMPR2) function, a known key process contributing to pulmonary hypertension development. Based on subsequent findings, these conditions were associated with an extracellular superoxide-mediated increase in matrix metalloproteinase 9 (MMP-9) expression. We investigated if this contributed to PH development using mice deficient in MMP9. RESULTS wild-type (WT) mice exposed to Sugen/Hypoxia (SuHx) to induce PH had increased levels of MMP9 in their lungs. Hemodynamic measures from MMP9 knockout mice (MMP9 KO) indicated they had attenuated PH parameters compared to WT mice based on an ECHO assessment of pulmonary artery pressure, right ventricular systolic pressure, and Fulton index hypertrophy measurements. In vitro vascular reactivity studies showed impaired endothelium-dependent and endothelium-independent NO-associated vasodilatory responses in the pulmonary arteries of SuHx mice and decreased lung levels of COMP and BMPR2 expression. These changes were attenuated in MMP9 KO mice potentially through preserving COMP-dependent stabilization of BMPR2. INNOVATION this study supports a new function of superoxide in increasing MMP9 and the associated impairment of BMPR2 in promoting PH development which could be a target for future therapies. CONCLUSION superoxide, through promoting increases in MMP9, mediates BMPR2 depletion and its consequent control of vascular function in response to PH mediators and the SuHx mouse model of PH.
Collapse
Affiliation(s)
- Norah Alruwaili
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA; (N.A.); (D.S.)
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA; (N.A.); (D.S.)
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA; (N.A.); (D.S.)
| | - Melissa R. Kelly
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA; (N.A.); (D.S.)
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA; (N.A.); (D.S.)
| | - Michael S. Wolin
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA; (N.A.); (D.S.)
| |
Collapse
|
3
|
Trotta MC, Pieretti G, Petrillo F, Alessio N, Hermenean A, Maisto R, D'Amico M. Resolvin D1 reduces mitochondrial damage to photoreceptors of primary retinal cells exposed to high glucose. J Cell Physiol 2019; 235:4256-4267. [PMID: 31612492 DOI: 10.1002/jcp.29303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/30/2019] [Indexed: 01/04/2023]
Abstract
No study has investigated the interaction of Resolvin D1 (RvD1) with mitochondrial damage of retinal cells caused by diabetes. This study aims to investigate the effects of RvD1 (50 nM) on morphological and biochemical indicators of mitochondrial damage in primary retinal cells exposed to 30 mM d-glucose high glucose (HG). HG-cells exhibited photoreceptor damage characterized by short and small mitochondria with prevalent mitochondrial disruption, fragmentation, and aggregation. The cells had low mitochondrial transporters TIMM44 and TOMM40, Connexin 43, NAD/NADH ratio, and ATP levels, whereas increased cytosolic cytochrome c. Moreover, they expressed high cytosolic metalloproteinase matrix metallopeptidase 9 (MMP-9) and MMP-2 activity. HG-cells treated with RvD1 (50 nM) showed reduced reactive oxygen species levels, improved mitochondrial morphology and function, promoted mitochondrial DNA repair by OGG1, and reduced cell apoptosis and metalloproteinase activity. Therefore, RvD1 induces protection from high glucose-load to the retinal cell and promotes their survival by decreasing cytosolic MMP and mitochondrial damage.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gorizio Pieretti
- Multidisciplinary Department of Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Petrillo
- Department of Ophthalmology, School of Medicine, University of Catania, Catania, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anca Hermenean
- Department of Life Science, Vasile Goldis Western University of Arad, Arad, Romania
| | - Rosa Maisto
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
4
|
Wang Y, Cao P, Alshwmi M, Jiang N, Xiao Z, Jiang F, Gu J, Wang X, Sun X, Li S. GPX2 suppression of H 2O 2 stress regulates cervical cancer metastasis and apoptosis via activation of the β-catenin-WNT pathway. Onco Targets Ther 2019; 12:6639-6651. [PMID: 31695405 PMCID: PMC6707354 DOI: 10.2147/ott.s208781] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that glutathione peroxidase 2 (GPX2) plays important roles in the tumorigenesis and progression of various human cancers, such as colorectal carcinomas and lung adenocarcinomas. However, the role of GPX2 in cervical cancer is unclear. In this study, we identified the role of GPX2 in cervical cancer tissues and cell lines. MATERIALS AND METHODS The basal mRNA and protein expression of GPX2 in cervical cancer cells and a series of key molecules in the epithelial to mesenchymal transition (EMT) and WNT/β-catenin pathways were examined via real time fluorescence quantitative PCR (qRT-PCR) and Western blot assays. The biological phenotype of the cervical cancer cell lines was detected by the cloning formation and transwell assays, and intracellular reactive oxygen species (ROS) levels were detected by flow cytometry. Finally, the GPX2 expression level in 100 clinical cervical tissues was examined by immunohistochemistry. RESULTS We found that GPX2 was highly expressed in cervical cancer tissues compared to normal individuals and promoted the proliferation and metastasis of cervical cancer cells, and this promotion correlated with the activation of EMT and WNT/β-catenin signaling in vitro. GPX2 was determined to reduce apoptotic damage by reducing hydroperoxides. According to the characteristics and verification of GPX2, this series of phenotypes is clearly related to oxidative stress in cells. Furthermore, we verified that GPX2 was highly expressed in cervical cancer tissues and promoted the metastasis of cervical cancer. CONCLUSION In summary, we found that GPX2 was highly expressed in cervical cancer cells and promoted the proliferation and metastasis of cervical cancer by affecting oxidative stress. Our study provides a new target for the clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yingxin Wang
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Penglong Cao
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Mohammed Alshwmi
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Nan Jiang
- Department of Pathology, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Zhen Xiao
- Department of Gynecology, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Fengquan Jiang
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Juebin Gu
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Xiaonan Wang
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Xiaoye Sun
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Shijun Li
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| |
Collapse
|
5
|
Chandrasekaran A, Idelchik MDPS, Melendez JA. Redox control of senescence and age-related disease. Redox Biol 2017; 11:91-102. [PMID: 27889642 PMCID: PMC5126126 DOI: 10.1016/j.redox.2016.11.005] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022] Open
Abstract
The signaling networks that drive the aging process, associated functional deterioration, and pathologies has captured the scientific community's attention for decades. While many theories exist to explain the aging process, the production of reactive oxygen species (ROS) provides a signaling link between engagement of cellular senescence and several age-associated pathologies. Cellular senescence has evolved to restrict tumor progression but the accompanying senescence-associated secretory phenotype (SASP) promotes pathogenic pathways. Here, we review known biological theories of aging and how ROS mechanistically control senescence and the aging process. We also describe the redox-regulated signaling networks controlling the SASP and its important role in driving age-related diseases. Finally, we discuss progress in designing therapeutic strategies that manipulate the cellular redox environment to restrict age-associated pathology.
Collapse
Affiliation(s)
- Akshaya Chandrasekaran
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA
| | | | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| |
Collapse
|
6
|
Daniel KB, Callmann CE, Gianneschi NC, Cohen SM. Dual-responsive nanoparticles release cargo upon exposure to matrix metalloproteinase and reactive oxygen species. Chem Commun (Camb) 2016; 52:2126-8. [PMID: 26696280 DOI: 10.1039/c5cc09164k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Micellar nanoparticles were designed to be responsive to matrix metalloproteinases (MMPs) and reactive oxygen species (ROS), each of which is upregulated in the pathology of inflammatory diseases. The amphiphilic polymer-based nanoparticle system consists of a hydrophilic shell responsible for particle morphology change and aggregation, together with a hydrophobic block designed to release cargo in the presence of ROS.
Collapse
Affiliation(s)
- Kevin B Daniel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Cassandra E Callmann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Nathan C Gianneschi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
7
|
Schreier B, Schwerdt G, Heise C, Bethmann D, Rabe S, Mildenberger S, Gekle M. Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1519-33. [PMID: 27012600 DOI: 10.1016/j.bbamcr.2016.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 11/26/2022]
Abstract
Besides their importance for the vascular tone, vascular smooth muscle cells (VSMC) also contribute to pathophysiological vessel alterations. Various G-protein coupled receptor ligands involved in vascular dysfunction and remodeling can transactivate the epidermal growth factor receptor (EGFR) of VSMC, yet the importance of EGFR transactivation for the VSMC phenotype is incompletely understood. The aims of this study were (i) to characterize further the importance of the VSMC-EGFR for proliferation, migration and marker gene expression for inflammation, fibrosis and reactive oxygen species (ROS) homeostasis and (ii) to test the hypothesis that vasoactive substances (endothelin-1, phenylephrine, thrombin, vasopressin and ATP) rely differentially on the EGFR with respect to the abovementioned phenotypic alterations. In primary, aortic VSMC from mice without conditional deletion of the EGFR, proliferation, migration, marker gene expression (inflammation, fibrosis and ROS homeostasis) and cell signaling (ERK 1/2, intracellular calcium) were analyzed. VSMC-EGFR loss reduced collective cell migration and single cell migration probability, while no difference between the genotypes in single cell velocity, chemotaxis or marker gene expression could be observed under control conditions. EGF promoted proliferation, collective cell migration, chemokinesis and chemotaxis and leads to a proinflammatory gene expression profile in wildtype but not in knockout VSMC. Comparing the impact of five vasoactive substances (all reported to transactivate EGFR and all leading to an EGFR dependent increase in ERK1/2 phosphorylation), we demonstrate that the importance of EGFR for their action is substance-dependent and most apparent for crowd migration but plays a minor role for gene expression regulation.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany.
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Christian Heise
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Daniel Bethmann
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Sindy Rabe
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| |
Collapse
|
8
|
Kalani A, Pushpakumar SB, Vacek JC, Tyagi SC, Tyagi N. Inhibition of MMP-9 attenuates hypertensive cerebrovascular dysfunction in Dahl salt-sensitive rats. Mol Cell Biochem 2016; 413:25-35. [PMID: 26800984 DOI: 10.1007/s11010-015-2623-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/08/2015] [Indexed: 12/31/2022]
Abstract
Hypertensive cerebropathy is a pathological condition associated with cerebral edema and disruption of the blood-brain barrier. However, the molecular pathways leading to this condition remains obscure. We hypothesize that MMP-9 inhibition can help reducing blood pressure and endothelial disruption associated with hypertensive cerebropathy. Dahl salt-sensitive (Dahl/SS) and Lewis rats were fed with high-salt diet for 6 weeks and then treated without and with GM6001 (MMP inhibitor). Treatment of GM6001 (1.2 mg/kg body weight) was administered through intraperitoneal injections on alternate days for 4 weeks. GM6001 non-administered groups were given vehicle (0.9% NaCl in water) treatment as control. Blood pressure was measured by tail-cuff method. The brain tissues were analyzed for oxidative/nitrosative stress, vascular MMP-9 expression, and tight junction proteins (TJPs). GM6001 treatment significantly reduced mean blood pressure in Dahl/SS rats which was significantly higher in vehicle-treated Dahl/SS rats. MMP-9 expression and activity was also considerably reduced in GM6001-treated Dahl/SS rats, which was otherwise notably increased in vehicle-treated Dahl/SS rats. Similarly MMP-9 expression in cerebral vessels of GM6001-treated Dahl/SS rats was also alleviated, as devised by immunohistochemistry analysis. Oxidative/nitrosative stress was significantly higher in vehicle-treated Dahl/SS rats as determined by biochemical estimations of malondialdehyde, nitrite, reactive oxygen species, and glutathione levels. RT-PCR and immunohistochemistry analysis further confirmed considerable alterations of TJPs in hypertensive rats. Interestingly, GM6001 treatment significantly ameliorated oxidative/nitrosative stress and TJPs, which suggest restoration of vascular integrity in Dahl/SS rats. These findings determined that pharmacological inhibition of MMP-9 in hypertensive Dahl-SS rats attenuate high blood pressure and hypertension-associated cerebrovascular pathology.
Collapse
Affiliation(s)
- Anuradha Kalani
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, 500 South Preston Street, Health Sciences Centre, A-1201, Louisville, KY, 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, 500 South Preston Street, Health Sciences Centre, A-1201, Louisville, KY, 40202, USA
| | - Jonathan C Vacek
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, 500 South Preston Street, Health Sciences Centre, A-1201, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, 500 South Preston Street, Health Sciences Centre, A-1201, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, 500 South Preston Street, Health Sciences Centre, A-1201, Louisville, KY, 40202, USA.
| |
Collapse
|
9
|
Bereiter-Hahn J. Do we age because we have mitochondria? PROTOPLASMA 2014; 251:3-23. [PMID: 23794102 DOI: 10.1007/s00709-013-0515-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
The process of aging remains a great riddle. Production of reactive oxygen species (ROS) by mitochondria is an inevitable by-product of respiration, which has led to a hypothesis proposing the oxidative impairment of mitochondrial components (e.g., mtDNA, proteins, lipids) that initiates a vicious cycle of dysfunctional respiratory complexes producing more ROS, which again impairs function. This does not exclude other processes acting in parallel or targets for ROS action in other organelles than mitochondria. Given that aging is defined as the process leading to death, the role of mitochondria-based impairments in those organ systems responsible for human death (e.g., the cardiovascular system, cerebral dysfunction, and cancer) is described within the context of "garbage" accumulation and increasing insulin resistance, type 2 diabetes, and glycation of proteins. Mitochondrial mass, fusion, and fission are important factors in coping with impaired function. Both biogenesis of mitochondria and their degradation are important regulatory mechanisms stimulated by physical exercise and contribute to healthy aging. The hypothesis of mitochondria-related aging should be revised to account for the limitations of the degradative capacity of the lysosomal system. The processes involved in mitochondria-based impairments are very similar across a large range of organisms. Therefore, studies on model organisms from yeast, fungi, nematodes, flies to vertebrates, and from cells to organisms also add considerably to the understanding of human aging.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Institut für Zellbiologie und Neurowissenschaften, Goethe Universität Frankfurt am Main, Max-von-Lauestrasse 13, 60438, Frankfurt am Main, Germany,
| |
Collapse
|
10
|
Tamura M, Matsui H, Tomita T, Sadakata H, Indo HP, Majima HJ, Kaneko T, Hyodo I. Mitochondrial reactive oxygen species accelerate gastric cancer cell invasion. J Clin Biochem Nutr 2013; 54:12-7. [PMID: 24426185 PMCID: PMC3882482 DOI: 10.3164/jcbn.13-36] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/30/2013] [Indexed: 01/05/2023] Open
Abstract
Tumor invasion is the most important factor to decide patient's prognosis. The relation between reactive oxygen species and tumor invasion is mainly reported that nicotinamide adenine dinucleotide phosphate oxidase in the cell membrane is a reactive oxygen species producer for formulating an invadopodia. On the other hand, mitochondrion was known as one of the most important reactive oxygen species-producer in the cell via an energy transfer system. However, the relation between mitochondrial reactive oxygen species and the tumor invasion was not well clarified. In this study, we evaluated the relation between mitochondrial reactive oxygen species and tumor invasion using a normal gastric mucosal cell-line (RGM-1) and a cancerous mutant RGM-1 cell-line (RGK-1). Manganese superoxide dismutase-expressing RGK-1 cell-lines were used for a scavenging mitochondrial reactive oxygen species. The cells have been evaluated their movement ability as follows; cellular ruffling frequencies, wound healing assay to evaluate horizontal cellular migration, and invasion assay using matrigel to analyze vertical cellular migration. All cellular movement abilities were inhibited by scavenging mitochondrial reactive oxygen species with manganese superoxide dismutase. Therefore mitochondrial reactive oxygen species was one of factors enhancing the tumor invasion in gastric cancer.
Collapse
Affiliation(s)
- Masato Tamura
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hirofumi Matsui
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Tsutomu Tomita
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hisato Sadakata
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hiroko P Indo
- Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragawa, Kagoshima, Japan
| | - Hideyuki J Majima
- Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragawa, Kagoshima, Japan
| | - Tsuyoshi Kaneko
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ichinosuke Hyodo
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
11
|
Cillero-Pastor B, Rego-Pérez I, Oreiro N, Fernandez-Lopez C, Blanco FJ. Mitochondrial respiratory chain dysfunction modulates metalloproteases -1, -3 and -13 in human normal chondrocytes in culture. BMC Musculoskelet Disord 2013; 14:235. [PMID: 23937653 PMCID: PMC3750811 DOI: 10.1186/1471-2474-14-235] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 08/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrion has an important role in the osteoarthritis (OA) pathology. We have previously demonstrated that the alteration of the mitochondrial respiratory chain (MRC) contributes to the inflammatory response of the chondrocyte. However its implication in the process of cartilage destruction is not well understood yet. In this study we have investigated the relationship between the MRC dysfunction and the regulation of metalloproteases (MMPs) in human normal chondrocytes in culture. METHODS Human normal chondrocytes were isolated from human knees obtained form autopsies of donors without previous history of rheumatic disease. Rotenone, 3-Nitropropionic acid (NPA), Antimycin A (AA), Sodium azide and Oligomycin were used to inhibit the activity of the mitochondrial complexes I, II, III, IV and V respectively. The mRNA expression of MMPs -1, -3 and -13 was studied by real time PCR. The intracellular presence of MMP proteins was evaluated by western blot. The liberation of these proteins to the extracellular media was evaluated by ELISA. The presence of proteoglycans in tissue was performed with tolouidin blue and safranin/fast green. Immunohistochemistry was used for evaluating MMPs on tissue. RESULTS Firstly, cells were treated with the inhibitors of the MRC for 24 hours and mRNA expression was evaluated. An up regulation of MMP-1 and -3 mRNA levels was observed after the treatment with Oligomycin 5 and 100 μg/ml (inhibitor of the complex V) for 24 hours. MMP-13 mRNA expression was reduced after the incubation with AA 20 and 60 μg/ml (inhibitor of complex III) and Oligomycin. Results were validated at protein level observing an increase in the intracellular levels of MMP-1 and -3 after Oligomycin 25 μg/ml stimulation [(15.20±8.46 and 4.59±1.83 vs. basal=1, respectively (n=4; *P<0.05)]. However, AA and Oligomycin reduced the intracellular levels of the MMP-13 protein (0.70±0.16 and 0.3±0.24, respectively vs. basal=1). In order to know whether the MRC dysfunction had an effect on the liberation of MMPs, their levels were evaluated in the supernatants. After 36 hours of stimulation, values were: MMP-1=18.06±10.35 with Oligomycin 25 μg/ml vs. basal=1, and MMP-3=8.49±4.32 with Oligomycin 5 μg/ml vs. basal=1 (n=5; *P<0.05). MMP-13 levels in the supernatants were reduced after AA 60 μg/ml treatment (0.50±0.13 vs. basal=1) and Oligomycin 25 μg/ml (0.41±0.14 vs. basal=1); (n=5; *P<0.05). The treatment of explants with Oligomycin, showed an increase in the positivity of MMP-1 and -3. Explants stimulated with AA or Oligomycin revealed a decrease in MMP-13 expression. Proteoglycan staining demonstrated a reduction of proteoglycan levels in the tissues treated with Oligomycin. CONCLUSIONS These results reveal that MRC dysfunction modulates the MMPs expression in human normal chondrocytes demonstrating its role in the regulation of the cartilage destruction.
Collapse
|
12
|
Schreier B, Rabe S, Schneider B, Bretschneider M, Rupp S, Ruhs S, Neumann J, Rueckschloss U, Sibilia M, Gotthardt M, Grossmann C, Gekle M. Loss of epidermal growth factor receptor in vascular smooth muscle cells and cardiomyocytes causes arterial hypotension and cardiac hypertrophy. Hypertension 2012; 61:333-40. [PMID: 23248150 DOI: 10.1161/hypertensionaha.112.196543] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, contributes to parainflammatory dysregulation, possibly causing cardiovascular dysfunction and remodeling. The physiological role of cardiovascular EGFR is not completely understood. To investigate the physiological importance of EGFR in vascular smooth muscle cells and cardiomyocytes, we generated a mouse model with targeted deletion of the EGFR using the SM22 (smooth muscle-specific protein 22) promoter. While the reproduction of knockout animals was not impaired, life span was significantly reduced. Systolic blood pressure was not different between the 2 genotypes-neither in tail cuff nor in intravascular measurements-whereas total peripheral vascular resistance, diastolic blood pressure, and mean blood pressure were reduced. Loss of vascular smooth muscle cell-EGFR results in a dilated vascular phenotype with minor signs of fibrosis and inflammation. Echocardiography, necropsy, and histology revealed a dramatic eccentric cardiac hypertrophy in knockout mice (2.5-fold increase in heart weight), with increased stroke volume and cardiac output as well as left ventricular wall thickness and lumen. Cardiac hypertrophy is accompanied by an increase in cardiomyocyte volume, a strong tendency to cardiac fibrosis and inflammation, as well as enhanced NADPH-oxidase 4 and hypertrophy marker expression. Thus, in cardiomyocytes, EGFR prevents excessive hypertrophic growth through its impact on reactive oxygen species balance, whereas in vascular smooth muscle cells EGFR contributes to the appropriate vascular wall architecture and vessel reactivity, thereby supporting a physiological vascular tone.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Muradashvili N, Qipshidze N, Munjal C, Givvimani S, Benton RL, Roberts AM, Tyagi SC, Lominadze D. Fibrinogen-induced increased pial venular permeability in mice. J Cereb Blood Flow Metab 2012; 32:150-63. [PMID: 21989482 PMCID: PMC3256415 DOI: 10.1038/jcbfm.2011.144] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Elevated blood level of Fibrinogen (Fg) is commonly associated with vascular dysfunction. We tested the hypothesis that at pathologically high levels, Fg increases cerebrovascular permeability by activating matrix metalloproteinases (MMPs). Fibrinogen (4 mg/mL blood concentration) or equal volume of phosphate-buffered saline (PBS) was infused into male wild-type (WT; C57BL/6J) or MMP-9 gene knockout (MMP9-/-) mice. Pial venular leakage of fluorescein isothiocyanate-bovine serum albumin to Fg or PBS alone and to topically applied histamine (10(-5) mol/L) were assessed. Intravital fluorescence microscopy and image analysis were used to assess cerebrovascular protein leakage. Pial venular macromolecular leakage increased more after Fg infusion than after infusion of PBS in both (WT and MMP9-/-) mice but was more pronounced in WT compared with MMP9-/- mice. Expression of vascular endothelial cadherin (VE-cadherin) was less and plasmalemmal vesicle-associated protein-1 (PV-1) was greater in Fg-infused than in PBS-infused both mice groups. However, in MMP9-/- mice, VE-cadherin expression was greater and PV-1 expression was less than in WT mice. These data indicate that at higher levels, Fg compromises microvascular integrity through activation of MMP-9 and downregulation of VE-cadherin and upregulation of PV-1. Our results suggest that elevated blood level of Fg could have a significant role in cerebrovascular dysfunction and remodeling.
Collapse
Affiliation(s)
- Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Muradashvili N, Tyagi N, Tyagi R, Munjal C, Lominadze D. Fibrinogen alters mouse brain endothelial cell layer integrity affecting vascular endothelial cadherin. Biochem Biophys Res Commun 2011; 413:509-14. [PMID: 21920349 DOI: 10.1016/j.bbrc.2011.07.133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 07/31/2011] [Indexed: 12/24/2022]
Abstract
Many inflammatory diseases are associated with elevated blood concentration of fibrinogen (Fg) leading to vascular dysfunction. We showed that pathologically high (4 mg/ml) content of Fg disrupts integrity of endothelial cell (EC) layer and causes macromolecular leakage affecting tight junction proteins. However, role of adherence junction proteins, particularly vascular endothelial cadherin (VE-cadherin) and matrix metalloproteinase-9 (MMP-9) in this process is not clear. We tested the hypothesis that at high levels Fg affects integrity of mouse brain endothelial cell (MBEC) monolayer through activation of MMP-9 and downregulation of VE-cadherin expression and in part its translocation to the cytosol. The effect of Fg on cultured MBEC layer integrity was assessed by measuring transendothelial electrical resistance. Cellular expression and translocation of VE-cadherin were assessed by Western blot and immunohistochemical analyses, (respectively). Our results suggest that high content of Fg decreased VE-cadherin expression at protein and mRNA levels. Fg induced translocation of VE-cadherin to cytosol, which led to disruption of cell-to-cell interaction and cell to subendothelial matrix attachment. Fg-induced alterations in cell layer integrity and their attachment were diminished during inhibition of MMP-9 activity. Thus Fg compromises EC layer integrity causing downregulation and translocation of VE-cadherin and through MMP-9 activation. These results suggest that increased level of Fg could play a significant role in vascular dysfunction and remodeling.
Collapse
Affiliation(s)
- Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
15
|
Dodd T, Jadhav R, Wiggins L, Stewart J, Smith E, Russell JC, Rocic P. MMPs 2 and 9 are essential for coronary collateral growth and are prominently regulated by p38 MAPK. J Mol Cell Cardiol 2011; 51:1015-25. [PMID: 21884701 DOI: 10.1016/j.yjmcc.2011.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/19/2022]
Abstract
Transient, repetitive ischemia (RI) stimulates coronary collateral growth (CCG) in normal, healthy (SD) rats, which requires p38 MAPK activation. In contrast, RI does not induce CCG in the metabolic syndrome (JCR) rats, which is associated with lack of p38 MAPK activation. The functional consequences of p38 MAPK activation in CCG remain unknown. Theoretically, effective collateral growth would require extracellular matrix remodeling; however, direct assessment as well as identification of proteases responsible for this degradation are lacking. In this study, we investigated the role of p38 MAPK in the regulation of matrix metalloproteinases 2 and 9 (MMPs 2 and 9) and their requirement for CCG in SD vs. JCR rats. The rats underwent the RI protocol (8 LAD occlusions, 40s each, every 20min, in 8h cycles for 0, 3, 6, or 9days). MMP expression was measured in the ischemic, collateral-dependent zone (CZ) and the normal zone (NZ) by Western blot, and MMP activity by zymography. Expression and activation of MMP 2 and 9 were significantly increased (~3.5 fold) on day 3 of RI in the CZ of SD rats. In vivo p38 MAPK inhibition completely blocked RI-induced MMP 2 and 9 expression and activation. MMP activation correlated with increased degradation of components of the basement membrane and the vascular elastic laminae: elastin (~3 fold), laminin (~3 fold) and type IV collagen (~2 fold). This was blocked by MMP 2 and 9 inhibition, which also abolished RI-induced CCG. In contrast, in JCR rats, RI did not induce expression or activation of MMP 2 or 9 and there was no associated degradation of elastin, laminin or type IV collagen. In conclusion, MMP 2 and 9 activation is essential for CCG and is mediated, in part, by p38 MAPK. Furthermore, compromised CCG in the metabolic syndrome may be partially due to the lack of p38 MAPK-dependent activation of MMP 2 and 9 and resultant decreased extracellular matrix degradation.
Collapse
Affiliation(s)
- Tracy Dodd
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011; 91:327-87. [PMID: 21248169 PMCID: PMC3844671 DOI: 10.1152/physrev.00047.2009] [Citation(s) in RCA: 1500] [Impact Index Per Article: 107.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial cells (ECs) are exposed to hemodynamic forces, which modulate EC functions and vascular biology/pathobiology in health and disease. The flow patterns and hemodynamic forces are not uniform in the vascular system. In straight parts of the arterial tree, blood flow is generally laminar and wall shear stress is high and directed; in branches and curvatures, blood flow is disturbed with nonuniform and irregular distribution of low wall shear stress. Sustained laminar flow with high shear stress upregulates expressions of EC genes and proteins that are protective against atherosclerosis, whereas disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote atherogenesis. These findings have led to the concept that the disturbed flow pattern in branch points and curvatures causes the preferential localization of atherosclerotic lesions. Disturbed flow also results in postsurgical neointimal hyperplasia and contributes to pathophysiology of clinical conditions such as in-stent restenosis, vein bypass graft failure, and transplant vasculopathy, as well as aortic valve calcification. In the venous system, disturbed flow resulting from reflux, outflow obstruction, and/or stasis leads to venous inflammation and thrombosis, and hence the development of chronic venous diseases. Understanding of the effects of disturbed flow on ECs can provide mechanistic insights into the role of complex flow patterns in pathogenesis of vascular diseases and can help to elucidate the phenotypic and functional differences between quiescent (nonatherogenic/nonthrombogenic) and activated (atherogenic/thrombogenic) ECs. This review summarizes the current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications. Such information can contribute to our understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Jeng-Jiann Chiu
- Division of Medical Engineering Research, National Health Research Institutes, Taiwan
| | | |
Collapse
|
17
|
Pires PW, Deutsch C, McClain JL, Rogers CT, Dorrance AM. Tempol, a superoxide dismutase mimetic, prevents cerebral vessel remodeling in hypertensive rats. Microvasc Res 2010; 80:445-52. [PMID: 20600163 PMCID: PMC2981634 DOI: 10.1016/j.mvr.2010.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/25/2010] [Accepted: 06/11/2010] [Indexed: 02/07/2023]
Abstract
Increased reactive oxygen species (ROS) production is involved in the pathogenesis of hypertension and stroke. The effects of ROS on cerebral vessels from hypertensive rats have not been studied. We hypothesized that tempol, a superoxide dismutase mimetic, would prevent middle cerebral artery (MCA) remodeling in stroke-prone spontaneously hypertensive rats (SHRSP). Six-week-old male SHRSP were treated with tempol (1mM) for 6weeks. The MCA was then removed and mounted in a pressure myograph to study tone generation, vessel reactivity, and passive vessel structure. Data are shown as mean±SEM, tempol vs. control. Plasma thiobarbituric acid reactive substances (TBARS) were decreased by tempol treatment (14.15±1.46 vs. 20.55±1.25nM of malondialdehyde [MDA]/ml, p=0.008). Maximum serotonin-induced constriction was increased by tempol treatment, without changes in dilation to adenosine diphosphate or tone generation. At an intralumenal pressure of 80mmHg, tempol caused a dramatic increase in the MCA lumen diameter (246±5 vs. 207±3μm, p<0.001), outer diameter (281±5 vs. 241±3μm, p<0.001), lumen cross-sectional area, and vessel cross-sectional area. Collagen IV mRNA expressions were increased by 2.4-fold after tempol treatment. These results suggest that ROS are involved in the remodeling of the cerebral vasculature of SHRSP and that ROS scavenging can attenuate this process.
Collapse
Affiliation(s)
- Paulo Wagner Pires
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
18
|
Abdallah RT, Keum JS, El-Shewy HM, Lee MH, Wang B, Gooz M, Luttrell DK, Luttrell LM, Jaffa AA. Plasma kallikrein promotes epidermal growth factor receptor transactivation and signaling in vascular smooth muscle through direct activation of protease-activated receptors. J Biol Chem 2010; 285:35206-15. [PMID: 20826789 DOI: 10.1074/jbc.m110.171769] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kallikrein-kinin system, along with the interlocking renin-angiotensin system, is a key regulator of vascular contractility and injury response. The principal effectors of the kallikrein-kinin system are plasma and tissue kallikreins, proteases that cleave high molecular weight kininogen to produce bradykinin. Most of the cellular actions of kallikrein (KK) are thought to be mediated by bradykinin, which acts via G protein-coupled B1 and B2 bradykinin receptors on VSMCs and endothelial cells. Here, we find that primary aortic vascular smooth muscle but not endothelial cells possess the ability to activate plasma prekallikrein. Surprisingly, exposing VSMCs to prekallikrein leads to activation of the ERK1/2 mitogen-activated protein kinase cascade via a mechanism that requires kallikrein activity but does not involve bradykinin receptors. In transfected HEK293 cells, we find that plasma kallikrein directly activates G protein-coupled protease-activated receptors (PARs) 1 and 2, which possess consensus kallikrein cleavage sites, but not PAR4. In vascular smooth muscles, KK stimulates ADAM (a disintegrin and metalloprotease) 17 activity via a PAR1/2 receptor-dependent mechanism, leading sequentially to release of the endogenous ADAM17 substrates, amphiregulin and tumor necrosis factor-α, metalloprotease-dependent transactivation of epidermal growth factor receptors, and metalloprotease and epidermal growth factor receptor-dependent ERK1/2 activation. These results suggest a novel mechanism of bradykinin-independent kallikrein action that may contribute to the regulation of vascular responses in pathophysiologic states, such as diabetes mellitus.
Collapse
Affiliation(s)
- Rany T Abdallah
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang H, Sunnarborg SW, McNaughton KK, Johns TG, Lee DC, Faber JE. Heparin-binding epidermal growth factor-like growth factor signaling in flow-induced arterial remodeling. Circ Res 2008; 102:1275-85. [PMID: 18436796 DOI: 10.1161/circresaha.108.171728] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) is activated by reduced endothelial shear stress and stimulates smooth muscle cell proliferation in vitro. Moreover, HB-EGF is augmented at sites of intimal hyperplasia and atherosclerosis, conditions favored by low/disturbed shear stress. We thus tested whether HB-EGF contributes to low flow-induced negative hypertrophic remodeling (FINR) of a mouse carotid artery. Blood flow was surgically decreased in the left and increased in the right common carotid arteries. After 21 days, the left carotid artery exhibited lumen narrowing, thickening of intima-media and adventitia, and increased circumference that were inhibited by approximately 50% in HB-EGF(+/-) and approximately 90% in HB-EGF(-/-) mice. FINR was also inhibited by the EGF receptor inhibitor AG1478. In contrast, eutrophic outward remodeling of the right carotid artery was unaffected in HB-EGF(+/-) and HB-EGF(-/-) mice, nor by AG1478. FINR-induced proliferation and leukocyte accumulation were reduced in HB-EGF(-/-). FINR was associated with increased reactive oxygen species, increased expression of pro-HB-EGF and tumor necrosis factor alpha-converting enzyme (pro-HB-EGF sheddase), increased phosphorylation of EGF receptor and extracellular signal-regulated kinase 1/2, and increased nuclear factor kappaB activity. Apocynin and deletion of p47(phox) inhibited FINR, whereas deletion of HB-EGF abolished nuclear factor kappaB activation in smooth muscle cells. These findings suggest that HB-EGF signaling is required for low flow-induced hypertrophic remodeling and may participate in vascular wall disease and remodeling.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599-7545, USA
| | | | | | | | | | | |
Collapse
|
20
|
Fernandez-Patron C. Therapeutic potential of the epidermal growth factor receptor transactivation in hypertension: a convergent signaling pathway of vascular tone, oxidative stress, and hypertrophic growth downstream of vasoactive G-protein-coupled receptors? Can J Physiol Pharmacol 2007; 85:97-104. [PMID: 17487249 DOI: 10.1139/y06-097] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The concurrence of enhanced vascular tone, oxidative stress, and hypertrophic growth is a hallmark of hypertension, the condition characterized by sustained elevated blood pressure. However, it is unclear how and why such apparently distinct processes coincide in hypertension. Elevated levels of certain vasoactive G-protein-coupled receptor agonists (such as catecholamines, endothelin-1, and angiotensin II) can explain, at least in part, the development and progression of many hypertensive disorders. Here, we review findings made by other investigators and ourselves suggesting that enhanced vascular tone, oxidative stress, and hypertrophic growth characteristically induced by these agonists involve the transactivation of growth factor receptors. The first step in this transactivation mechanism is agonist-induced activation of metalloproteinase-dependent shedding of growth factors. Shed growth factors then trigger intracellular signaling cascades necessary for growth, production of reactive oxygen species, and maintenance of vascular tone. If this hypothesis is proven generally correct, then transactivation blockers have general therapeutic potential in hypertension regardless of the causative agonist.
Collapse
|