1
|
Hoekstra M, Ouweneel AB, Nahon JE, van der Geest R, Kröner MJ, van der Sluis RJ, Van Eck M. ATP-binding cassette transporter G1 deficiency is associated with mild glucocorticoid insufficiency in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:443-451. [PMID: 30633988 DOI: 10.1016/j.bbalip.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Since cholesterol is the sole precursor for glucocorticoid synthesis, it is hypothesized that genetic defects in proteins that impact the cellular cholesterol pool may underlie glucocorticoid insufficiency in humans. In the current study, we specifically focused on the cholesterol efflux mediator ATP-binding cassette transporter G1 (ABCG1) as gene candidate. METHODS The adrenal transcriptional response to fasting stress was measured in wild-type mice to identify putative novel gene candidates. Subsequently, the adrenal glucocorticoid function was compared between ABCG1 knockout mice and wild-type controls. RESULTS Overnight food deprivation induced a change in relative mRNA expression levels of cholesterol metabolism-related proteins previously linked to steroidogenesis, i.e. scavenger receptor class B type I (+149%; P < 0.001), LDL receptor (-70%; P < 0.001) and apolipoprotein E (-41%; P < 0.01). Strikingly, ABCG1 transcript levels were also markedly decreased (-61%; P < 0.05). In contrast to our hypothesis that decreasing cholesterol efflux would increase the adrenal cholesterol pool and enhance glucocorticoid output, ABCG1 knockout mice as compared to wild-type mice exhibited a reduced ability to secrete corticosterone in response to an ACTH challenge (two-way ANOVA: P < 0.001 for genotype) or fasting stress. As a result, glucocorticoid target gene expression levels in liver and hypothalamus were reduced and blood lymphocyte concentrations and spleen weights increased in ABCG1 knockout mice under fasting stress conditions. This was paralleled by a 48% reduction in adrenal cholesteryl ester stores and stimulation of adrenal NPC intracellular cholesterol transporter 2 (+37%; P < 0.05) and apolipoprotein E (+59%; P < 0.01) mRNA expression. CONCLUSION ABCG1 deficiency is associated with mild glucocorticoid insufficiency in mice.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands.
| | - Amber B Ouweneel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Joya E Nahon
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Rick van der Geest
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Mara J Kröner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands
| |
Collapse
|
2
|
Critical Role of the Human ATP-Binding Cassette G1 Transporter in Cardiometabolic Diseases. Int J Mol Sci 2017; 18:ijms18091892. [PMID: 28869506 PMCID: PMC5618541 DOI: 10.3390/ijms18091892] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
ATP-binding cassette G1 (ABCG1) is a member of the large family of ABC transporters which are involved in the active transport of many amphiphilic and lipophilic molecules including lipids, drugs or endogenous metabolites. It is now well established that ABCG1 promotes the export of lipids, including cholesterol, phospholipids, sphingomyelin and oxysterols, and plays a key role in the maintenance of tissue lipid homeostasis. Although ABCG1 was initially proposed to mediate cholesterol efflux from macrophages and then to protect against atherosclerosis and cardiovascular diseases (CVD), it becomes now clear that ABCG1 exerts a larger spectrum of actions which are of major importance in cardiometabolic diseases (CMD). Beyond a role in cellular lipid homeostasis, ABCG1 equally participates to glucose and lipid metabolism by controlling the secretion and activity of insulin and lipoprotein lipase. Moreover, there is now a growing body of evidence suggesting that modulation of ABCG1 expression might contribute to the development of diabetes and obesity, which are major risk factors of CVD. In order to provide the current understanding of the action of ABCG1 in CMD, we here reviewed major findings obtained from studies in mice together with data from the genetic and epigenetic analysis of ABCG1 in the context of CMD.
Collapse
|
3
|
The ATP binding cassette transporter, ABCG1, localizes to cortical actin filaments. Sci Rep 2017; 7:42025. [PMID: 28165022 PMCID: PMC5292732 DOI: 10.1038/srep42025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
The ATP-binding cassette sub-family G member 1 (ABCG1) exports cellular cholesterol to high-density lipoproteins (HDL). However, a number of recent studies have suggested ABCG1 is predominantly localised to intracellular membranes. In this study, we found that ABCG1 was organized into two distinct cellular pools: one at the plasma membrane and the other associated with the endoplasmic reticulum (ER). The plasma membrane fraction was organized into filamentous structures that were associated with cortical actin filaments. Inhibition of actin polymerization resulted in complete disruption of ABCG1 filaments. Cholesterol loading of the cells increased the formation of the filamentous ABCG1, the proximity of filamentous ABCG1 to actin filaments and the diffusion rate of membrane associated ABCG1. Our findings suggest that the actin cytoskeleton plays a critical role in the plasma membrane localization of ABCG1.
Collapse
|
4
|
Hegyi Z, Homolya L. Functional Cooperativity between ABCG4 and ABCG1 Isoforms. PLoS One 2016; 11:e0156516. [PMID: 27228027 PMCID: PMC4882005 DOI: 10.1371/journal.pone.0156516] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
ABCG4 belongs to the ABCG subfamily, the members of which are half transporters composed of a single transmembrane and a single nucleotide-binding domain. ABCG proteins have a reverse domain topology as compared to other mammalian ABC transporters, and have to form functional dimers, since the catalytic sites for ATP binding and hydrolysis, as well as the transmembrane domains are composed of distinct parts of the monomers. Here we demonstrate that ABCG4 can form homodimers, but also heterodimers with its closest relative, ABCG1. Both the full-length and the short isoforms of ABCG1 can dimerize with ABCG4, whereas the ABCG2 multidrug transporter is unable to form a heterodimer with ABCG4. We also show that contrary to that reported in some previous studies, ABCG4 is predominantly localized to the plasma membrane. While both ABCG1 and ABCG4 have been suggested to be involved in lipid transport or regulation, in accordance with our previous results regarding the long version of ABCG1, here we document that the expression of both the short isoform of ABCG1 as well as ABCG4 induce apoptosis in various cell types. This apoptotic effect, as a functional read-out, allowed us to demonstrate that the dimerization between these half transporters is not only a physical interaction but functional cooperativity. Given that ABCG4 is predominantly expressed in microglial-like cells and endothelial cells in the brain, our finding of ABCG4-induced apoptosis may implicate a new role for this protein in the clearance mechanisms within the central nervous system.
Collapse
Affiliation(s)
- Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
5
|
El Asmar Z, Terrand J, Jenty M, Host L, Mlih M, Zerr A, Justiniano H, Matz RL, Boudier C, Scholler E, Garnier JM, Bertaccini D, Thiersé D, Schaeffer C, Van Dorsselaer A, Herz J, Bruban V, Boucher P. Convergent Signaling Pathways Controlled by LRP1 (Receptor-related Protein 1) Cytoplasmic and Extracellular Domains Limit Cellular Cholesterol Accumulation. J Biol Chem 2016; 291:5116-27. [PMID: 26792864 DOI: 10.1074/jbc.m116.714485] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitously expressed cell surface receptor that protects from intracellular cholesterol accumulation. However, the underlying mechanisms are unknown. Here we show that the extracellular (α) chain of LRP1 mediates TGFβ-induced enhancement of Wnt5a, which limits intracellular cholesterol accumulation by inhibiting cholesterol biosynthesis and by promoting cholesterol export. Moreover, we demonstrate that the cytoplasmic (β) chain of LRP1 suffices to limit cholesterol accumulation in LRP1(-/-) cells. Through binding of Erk2 to the second of its carboxyl-terminal NPXY motifs, LRP1 β-chain positively regulates the expression of ATP binding cassette transporter A1 (ABCA1) and of neutral cholesterol ester hydrolase (NCEH1). These results highlight the unexpected functions of LRP1 and the canonical Wnt5a pathway and new therapeutic potential in cholesterol-associated disorders including cardiovascular diseases.
Collapse
Affiliation(s)
- Zeina El Asmar
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Jérome Terrand
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Marion Jenty
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Lionel Host
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Mohamed Mlih
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Aurélie Zerr
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Hélène Justiniano
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Rachel L Matz
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Christian Boudier
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Estelle Scholler
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France
| | - Jean-Marie Garnier
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM 964/CNRS UMR 7104, University of Strasbourg, 67401 Illkirch, France
| | - Diego Bertaccini
- CNRS, UMR 7178, University of Strasbourg, 67087 Strasbourg, France, and
| | - Danièle Thiersé
- CNRS, UMR 7178, University of Strasbourg, 67087 Strasbourg, France, and
| | | | | | - Joachim Herz
- Department of Molecular Genetics and Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Véronique Bruban
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France,
| | - Philippe Boucher
- From the CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France,
| |
Collapse
|
6
|
Maeß MB, Keller AA, Rennert K, Mosig A, Lorkowski S. Optimization of the transfection of human THP-1 macrophages by application of Nunc UpCell technology. Anal Biochem 2015; 479:40-2. [PMID: 25660531 DOI: 10.1016/j.ab.2014.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
We have established an electroporation protocol for transfection of premature adherent human THP-1 macrophages using Lonza Nucleofector technology. For efficient electroporation, detachment of adherent cells is necessary. We tested the Nunc UpCell product line of Thermo Fisher Scientific, which achieves detachment by a change of ambient temperature, as an alternative to enzymatic detachment. Here we present data verifying proper cell morphology and vitality and high transfection efficiency for macrophages cultured on UpCell plates. Appropriate macrophage behavior was confirmed by measuring markers of macrophage differentiation and polarization by reverse transcription quantitative polymerase chain reaction (RT-qPCR). In conclusion, Nunc UpCell materials are a viable alternative to enzymatic detachment.
Collapse
Affiliation(s)
- Marten B Maeß
- Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | - Knut Rennert
- Department of Molecular Hemostaseology, Jena University Hospital, 07743 Jena, Germany
| | - Alexander Mosig
- Department of Molecular Hemostaseology, Jena University Hospital, 07743 Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
7
|
Cellular Localization and Trafficking of the Human ABCG1 Transporter. BIOLOGY 2014; 3:781-800. [PMID: 25405320 PMCID: PMC4280511 DOI: 10.3390/biology3040781] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 11/17/2022]
Abstract
We have developed a suitable heterologous cell expression system to study the localization, trafficking, and site(s) of function of the human ABCG1 transporter. Increased plasma membrane (PM) and late endosomal (LE) cholesterol generated by ABCG1 was removed by lipoproteins and liposomes, but not apoA-I. Delivery of ABCG1 to the PM and LE was required for ABCG1-mediated cellular cholesterol efflux. ABCG1 LEs frequently contacted the PM, providing a collisional mechanism for transfer of ABCG1-mobilized cholesterol, similar to ABCG1-mediated PM cholesterol efflux to lipoproteins. ABCG1-mobilized LE cholesterol also trafficked to the PM by a non-vesicular pathway. Transfer of ABCG1-mobilized cholesterol from the cytoplasmic face of LEs to the PM and concomitant removal of cholesterol from the outer leaflet of the PM bilayer by extracellular acceptors suggests that ABCG1 mobilizes cholesterol on both sides of the lipid bilayer for removal by acceptors. ABCG1 increased uptake of HDL into LEs, consistent with a potential ABCG1-mediated cholesterol efflux pathway involving HDL resecretion. Thus, ABCG1 at the PM mobilizes PM cholesterol and ABCG1 in LE/LYS generates mobile pools of cholesterol that can traffic by both vesicular and non-vesicular pathways to the PM where it can also be transferred to extracellular acceptors with a lipid surface.
Collapse
|
8
|
Maeß MB, Wittig B, Lorkowski S. Highly efficient transfection of human THP-1 macrophages by nucleofection. J Vis Exp 2014:e51960. [PMID: 25226503 PMCID: PMC4828023 DOI: 10.3791/51960] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Macrophages, as key players of the innate immune response, are at the focus of research dealing with tissue homeostasis or various pathologies. Transfection with siRNA and plasmid DNA is an efficient tool for studying their function, but transfection of macrophages is not a trivial matter. Although many different approaches for transfection of eukaryotic cells are available, only few allow reliable and efficient transfection of macrophages, but reduced cell vitality and severely altered cell behavior like diminished capability for differentiation or polarization are frequently observed. Therefore a transfection protocol is required that is capable of transferring siRNA and plasmid DNA into macrophages without causing serious side-effects thus allowing the investigation of the effect of the siRNA or plasmid in the context of normal cell behavior. The protocol presented here provides a method for reliably and efficiently transfecting human THP-1 macrophages and monocytes with high cell vitality, high transfection efficiency, and minimal effects on cell behavior. This approach is based on Nucleofection and the protocol has been optimized to maintain maximum capability for cell activation after transfection. The protocol is adequate for adherent cells after detachment as well as cells in suspension, and can be used for small to medium sample numbers. Thus, the method presented is useful for investigating gene regulatory effects during macrophage differentiation and polarization. Apart from presenting results characterizing macrophages transfected according to this protocol in comparison to an alternative chemical method, the impact of cell culture medium selection after transfection on cell behavior is also discussed. The presented data indicate the importance of validating the selection for different experimental settings.
Collapse
Affiliation(s)
- Marten B Maeß
- Institute of Nutrition, Friedrich Schiller University Jena
| | - Berith Wittig
- Institute of Nutrition, Friedrich Schiller University Jena
| | | |
Collapse
|
9
|
Wang F, Li G, Gu HM, Zhang DW. Characterization of the role of a highly conserved sequence in ATP binding cassette transporter G (ABCG) family in ABCG1 stability, oligomerization, and trafficking. Biochemistry 2013; 52:9497-509. [PMID: 24320932 PMCID: PMC3880014 DOI: 10.1021/bi401285j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
ATP-binding cassette transporter
G1 (ABCG1) mediates cholesterol
and oxysterol efflux onto lipidated lipoproteins and plays an important
role in macrophage reverse cholesterol transport. Here, we identified
a highly conserved sequence present in the five ABCG transporter family
members. The conserved sequence is located between the nucleotide
binding domain and the transmembrane domain and contains five amino
acid residues from Asn at position 316 to Phe at position 320 in ABCG1
(NPADF). We found that cells expressing mutant ABCG1, in which Asn316,
Pro317, Asp319, and Phe320 in the conserved sequence were replaced
with Ala simultaneously, showed impaired cholesterol efflux activity
compared with wild type ABCG1-expressing cells. A more detailed mutagenesis
study revealed that mutation of Asn316 or Phe 320 to Ala significantly
reduced cellular cholesterol and 7-ketocholesterol efflux conferred
by ABCG1, whereas replacement of Pro317 or Asp319 with Ala had no
detectable effect. To confirm the important role of Asn316 and Phe320,
we mutated Asn316 to Asp (N316D) and Gln (N316Q), and Phe320 to Ile
(F320I) and Tyr (F320Y). The mutant F320Y showed the same phenotype
as wild type ABCG1. However, the efflux of cholesterol and 7-ketocholesterol
was reduced in cells expressing ABCG1 mutant N316D, N316Q, or F320I
compared with wild type ABCG1. Further, mutations N316Q and F320I
impaired ABCG1 trafficking while having no marked effect on the stability
and oligomerization of ABCG1. The mutant N316Q and F320I could not
be transported to the cell surface efficiently. Instead, the mutant
proteins were mainly localized intracellularly. Thus, these findings
indicate that the two highly conserved amino acid residues, Asn and
Phe, play an important role in ABCG1-dependent export of cellular
cholesterol, mainly through the regulation of ABCG1 trafficking.
Collapse
Affiliation(s)
- Faqi Wang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, ‡Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
10
|
Tarling EJ, de Aguiar Vallim TQ, Edwards PA. Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab 2013; 24:342-50. [PMID: 23415156 PMCID: PMC3659191 DOI: 10.1016/j.tem.2013.01.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 12/28/2022]
Abstract
Almost half of the 48 human ATP-binding cassette (ABC) transporter proteins are thought to facilitate the ATP-dependent translocation of lipids or lipid-related compounds. Such substrates include cholesterol, plant sterols, bile acids, phospholipids, and sphingolipids. Mutations in a substantial number of the 48 human ABC transporters have been linked to human disease. Indeed the finding that 12 diseases have been associated with abnormal lipid transport and/or homeostasis demonstrates the importance of this family of transporters in cell physiology. This review highlights the role of ABC transporters in lipid transport and movement, in addition to discussing their roles in cellular homeostasis and inherited disorders.
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
11
|
Daniil G, Zannis VI, Chroni A. Effect of apoA-I Mutations in the Capacity of Reconstituted HDL to Promote ABCG1-Mediated Cholesterol Efflux. PLoS One 2013; 8:e67993. [PMID: 23826352 PMCID: PMC3694867 DOI: 10.1371/journal.pone.0067993] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 12/29/2022] Open
Abstract
ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69–99% of control by double deletion mutants apoA-I[Δ(1–41)Δ(185–243)] and apoA-I[Δ(1–59)Δ(185–243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.
Collapse
Affiliation(s)
- Georgios Daniil
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens, Greece
| | - Vassilis I. Zannis
- Molecular Genetics, Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens, Greece
- * E-mail:
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW To offer a comprehensive review on the role of ABCG1 in cellular sterol homeostasis. RECENT FINDINGS Early studies with Abcg1 mice indicated that ABCG1 was crucial for tissue lipid homeostasis, especially in the lung. More recent studies have demonstrated that loss of ABCG1 has wide-ranging consequences and impacts lymphocyte and stem cell proliferation, endothelial cell function, macrophage foam cell formation, as well as insulin secretion from pancreatic β cells. Recent studies have also demonstrated that ABCG1 functions as an intracellular lipid transporter, localizes to intracellular vesicles/endosomes, and that the transmembrane domains are sufficient for localization and transport function. SUMMARY ABCG1 plays a crucial role in maintaining intracellular sterol and lipid homeostasis. Loss of this transporter has significant, cell-type-specific consequences ranging from effects on cellular proliferation, to surfactant production and/or insulin secretion. Elucidation of the mechanisms by which ABCG1 affects intracellular sterol flux/movement should provide important information that may link ABCG1 to diseases of dysregulated tissue lipid homeostasis.
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Departments of Biological Chemistry and Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1737, USA.
| |
Collapse
|
13
|
Characterization of palmitoylation of ATP binding cassette transporter G1: effect on protein trafficking and function. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1067-78. [PMID: 23388354 DOI: 10.1016/j.bbalip.2013.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/14/2013] [Accepted: 01/25/2013] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette transporter G1 (ABCG1) mediates cholesterol efflux onto lipidated apolipoprotein A-I and HDL and plays a role in various important physiological functions. However, the mechanism by which ABCG1 mediates cholesterol translocation is unclear. Protein palmitoylation regulates many functions of proteins such as ABCA1. Here we investigated if ABCG1 is palmitoylated and the subsequent effects on ABCG1-mediated cholesterol efflux. We demonstrated that ABCG1 is palmitoylated in both human embryonic kidney 293 cells and in mouse macrophage, J774. Five cysteine residues located at positions 26, 150, 311, 390 and 402 in the NH2-terminal cytoplasmic region of ABCG1 were palmitoylated. Removal of palmitoylation at Cys311 by mutating the residue to Ala (C311A) or Ser significantly decreased ABCG1-mediated cholesterol efflux. On the other hand, removal of palmitoylation at sites 26, 150, 390 and 402 had no significant effect. We further demonstrated that mutations of Cys311 affected ABCG1 trafficking from the endoplasmic reticulum. Therefore, our data suggest that palmitoylation plays a critical role in ABCG1-mediated cholesterol efflux through the regulation of trafficking.
Collapse
|
14
|
ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc Natl Acad Sci U S A 2011; 108:19719-24. [PMID: 22095132 DOI: 10.1073/pnas.1113021108] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four members of the mammalian ATP binding cassette (ABC) transporter G subfamily are thought to be involved in transmembrane (TM) transport of sterols. The residues responsible for this transport are unknown. The mechanism of action of ABCG1 is controversial and it has been proposed to act at the plasma membrane to facilitate the efflux of cellular sterols to exogenous high-density lipoprotein (HDL). Here we show that ABCG1 function is dependent on localization to intracellular endosomes. Importantly, localization to the endosome pathway distinguishes ABCG1 and/or ABCG4 from all other mammalian members of this superfamily, including other sterol transporters. We have identified critical residues within the TM domains of ABCG1 that are both essential for sterol transport and conserved in some other members of the ABCG subfamily and/or the insulin-induced gene 2 (INSIG-2). Our conclusions are based on studies in which (i) biotinylation of peritoneal macrophages showed that endogenous ABCG1 is intracellular and undetectable at the cell surface, (ii) a chimeric protein containing the TM of ABCG1 and the cytoplasmic domains of the nonsterol transporter ABCG2 is both targeted to endosomes and functional, and (iii) ABCG1 colocalizes with multiple proteins that mark late endosomes and recycling endosomes. Mutagenesis studies identify critical residues in the TM domains that are important for ABCG1 to alter sterol efflux, induce sterol regulatory element binding protein-2 (SREBP-2) processing, and selectively attenuate the oxysterol-mediated repression of SREBP-2 processing. Our data demonstrate that ABCG1 is an intracellular sterol transporter that localizes to endocytic vesicles to facilitate the redistribution of specific intracellular sterols away from the endoplasmic reticulum (ER).
Collapse
|
15
|
Tarling EJ, Edwards PA. Dancing with the sterols: critical roles for ABCG1, ABCA1, miRNAs, and nuclear and cell surface receptors in controlling cellular sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:386-95. [PMID: 21824529 DOI: 10.1016/j.bbalip.2011.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 12/29/2022]
Abstract
ATP binding cassette (ABC) transporters represent a large and diverse family of proteins that transport specific substrates across a membrane. The importance of these transporters is illustrated by the finding that inactivating mutations within 17 different family members are known to lead to specific human diseases. Clinical data from humans and/or studies with mice lacking functional transporters indicate that ABCA1, ABCG1, ABCG4, ABCG5 and ABCG8 are involved in cholesterol and/or phospholipid transport. This review discusses the multiple mechanisms that control cellular sterol homeostasis, including the roles of microRNAs, nuclear and cell surface receptors and ABC transporters, with particular emphasis on recent findings that have provided insights into the role(s) of ABCG1. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
16
|
Improved protocol for efficient nonviral transfection of premature THP-1 macrophages. Cold Spring Harb Protoc 2011; 2011:pdb.prot5612. [PMID: 21536764 DOI: 10.1101/pdb.prot5612] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The human monocytic leukemia cell line THP-1 is a widely used model for investigating monocyte and macrophage biology. Successful transfection of THP-1 monocytes with subsequent phorbol 12-myristate 13-acetate (PMA)-induced differentiation into macrophages is not a trivial matter, because according to previous transfection protocols, cell viability is lost almost completely within 24 h of PMA treatment following transfection. This protocol constitutes an optimized version of a previously published protocol by our group. It describes a procedure for transfecting premature THP-1 macrophages, which subsequently can be further differentiated into mature macrophages by PMA without a loss of cell viability. Transfection of THP-1 cells with plasmids or small interfering RNA (siRNA) is achieved by electroporation using the Lonza Nucleofector technology (Basel, Switzerland). This technique allows for the efficient nonviral delivery of plasmids, DNA, RNA, or siRNA into primary cells or cell lines even if the cells are not or are only slowly proliferating. Such cells are usually rather difficult to transfect by nonviral approaches. This means that only viral approaches would be left, which are expensive and labor-intensive and require laboratories complying with the respective safety regulations. The protocol described here is an efficient and convenient alternative.
Collapse
|
17
|
Armstrong AJ, Gebre AK, Parks JS, Hedrick CC. ATP-binding cassette transporter G1 negatively regulates thymocyte and peripheral lymphocyte proliferation. THE JOURNAL OF IMMUNOLOGY 2009; 184:173-83. [PMID: 19949102 DOI: 10.4049/jimmunol.0902372] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cholesterol is a key component of cell membranes and is essential for cell growth and proliferation. How the accumulation of cellular cholesterol affects lymphocyte development and function is not well understood. We demonstrate that ATP-binding cassette transporter G1 (ABCG1) regulates cholesterol homeostasis in thymocytes and peripheral CD4 T cells. Our work is the first to describe a cell type in Abcg1-deficient mice with such a robust change in cholesterol content and the expression of cholesterol metabolism genes. Abcg1-deficient mice display increased thymocyte cellularity and enhanced proliferation of thymocytes and peripheral T lymphocytes in vivo. The absence of ABCG1 in CD4 T cells results in hyperproliferation in vitro, but only when cells are stimulated through the TCR. We hypothesize that cholesterol accumulation in Abcg1(-/-) T cells alters the plasma membrane structure, resulting in enhanced TCR signaling for proliferation. Supporting this idea, we demonstrate that B6 T cells pretreated with soluble cholesterol have a significant increase in proliferation. Cholesterol accumulation in Abcg1(-/-) CD4 T cells results in enhanced basal phosphorylation levels of ZAP70 and ERK1/2. Furthermore, inhibition of ERK phosphorylation in TCR-stimulated Abcg1(-/-) T cells rescues the hyperproliferative phenotype. We describe a novel mechanism by which cholesterol can alter signaling from the plasma membrane to affect downstream signaling pathways and proliferation. These results implicate ABCG1 as an important negative regulator of lymphocyte proliferation through the maintenance of cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Allison J Armstrong
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
18
|
Tarr PT, Tarling EJ, Bojanic DD, Edwards PA, Baldán Á. Emerging new paradigms for ABCG transporters. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:584-93. [PMID: 19416657 PMCID: PMC2698934 DOI: 10.1016/j.bbalip.2009.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 12/14/2022]
Abstract
Every cell is separated from its external environment by a lipid membrane. Survival depends on the regulated and selective transport of nutrients, waste products and regulatory molecules across these membranes, a process that is often mediated by integral membrane proteins. The largest and most diverse of these membrane transport systems is the ATP binding cassette (ABC) family of membrane transport proteins. The ABC family is a large evolutionary conserved family of transmembrane proteins (>250 members) present in all phyla, from bacteria to Homo sapiens, which require energy in the form of ATP hydrolysis to transport substrates against concentration gradients. In prokaryotes the majority of ABC transporters are involved in the transport of nutrients and other macromolecules into the cell. In eukaryotes, with the exception of the cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7), ABC transporters mobilize substrates from the cytoplasm out of the cell or into specific intracellular organelles. This review focuses on the members of the ABCG subfamily of transporters, which are conserved through evolution in multiple taxa. As discussed below, these proteins participate in multiple cellular homeostatic processes, and functional mutations in some of them have clinical relevance in humans.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP Binding Cassette Transporter, Subfamily G, Member 5
- ATP Binding Cassette Transporter, Subfamily G, Member 8
- ATP-Binding Cassette Transporters/classification
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- ATP-Binding Cassette Transporters/physiology
- Animals
- Biological Transport
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Lipoproteins/physiology
- Mice
- Mice, Knockout
Collapse
Affiliation(s)
- Paul T. Tarr
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth J. Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Dragana D. Bojanic
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Peter A. Edwards
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Ángel Baldán
- Edward A. Doisy Department of Biochemistry and Molecular Biology, DRC 321, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| |
Collapse
|
19
|
Seres L, Cserepes J, Elkind NB, Törocsik D, Nagy L, Sarkadi B, Homolya L. Functional ABCG1 expression induces apoptosis in macrophages and other cell types. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2378-87. [PMID: 18619413 DOI: 10.1016/j.bbamem.2008.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 01/20/2023]
Abstract
The expression of the ATP-binding cassette transporter ABCG1 is greatly increased in macrophages by cholesterol loading via the activation of the nuclear receptor LXR. Several recent studies demonstrated that ABCG1 expression is associated with increased cholesterol efflux from macrophages to high-density lipoprotein, suggesting an atheroprotective role for this protein. Our present study uncovers an as yet not described cellular function of ABCG1. Here we demonstrate that elevated expression of human ABCG1 is associated with apoptotic cell death in macrophages and also in other cell types. We found that overexpression of the wild type protein results in phosphatidyl serine (PS) translocation, caspase 3 activation, and subsequent cell death, whereas neither the inactive mutant variant of ABCG1 (ABCG1K124M) nor the ABCG2 multidrug transporter had such effect. Induction of ABCG1 expression by LXR activation in Thp1 cells and in human monocyte-derived macrophages was accompanied by a significant increase in the number of apoptotic cells. Thyroxin and benzamil, previously identified inhibitors of ABCG1 function, selectively prevented ABCG1-promoted apoptosis in transfected cells as well as in LXR-induced macrophages. Collectively, our results suggest a causative relationship between ABCG1 function and apoptotic cell death, and may offer new insights into the role of ABCG1 in atherogenesis.
Collapse
Affiliation(s)
- László Seres
- Research Group for Membrane Biology, Semmelweis University, Hungarian Academy of Sciences, Diószegi u. 64, H-1113 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|