1
|
Pamulapati V, Cuda CM, Smith TL, Jung J, Xiong L, Swaminathan S, Ho KJ. Inflammatory Cell Dynamics after Murine Femoral Artery Wire Injury: A Multi-Parameter Flow Cytometry-Based Analysis. Cells 2023; 12:689. [PMID: 36899827 PMCID: PMC10000449 DOI: 10.3390/cells12050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
An acute inflammatory response following arterial surgery for atherosclerosis, such as balloon angioplasty, stenting, and surgical bypass, is an important driver of neointimal hyperplasia after arterial injury, which leads to recurrent ischemia. However, a comprehensive understanding of the dynamics of the inflammatory infiltrate in the remodeling artery is difficult to attain due to the shortcomings of conventional methods such as immunofluorescence. We developed a 15-parameter flow cytometry method to quantitate leukocytes and 13 leukocyte subtypes in murine arteries at 4 time points after femoral artery wire injury. Live leukocyte numbers peaked at 7 days, which preceded the peak neointimal hyperplasia lesion at 28 days. Neutrophils were the most abundant early infiltrate, followed by monocytes and macrophages. Eosinophils were elevated after 1 day, while natural killer and dendritic cells gradually infiltrated over the first 7 days; all decreased between 7 and 14 days. Lymphocytes began accumulating at 3 days and peaked at 7 days. Immunofluorescence of arterial sections demonstrated similar temporal trends of CD45+ and F4/80+ cells. This method allows for the simultaneous quantitation of multiple leukocyte subtypes from small tissue samples of injured murine arteries and identifies the CD64+Tim4+ macrophage phenotype as being potentially important in the first 7 days post-injury.
Collapse
Affiliation(s)
- Vivek Pamulapati
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Carla M. Cuda
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tracy L. Smith
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jonathan Jung
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Liqun Xiong
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Suchitra Swaminathan
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Karen J. Ho
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Zhang D, Cao Y, Liu D, Zhang J, Guo Y. The Etiology and Molecular Mechanism Underlying Smooth Muscle Phenotype Switching in Intimal Hyperplasia of Vein Graft and the Regulatory Role of microRNAs. Front Cardiovasc Med 2022; 9:935054. [PMID: 35966541 PMCID: PMC9365958 DOI: 10.3389/fcvm.2022.935054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence suggests that the phenotypic transformation of venous smooth muscle cells (SMCs) from differentiated (contractile) to dedifferentiated (proliferative and migratory) phenotypes causes excessive proliferation and further migration to the intima leading to intimal hyperplasia, which represents one of the key pathophysiological mechanisms of vein graft restenosis. In recent years, numerous miRNAs have been identified as specific phenotypic regulators of vascular SMCs (VSMCs), which play a vital role in intimal hyperplasia in vein grafts. The review sought to provide a comprehensive overview of the etiology of intimal hyperplasia, factors affecting the phenotypic transformation of VSMCs in vein graft, and molecular mechanisms of miRNAs involved in SMCs phenotypic modulation in intimal hyperplasia of vein graft reported in recent years.
Collapse
Affiliation(s)
- Dengshen Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiran Cao
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Daxing Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yingqiang Guo,
| |
Collapse
|
3
|
McQueen LW, Ladak SS, Zakkar M. Acute shear stress and vein graft disease. Int J Biochem Cell Biol 2022; 144:106173. [PMID: 35151879 DOI: 10.1016/j.biocel.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
The long saphenous vein is commonly used in cardiac surgery to bypass occluded coronary arteries. Its use is complicated by late stenosis and occlusion due to the development of intimal hyperplasia. It is accepted that intimal hyperplasia is a multifactorial inflammatory process that starts immediately after surgery. The role of acute changes in haemodynamic conditions when the vein is implanted into arterial circulation, especially shear stress, is not fully appreciated. This review provides an overview of intimal hyperplasia and the effect of acute shear stress changes on the activation of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Liam W McQueen
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Shameem S Ladak
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Mustafa Zakkar
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
4
|
Stöwe I, Pissarek J, Moosmann P, Pröhl A, Pantermehl S, Bielenstein J, Radenkovic M, Jung O, Najman S, Alkildani S, Barbeck M. Ex Vivo and In Vivo Analysis of a Novel Porcine Aortic Patch for Vascular Reconstruction. Int J Mol Sci 2021; 22:7623. [PMID: 34299243 PMCID: PMC8303394 DOI: 10.3390/ijms22147623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 01/12/2023] Open
Abstract
(1) Background: The aim of the present study was the biocompatibility analysis of a novel xenogeneic vascular graft material (PAP) based on native collagen won from porcine aorta using the subcutaneous implantation model up to 120 days post implantationem. As a control, an already commercially available collagen-based vessel graft (XenoSure®) based on bovine pericardium was used. Another focus was to analyze the (ultra-) structure and the purification effort. (2) Methods: Established methodologies such as the histological material analysis and the conduct of the subcutaneous implantation model in Wistar rats were applied. Moreover, established methods combining histological, immunohistochemical, and histomorphometrical procedures were applied to analyze the tissue reactions to the vessel graft materials, including the induction of pro- and anti-inflammatory macrophages to test the immune response. (3) Results: The results showed that the PAP implants induced a special cellular infiltration and host tissue integration based on its three different parts based on the different layers of the donor tissue. Thereby, these material parts induced a vascularization pattern that branches to all parts of the graft and altogether a balanced immune tissue reaction in contrast to the control material. (4) Conclusions: PAP implants seemed to be advantageous in many aspects: (i) cellular infiltration and host tissue integration, (ii) vascularization pattern that branches to all parts of the graft, and (iii) balanced immune tissue reaction that can result in less scar tissue and enhanced integrative healing patterns. Moreover, the unique trans-implant vascularization can provide unprecedented anti-infection properties that can avoid material-related bacterial infections.
Collapse
Affiliation(s)
- Ignacio Stöwe
- Helios Clinic Emil-von-Behring, Department of Vascular and Endovascular Surgery, 14165 Berlin, Germany;
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (J.B.); (O.J.)
| | - Jens Pissarek
- biotrics bioimplants AG, 12109 Berlin, Germany; (J.P.); (P.M.)
| | - Pia Moosmann
- biotrics bioimplants AG, 12109 Berlin, Germany; (J.P.); (P.M.)
| | - Annica Pröhl
- BerlinAnalytix GmbH, 12109 Berlin, Germany; (A.P.); (S.A.)
| | - Sven Pantermehl
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (J.B.); (O.J.)
| | - James Bielenstein
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (J.B.); (O.J.)
| | - Milena Radenkovic
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.R.); (S.N.)
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (J.B.); (O.J.)
| | - Stevo Najman
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.R.); (S.N.)
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Said Alkildani
- BerlinAnalytix GmbH, 12109 Berlin, Germany; (A.P.); (S.A.)
| | - Mike Barbeck
- Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University Berlin, 10623 Berlin, Germany
| |
Collapse
|
5
|
Leake A, Salem K, Madigan MC, Lee GR, Shukla A, Hong G, Zuckerbraun BS, Tzeng E. Systemic vasoprotection by inhaled carbon monoxide is mediated through prolonged alterations in monocyte/macrophage function. Nitric Oxide 2019; 94:36-47. [PMID: 31593762 DOI: 10.1016/j.niox.2019.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
Carbon monoxide (CO) is anti-inflammatory and protective in models of disease. Its actions in vitro are short-lived but are sustained in vivo. We hypothesize that systemic CO can mediate prolonged phenotype changes in vivo, with a focus on macrophages (Mφs). Mφs isolated from CO treated rats responded to lipopolysaccharide (LPS) with increased IL6, IL10 and iNOS expression but decreased TNF. Conditioned media (CM) collected from peritoneal Mφs isolated from CO treated rats stimulated endothelial cell (EC) proliferation versus CM from Mφs from air treated rats. This effect was mediated by Mφ released VEGF and HMGB1. Inhaled CO reduced LPS induced Mφ M1 inflammatory phenotype for up to 5 days. Mitochondrial oxygen consumption in LPS treated Mφs from CO treated mice was preserved compared to LPS treated Mφs from control mice. Finally, transient reduction of inflammatory cells at the time of inhaled CO treatment eliminated the vasoprotective effect of CO in a rodent carotid injury model. Thus, inhaled CO induces a prolonged mixed phenotype change in Mφs, and potentially other inflammatory cells, that contribute to vasoprotection. These findings demonstrate the ability of inhaled CO to modify Mφs in a sustained manner to mediate its therapeutic actions, supporting the translational potential of inhaled CO.
Collapse
Affiliation(s)
- Andrew Leake
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Karim Salem
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Michael C Madigan
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Ghee Rye Lee
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Ankur Shukla
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Guiying Hong
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Brian S Zuckerbraun
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA.
| | - Edith Tzeng
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Activation and inflammation of the venous endothelium in vein graft disease. Atherosclerosis 2017; 265:266-274. [PMID: 28865843 DOI: 10.1016/j.atherosclerosis.2017.08.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/13/2023]
Abstract
The long saphenous vein is the most commonly used conduit in coronary artery bypass graft (CABG) surgery when bypassing multiple diseased arteries; however, its use is complicated by the development of vascular inflammation, intimal hyperplasia and accelerated atherosclerosis leading to compromised graft efficacy. Despite refinement of surgical techniques to improve graft patency, late vein graft failure remains a significant problem. Moreover, there is a lack of pharmacological interventions proven to be effective in the treatment of late vein graft failure. A greater understanding of the molecular nature of the disease and the interactions between endothelial and smooth muscle cells as a result of alterations in local haemodynamics may assist with designing future beneficial pharmacological interventions. Venous endothelial cells (ECs) are physiologically adapted to chronic low shear stress; however, once the graft is implanted into the arterial circulation, they become suddenly exposed to acute high levels of shear stress. A small number of in vitro and ex vivo studies have demonstrated that acute high shear stress is associated with the activation of a pro-inflammatory profile in saphenous vein ECs, which may be mediated by mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signalling pathways. The impact of acute changes in shear stress on venous ECs and the role of ECs in the development of intimal hyperplasia remains incomplete and is the subject of this review.
Collapse
|
7
|
Daci A, Özen G, Uyar İ, Civelek E, Yildirim FİA, Durman DK, Teskin Ö, Norel X, Uydeş-Doğan BS, Topal G. Omega-3 polyunsaturated fatty acids reduce vascular tone and inflammation in human saphenous vein. Prostaglandins Other Lipid Mediat 2017; 133:29-34. [PMID: 28838848 DOI: 10.1016/j.prostaglandins.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/20/2017] [Accepted: 08/09/2017] [Indexed: 12/27/2022]
Abstract
Dietary intake of omega-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has been reported to have beneficial cardiovascular effects. However, little is known about the effect of EPA and DHA on human vascular tone. Therefore, the aim of this study is to evaluate the effect of EPA and DHA on vascular tone of the human saphenous vein (SV) obtained from patients undergoing coronary bypass operation under normal and inflammatory conditions. Moreover, we aimed to investigate the effect of EPA and DHA on the release of inflammatory mediators from SV. Pretreatment of SV with EPA and DHA (100μM, 18h) decreased the contractile response of SV to norepinephrine (NE) under normal and inflammatory conditions. Moreover, EPA and DHA pretreatment diminished increased Monocyte Chemoattractant Protein-1 (MCP-1) and Tumor Necrosis Factor-alpha (TNF-α) release from SV under inflammatory conditions. In conclusion, our results suggest that EPA and DHA pretreatment may be beneficial to counteract graft vasospasm and vascular inflammation in SV which are important factors in graft failure development. Therefore, dietary intake of EPA and DHA may have potential clinical applications in improving coronary bypass graft patency.
Collapse
Affiliation(s)
- Armond Daci
- Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Gülsev Özen
- INSERM, U1148, CHU. Bichat, Paris, 75018, France
| | - İmran Uyar
- Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Erkan Civelek
- Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - F İlkay Alp Yildirim
- Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Deniz Kaleli Durman
- Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Önder Teskin
- Biruni University, Department of Cardiovascular Surgery, Istanbul, Turkey
| | - Xavier Norel
- INSERM, U1148, CHU. Bichat, Paris, 75018, France; University Paris Nord, Sorbonne Paris-Cité, UMR-S1148, Paris, 75018, France
| | - B Sönmez Uydeş-Doğan
- Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Gökce Topal
- Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey.
| |
Collapse
|
8
|
Donadoni F, Pichardo-Almarza C, Bartlett M, Dardik A, Homer-Vanniasinkam S, Díaz-Zuccarini V. Patient-Specific, Multi-Scale Modeling of Neointimal Hyperplasia in Vein Grafts. Front Physiol 2017; 8:226. [PMID: 28458640 PMCID: PMC5394124 DOI: 10.3389/fphys.2017.00226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/30/2017] [Indexed: 11/16/2022] Open
Abstract
Neointimal hyperplasia is amongst the major causes of failure of bypass grafts. The disease progression varies from patient to patient due to a range of different factors. In this paper, a mathematical model will be used to understand neointimal hyperplasia in individual patients, combining information from biological experiments and patient-specific data to analyze some aspects of the disease, particularly with regard to mechanical stimuli due to shear stresses on the vessel wall. By combining a biochemical model of cell growth and a patient-specific computational fluid dynamics analysis of blood flow in the lumen, remodeling of the blood vessel is studied by means of a novel computational framework. The framework was used to analyze two vein graft bypasses from one patient: a femoro-popliteal and a femoro-distal bypass. The remodeling of the vessel wall and analysis of the flow for each case was then compared to clinical data and discussed as a potential tool for a better understanding of the disease. Simulation results from this first computational approach showed an overall agreement on the locations of hyperplasia in these patients and demonstrated the potential of using new integrative modeling tools to understand disease progression.
Collapse
Affiliation(s)
| | | | | | - Alan Dardik
- The Department of Surgery, Yale University School of MedicineNew Haven, CT, USA.,Veteran Affairs Connecticut Healthcare SystemWest Haven, CT, USA
| | - Shervanthi Homer-Vanniasinkam
- Mechanical Engineering, University College LondonLondon, UK.,Leeds Vascular Institute, Leeds General InfirmaryLeeds, UK.,Division of Surgery, University of WarwickWarwick, UK
| | | |
Collapse
|
9
|
Kobayashi N, Suzuki JI, Aoyama N, Sato H, Akimoto S, Wakayama K, Kumagai H, Ikeda Y, Akazawa H, Komuro I, Izumi Y, Isobe M. Toll-like receptor 4 signaling has a critical role in Porphyromonas gingivalis-accelerated neointimal formation after arterial injury in mice. Hypertens Res 2016; 39:717-722. [PMID: 27225600 DOI: 10.1038/hr.2016.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/25/2016] [Accepted: 04/14/2016] [Indexed: 11/09/2022]
Abstract
Recently, we reported that a periodontopathic pathogen, Porphyromonas gingivalis (P. gingivalis), infection induced neointimal hyperplasia with enhanced expression of monocyte chemoattractant protein (MCP)-1 after arterial injury in wild-type mice. Toll-like receptor (TLR) 4 is known to be a key receptor for virulence factors of P. gingivalis. The aim of this study is to assess the hypothesis that TLR4 has a critical role in periodontopathic bacteria-induced neointimal formation after an arterial injury. Wild-type and TLR4-deficient mice were used in this study. The femoral arteries were injured, and P. gingivalis or vehicle was injected subcutaneously once per week. Fourteen days after arterial injury, murine femoral arteries were obtained for histopathological and immunohistochemical analyses. The anti-P. gingivalis IgG levels in P. gingivalis-infected groups were significantly increased compared with the anti-P. gingivalis IgG levels of the corresponding non-infected groups in both wild-type and TLR4-deficient mice. TLR4 deficiency negated P. gingivalis-induced neointimal formation compared with that observed in wild-type mice and reduced the number of MCP-1 positive cells in the neointimal area. We conclude that P. gingivalis infection may promote neointimal formation after an arterial injury through TLR4 signaling.
Collapse
Affiliation(s)
- Naho Kobayashi
- Department of Periodontology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun-Ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Tokyo, Japan
| | - Norio Aoyama
- Department of Periodontology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Sato
- Department of Periodontology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shouta Akimoto
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Tokyo, Japan
| | - Kouji Wakayama
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Tokyo, Japan
| | - Hidetoshi Kumagai
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Tokyo, Japan
| | - Yuichi Ikeda
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
Sur S, Sugimoto JT, Agrawal DK. Coronary artery bypass graft: why is the saphenous vein prone to intimal hyperplasia? Can J Physiol Pharmacol 2014; 92:531-45. [PMID: 24933515 DOI: 10.1139/cjpp-2013-0445] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proliferation and migration of smooth muscle cells and the resultant intimal hyperplasia cause coronary artery bypass graft failure. Both internal mammary artery and saphenous vein are the most commonly used bypass conduits. Although an internal mammary artery graft is immune to restenosis, a saphenous vein graft is prone to develop restenosis. We found significantly higher activity of phosphatase and tensin homolog (PTEN) in the smooth muscle cells of the internal mammary artery than in the saphenous vein. In this article, we critically review the pathophysiology of vein-graft failure with detailed discussion of the involvement of various factors, including PTEN, matrix metalloproteinases, and tissue inhibitor of metalloproteinases, in uncontrolled proliferation and migration of smooth muscle cells towards the lumen, and invasion of the graft conduit. We identified potential target sites that could be useful in preventing and (or) reversing unwanted consequences following coronary artery bypass graft using saphenous vein.
Collapse
Affiliation(s)
- Swastika Sur
- a Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | |
Collapse
|
11
|
Maguire JJ, Jones KL, Kuc RE, Clarke MC, Bennett MR, Davenport AP. The CCR5 chemokine receptor mediates vasoconstriction and stimulates intimal hyperplasia in human vessels in vitro. Cardiovasc Res 2014; 101:513-21. [PMID: 24323316 PMCID: PMC3928001 DOI: 10.1093/cvr/cvt333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/28/2013] [Accepted: 11/29/2013] [Indexed: 11/22/2022] Open
Abstract
AIMS The chemokine receptor CCR5 and its inflammatory ligands have been linked to atherosclerosis, an accelerated form of which occurs in saphenous vein graft disease. We investigated the function of vascular smooth muscle CCR5 in human coronary artery and saphenous vein, vascular tissues susceptible to atherosclerosis, and vasospasm. METHODS AND RESULTS CCR5 ligands were vasoconstrictors in saphenous vein and coronary artery. In vein, constrictor responses to CCL4 were completely blocked by CCR5 antagonists, including maraviroc. CCR5 antagonists prevented the development of a neointima after 14 days in cultured saphenous vein. CCR5 and its ligands were expressed in normal and diseased coronary artery and saphenous vein and localized to medial and intimal smooth muscle, endothelial, and inflammatory cells. [(125)I]-CCL4 bound to venous smooth muscle with KD = 1.15 ± 0.26 nmol/L and density of 22 ± 9 fmol mg(-1) protein. CONCLUSIONS Our data support a potential role for CCR5 in vasoconstriction and neointimal formation in vitro and imply that CCR5 chemokines may contribute to vascular remodelling and augmented vascular tone in human coronary artery and vein graft disease. The repurposing of maraviroc for the treatment of cardiovascular disease warrants further investigation.
Collapse
Affiliation(s)
- Janet J. Maguire
- Clinical Pharmacology Unit, Level 6 ACCI, Box 110 Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Katie L. Jones
- Clinical Pharmacology Unit, Level 6 ACCI, Box 110 Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Rhoda E. Kuc
- Clinical Pharmacology Unit, Level 6 ACCI, Box 110 Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Murray C.H. Clarke
- Division of Cardiovascular Medicine, Level 6 ACCI, Box 110 Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Martin R. Bennett
- Division of Cardiovascular Medicine, Level 6 ACCI, Box 110 Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Anthony P. Davenport
- Clinical Pharmacology Unit, Level 6 ACCI, Box 110 Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
12
|
Lu DY, Chen EY, Wong DJ, Yamamoto K, Protack CD, Williams WT, Assi R, Hall MR, Sadaghianloo N, Dardik A. Vein graft adaptation and fistula maturation in the arterial environment. J Surg Res 2014; 188:162-73. [PMID: 24582063 DOI: 10.1016/j.jss.2014.01.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/25/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022]
Abstract
Veins are exposed to the arterial environment during two common surgical procedures, creation of vein grafts and arteriovenous fistulae (AVF). In both cases, veins adapt to the arterial environment that is characterized by different hemodynamic conditions and increased oxygen tension compared with the venous environment. Successful venous adaptation to the arterial environment is critical for long-term success of the vein graft or AVF and, in both cases, is generally characterized by venous dilation and wall thickening. However, AVF are exposed to a high flow, high shear stress, low-pressure arterial environment and adapt mainly via outward dilation with less intimal thickening. Vein grafts are exposed to a moderate flow, moderate shear stress, high-pressure arterial environment and adapt mainly via increased wall thickening with less outward dilation. We review the data that describe these differences, as well as the underlying molecular mechanisms that mediate these processes. Despite extensive research, there are few differences in the molecular pathways that regulate cell proliferation and migration or matrix synthesis, secretion, or degradation currently identified between vein graft adaptation and AVF maturation that account for the different types of venous adaptation to arterial environments.
Collapse
Affiliation(s)
- Daniel Y Lu
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth Y Chen
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel J Wong
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Kota Yamamoto
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; VA Connecticut Healthcare System, West Haven, Connecticut
| | - Clinton D Protack
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Willis T Williams
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Roland Assi
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Michael R Hall
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Nirvana Sadaghianloo
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; Department of Vascular Surgery, University Hospital of Nice, Nice, France
| | - Alan Dardik
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; VA Connecticut Healthcare System, West Haven, Connecticut.
| |
Collapse
|
13
|
Kondo Y, Jadlowiec CC, Muto A, Yi T, Protack C, Collins MJ, Tellides G, Sessa WC, Dardik A. The Nogo-B-PirB axis controls macrophage-mediated vascular remodeling. PLoS One 2013; 8:e81019. [PMID: 24278366 PMCID: PMC3835671 DOI: 10.1371/journal.pone.0081019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/08/2013] [Indexed: 11/18/2022] Open
Abstract
Objective Nogo-B mediates vascular protection and facilitates monocyte- and macrophage-dependent vascular remodeling. PirB is an alternate receptor for Nogo-B, but a role for the Nogo-PirB axis within the vascular system has not been previously reported. We examined whether Nogo-B or PirB play a role in regulating macrophage-mediated vascular remodeling and hypothesized that endothelial Nogo-B regulates vein graft macrophage infiltration via its alternate receptor PirB. Methods Vein grafts were performed using Nogo and PirB wild type and knockout mice. Human vein grafts were similarly analyzed. The hindlimb ischemia model was performed in PirB wild type and knockout mice. Accompanying in vitro work included isolation of macrophages from PirB wild type and knockout mice. Results Increased Nogo-B and PirB mRNA transcripts and protein expression were observed within mouse and human vein grafts. Both Nogo knockout and PirB knockout vein grafts showed increased wall thickness and increased numbers of F4/80-positive macrophages. Macrophages derived from PirB knockout mice had increased adhesion to fibronectin, increased EC-specific binding, and increased numbers of mRNA transcripts of M2 markers as well as MMP3 and MMP9. PirB knockout vein grafts had increased active MMP9 compared to wild type vein grafts. PirB knockout mice had increased recovery from hindlimb ischemia and increased macrophage infiltration compared to wild type mice. Conclusions Vein graft adaptation shows increased expression of both Nogo-B and PirB. Loss of PirB, or its endothelial ligand Nogo-B, results in increased inflammatory cell infiltration and vein graft wall thickening. These findings suggest that PirB regulates macrophage activity in vein grafts and that Nogo-B in the vein graft limits macrophage infiltration and vein graft thickening. PirB may play a more general role in regulating macrophage responses to vascular injury. Macrophage inhibition via Nogo-PirB interactions may be an important mechanism regulating vein graft adaptation to the arterial circulation.
Collapse
Affiliation(s)
- Yuka Kondo
- The Vascular Biology and Therapeutics Program and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Mie University Graduate School of Medicine, Department of Thoracic and Cardiovascular Surgery, Tsu, Japan
| | - Caroline C. Jadlowiec
- The Vascular Biology and Therapeutics Program and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Surgery, University of Connecticut, Farmington, CT, United States of America
| | - Akihito Muto
- The Vascular Biology and Therapeutics Program and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Mie University Graduate School of Medicine, Department of Thoracic and Cardiovascular Surgery, Tsu, Japan
| | - Tai Yi
- The Vascular Biology and Therapeutics Program and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Clinton Protack
- The Vascular Biology and Therapeutics Program and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael J. Collins
- The Vascular Biology and Therapeutics Program and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - George Tellides
- The Vascular Biology and Therapeutics Program and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - William C. Sessa
- The Vascular Biology and Therapeutics Program and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Alan Dardik
- The Vascular Biology and Therapeutics Program and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Veterans Affairs Connecticut Healthcare Systems, West Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kobayashi N, Suzuki JI, Ogawa M, Aoyama N, Komuro I, Izumi Y, Isobe M. Porphyromonas gingivalis promotes neointimal formation after arterial injury through toll-like receptor 2 signaling. Heart Vessels 2013; 29:542-9. [PMID: 24002697 DOI: 10.1007/s00380-013-0405-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023]
Abstract
We previously demonstrated that Porphyromonas gingivalis infection induces neointimal hyperplasia with an increase in monocyte chemoattractant protein (MCP)-1 after arterial injury in wild-type mice. Toll-like receptor (TLR) 2 is a key receptor for the virulence factors of P. gingivalis. The aim of this study was to assess whether TLR2 plays a role in periodontopathic bacteria-induced neointimal formation after an arterial injury. Wild-type and TLR2-deficient mice were used in this study. The femoral arteries were injured, and P. gingivalis or vehicle was injected subcutaneously once per week. Fourteen days after arterial injury, the murine femoral arteries were obtained for histopathologic and immunohistochemical analyses. The immunoglobulin-G levels of the P. gingivalis-infected groups were significantly increased in comparison with the level in the corresponding noninfected groups in both wild-type and TLR2-deficient mice. TLR2 deficiency negated the P. gingivalis-induced neointimal formation in comparison with the wild-type mice, and reduced the number of positive monocyte chemoattractant protein-1 cells in the neointimal area. These findings demonstrate that P. gingivalis infection can promote neointimal formation after an arterial injury through TLR2 signaling.
Collapse
Affiliation(s)
- Naho Kobayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Zakkar M, Kanagasabay R. Glucocorticoids in adult cardiac surgery; old drugs revisited. Perfusion 2013; 28:395-402. [DOI: 10.1177/0267659113488433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glucocorticoids can play a pivotal role in modulating different immune responses. The role of glucocorticoids in cardiac surgery is still controversial as many surgeons are concerned about the potential side effects. In this review, we looked at the role of glucocorticoid administration in modulating postoperative inflammatory responses, atrial fibrillation (AF) and intimal hyperplasia and whether glucocorticoid use is associated with a significant increase in undesirable postoperative complication.
Collapse
Affiliation(s)
- M Zakkar
- Department of Cardiothoracic Surgery, St. George’s Hospital, London, UK
| | - R Kanagasabay
- Department of Cardiothoracic Surgery, St. George’s Hospital, London, UK
| |
Collapse
|
16
|
Southerland KW, Frazier SB, Bowles DE, Milano CA, Kontos CD. Gene therapy for the prevention of vein graft disease. Transl Res 2013; 161:321-38. [PMID: 23274305 PMCID: PMC3602161 DOI: 10.1016/j.trsl.2012.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 11/20/2022]
Abstract
Ischemic cardiovascular disease remains the leading cause of death worldwide. Despite advances in the medical management of atherosclerosis over the past several decades, many patients require arterial revascularization to reduce mortality and alleviate ischemic symptoms. Technological advancements have led to dramatic increases in the use of percutaneous and endovascular approaches, yet surgical revascularization (bypass surgery) with autologous vein grafts remains a mainstay of therapy for both coronary and peripheral artery disease. Although bypass surgery is highly efficacious in the short term, long-term outcomes are limited by relatively high failure rates as a result of intimal hyperplasia, which is a common feature of vein graft disease. The supply of native veins is limited, and many individuals require multiple grafts and repeat procedures. The need to prevent vein graft failure has led to great interest in gene therapy approaches to this problem. Bypass grafting presents an ideal opportunity for gene therapy, as surgically harvested vein grafts can be treated with gene delivery vectors ex vivo, thereby maximizing gene delivery while minimizing the potential for systemic toxicity and targeting the pathogenesis of vein graft disease at its onset. Here we will review the pathogenesis of vein graft disease and discuss vector delivery strategies and potential molecular targets for its prevention. We will summarize the preclinical and clinical literature on gene therapy in vein grafting and discuss additional considerations for future therapies to prevent vein graft disease.
Collapse
Affiliation(s)
- Kevin W Southerland
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
17
|
Fu C, Yu P, Tao M, Gupta T, Moldawer LL, Berceli SA, Jiang Z. Monocyte chemoattractant protein-1/CCR2 axis promotes vein graft neointimal hyperplasia through its signaling in graft-extrinsic cell populations. Arterioscler Thromb Vasc Biol 2012; 32:2418-26. [PMID: 22904274 DOI: 10.1161/atvbaha.112.255786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To evaluate direct versus indirect monocyte chemoattractant protein (MCP)-1/CCR2 signaling and to identify the cellular producers and effectors for MCP-1 during neointimal hyperplasia (NIH) development in vein grafts. METHODS AND RESULTS Genomic analysis revealed an overrepresentation of 13 inflammatory pathways in wild-type vein grafts compared with CCR2 knockout vein grafts. Further investigation with various vein graft-host combinations of MCP-1- and CCR2-deficient mice was used to modify the genotype of cells both inside (graft-intrinsic group) and outside (graft-extrinsic group) the vein wall. CCR2 deficiency inhibited NIH only when present in cells extrinsic to the graft wall, and MCP-1 deficiency required its effectiveness in cells both intrinsic and extrinsic to the graft wall to suppress NIH. Deletion of either MCP-1 or CCR2 was equally effective in inhibiting NIH. CCR2 deficiency in the predominant neointimal cell population had no impact on NIH. Direct MCP-1 stimulation of primary neointimal smooth muscle cells had minimal influence on cell proliferation and matrix turnover, confirming an indirect mechanism of action. CONCLUSIONS MCP-1/CCR2 axis accelerates NIH via its signaling in graft-extrinsic cells, particularly circulating inflammatory cells, with cells both intrinsic and extrinsic to the graft wall being critical MCP-1 producers. These findings underscore the importance of systemic treatment for anti-MCP-1/CCR2 therapies.
Collapse
Affiliation(s)
- Chunhua Fu
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Sanders WG, Morisseau C, Hammock BD, Cheung AK, Terry CM. Soluble epoxide hydrolase expression in a porcine model of arteriovenous graft stenosis and anti-inflammatory effects of a soluble epoxide hydrolase inhibitor. Am J Physiol Cell Physiol 2012; 303:C278-90. [PMID: 22621785 PMCID: PMC3423029 DOI: 10.1152/ajpcell.00386.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 05/21/2012] [Indexed: 01/09/2023]
Abstract
Synthetic arteriovenous (AV) grafts, placed between an artery and vein, are used for hemodialysis but often fail due to stenosis, typically at the vein-graft anastomosis. This study recorded T lymphocyte and macrophage accumulation at the vein-graft anastomosis, suggesting a role for inflammation in stenosis development. Epoxyeicosatrienoic acids (EETs), products of cytochrome P-450 epoxidation of arachidonic acid, have vasculoprotective and anti-inflammatory effects including inhibition of platelet activation, cell migration, and adhesion. EETs are hydrolyzed by soluble epoxide hydrolase (sEH) to less active diols. The effects of a specific inhibitor of sEH (sEHI) on cytokine release from human monocytes and mouse bone marrow-derived macrophages (BMMΦ) from wild-type (WT) and sEH knockout (KO) animals were investigated. Expression of sEH protein increased over time at the anastomosis as evaluated by immunohistochemistry. Pre-exposure of adherent human monocytes to sEHI (5 μM) significantly inhibited lipopolysaccharide-induced release of monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-α and enhanced the EET-to-diol ratio. Release of MCP-1 from WT BMMΦ was significantly inhibited but release from sEH KO BMMΦ was not attenuated indicating the specificity of the sEHI. In contrast, sEHI did not inhibit the release of macrophage inflammatory protein-1 or interleukin-6. Nuclear translocation of NF-κB, as assessed by immunocytochemical staining, was not decreased with sEHI in monocytes, but the phosphorylation of JNK was completely abrogated, suggesting this pathway is the target of sEHI effects in monocytes. These results suggest that sEHI may be useful for inhibition of inflammation and subsequently stenosis in AV grafts.
Collapse
Affiliation(s)
- William G Sanders
- Department of Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
19
|
Kobayashi N, Suzuki JI, Ogawa M, Aoyama N, Hanatani T, Hirata Y, Nagai R, Izumi Y, Isobe M. Porphyromonas gingivalis accelerates neointimal formation after arterial injury. J Vasc Res 2012; 49:417-24. [PMID: 22739347 DOI: 10.1159/000339583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inflammation plays a key role in neointimal hyperplasia after an arterial injury. Chronic infectious disorders, such as periodontitis, are associated with an increased risk of cardiovascular diseases. However, the effects of a periodontal infection on vascular remodeling have not been examined. We assess the hypothesis that periodontal infection could promote neointimal formation after an arterial injury. METHODS Mice were implanted with subcutaneous chambers (n = 41). Two weeks after implantation, the femoral arteries were injured, and Porphyromonas gingivalis (n = 21) or phosphate-buffered saline (n = 20) was injected into the chamber. The murine femoral arteries were obtained for the histopathological analysis. The expression level of mRNA in the femoral arteries was analyzed using quantitative reverse transcriptase polymerase chain reaction (n = 19-20). RESULTS The intima/media thickness ratio in the P. gingivalis infected group was found to be significantly increased in comparison to the non-infected group. The expression of matrix metalloproteinase-2 mRNA was significantly increased in the P. gingivalis infected group compared to the non-infected group. CONCLUSION These findings demonstrate that P. gingivalis injection can promote neointimal formation after an arterial injury. Periodontitis may be a critical factor in the development of restenosis after arterial intervention.
Collapse
Affiliation(s)
- Naho Kobayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hibino N, Yi T, Duncan DR, Rathore A, Dean E, Naito Y, Dardik A, Kyriakides T, Madri J, Pober JS, Shinoka T, Breuer CK. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. FASEB J 2011; 25:4253-63. [PMID: 21865316 DOI: 10.1096/fj.11-186585] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The primary graft-related complication during the first clinical trial evaluating the use of tissue-engineered vascular grafts (TEVGs) was stenosis. We investigated the role of macrophages in the formation of TEVG stenosis in a murine model. We analyzed the natural history of TEVG macrophage infiltration at critical time points and evaluated the role of cell seeding on neovessel formation. To assess the function of infiltrating macrophages, we implanted TEVGs into mice that had been macrophage depleted using clodronate liposomes. To confirm this, we used a CD11b-diphtheria toxin-receptor (DTR) transgenic mouse model. Monocytes infiltrated the scaffold within the first few days and initially transformed into M1 macrophages. As the scaffold degraded, the macrophage infiltrate disappeared. Cell seeding decreased the incidence of stenosis (32% seeded, 64% unseeded, P=0.024) and the degree of macrophage infiltration at 2 wk. Unseeded TEVGs demonstrated conversion from M1 to M2 phenotype, whereas seeded grafts did not. Clodronate and DTR inhibited macrophage infiltration and decreased stenosis but blocked formation of vascular neotissue, evidenced by the absence of endothelial and smooth muscle cells and collagen. These findings suggest that macrophage infiltration is critical for neovessel formation and provides a strategy for predicting, detecting, and inhibiting stenosis in TEVGs.
Collapse
Affiliation(s)
- Narutoshi Hibino
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Serum monocyte chemoattractant protein-1 levels in rat models of intimal hyperplasia. Int J Angiol 2011. [DOI: 10.1007/bf01616369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
22
|
Inflammatory biomarkers and coronary restenosis in patients with type-2 diabetes. COR ET VASA 2010. [DOI: 10.33678/cor.2010.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Abstract
Cardiovascular pathologies are still the primary cause of death worldwide. The molecular mechanisms behind these pathologies have not been fully elucidated. Unravelling them will bring us closer to therapeutic strategies to prevent or treat cardiovascular disease. One of the major transcription factors that has been linked to both cardiovascular health and disease is NF-kappaB (nuclear factor kappaB). The NF-kappaB family controls multiple processes, including immunity, inflammation, cell survival, differentiation and proliferation, and regulates cellular responses to stress, hypoxia, stretch and ischaemia. It is therefore not surprising that NF-kappaB has been shown to influence numerous cardiovascular diseases including atherosclerosis, myocardial ischaemia/reperfusion injury, ischaemic preconditioning, vein graft disease, cardiac hypertrophy and heart failure. The function of NF-kappaB is largely dictated by the genes that it targets for transcription and varies according to stimulus and cell type. Thus NF-kappaB has divergent functions and can protect cardiovascular tissues from injury or contribute to pathogenesis depending on the cellular and physiological context. The present review will focus on recent studies on the function of NF-kappaB in the cardiovascular system.
Collapse
|
24
|
Carroll GT, McGloughlin TM, O’Keeffe LM, Callanan A, Walsh MT. Realistic Temporal Variations of Shear Stress Modulate MMP-2 and MCP-1 Expression in Arteriovenous Vascular Access. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0089-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
25
|
Eefting D, Bot I, de Vries MR, Schepers A, van Bockel JH, Van Berkel TJC, Biessen EAL, Quax PHA. Local lentiviral short hairpin RNA silencing of CCR2 inhibits vein graft thickening in hypercholesterolemic apolipoprotein E3-Leiden mice. J Vasc Surg 2009; 50:152-60. [PMID: 19563963 DOI: 10.1016/j.jvs.2009.03.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 03/09/2009] [Accepted: 03/14/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Inflammatory responses to vascular injury are key events in vein graft disease and accelerated atherosclerosis, which may result in bypass failure. The monocyte chemoattractant protein-1 (MCP-1)/CC-chemokine receptor (CCR)-2 pathway is hypothesized to play a central role. A murine model for vein graft disease was used to study the effect of local application of lentiviral short hairpin RNA (shRNA) targeted against CCR2. METHODS A venous interposition was placed into the carotid artery of hypercholesterolemic apolipoprotein E3-Leiden (APOE*3-Leiden) mice to induce vein graft thickening with features of accelerated atherosclerosis. To demonstrate the efficacy of the lentiviral shRNA targeting murine CCR2 (shCCR2) in blocking vein graft disease in vivo, lentiviral shCCR2 or a control lentivirus was used to infect the vein graft locally (n = 8). RESULTS Vascular CCR2 and MCP-1 messenger RNA expression levels were significantly upregulated during lesion progression in the vein graft. Infection of smooth muscle cells (SMCs) with a lentiviral shRNA targeting shCCR2 completely abolished MCP-1-induced SMC migration and inhibited SMC proliferation in vitro (n = 3 per group). Morphometric analysis of sections of grafts showed a significant 38% reduction in vein graft thickening in the shCCR2-treated mice 4 weeks after surgery (control, 0.42 +/- 0.05 mm(2); shCCR2, 0.26 +/- 0.03 mm(2); P = .007). CONCLUSION Vascular CCR2 contributes to vein graft disease, and local application of shRNA against CCR2 to the vessel wall prevents vein graft thickening in hypercholesterolemic mice, suggesting that local overexpressing of shRNA using organ-targeted lentiviral gene delivery may be a promising therapeutic tool to improve vein graft disease in bypassed patients. CLINICAL RELEVANCE Vein graft disease is an important clinical issue that results from an inflammatory response. The monocyte chemoattractant protein (MCP)-1/CC-chemokine receptor (CCR)-2 pathway plays a key role in the initiation and development of vein graft disease. This study demonstrates that perivascular overexpression of short hairpin RNA, targeted against CCR2, inhibits vein graft thickening. These data show that organ-targeted gene therapy against CCR2 in the vessel wall could be a promising therapeutic tool to improve vein graft patency in bypassed patients.
Collapse
Affiliation(s)
- Daniël Eefting
- Gaubius Laboratory, TNO Quality of Life, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Eichstaedt HC, Liu Q, Chen Z, Bobustuc GC, Terry T, Willerson JT, Zoldhelyi P. Gene transfer of COX-1 improves lumen size and blood flow in carotid bypass grafts. J Surg Res 2009; 161:162-7. [PMID: 19361808 DOI: 10.1016/j.jss.2008.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/04/2008] [Accepted: 12/08/2008] [Indexed: 11/18/2022]
Abstract
BACKGROUND In autologous saphenous vein grafts, prostacyclin (PGI(1)), a vasoprotective molecule produced by normal endothelial cells, is down-regulated compared with ungrafted saphenous veins and normal carotid arteries. Reduced PGI(2) synthesis may contribute to local platelet deposition, vascular smooth muscle cell (VSMC) accumulation, atherosclerosis, and ultimately failure of venous bypass grafts. We have examined whether gene transfer-mediated overexpression of COX-1 in grafted veins (1) increases PGI(2) and cyclic AMP (cAMP) production, (2) leads to vasodilation and improved local blood flow in the presence of hypercholesterolemia, and (3) reduces neointima formation. MATERIALS AND METHODS Jugular veins from New Zealand-White rabbits were incubated for 30 min ex vivo with 1 x 10(10) PFU/mL of an adenoviral vector encoding COX-1 (AdCOX-1; n = 10) or empty control (n = 10) and grafted to the carotid arteries. The rabbits were placed on a high-cholesterol diet for 4 w, and blood flow and histomorphometry of the grafts were assessed. RESULTS In the AdCOX-1 group, blood flow was significantly increased (16.0 +/- 3.3 versus 12.5 +/- 3.3 mL/min; P < 0.05) compared with controls, and luminal area (8.9 +/- 1.4 versus 5.3 +/- 1.2 mm(2); P < 0.01) and outer circumference were larger. In six identically treated rabbits, graft PGI(2) and cAMP synthesis was increased at 72 h in AdCOX-1 compared with controls. CONCLUSION Our data suggest a 30-min ex vivo exposure of vein grafts to AdCOX-1 increased local synthesis of PGI(2) and cAMP after graft surgery and resulted in better graft lumen and blood flow at 4 w.
Collapse
Affiliation(s)
- Harald C Eichstaedt
- Wafic Said Molecular Cardiology and Gene Therapy Research Laboratory, Texas Heart Institute at St Luke's Episcopal Hospital, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Yang J, Zeng Y, Li Y, Song C, Zhu W, Guan H, Li X. Intravascular site-specific delivery of a therapeutic antisense for the inhibition of restenosis. Eur J Pharm Sci 2008; 35:427-34. [PMID: 18848882 DOI: 10.1016/j.ejps.2008.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/20/2008] [Accepted: 09/04/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND Polymeric nanoparticles (NPs) have been implicated as potential gene carriers in the treatment of various genetic and acquired diseases. In this work we investigated the efficacy of NPs as gene carrier for intravascular gene therapy in animal models of restenosis. METHODS A therapeutic antisense against the monocyte chemotactic protein-1 (anti-MCP-1) was encapsulated into the poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) using double-emulsion/solvent evaporation technology. Laser defractometer was used to assess size distribution of NPs. Particle morphology was assessed by scanning electron microscopy (SEM). DNA content in NPs was determined by DNA extraction using TE buffer from a chloroform solution dissolved a known amount of NPs. DNA concentration was assayed by spectrophotometer. In vitro DNA release was performed in the TE buffer at 37 degrees C utilizing double-chamber diffusion cell. NPs loaded with pEGFP and anti-MCP-1 gene were tested in SMC cell culture for transduction efficiency. The anti-MCP-1 NPs were further evaluated in rabbit vein grafting and carotid artery injury models for their potential in inhibition of restenosis. RESULTS The NPs demonstrated a steady in vitro release of DNA with approximately 95% of total enclosed DNA released within 30 days. Anti-sense MCP-1 expression was confirmed in arterial tissues with single infusion of the therapeutic NPs into the injured rabbit carotid arteries. The intima/media ratio of arteries treated with the anti-MCP-1 NP was reduced by 43% compared with control groups following a 2-week treatment. In a rabbit jugular vein-to-artery-bypass grafting model, animals with local-infusion of anti-MCP-1 NPs also demonstrated a significantly lower intimal hyperplasia than that of control groups with no or free antisense treatment. CONCLUSION Collectively, our data revealed that local delivered anti-MCP-1 NPs effectively inhibited experimental restenosis.
Collapse
Affiliation(s)
- Jing Yang
- The Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Tatewaki H, Egashira K, Kimura S, Nishida T, Morita S, Tominaga R. Blockade of monocyte chemoattractant protein-1 by adenoviral gene transfer inhibits experimental vein graft neointimal formation. J Vasc Surg 2007; 45:1236-43. [PMID: 17543688 DOI: 10.1016/j.jvs.2007.01.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 01/29/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND Clinical outcome of vascular bypass surgery using autologous vein graft is limited by neointimal formation associated with vein graft failure. Because inflammatory changes are one of the main pathologic features of vein graft failure, monocyte chemoattractant protein-1 (MCP-1) might therefore underlie in the mechanism of vein graft failure. There is no direct evidence, however, that shows the benefits of local anti-MCP-1 therapy as a novel molecular approach for prevention of vein graft failure. METHODS To block MCP-1, we used an N-terminal deletion mutant of the MCP-1 gene (7ND), which lacks the N-terminal amino acids 2 to 8, binds to its receptor CCR2, and blocks MCP-1-mediated monocyte chemotaxis. 7ND works as dominant-negative inhibitor of MCP-1. Autologous canine jugular vein grafts were transfected by incubating them ex vivo in a solution with or without adenovirus vectors containing 7ND gene or LacZ gene, and interposed into the carotid arteries. RESULTS Adenovirus-mediated gene transfer of 7ND, but not LacZ gene transfer, significantly attenuated inflammation (monocyte infiltration per mm2 on day 7: 328+/-59, 220+/-11, 26+/-4 in control, LacZ, and 7ND groups, respectively, P<.05, n=4 each) and proliferation (appearance of proliferating cells per mm2 on day 7: 1005+/-186, 756+/-106, 252+/-27 in control, LacZ, and 7ND groups, P<.05, n=4 each) at 7 days after the operation and thus suppressed neointimal formation (neointimal area in mm2 on day 28: 1.63+/-0.51, 1.96+/-0.48, 0.68+/-0.10 in control, LacZ, and 7ND groups, P<.05, n=4 each). This strategy also attenuated upregulation of MCP-1 activities but did not affect endothelial regeneration process. CONCLUSIONS Blockade of MCP-1 by adenoviral gene transfer of 7ND limits neointimal formation associated with vein graft failure in dogs. This study highlights the potential therapeutic benefit of local anti-MCP-1 therapy for prevention of neointimal formation associated with vein graft failure.
Collapse
Affiliation(s)
- Hideki Tatewaki
- Department of Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The designation of atherosclerosis as a chronic inflammatory process represents an exciting and logical paradigm shift for cardiologists. Monocyte chemoattractant protein-1 (MCP-1) plays an important role in the recruitment and activation of monocytes and thus in the development of atherosclerosis. Enhanced MCP-1 expression has been detected in macrophages, endothelial cells, and vascular smooth muscle cells in the atheromatous plaque. Activation of macrophages by MCP-1 also appears to be involved in the vulnerability of the plaque. Indeed, circulating MCP-1 levels are elevated in patients with acute myocardial infarction and in those with unstable angina, but not in patients with stable angina. Production of MCP-1 and macrophage accumulation are also observed after coronary angioplasty or grafting, indicating that MCP-1 expression may be related not only to instability of atheromatous plaques, but also to the formation of restenotic lesions. The development of therapeutic drugs for atherosclerosis targeted specially against MCP-1 may be useful in the prevention of plaque formation and future myocardial infarction.
Collapse
Affiliation(s)
- Uichi Ikeda
- Division of Cardiovascular Medicine, Jichi Medical School, Tochigi, Japan.
| | | | | | | |
Collapse
|
30
|
Owens CD, Ridker PM, Belkin M, Hamdan AD, Pomposelli F, Logerfo F, Creager MA, Conte MS. Elevated C-reactive protein levels are associated with postoperative events in patients undergoing lower extremity vein bypass surgery. J Vasc Surg 2006; 45:2-9; discussion 9. [PMID: 17123769 PMCID: PMC3488442 DOI: 10.1016/j.jvs.2006.08.048] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 08/22/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Inflammatory markers such as high-sensitivity C-reactive protein (hsCRP) are associated with an increased risk of cardiovascular events and with the severity of peripheral arterial disease. The effects of inflammation on the development of vein graft disease remain speculative. We hypothesized that high levels of inflammatory markers would identify patients at increased risk for adverse events (graft failure, major cardiovascular events) after lower extremity bypass surgery. METHODS Patients (n = 91) scheduled to undergo lower extremity bypass using autogenous vein were enrolled into a prospective study at two institutions. Exclusion criteria included the presence of major infection. A baseline plasma sample was obtained on the morning of lower extremity bypass. Biomarkers for inflammation included hsCRP, fibrinogen, and serum amyloid A (SAA). Values between patients with and without critical limb ischemia were compared. Proportions of events among dichotomized populations (upper limit of normal of each laboratory assay) were compared by log-rank test. RESULTS Of the patients undergoing lower extremity bypass, 69% were men, 53% were diabetic, 81% were smokers, and their mean ankle-brachial index was 0.51 +/- 0.19. The indication for lower extremity bypass was critical limb ischemia in 55%. There were no perioperative deaths and two early graft occlusions. During a mean follow-up of 342 days (range, 36-694 days) there were four deaths, 27 graft-related events, and 10 other cardiovascular events. No relationships were found between events and demographics, comorbidities, baseline ankle-brachial index, or statin use. High-sensitivity CRP (P = .005), fibrinogen (P < .001), and SAA (P = .0001) levels were associated with critical limb ischemia at presentation. Among patients with an elevated hsCRP (>5 mg/L) immediately before surgery, major postoperative vascular events occurred in 60% (21/35), compared with a 32% (18/56) rate in those with a baseline CRP <5 mg/L (P = .004, log-rank test). On multivariable analysis, only elevated hsCRP correlated with adverse graft-related or cardiovascular events (P = .018). CONCLUSIONS The inflammatory biomarkers of hsCRP, fibrinogen, and SAA correlate with peripheral arterial disease severity at presentation in patients undergoing lower extremity bypass. Patients with elevated hsCRP are at increased risk for postoperative vascular events, most of which are related to the vein graft. These findings suggest a potential relationship between inflammation and outcomes after lower extremity vein bypass surgery.
Collapse
Affiliation(s)
| | - Paul M. Ridker
- Center for Cardiovascular Disease Prevention, Brigham and Women’s Hospital
| | - Michael Belkin
- Division of Vascular Surgery, Brigham and Women’s Hospital
| | - Allen D. Hamdan
- Division of Vascular Surgery at Beth Israel Deaconess Medical Center
| | - Frank Pomposelli
- Division of Vascular Surgery at Beth Israel Deaconess Medical Center
| | - Frank Logerfo
- Division of Vascular Surgery at Beth Israel Deaconess Medical Center
| | - Mark A. Creager
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital
| | | |
Collapse
|
31
|
Jeremy JY, Gadsdon P, Shukla N, Vijayan V, Wyatt M, Newby AC, Angelini GD. On the biology of saphenous vein grafts fitted with external synthetic sheaths and stents. Biomaterials 2006; 28:895-908. [PMID: 17113144 DOI: 10.1016/j.biomaterials.2006.10.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/10/2006] [Indexed: 02/01/2023]
Abstract
Autologous saphenous vein is used as a conduit to bypass atherosclerotic lesions in both the coronary artery (coronary artery bypass graft surgery [CABG]) and in femoral arteries (infrainguinal bypass graft surgery [IIBS]). Despite the undoubted success and benefits of the procedures, graft failure occurs in 50% of cases within 10 years after surgery. A principal cause of late vein graft failure is intimal and medial hyperplasia and superimposed atherogenesis. Apart from lipid lowering therapy, no intervention has hitherto proved clinically effective in preventing late vein graft failure which clearly constitutes a major clinical and economic problem that needs to be urgently resolved. However, we have studied the effect of external synthetic stents and sheaths in pig models of vein into artery interposition grafting and found them to have a profound effect on vein graft remodelling and thickening. In this review, therefore, we will summarise the mechanisms underlying vein graft failure and how these stents influence these processes and the possible mechanisms involved as well as the application of these devices in preventing vein graft failure clinically.
Collapse
|
32
|
Miyake T, Aoki M, Shiraya S, Tanemoto K, Ogihara T, Kaneda Y, Morishita R. Inhibitory effects of NFkappaB decoy oligodeoxynucleotides on neointimal hyperplasia in a rabbit vein graft model. J Mol Cell Cardiol 2006; 41:431-40. [PMID: 16762361 DOI: 10.1016/j.yjmcc.2006.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/05/2006] [Accepted: 04/11/2006] [Indexed: 11/22/2022]
Abstract
Autologous vein remains the commonly used conduit for bypass grafts; however, neointimal hyperplasia is known to be one of the major disease processes in vein graft failure. In this study, we focused on the important role of NFkappaB which controls the expression of numerous genes for various cytokines and adhesion molecules in the mechanism of graft failure. Thus, we investigated the inhibitory effect of NFkappaB decoy oligodeoxynucleotides (ODN) on vein graft failure in a rabbit hypercholesterolemic model. Jugular vein to carotid artery interposition grafts in rabbits were transfected intraoperatively with NFkappaB decoy ODN (40 micromol/l) by ex-vivo pressure-mediated transfection (300 mm Hg, 10 min). Treatment with NFkappaB decoy ODN significantly suppressed intimal hyperplasia 4 weeks after vein implantation as compared to scrambled decoy ODN, and increased medial thickness, leading to a significant reduction in intima-to-media ratio. Treatment with NFkappaB decoy ODN significantly inhibited the recruitment of macrophages and the proliferation of vascular smooth muscle cells (VSMC), while apoptosis in VSMC was significantly increased by NFkappaB decoy ODN. In addition, a study of vascular reactivity demonstrated that transfection of grafts with NFkappaB decoy ODN significantly improved endothelium-mediated vasorelaxation as compared to scrambled decoy ODN. Here, we demonstrated that inhibition of NFkappaB activation using decoy ODN inhibited the development of neointimal hyperplasia, followed by suppression of inflammatory changes and accumulation of VSMC in the neointima of rabbit vein grafts. The present study raises the possibility of a novel strategy for prevention of graft failure.
Collapse
Affiliation(s)
- Takashi Miyake
- Division of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Wolff RA, Malinowski RL, Heaton NS, Hullett DA, Hoch JR. Transforming growth factor-beta1 antisense treatment of rat vein grafts reduces the accumulation of collagen and increases the accumulation of h-caldesmon. J Vasc Surg 2006; 43:1028-36. [PMID: 16678700 DOI: 10.1016/j.jvs.2006.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND The main cause of occlusion and vein graft failure after peripheral and coronary arterial reconstruction is intimal hyperplasia. Transforming growth factor beta-1 (TGF-beta1) is a pleiotropic cytokine known to have powerful effects on cell growth, apoptosis, cell differentiation, and extracellular matrix synthesis. METHODS To investigate the role of TGF-beta1 in intimal hyperplasia, we used adenovirus to deliver to superficial epigastric vein messenger RNA (mRNA) antisense to TGF-beta1 (Ad-AST) or the sequence encoding the bioactive form of TGF-beta1 (Ad-BAT). Infection with "empty" virus was used as a control (Ad-CMVpLpA). The treated vein was then used for an interposition graft into rat femoral artery. Grafts were harvested at 1, 2, 4, and 12 weeks and formalin-fixed for histologic studies or placed in liquid nitrogen for mRNA studies. RESULTS Ad-AST treatment resulted in an overall reduction of TGF-beta1 expression (P = .001), and Ad-BAT treatment resulted in an overall increase in TGF-beta1 expression (P = .007). Histologic analysis showed Ad-AST caused reduced collagen build up in the neointima at 12 weeks (P = .0001). Immunohistochemical staining for h-caldesmon at 12 weeks indicated Ad-AST increased smooth muscle cells throughout the vessel wall compared with Ad-CMVpLpA (P = .0024) or Ad-BAT (P = .04). Ad-AST also resulted in reduced CD68-positive cells in the media/adventitia (P = .005 vs Ad-CMVpLpA, P = .01 vs Ad-BAT). To further understand how Ad-AST was influencing the build up of collagen, we performed quantitative polymerase chain reaction on complimentary DNA (cDNA) from homogenates of the vein grafts. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) was increased at 1 week by Ad-BAT (P = .048 vs Ad-CMVpLpA) and decreased by Ad-AST at all time points (P </= .038). The mRNA for collagen-1 alpha-1 was decreased by Ad-AST at 2, 4, and 12 weeks (P < or = .05) and increased by Ad-BAT at 1 week (P = .01). CONCLUSIONS TGF-beta1 antisense treatment of vein grafts prevents the accumulation of collagen in the neointima in part by (1) changing the proportions of the cell types populating the vein graft wall, (2) reducing the mRNA for TIMPs, and (3) reducing the amount of collagen mRNA. With the Ad-AST and Ad-BAT treatments, we have been able to tip the maturation of the vein graft toward positive remodeling (artery-like phenotype) or toward negative remodeling (fibroproliferation and stenosis), respectively.
Collapse
Affiliation(s)
- Randal A Wolff
- William S. Middleton Memorial Veterans Hospital and University of Wisconsin Medical School, Madison, Wisconsin 53792-3236, USA.
| | | | | | | | | |
Collapse
|
34
|
Shireman PK, Contreras-Shannon V, Reyes-Reyna SM, Robinson SC, McManus LM. MCP-1 parallels inflammatory and regenerative responses in ischemic muscle. J Surg Res 2006; 134:145-57. [PMID: 16488443 DOI: 10.1016/j.jss.2005.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/30/2005] [Accepted: 12/05/2005] [Indexed: 11/17/2022]
Abstract
BACKGROUND Monocyte chemotactic protein-1 (MCP-1) is important in macrophage recruitment and activation. However, the magnitude and temporal sequence of MCP-1 expression in relation to tissue injury and regeneration following ischemic injury remains unknown. MATERIALS AND METHODS Hind limb ischemia was induced by femoral artery excision (FAE) in C57Bl/6J mice; a sham surgery was performed on the contralateral leg. Muscle lysates were used to measure MCP-1 and activities of creatine kinase, lactate dehydrogenase, and myeloperoxidase. Histology and immunohistochemistry were used to localize inflammation and MCP-1. RESULTS FAE resulted in a prolonged period of ischemia and the administration of MCP-1 did not alter the restoration of perfusion. One day after femoral artery excision, extensive muscle necrosis and neutrophils were prevalent throughout the musculature of the lower leg. By 3 days, a mononuclear cell infiltrate predominated in association with robust muscle regeneration as indicated by myoD expression. Concomitantly, myeloperoxidase was maximally increased. Muscle enzymes (creatine kinase and lactate dehydrogenase) were maximally decreased within 3 days and returned to baseline levels by day 14, a time course consistent with injury and regeneration observed by histology. In parallel with these inflammatory and regenerative events, MCP-1 in muscle was maximally increased at day 3. By immunohistochemistry, MCP-1 was within vascular endothelial cells and infiltrating macrophages in areas of ischemic injury. CONCLUSIONS The transient increases and selective tissue distribution of MCP-1 during early inflammation and muscle regeneration support the hypothesis that this cytokine participates in the early reparative events preceding the restoration of vascular perfusion following ischemic injury.
Collapse
Affiliation(s)
- Paula K Shireman
- South Texas Veterans Health Care System, San Antonio, TX 78229-3900, USA.
| | | | | | | | | |
Collapse
|
35
|
Sakaguchi T, Asai T, Belov D, Okada M, Pinsky DJ, Schmidt AM, Naka Y. Influence of ischemic injury on vein graft remodeling: role of cyclic adenosine monophosphate second messenger pathway in enhanced vein graft preservation. J Thorac Cardiovasc Surg 2005; 129:129-37. [PMID: 15632834 DOI: 10.1016/j.jtcvs.2004.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Endothelial injury during the harvest of saphenous vein grafts might play an important role in the development of vein graft disease after coronary artery bypass grafting. Using a murine autologous arterialized vein patch model, we tested whether the initial ischemic insult of vein grafts was linked to the later development of graft neointimal hyperplasia and whether the restoration of the cyclic adenosine monophosphate second messenger pathway would attenuate the development of neointimal hyperplasia. METHODS A segment of the external jugular vein of a mouse was grafted onto its abdominal aorta. Three weeks after the operation, the degree of neointimal hyperplasia of the implanted graft was compared among (1) grafts without preservation, (2) grafts with 2 hours of preservation (25 degrees C) in heparinized saline, and (3) grafts with 2 hours of preservation in heparinized saline in the presence of a cyclic adenosine monophosphate analog. In addition, cyclic adenosine monophosphate contents of vein grafts and leukocyte adherence to the graft endothelium were assessed. RESULTS Cyclic adenosine monophosphate contents were significantly decreased after 2 hours of preservation (212 +/- 8 vs 156 +/- 5 pmol/L, P < .01). The grafts preserved for 2 hours showed greater neointimal hyperplasia compared with the grafts without preservation (neointimal expansion, 68.7% +/- 9.6% vs 46.1% +/- 4.8%; P < .01). The addition of a cyclic adenosine monophosphate analog to the preservation solution significantly suppressed neointimal hyperplasia of grafts preserved for 2 hours (44.3% +/- 5.0%). Inhibiting the cyclic adenosine monophosphate-dependent protein kinase by adding Rp-cAMPS abrogated the beneficial effects. Furthermore, grafts preserved for 2 hours had significantly more leukocytes adhering to the graft endothelium 24 hours after the operation compared with nonpreserved grafts, which was significantly reduced by the cyclic adenosine monophosphate treatment. CONCLUSIONS Ischemic insult during vein graft harvest and preservation is a key factor in the development of vein graft neointimal hyperplasia at least in part caused by the depletion of cyclic adenosine monophosphate. We conclude that stimulation of the cyclic adenosine monophosphate second messenger pathway might be a potential strategy for the prevention of vein graft disease.
Collapse
Affiliation(s)
- Taichi Sakaguchi
- Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Wolff RA, Ryomoto M, Stark VE, Malinowski R, Tomas JJ, Stinauer MA, Hullett DA, Hoch JR. Antisense to transforming growth factor-β1 messenger RNA reduces vein graft intimal hyperplasia and monocyte chemotactic protein 1. J Vasc Surg 2005; 41:498-508. [PMID: 15838486 DOI: 10.1016/j.jvs.2004.12.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Autogenous vein grafts are commonly used for arterial reconstructive procedures. Their success is limited by the development of intimal hyperplasia (IH), a fibroproliferative disease that predisposes the grafts to occlusive stenosis. Mesenchymal cell proliferation and the deposition of an extracellular matrix characterize neointimal development. Increasing evidence suggests that, regardless of blood vessel type, IH results from complex interactions among vessel wall cells, infiltrating leukocytes, and cytokines. Transforming growth factor-beta1 (TGF-beta1) is a pleiotropic cytokine with powerful effects on inflammatory cell chemotaxis; smooth muscle cell, fibroblast, and endothelial cell proliferation; and extracellular matrix synthesis. METHODS Epigastric vein to common femoral artery interposition grafts were placed in male Lewis rats and harvested at 1, 2, 4, and 12 weeks after surgery. We used replication-defective adenoviruses to deliver a control reporter gene for the enzyme beta-galactosidase (Ad-GAL), empty virus (Ad-CMVpLpA), or the sequence encoding the antisense strand of TGF-beta1 (Ad-AST). The vein graft was transduced passively in medium containing 10 7 plaque-forming units per milliliter of Ad-GAL, Ad-CMVpLpA, or Ad-AST for 20 minutes at room temperature. The adenovirus-treated grafts were compared with grafts treated with medium without virus (sham). RESULTS The Ad-GAL control grafts showed beta-galactosidase activity from 3 days to 4 weeks. Twenty percent of cells were positive out to 2 weeks, at which time the number of cells positive for beta-galactosidase activity began to decline. Treatment with Ad-AST resulted in a significant reduction vs sham, Ad-CMVpLpA, and Ad-GAL in TGF-beta1 messenger RNA, total TGF-beta1 protein, and bioactive TGF-beta1 protein. Neointimal area was significantly reduced in the Ad-AST group vs Ad-GAL at 4 weeks, vs Ad-CMVpLpA at 4 and 12 weeks, and vs sham at 2 and 4 weeks. The medial/adventitial layer was significantly thicker in the Ad-AST group than the Ad-GAL group at 12 weeks. In addition, we studied the effect of Ad-AST on monocyte chemotactic protein 1 (MCP-1). Although the reduction in TGF-beta1 resulted in a reduction of MCP-1 messenger RNA in whole-graft homogenates and MCP-1 protein-positive staining in histologic sections from the perianastomotic region, no reduction in the number of ED1-positive cells (monocytes and macrophages) was observed. CONCLUSIONS Perioperative antisense TGF-beta1 treatment of the vein to be used in arterial reconstructions resulted in a prolonged diminution of IH; this emphasizes the importance of TGF-beta1 in neointimal thickening and indicates that ex vivo gene therapy can reduce the vessel's predisposition to IH. CLINICAL RELEVANCE The main cause of occlusion and graft failure after peripheral and cardiac arterial reconstruction is IH. The study of the mechanisms and mediators of IH, including TGF-beta1, should lead to future gene therapies to prevent or limit IH. The clinical effect of such treatments would be enormous, because they would increase graft longevity, thereby enhancing quality of life and enabling patients to live without the threat of limb loss or recurrent heart attack.
Collapse
Affiliation(s)
- Randal A Wolff
- Department of Surgery, Medical School, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jiang Z, Berceli SA, Pfahnl CL, Wu L, Goldman D, Tao M, Kagayama M, Matsukawa A, Ozaki CK. Wall shear modulation of cytokines in early vein grafts. J Vasc Surg 2004; 40:345-50. [PMID: 15297832 DOI: 10.1016/j.jvs.2004.03.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Pro-inflammatory cytokine-driven mechanisms have been implicated in vein graft failure, though little is known about the effect of hemodynamic factors and anti-inflammatory counter-regulatory mechanisms. We hypothesized that early temporal expression of the pro-inflammatory cytokine interleukin (IL)-1 beta and the anti-inflammatory cytokine IL-10 proceeds by way of wall shear stress-dependent pathways in the arterializing vein graft. METHODS Rabbits (n = 27) underwent bilateral jugular vein carotid interposition grafts, and simultaneous unilateral distal carotid branch ligation, to produce both low-flow and high-flow grafts in the same animal. Vein grafts were harvested at 1, 3, 7, 14, and 28 days and were assessed for architecture, wall shear stress, and cytokine messenger RNA levels (quantitative real-time two-step reverse transcription polymerase chain reaction). RESULTS The model resulted in an immediate 90% flow reduction (P <.001, paired t test) in the vein graft on the ligated side, and a 36% increase (P =.01) in contralateral graft flow. This persisted as approximately 15-fold flow differential throughout the 28-day period. The construction yielded a 15-fold differential in wall shear stress between low-flow and high-flow vein grafts (P <.001, two-way repeated measures analysis of variance). Intimal hyperplasia began by day 3, and was 6-fold more in low wall shear grafts by 28 days (230.6 +/- 35.4 microm intimal thickness vs 36.1 +/- 17.6 microm for low shear versus high shear grafts; P =.001). For both cytokines time independently affected mRNA expression (P <.001, global analysis of variance). Exposure of vein grafts to the arterial circulation markedly up-regulated IL-1 beta at 1 day, with significantly more induction in the low shear setting (P =.002). IL-1 beta protein localized to the developing neointima at days 1 and 3. Conversely, IL-10 slowly increased until day 14, with significantly more expression in the high shear grafts (P <.001). CONCLUSIONS Vein graft adaptation induces early pro-inflammatory cytokine IL-1 beta expression and delayed protective IL-10 expression (most notable under high shear conditions), both of which are modulated by wall shear. These differential temporal windows offer strategies for appropriately timed pro-inflammatory or anti-inflammatory therapies to interrupt pathologic vein graft adaptations. CLINICAL RELEVANCE Neointimal hyperplasia continues to limit the durability of vein bypass grafts. Emerging evidence suggests that inflammatory mechanisms drive the neointimal hyperplasic response. This study demonstrates that specific hemodynamic forces (altered wall shear stress) differentially affect early pro-inflammatory interleukin (IL)-1 beta and delayed anti-inflammatory IL-10 signaling. These distinct temporal windows for IL-1 beta and IL-10 cytokine expression offer strategies for appropriately timed pro-inflammatory and anti-inflammatory therapies to interrupt pathologic vein graft adaptations.
Collapse
Affiliation(s)
- Zhihua Jiang
- University of Florida College of Medicine and the Malcom Randall Veterans Affairs Medical Center, Gainesville, 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abbruzzese TA, Havens J, Belkin M, Donaldson MC, Whittemore AD, Liao JK, Conte MS. Statin therapy is associated with improved patency of autogenous infrainguinal bypass grafts. J Vasc Surg 2004; 39:1178-85. [PMID: 15192555 PMCID: PMC2643376 DOI: 10.1016/j.jvs.2003.12.027] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE HMG-CoA reductase inhibitors (statins) broadly reduce cardiovascular events, effects that are only partly related to cholesterol lowering. Recent studies suggest important anti-inflammatory and antiproliferative properties of these drugs. The purpose of this study was to determine the influence of statin therapy on graft patency after autogenous infrainguinal arterial reconstructions. METHODS A retrospective analysis of consecutive patients (1999-2001) who underwent primary autogenous infrainguinal reconstructions with a single segment of greater saphenous vein was performed. Patients were categorized according to concurrent use of a statin. Graft lesions (identified by duplex surveillance) and interventions were tabulated. Comparisons between groups were made by using the Fisher exact test for categorical variables and the Student t test for continuous variables. Patency, limb salvage, and survival were compared by log rank test. A stepwise Cox proportional hazards analysis was then employed to ascertain the relative importance of factors influencing graft patency. RESULTS A total of 172 patients underwent 189 primary autogenous infrainguinal arterial reconstructions (94 statin, 95 control) during the study period. The groups were well matched for age, indication, and atherosclerotic risk factors. Procedures were performed primarily for limb salvage (92%), with 65% to an infrapopliteal target. Perioperative mortality (2.6%) and major morbidity (3.2%) were not different between groups. There was no difference in primary patency (74% +/- 5% vs 69% +/- 6%; P =.25), limb salvage (92% +/- 3% vs 90% +/- 4%; P =.37), or survival (69% +/- 5% vs 63% +/- 5%; P =.20) at 2 years. However, patients on statins had higher primary-revised (94% +/- 2% vs 83% +/- 5%; P <.02) and secondary (97% +/- 2% vs 87% +/- 4%; P <.02) graft patency rates at 2 years. Of all factors studied by univariate analysis, only statin use was associated with improved secondary patency (P =.03) at 2 years. This was confirmed by multivariate analysis. The risk of graft failure was 3.2-fold higher (95% confidence interval, 1.04-10.04) for the control group. Perioperative cholesterol levels (available in 47% of patients) were not statistically different between groups. CONCLUSIONS Statin therapy is associated with improved graft patency after infrainguinal bypass grafting with saphenous vein.
Collapse
Affiliation(s)
- Thomas A. Abbruzzese
- Division of Vascular Surgery, Brigham and Women’s Hospital, Harvard Medical School
| | - Joaquim Havens
- Division of Vascular Surgery, Brigham and Women’s Hospital, Harvard Medical School
| | - Michael Belkin
- Division of Vascular Surgery, Brigham and Women’s Hospital, Harvard Medical School
| | | | | | - James K. Liao
- Division of Cardiology, Brigham and Women’s Hospital, Harvard Medical School
| | - Michael S. Conte
- Division of Vascular Surgery, Brigham and Women’s Hospital, Harvard Medical School
| |
Collapse
|
39
|
Wolff RA, Tomas JJ, Hullett DA, Stark VE, van Rooijen N, Hoch JR. Macrophage depletion reduces monocyte chemotactic protein-1 and transforming growth factor-β1 in healing rat vein grafts. J Vasc Surg 2004; 39:878-88. [PMID: 15071458 DOI: 10.1016/j.jvs.2003.11.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We previously showed that treatment with liposomally encapsulated dichloromethylene bisphosphonate reduces intimal hyperplasia development and macrophage accumulation in a rat epigastric vein to femoral artery model of intimal hyperplasia. Our objective in this study was to determine the effect of liposomally encapsulated dichloromethylene bisphosphonate on the expression of two cytokines essential to neointimal development, monocyte chemotactic protein-1 (MCP-1) and transforming growth factor-beta1 (TGF-beta). METHODS We injected rats both 2 days preoperatively and 2 weeks postoperatively with liposomally encapsulated dichloromethylene bisphosphonate (Lip-Clod), liposomally encapsulated phosphate-buffered saline solution (Vector), or phosphate-buffered saline solution (PBS), and harvested the grafts at 1 and 4 weeks. In the perianastomotic region, MCP-1 and TGF-beta protein expression in the total graft cross-section and in the neointima was determined with immunohistochemistry. In whole-graft lysates, MCP-1 and TGF-beta protein were determined with an enzyme-linked immunosorbent assay, and messenger RNA expression was determined with reverse transcription quantitative polymerase chain reaction. RESULTS Lip-Clod treatment reduced intimal hyperplasia when compared with Vector or PBS treatment. These reductions were significant (P<.05) at both time points. When compared with the PBS treatment, at 1 week but not at 4 weeks Lip-Clod reduced both MCP-1 and TGF-beta protein (P< or =.01 and P< or =.006) in the perianastomotic region of vein grafts. In whole-graft lysates, no significant difference was seen in MCP-1 protein at either time point; however, TGF-beta protein expression was significantly reduced at both 1 and 4 weeks (P=.02 and P=.004). Message analysis in whole-graft lysates at 1 week showed that MCP-1 message expression increased in the Lip-Clod group compared with the PBS group (P=.02), but no significant differences among groups for TGF-beta message levels. Results with Vector were often intermediate to results with Lip-Clod and PBS. CONCLUSION The major effect of Lip-Clod treatment on TGF-beta and MCP-1 protein levels in the perianastomotic region is observed at 1 week, and macrophage depletion with Lip-Clod inhibits graft neointimal hyperplasia and TGF-beta protein expression in whole-graft lysates at 1 and 4 weeks. These results support the concept that the infiltrating macrophages contribute a significant portion of the cytokines that facilitate intimal hyperplasia and that reducing these cytokines early after grafting influences the development of intimal hyperplasia at later time points. CLINICAL RELEVANCE All vascular surgeons have patients who have undergone a technically satisfying vein graft, only to have the bypass fail during the first year due to perianastomotic intimal hyperplasia (IH). We hypothesize that vein graft IH is analogous to aberrant wound healing. Central to wound healing is the recruitment of macrophages with their cytokines. This work raises the question whether clinical strategies designed to either decrease macrophages or the cytokines released by macrophages at the time of vein graft placement will be efficacious for limiting the development of IH.
Collapse
Affiliation(s)
- Randal A Wolff
- Department of Surgery, University of Wisconsin Hospital and Clinics, Veterans Affairs Medical Center, Madison 53792, USA
| | | | | | | | | | | |
Collapse
|
40
|
Renier G, Mamputu JC, Serri O. Benefits of gliclazide in the atherosclerotic process: decrease in monocyte adhesion to endothelial cells. Metabolism 2003; 52:13-8. [PMID: 12939734 DOI: 10.1016/s0026-0495(03)00212-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Atherosclerotic cardiovascular disease is the leading cause of premature death in patients with diabetes. Atherosclerosis is a chronic immune-mediated disease, the initiation, progression, and destabilization of which is driven and regulated by inflammatory cells. One critical event in the initiation of this vascular inflammatory disease is the adhesion of leukocytes to the activated endothelium and their migration into the vessel wall. These processes are mediated by the upregulation of adhesion molecules on endothelial cells (ECs) and an increased expression in the vascular wall of chemotactic factors to leukocytes. Monocyte binding to ECs is increased in diabetes. One major determinant of this alteration could be oxidative stress. Given the free-radical scavenging activity of gliclazide, we determined the ex vivo and in vitro effects of this drug on human monocyte binding to ECs and the molecular mechanisms involved in this effect. Our results demonstrate that short-term administration of gliclazide to patients with type 2 diabetes normalizes the levels of plasma lipid peroxides and monocyte adhesion in these subjects. Gliclazide (10 microg/mL) also reduces oxidized low-density lipoprotein (oxLDL)- and advanced glycation end product (AGE)-induced monocyte adhesion to ECs in vitro. The inhibitory effect of this drug on AGE-induced monocyte adhesion involves a reduction in EC adhesion molecule expression and inhibition of nuclear factor kappaB (NF-kappaB) activation. In addition, gliclazide inhibits oxLDL-induced monocyte adhesion to cultured human aortic vascular smooth muscle cells (HASMCs) in vitro and reduces the production of monocyte chemotactic protein-1 (MCP-1) by these cells. Taken collectively, these results show that gliclazide, at concentrations in the therapeutic range, inhibits ex vivo and in vitro monocyte adhesiveness to vascular cells. By doing so, this drug could reduce monocyte recruitment into the vessel wall and thereby contribute to attenuating the sustained inflammatory process that occurs in the atherosclerotic plaque. These findings suggest that treatment of diabetic patients with this drug may prevent or retard the development of vasculopathies associated with diabetes.
Collapse
Affiliation(s)
- Geneviève Renier
- CHUM Research Centre, Metabolic Unit, Notre-Dame Hospital, Montreal Quebec, Canada
| | | | | |
Collapse
|
41
|
Renier G, Mamputu JC, Desfaits AC, Serri O. Monocyte adhesion in diabetic angiopathy: effects of free-radical scavenging. J Diabetes Complications 2003; 17:20-9. [PMID: 12623165 DOI: 10.1016/s1056-8727(02)00271-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increased interaction of monocytes with vascular cells is linked to the development and progression of atherosclerosis in patients with diabetes. One major determinant of increased monocyte binding to vascular cells could be oxidative stress. Given the free-radical scavenging properties of gliclazide, we evaluated the ex vivo and in vitro effects of this drug on human monocyte binding to endothelial cells and smooth muscle cells (SMCs). Short-term administration of gliclazide to patients with type 2 diabetes decreases plasma lipid peroxides and lowers the enhanced adhesion of diabetic monocytes to cultured endothelial cells observed before gliclazide treatment. Gliclazide (10 microg/ml) also reduces oxidized low-density lipoprotein (oxLDL)- and advanced glycation end product (AGE)-induced monocyte adhesion to cultured endothelial cells. The suppressive effect of gliclazide on AGE-induced monocyte adhesion to endothelium involves a reduction of cell adhesion molecule mRNA and protein expression and an inhibition of NF-kappaB activation. Gliclazide also inhibits oxLDL-induced monocyte adhesion to cultured human aortic smooth muscle cells (HASMCs). Furthermore, treatment of HASMCs with gliclazide results in a marked decrease in oxLDL-induced monocyte chemoattractant protein-1 expression, both at the gene and protein levels. These results suggest that gliclazide, at concentrations in the therapeutic range (5-10 microg/ml), by its ability to decrease monocyte-vascular cell interactions could reduce monocyte accumulation in the atherosclerotic plaque and thereby contribute to attenuate the sustained inflammatory process that occurs in the vessel wall. These findings suggest that treatment of diabetic patients with gliclazide may prevent or retard the development of vascular disturbances associated with diabetes.
Collapse
MESH Headings
- Aged
- Analysis of Variance
- Animals
- Aorta/cytology
- Cattle
- Cell Adhesion/drug effects
- Diabetes Mellitus, Type 2/drug therapy
- Diabetic Angiopathies/prevention & control
- Dose-Response Relationship, Drug
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Female
- Free Radical Scavengers/pharmacology
- Gliclazide/pharmacology
- Gliclazide/therapeutic use
- Glycation End Products, Advanced/physiology
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- In Vitro Techniques
- Lipoproteins, LDL/physiology
- Male
- Middle Aged
- Monocytes/drug effects
- Monocytes/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Serum Albumin/physiology
Collapse
Affiliation(s)
- Geneviève Renier
- CHUM Research Centre, Metabolic Unit, Notre-Dame Hospital, 3rd floor, J.A. de Sève, Y-3622, 1560 Sherbrooke Street East, Quebec, H2L 4M1, Montreal, Canada.
| | | | | | | |
Collapse
|
42
|
Ram S, Bass K, Abreo K, Baier RJ, Kruger TE. Tumor necrosis factor-alpha -308 gene polymorphism is associated with synthetic hemodialysis graft failure. J Investig Med 2003; 51:19-26. [PMID: 12580317 DOI: 10.2310/6650.2003.33522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Progressive venous stenosis mediated, in part, by inflammatory cytokines is a major cause of synthetic hemodialysis graft failure. A tumor necrosis factor-alpha (TNF-alpha) gene polymorphism (G to A, position -308) has been shown to increase plasma cytokine levels and severity of diseases with an underlying inflammatory component. METHODS We genotyped 67 patients with synthetic polytetrafluoroethylene (PTFE) grafts and examined the association of the high-(AA or GA) and low- (GG) production TNF-alpha-08 genotypes with the rate of graft failures/thrombosis and graft survival. RESULTS Hemodialysis patients with the high-production TNF-alpha genotypes had a significantly increased rate of PTFE graft failure at 90 days (37.2% versus 14%) and 1 year (62.8% versus 34.4%) after graft placement compared with patients with the low-production genotype (respectively). Hemodialysis patients with the high-production TNF-alpha genotypes had significantly lower cumulative PTFE graft survival at 1 year (29.4% +/- 11.1% versus 71.2 +/- 6.8%) and 2 years (22.1% +/- 10.5% versus 48.2 +/- 8.1%) compared with patients with the low-production genotype (respectively). Patients with the A allele had approximately twice the mean thrombosis rate compared with those who had the low-production TNF-alpha genotype (3.3 +/- 0.8 versus 1.7 +/- 0.4 thromboses/patient/year, respectively; mean +/- SEM, p < .05). CONCLUSIONS These data suggest that the TNF-alpha -308 A allele is associated with increased PTFE graft thrombosis and failure in hemodialysis patients.
Collapse
Affiliation(s)
- Sunanda Ram
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
43
|
Krüger B, Schröppel B, Ashkan R, Marder B, Zülke C, Murphy B, Krämer BK, Fischereder M. A Monocyte chemoattractant protein-1 (MCP-1) polymorphism and outcome after renal transplantation. J Am Soc Nephrol 2002; 13:2585-9. [PMID: 12239249 DOI: 10.1097/01.asn.0000031701.53792.54] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Among the factors modulating transplant rejection and cardiovascular disease, chemokines and their respective receptors deserve special attention. In this respect, increased expression of MCP-1 and the corresponding receptor CCR2 have been demonstrated in renal transplant rejection and coronary artery disease. The impact of the MCP-1-2518G and CCR2-64I genotypes on renal allograft function was investigated in 232 patients who underwent transplantation over an 11-yr period. Genomic DNA was genotyped using PCR with sequence-specific primers followed by restriction fragment length polymorphism analysis. Eighteen (7.8%) patients were homozygous for the MCP-1-2518G mutation. The G/G allele of MCP-1 -2518 behaved as a determinant for long-term allograft survival and resulted in reduction of the mean graft survival, as compared with the heterozygous (A/G) or wild-type (A/A) allele (67 +/- 14 versus 95 +/- 4 mo; Log rank P = 0.0052). The 64I mutation of CCR2 had no effect on kidney graft failure (93 +/- 6 and 91 +/- 5 mo, respectively; P = 0.81). None of the investigated polymorphisms showed a significant shift in gene frequency in acute rejection and rejection-free groups. In conjunction with these findings, peripheral blood mononuclear cells from kidney transplant recipients carrying the G-allele were characterized by a 2.5-fold higher MCP-1 secretion (P < 0.05). In conclusion, recipients of renal transplants homozygous for the -2518 G mutation of the MCP-1 gene are at risk for premature kidney graft failure. This variant of MCP-1 may be a future predictor for long-term kidney graft failure.
Collapse
Affiliation(s)
- Bernd Krüger
- Klinik für Innere Medizin II, University of Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kown MH, Jahncke CL, Lijkwan MA, Koransky ML, Mari C, Berry GJ, Blankenberg FG, Strauss HW, Robbins RC. The use of (99m)technetium-labeled MCP-1 to assess graft coronary artery disease in rat cardiac allografts. J Heart Lung Transplant 2002; 21:1009-15. [PMID: 12231372 DOI: 10.1016/s1053-2498(02)00421-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Monocyte chemoattractant protein-1 (MCP-1) is associated with the development of graft coronary artery disease (GCAD) following cardiac transplantation. This study assessed whether technetium 99m ((99m)Tc)-labeled MCP-1 binds its receptors in chronic cardiac transplants and thereby provides a potential modality to assess GCAD. METHODS Allogeneic (PVG-->ACI, n = 9) and syngeneic (ACI-->ACI, n = 9) rat heterotopic heart transplants were performed. Allograft recipients were treated with 7.5 mg/kg per day of Cyclosporin A for 10 days until tolerance was achieved. After 90 days, animals were injected intravenously with (99m)Tc-MCP-1 and killed after 1 hour. Radioactivity of heart tissues was measured and standardized to uptake in the overall blood pool. Two-dimensional (99m)Tc-MCP-1 uptake (autoradiographs) was imaged by exposing 50-microm sections on a phosphoimager overnight. ED-1 staining of monocyte/macrophages was performed on serial sections. Additional sections were stained with elastin von Gieson and hematoxylin. Hearts were scored for luminal narrowing and intima/media ratio (I/M) with computerized image analysis. RESULTS Allografts exhibited significantly more luminal narrowing (22.5 +/- 10.7% vs 2.6 +/- 4.6, p = 0.0005) and higher I/M (0.173 +/- 0.151 vs 0.015 +/- 0.029, p = 0.0088) than isografts. The ratio of (99m)Tc-MCP-1 uptake in allografts (1.04 +/- 0.4) was greater than that of isograft controls (0.72 +/- 0.11, p = 0.03). Pixel counts of autoradiographs and ED-1-stained sections demonstrated a modest correlation between the two (R(2) = 0.50). No significant differences were seen in acute rejection scores. CONCLUSION (99m)Tc-MCP-1 uptake was higher in allografts vs isografts and was consistent with a greater degree of GCAD. These data demonstrating increased radiopharmaceutical uptake in hearts with GCAD provide a foundation for the development of a potentially non-invasive imaging assay of this disease process in heart transplantation.
Collapse
Affiliation(s)
- Murray H Kown
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
BACKGROUND Vein grafts have been used as bypass conduits for coronary artery disease since the 1960s. This widely used treatment, however, is complicated by the development of changes in the vein graft, which resemble atherosclerosis and are often termed as such. They occur at about 10 years, which leads to the need for reoperation in some patients. The purpose of this review is to summarize the knowledge regarding the pathophysiology of vein graft "atherosclerosis," as well as promising new treatments for this disease. METHODS The relevant literature relating to the epidemiology, histology, cell and molecular pathophysiology and treatment of vein graft atherosclerosis is reviewed. RESULTS The development of vein graft atherosclerosis differs from arterial atherosclerosis. Studies have examined the role of trauma, lipids, vasoactive mediators, smooth muscle cell mitogens, smooth muscle cells apoptosis, adhesion molecules and proteases. Therapies have been developed to prevent vein graft atherosclerosis based on these studies and have been tested using animal models and in patients. DISCUSSION Promising new therapies have been developed based on current knowledge and further applications of genomics will allow for the further identification of risk factors and mechanistic insights. The use of arterial grafts such as the internal mammary artery, which have higher patency rates at 10 years compared with vein grafts as well as approaches to revascularize infarcted myocardium may one day replace the use of vascular conduits.
Collapse
|
46
|
Eslami MH, Gangadharan SP, Belkin M, Donaldson MC, Whittemore AD, Conte MS. Monocyte adhesion to human vein grafts: a marker for occult intraoperative injury? J Vasc Surg 2001; 34:923-9. [PMID: 11700496 DOI: 10.1067/mva.2001.118590] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Monocyte adhesion to the vessel wall is believed to be an important initiating event in atherosclerosis and intimal hyperplasia. We hypothesized that occult intraoperative vein injury induces an immediate increase in monocyte adhesion that may be critical to the development of vein graft disease. METHODS Vein segments were obtained from patients (n = 23) undergoing lower extremity bypass. The initial segment (V1, n = 17) was excised immediately at the time of conduit harvest. A second segment (V2, n = 23) was obtained from the distal conduit just before performing the distal anastomosis. Segments were incubated with radiolabeled THP-1 cells (monocytoid cell line) for 1 hour at 37 degrees C, then rinsed and solubilized for determination of bound radioactivity. In a subset of grafts (n = 4), THP-1 cells were preincubated with monoclonal antibody (mAB) 7E3 (which binds to the monocyte integrin Mac-1 at its fibrinogen [Fg]-binding site) or control (mAB 14E11). Fg deposition and endothelial coverage were evaluated by immunohistochemistry (n = 10). Statistical analysis was performed using the paired t test and analysis of variance. Follow-up graft patency data were obtained and correlated with adhesion values using an exact test (StatXact, Cytel Software, Cambridge, Mass). RESULTS Monocyte adhesion was significantly increased after surgical manipulation (V1, 2400 +/- 770 versus V2, 7343 +/- 1555 cells/cm(2); P <.02). Fg deposition was abundant in V2 sections and not seen in V1. Monocyte adhesion to V2 segments was significantly reduced (58% of control, P <.01) by 7E3 treatment. Graft follow-up was complete with a mean interval of 11 months. Higher V2 adhesion values were associated with occluded grafts (P =.07). The median value for the six occluded grafts was 6234 cells/cm(2) versus 3892 cells/cm(2) for the 17 patent grafts. CONCLUSIONS Monocyte adhesion to the vein wall is immediately increased after surgical manipulation and is inhibited by mAB 7E3. Early monocyte adhesion to vein grafts is likely to involve interactions between Mac-1 and Fg. Heightened levels of monocyte adhesion at implantation may be a marker for subsequent vein graft failure.
Collapse
Affiliation(s)
- M H Eslami
- Division of Vascular Surgery, Temple University, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hanyu M, Kume N, Ikeda T, Minami M, Kita T, Komeda M. VCAM-1 expression precedes macrophage infiltration into subendothelium of vein grafts interposed into carotid arteries in hypercholesterolemic rabbits--a potential role in vein graft atherosclerosis. Atherosclerosis 2001; 158:313-9. [PMID: 11583709 DOI: 10.1016/s0021-9150(01)00446-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Intimal hyperplasia and atherosclerosis are major causes of late vein graft failure after coronary artery bypass surgery. Hypercholesterolemia appears to be a key risk factor for atherosclerosis in vein grafts as well as in native arteries. We used a rabbit model of interposition jugular vein graft to the carotid artery and compared intimal thickening, macrophage accumulation, and VCAM-1 expression between hypercholesterolemic (H group) and normocholesterolemic (N group) rabbits. Fifty-nine rabbits were divided into H and N groups. Intimal thickening in vein grafts was approximately three times more prominent in the H group than in the N group. Macrophage accumulation progressively increased with time in H group vein grafts, although it was negligible in the N group. In the H group, moreover, macrophages were initially more abundant in deep intima, and subsequently accumulated in subendothelium of the grafted vein. VCAM-1 expression in luminal endothelial cells of the grafted veins was time-dependently increased after the vein graft surgery in both the H and N groups, and was more prominent in the H group. Comparison of the time-courses between macrophage accumulation and VCAM-1 expression revealed that VCAM-1 expression in luminal endothelium preceded subendothelial accumulation of macrophages. VCAM-1 expression and macrophage accumulation may be key factors which regulate progression of vein graft atherosclerosis.
Collapse
Affiliation(s)
- M Hanyu
- Department of Cardiovascular Surgery, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Eslami MH, Gangadharan SP, Sui X, Rhynhart KK, Snyder RO, Conte MS. Gene delivery to in situ veins: Differential effects of adenovirus and adeno-associated viral vectors. J Vasc Surg 2000. [DOI: 10.1067/mva2000.106951] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Abstract
Chemokines or chemotactic cytokines represent an expanding family of structurally related small molecular weight proteins, recognised as being responsible for leukocyte trafficking and activation. Soon after the discovery of this class of cytokines, about a decade ago, monocyte chemoattractant protein-1 (MCP-1) was found to be highly expressed in human atherosclerotic lesions and postulated to be central in monocyte recruitment into the arterial wall and developing lesions. In this review, we will discuss our present knowledge about MCP-1 and its receptor CCR2 and their role in atherogenesis. Although less well established, other chemokines such as RANTES, MIP-1alpha and MIP-1beta have also been implicated in atherosclerotic lesion formation as are a number of more recently discovered chemokines like MCP-4, ELC and PARC. The role of these chemokines in the progression of atherosclerosis will be discussed as well as the emerging role of IL-8, mostly know for its effects on neutrophils. Particular attention will be given not only to the involvement of chemokines in the inflammatory recruitment of monocytes/macrophages, but also to their role in the related local immune responses and vascular remodelling which occur during the formation of unstable atherosclerotic plaques.
Collapse
Affiliation(s)
- T J Reape
- Department of Vascular Biology, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park North, Coldharbour Road, Harlow, UK.
| | | |
Collapse
|
50
|
Hoch JR, Stark VK, van Rooijen N, Kim JL, Nutt MP, Warner TF. Macrophage depletion alters vein graft intimal hyperplasia. Surgery 1999. [DOI: 10.1016/s0039-6060(99)70188-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|