1
|
Mukaddim RA, Liu Y, Graham M, Eickhoff JC, Weichmann AM, Tattersall MC, Korcarz CE, Stein JH, Varghese T, Eliceiri KW, Mitchell C. In Vivo Adaptive Bayesian Regularized Lagrangian Carotid Strain Imaging for Murine Carotid Arteries and Its Associations With Histological Findings. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2103-2112. [PMID: 37400303 PMCID: PMC10527160 DOI: 10.1016/j.ultrasmedbio.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Non-invasive methods for monitoring arterial health and identifying early injury to optimize treatment for patients are desirable. The objective of this study was to demonstrate the use of an adaptive Bayesian regularized Lagrangian carotid strain imaging (ABR-LCSI) algorithm for monitoring of atherogenesis in a murine model and examine associations between the ultrasound strain measures and histology. METHODS Ultrasound radiofrequency (RF) data were acquired from both the right and left common carotid artery (CCA) of 10 (5 male and 5 female) ApoE tm1Unc/J mice at 6, 16 and 24 wk. Lagrangian accumulated axial, lateral and shear strain images and three strain indices-maximum accumulated strain index (MASI), peak mean strain of full region of interest (ROI) index (PMSRI) and strain at peak axial displacement index (SPADI)-were estimated using the ABR-LCSI algorithm. Mice were euthanized (n = 2 at 6 and 16 wk, n = 6 at 24 wk) for histology examination. RESULTS Sex-specific differences in strain indices of mice at 6, 16 and 24 wk were observed. For male mice, axial PMSRI and SPADI changed significantly from 6 to 24 wk (mean axial PMSRI at 6 wk = 14.10 ± 5.33% and that at 24 wk = -3.03 ± 5.61%, p < 0.001). For female mice, lateral MASI increased significantly from 6 to 24 wk (mean lateral MASI at 6 wk = 10.26 ± 3.13% and that at 24 wk = 16.42 ± 7.15%, p = 0.048). Both cohorts exhibited strong associations with ex vivo histological findings (male mice: correlation between number of elastin fibers and axial PMSRI: rs = 0.83, p = 0.01; female mice: correlation between shear MASI and plaque score: rs = 0.77, p = 0.009). CONCLUSION The results indicate that ABR-LCSI can be used to measure arterial wall strain in a murine model and that changes in strain are associated with changes in arterial wall structure and plaque formation.
Collapse
Affiliation(s)
- Rashid Al Mukaddim
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa Graham
- Research Animal Resources and Compliance, Comparative Pathology Laboratory, University of Wisconsin-Madison, Madison, WI, USA
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ashley M Weichmann
- Small Animal Imaging and Radiotherapy Facility, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Claudia E Korcarz
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - James H Stein
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA; Small Animal Imaging and Radiotherapy Facility, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Morgridge Institute for Research, Madison, WI, USA
| | - Carol Mitchell
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Mori S, Arakawa M, Kanai H. Lateral M-Mode: Ultrasound Visualization of Displacement Along Longitudinal Direction at Intima-Media Complex. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:875-888. [PMID: 36623971 DOI: 10.1016/j.ultrasmedbio.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Quantification of the dynamics of the carotid artery wall is useful in evaluating arteriosclerosis and atherosclerosis. As the carotid artery wall moves not only in the radial direction but also in the longitudinal direction, longitudinal movement should be considered in the analysis of the dynamic properties of the carotid artery wall. In this study, we propose a "lateral M-mode" method for visualizing the longitudinal movement of the intima-media complex (IMC). For the lateral M-mode, we set the target line in the longitudinal direction along the IMC and visualize the signals on the target line frame-by-frame by correcting the position of the target line along the radial displacement estimated by the phased tracking method. Differentiating the envelope signals between consecutive ultrasound beams was effective in visualizing the lateral movement of the IMC. The precision of the longitudinal displacement of the IMC estimated using the conventional block-matching method was validated by comparing it with the lateral M-mode. Because the conventional M-mode sequence plays an important role in evaluation of the dynamics of various tissues, the proposed "lateral M-mode" contributes to a detailed understanding of vascular dynamics and the development of diagnostic methods for vascular diseases.
Collapse
Affiliation(s)
- Shohei Mori
- Graduate School of Engineering, Tohoku University, Sendai, Japan.
| | - Mototaka Arakawa
- Graduate School of Engineering, Tohoku University, Sendai, Japan; Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Hiroshi Kanai
- Graduate School of Engineering, Tohoku University, Sendai, Japan; Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Li H, Bhatt M, Qu Z, Zhang S, Hartel MC, Khademhosseini A, Cloutier G. Deep learning in ultrasound elastography imaging: A review. Med Phys 2022; 49:5993-6018. [PMID: 35842833 DOI: 10.1002/mp.15856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 02/04/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
It is known that changes in the mechanical properties of tissues are associated with the onset and progression of certain diseases. Ultrasound elastography is a technique to characterize tissue stiffness using ultrasound imaging either by measuring tissue strain using quasi-static elastography or natural organ pulsation elastography, or by tracing a propagated shear wave induced by a source or a natural vibration using dynamic elastography. In recent years, deep learning has begun to emerge in ultrasound elastography research. In this review, several common deep learning frameworks in the computer vision community, such as multilayer perceptron, convolutional neural network, and recurrent neural network are described. Then, recent advances in ultrasound elastography using such deep learning techniques are revisited in terms of algorithm development and clinical diagnosis. Finally, the current challenges and future developments of deep learning in ultrasound elastography are prospected. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongliang Li
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada.,Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada
| | - Manish Bhatt
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada
| | - Zhen Qu
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada
| | - Shiming Zhang
- California Nanosystems Institute, University of California, Los Angeles, California, USA
| | - Martin C Hartel
- California Nanosystems Institute, University of California, Los Angeles, California, USA
| | - Ali Khademhosseini
- California Nanosystems Institute, University of California, Los Angeles, California, USA
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada.,Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada.,Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Evaluation of local changes in radio-frequency signal waveform and brightness caused by vessel dilatation for ascertaining reliability of elasticity estimation inside heterogeneous plaque: a preliminary study. J Med Ultrason (2001) 2022; 49:529-543. [PMID: 35842564 DOI: 10.1007/s10396-022-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE To diagnose plaque characteristics, we previously developed an ultrasonic method to estimate the local elastic modulus from the ratio of the pulse pressure to the strain of the arterial wall due to dilatation in systole by transcutaneously measuring the minute thinning in thickness during one cardiac cycle. For plaques, however, some target regions became thicker as the vessel dilates, resulting in false elasticity. Therefore, a method to identify a reliable target for the elastic modulus estimation is indispensable. As a candidate for an identification index of plaques that become thicker during one cardiac cycle, the correlation of the radio-frequency (RF) signals remains high and it is not sufficient to obtain the elasticity. In this study, we thoroughly observed the target with a high correlation but positive strain in the plaque and characterized it by the property of the surrounding area. METHODS For the plaque formed in the right carotid sinus of a patient with hyperlipidemia and the wall of the right common carotid artery of a young healthy male, (1) the correlation value as the similarity between the RF signals, (2) change in brightness obtained from the log-compressed envelope signals, and (3) strain obtained between the time of the R-wave and that of the maximum vessel dilatation were observed to characterize the region in the plaque. RESULTS In the plaque, it was found that the region with high correlation and positive strain and its surrounding area could be classified into one of the three typical patterns. CONCLUSION As a preliminary study, this study provides a clue to assert the reliability of elasticity estimates for a region with high correlation and positive strain in the plaque based on measurable properties.
Collapse
|
5
|
Li Z, Luo T, Wang S, Jia H, Gong Q, Liu X, Sutcliffe MPF, Zhu H, Liu Q, Chen D, Xiong J, Teng Z. Mechanical and histological characteristics of aortic dissection tissues. Acta Biomater 2022; 146:284-294. [PMID: 35367380 DOI: 10.1016/j.actbio.2022.03.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
AIMS This study investigated the association between the macroscopic mechanical response of aortic dissection (AoD) flap, its fibre features, and patient physiological features and clinical presentations. METHODS Uniaxial test was performed with tissue strips in both circumferential and longitudinal directions from 35 patients with (AoD:CC) and without (AoD:w/oCC) cerebral/coronary complications, and 19 patients with rheumatic or valve-related heart diseases (RH). A Bayesian inference framework was used to estimate the expectation of material constants (C1, D1, and D2) of the modified Mooney-Rivlin strain energy density function. Histological examination was used to visualise the elastin and collagen in the tissue strips and image processing was performed to quantify their area percentages, fibre misalignment and waviness. RESULTS The elastin area percentage was negatively associated with age (p = 0.008), while collagen increased about 6% from age 40 to 70 (p = 0.03). Elastin fibre was less dispersed and wavier in old patients and no significant association was found between patient age and collagen fibre dispersion or waviness. Features of fibrous microstructures, either elastin or collagen, were comparable between AoD:CC and AoD:w/oCC group. Elastin and collagen area percentages were positively correlated with C1 and D2, respectively, while the elastin and collagen waviness were negatively correlated with C1 and D2, respectively. Elastin dispersion was negatively correlated to D2. Multivariate analysis showed that D2 was an effective parameter which could differentiate patient groups with different age and clinical presentations, as well as the direction of tissue strip. CONCLUSION Fibre dispersion and waviness in the aortic dissection flap changed with patient age and clinical presentations, and these can be captured by the material constants in the strain energy density function. STATEMENT OF SIGNIFICANCE Aortic dissection (AoD) is a severe cardiovascular disease. Understanding the mechanical property of intimal flap is essential for its risk evaluation. In this study, mechanical testing and histology examination were combined to quantify the relationship between mechanical presentations and microstructure features. A Bayesian inference framework was employed to estimate the expectation of the material constants in the modified Mooney-Rivlin constitutive equation. It was found that fibre dispersion and waviness in the AoD flap changed with patient age and clinical presentations, and these could be captured by the material constants. This study firstly demonstrated that the expectation of material constants can be used to characterise tissue microstructures and differentiate patients with different clinical presentations.
Collapse
|
6
|
Chayer B, Roy Cardinal MH, Biron V, Cloutier N, Petit C, Dubord S, Allard L, Cloutier G. Impact of Applying a Skin Compression With the Ultrasound Probe on Carotid Artery Strain Elastography. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:685-697. [PMID: 33988255 DOI: 10.1002/jum.15750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To study the impact of varying the external compression exerted by the ultrasound probe when performing a carotid strain elastography exam. METHODS Nine healthy volunteers (mean age 43 years ±13 years; 6 men) underwent a vascular ultrasound elastography exam using a custom made sound feedback handle embedding the probe, and allowing the sonographer to adjust the applied compression. A clinical standard practice (SP) force was first recorded, and then predetermined compression (PDC) forces were applied, ranging from 0 to 5 N for the left common carotid artery (CCA) or 2-12 N for the left internal carotid artery (ICA). Six carotid elastography features, namely maximum and cumulated axial strains, maximum and cumulated shear strains, cumulated axial translation, and cumulated lateral translation were assessed with noninvasive vascular elastography (NIVE) on near and far walls of carotids. The carotid intima media thickness (IMT) and diameter were also measured. RESULTS All elastography features on the near wall of both CCA and ICA decreased statistically significantly as the PDC force increased; this association was also observed for half of the features on the far wall. Three NIVE features at the lowest PDC force (out of 72 that were tested) were statistically significantly different than values at the SP force. Overall, NIVE showed some variance to probe compression with linear regression slopes revealing changes of 10.1%-45.6% in magnitude over the whole compression range on both walls. The maximum IMT for the ICA near wall, and carotid lumen diameters of both CCA and ICA were statistically significantly associated with PDC forces; these features underwent a decrease of 10.2%, 36.2%, and 17.6%, respectively, over the whole range of PDC force increase. Other IMT measurements were not statistically significantly associated with applied PDC forces. CONCLUSION These results suggest the need of technical guidelines for carotid strain elastography. Using the lowest probe compression while allowing a good B-mode image quality is recommended to improve the robustness of NIVE measurements.
Collapse
Affiliation(s)
- Boris Chayer
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
| | - Marie-Hélène Roy Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
| | - Vicky Biron
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
| | | | - Clara Petit
- Collège André-Grasset, Montréal, Québec, Canada
| | - Samuel Dubord
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
| | - Louise Allard
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
- Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, Québec, Canada
| |
Collapse
|
7
|
Nagaoka R, Wilhjelm JE, Hasegawa H. Preliminary study on the separation of specular reflection and backscattering components using synthetic aperture beamforming. J Med Ultrason (2001) 2020; 47:493-500. [PMID: 32749560 DOI: 10.1007/s10396-020-01038-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/11/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE In the early stages of atherosclerosis, the luminal surface of the arterial wall becomes rough due to injury and detachment of endothelial cells. This roughening can potentially be estimated with ultrasound since the electrical echo signal from the transducer is sensitive to both the angle of incidence to an extended surface as well as the roughness of the surface. Specifically, as the roughness of an interface increases, specular reflection is substituted by scattering. We propose a method that attempts separation of reflection and backscattering components in the received echo signals. METHOD Assuming the predominant propagation directions of the reflected and scattered waves can be somewhat controlled by the emitted sound field, separation of those components was attempted using synthetic aperture imaging with a transmit beam, focused at a point more distant than the imaging depth. Specifically, two dedicated beamforming processes were used for generation of reflection-emphasized and backscattering-emphasized images. RESULT Experimental verifications on a phantom using an ultrasound system with a limited number of active transmit-receive channels yielded a difference between these two images of 8 dB. The results further showed a similar (slightly improved) lateral spatial resolution size of 0.41 mm for the backscattering-emphasized image compared with conventional B-mode imaging (0.47 mm). CONCLUSION A new technique for separation of the reflection and backscattering components using synthetic aperture beamforming with a transmit beam featuring a large focal distance was proposed. The technique demonstrated a partial separation of the reflection and backscattering components, which potentially may be used to estimate surface roughness.
Collapse
Affiliation(s)
- Ryo Nagaoka
- Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Jens E Wilhjelm
- Department of Health Technology, Technical University of Denmark, Building 349, 2800 Kgs., Lyngby, Denmark
| | - Hideyuki Hasegawa
- Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan.
| |
Collapse
|
8
|
Modified high-resolution wavenumber analysis for detection of pulse wave velocity using coefficient of variation of arterial wall acceleration waveforms. J Med Ultrason (2001) 2020; 47:167-177. [PMID: 31894429 DOI: 10.1007/s10396-019-00998-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE In high-resolution wavenumber analysis for detection of pulse wave velocity (PWV), phase information of analytic signals is used to estimate the wavenumber. However, the phase information could be affected by the adjacent signals in the temporal direction. Therefore, we propose a modified high-resolution wavenumber analysis technique using real acceleration waveforms of the arterial wall. METHOD In the modified wavenumber analysis, we propose a new evaluation function that corresponds to the inverse of the squared coefficient of variation. The accuracy of estimation of PWV was investigated by performing simulations, and the feasibility was also examined in an in vivo experiment. RESULTS In the simulation experiments, the estimation accuracy using the proposed method was comparable to that using the previous method using phase information. However, when the pulse wave included the reflection components, the PWV estimated using the proposed method was more stable than that estimated using the previous method. Also, in the in vivo experiments, at opening of the aortic valve, the velocity estimated by the proposed method was almost equal to that estimated by the previous method (previous: 2.97 ± 1.2 m/s, proposed: 4.82 ± 1.4 m/s). Meanwhile, when the reflection components were present, the estimated PWV values yielded by the previous and proposed methods were - 1.13 and - 3.50 ± 0.9 m/s, respectively. The PWVs at those two time points estimated by the previous method were quite different, and the PWV estimate was considered to be more affected by the reflected waves. CONCLUSION The results of the simulations and in vivo experiments indicated that the modified high-resolution wavenumber analysis method was less affected by the reflected waves and more accurate in estimation of PWVs of both the forward and reflected waves.
Collapse
|
9
|
Liu Z, Bai Z, Huang C, Huang M, Huang L, Xu D, Zhang H, Yuan C, Luo J. Interoperator Reproducibility of Carotid Elastography for Identification of Vulnerable Atherosclerotic Plaques. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:505-516. [PMID: 30575532 DOI: 10.1109/tuffc.2018.2888479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrasound-based carotid elastography has been developed to evaluate the vulnerability of carotid atherosclerotic plaques. The aim of this study was to investigate the in vivo interoperator reproducibility of carotid elastography for the identification of vulnerable plaques, with high-resolution magnetic resonance imaging (MRI) as reference. Ultrasound radio-frequency data of 45 carotid arteries (including 53 plaques) from 32 volunteers were acquired separately by two experienced operators in the longitudinal view and then were used to estimate the interframe axial strain rate (ASR) with a two-step optical flow method. The maximum 99th percentile of absolute ASR of all plaques in a carotid artery was used as the elastographic index. MRI scanning was also performed on each volunteer to identify the vulnerable plaque. The results showed no systematic bias in the Bland-Altman plot and an intraclass correlation coefficient of 0.66 between the two operators. In addition, no statistical significance was found between the receiver operating characteristic (ROC) curves from the two operators ( ), and their areas under the ROC curves were 0.83 and 0.77, respectively. Using the mean measurements of the two operators as the classification criterion, a sensitivity of 71.4%, a specificity of 87.1%, and an accuracy of 82.2% were obtained with a cutoff value of 1.37 [Formula: see text]. This study validates the interoperator reproducibility of ultrasound-based carotid elastography for identifying vulnerable carotid plaques.
Collapse
|
10
|
Li H, Chayer B, Roy Cardinal MH, Muijsers J, van den Hoven M, Qin Z, Gesnik M, Soulez G, Lopata RGP, Cloutier G. Investigation of out-of-plane motion artifacts in 2D noninvasive vascular ultrasound elastography. Phys Med Biol 2018; 63:245003. [PMID: 30524065 DOI: 10.1088/1361-6560/aaf0d3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ultrasound noninvasive vascular elastography (NIVE) has shown its potential to measure strains of carotid arteries to predict plaque instability. When two-dimensional (2D) strain estimation is performed, either in longitudinal or cross-sectional view, only in-plane motions are considered. The motions in elevation direction (i.e. perpendicular to the imaging plane), can induce estimation artifacts affecting the accuracy of 2D NIVE. The influence of such out-of-plane motions on the performance of axial strain and axial shear strain estimations has been evaluated in this study. For this purpose, we designed a diseased carotid bifurcation phantom with a 70% stenosis and an in vitro experimental setup to simulate orthogonal out-of-plane motions of 1 mm, 2 mm and 3 mm. The Lagrangian speckle model estimator (LSME) was used to estimate axial strains and shears under pulsatile conditions. As anticipated, in vitro results showed more strain estimation artifacts with increasing magnitudes of motions in elevation. However, even with an out-of-plane motion of 2.0 mm, strain and shear estimations having inter-frame correlation coefficients higher than 0.85 were obtained. To verify findings of in vitro experiments, a clinical LSME dataset obtained from 18 participants with carotid artery stenosis was used. Deduced out-of-plane motions (ranging from 0.25 mm to 1.04 mm) of the clinical dataset were classified into three groups: small, moderate and large elevational motions. Clinical results showed that pulsatile time-varying strains and shears remained reproducible for all motion categories since inter-frame correlation coefficients were higher than 0.70, and normalized cross-correlations (NCC) between radiofrequency (RF) images were above 0.93. In summary, the performance of LSME axial strain and shear estimations appeared robust in the presence of out-of-plane motions (<2 mm) as encountered during clinical ultrasound imaging.
Collapse
Affiliation(s)
- Hongliang Li
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada. Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nayak R, Schifitto G, Doyley MM. Visualizing Angle-Independent Principal Strains in the Longitudinal View of the Carotid Artery: Phantom and In Vivo Evaluation. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1379-1391. [PMID: 29685590 PMCID: PMC5960628 DOI: 10.1016/j.ultrasmedbio.2018.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 02/08/2018] [Accepted: 03/16/2018] [Indexed: 05/03/2023]
Abstract
Non-invasive vascular elastography can evaluate the stiffness of the carotid artery by visualizing the vascular strain distribution. Axial strain estimates of the longitudinal cross section of the carotid artery are sensitive to the angle between the artery and the transducer. Anatomical variations in branching and arching of the carotid artery can affect the assessment of arterial stiffness. In this study, we hypothesized that principal strain elastograms computed using compounded plane wave imaging can reliably visualize the strain distribution in the carotid artery, independent of the transducer angle. We corroborated this hypothesis by conducting phantom and in vivo studies using a commercial ultrasound scanner (Sonix RP, Ultrasonix Medical Corp., Richmond, BC, Canada). The phantom studies were conducted using a homogeneous cryogel vessel phantom. The goal of the phantom study was to assess the feasibility of visualizing the radial deformation in the longitudinal plane of the vessel phantom, independent of the transducer angle (±30°, ±20°, ±10° and 0°). The in vivo studies were conducted on 20 healthy human volunteers in the age group 50-60 y. All echo imaging was performed at a transmit frequency of 5 MHz and sampling frequency of 40 MHz. The elastograms obtained from the phantom study revealed that for straight vessels, which had their lumen parallel to the transducer, principal strains were similar to axial strains. At non-parallel configurations (angles ±30°, ±20° and ±10°), the magnitudes of the mean principal strains were within 2.5% of the parallel configuration (0° angle) estimates and, thus, were observed to be relatively unaffected by change in angle. However, in comparison, the magnitude of the axial strain decreased with increase in angle because of coordinate dependency. Further, the pilot in vivo study indicated that the principal and axial strain elastograms were similar for subjects with relatively straight arteries. However, for arteries with arched geometry, axial strains were significantly lower (p <0.01) than the corresponding principal vascular strains, which was consistent with the results obtained from the phantom study. In conclusion, the results of the phantom and in vivo studies revealed that principal strain elastograms computed using CPW imaging could reliably visualize angle-independent vascular strains in the longitudinal plane of the carotid artery.
Collapse
Affiliation(s)
- Rohit Nayak
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA.
| | - Giovanni Schifitto
- Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA; Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
12
|
Kaneko R, Sawada S, Tokita A, Honkura R, Tamura N, Kodama S, Izumi T, Takahashi K, Uno K, Imai J, Yamada T, Miyachi Y, Hasegawa H, Kanai H, Ishigaki Y, Katagiri H. Serum cystatin C level is associated with carotid arterial wall elasticity in subjects with type 2 diabetes mellitus: A potential marker of early-stage atherosclerosis. Diabetes Res Clin Pract 2018; 139:43-51. [PMID: 29453992 DOI: 10.1016/j.diabres.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 11/29/2022]
Abstract
AIMS Detection of early-stage atherosclerosis in type 2 diabetes mellitus (T2DM) patients is important for preventing cardiovascular disease. A phased tracking method for evaluating arterial wall elasticity sensitively detects early-stage atherosclerosis. However, biochemical markers for early-stage atherosclerosis have yet to be established. METHODS This cross-sectional study enrolled 180 T2DM patients, who were classified as not having atherosclerosis according to the carotid intima-media thickness (IMT) criteria. We measured serum cystatin C, the estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (ACR), and analyzed the associations between these markers and arterial wall elasticity (Eθ), IMT and the cardio-ankle velocity index. RESULTS Multiple linear regression analyses revealed that cystatin C was significantly associated with Eθ, while neither eGFR nor ACR showed an association. Furthermore, among the examined atherosclerotic markers, Eθ was most reliably associated with cystatin C. Additionally, the association between cystatin C and Eθ disappeared in the low elasticity subgroup, which included subjects in whom no atherosclerotic changes had yet been initiated. CONCLUSIONS In T2DM patients without apparent arterial wall thickening, cystatin C is strongly and independently associated with arterial wall elasticity, which reflects the degree of subclinical atherosclerosis. Thus, cystatin C is a potentially useful marker of early-stage atherosclerosis.
Collapse
Affiliation(s)
- Rei Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Ai Tokita
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rieko Honkura
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Tamura
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Uno
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukiya Miyachi
- Medical Systems Research and Development Center R&D Management Headquarters, FUJIFILM Corporation, Kaisei, Japan
| | - Hideyuki Hasegawa
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Hiroshi Kanai
- Department of Electronic Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasushi Ishigaki
- Department of Internal Medicine, Division of Diabetes and Endocrinology, Iwate Medical University Hospital, Morioka, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
13
|
Multi-Plane Ultrafast Compound 3D Strain Imaging: Experimental Validation in a Carotid Bifurcation Phantom. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Albinsson J, Ahlgren ÅR, Jansson T, Cinthio M. A combination of parabolic and grid slope interpolation for 2D tissue displacement estimations. Med Biol Eng Comput 2017; 55:1327-1338. [PMID: 27837312 PMCID: PMC5544786 DOI: 10.1007/s11517-016-1593-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022]
Abstract
Parabolic sub-sample interpolation for 2D block-matching motion estimation is computationally efficient. However, it is well known that the parabolic interpolation gives a biased motion estimate for displacements greater than |y.2| samples (y = 0, 1, …). Grid slope sub-sample interpolation is less biased, but it shows large variability for displacements close to y.0. We therefore propose to combine these sub-sample methods into one method (GS15PI) using a threshold to determine when to use which method. The proposed method was evaluated on simulated, phantom, and in vivo ultrasound cine loops and was compared to three sub-sample interpolation methods. On average, GS15PI reduced the absolute sub-sample estimation errors in the simulated and phantom cine loops by 14, 8, and 24% compared to sub-sample interpolation of the image, parabolic sub-sample interpolation, and grid slope sub-sample interpolation, respectively. The limited in vivo evaluation of estimations of the longitudinal movement of the common carotid artery using parabolic and grid slope sub-sample interpolation and GS15PI resulted in coefficient of variation (CV) values of 6.9, 7.5, and 6.8%, respectively. The proposed method is computationally efficient and has low bias and variance. The method is another step toward a fast and reliable method for clinical investigations of longitudinal movement of the arterial wall.
Collapse
Affiliation(s)
- John Albinsson
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Ole Römers väg 3, 221 00, Lund, Sweden.
| | - Åsa Rydén Ahlgren
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Tomas Jansson
- Clinical Sciences Lund, Biomedical Engineering, Lund University, Lund, Sweden
- Medical Services, Skåne University Hospital, Lund, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Ole Römers väg 3, 221 00, Lund, Sweden
| |
Collapse
|
15
|
Huang C, He Q, Huang M, Huang L, Zhao X, Yuan C, Luo J. Non-Invasive Identification of Vulnerable Atherosclerotic Plaques Using Texture Analysis in Ultrasound Carotid Elastography: An In Vivo Feasibility Study Validated by Magnetic Resonance Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:817-830. [PMID: 28153351 DOI: 10.1016/j.ultrasmedbio.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/04/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
The aims of this study were to quantify the textural information of strain rate images in ultrasound carotid elastography and evaluate the feasibility of using the textural features in discriminating stable and vulnerable plaques with magnetic resonance imaging as an in vivo reference. Ultrasound radiofrequency data were acquired in 80 carotid plaques from 52 patients, mainly in the longitudinal imaging view, and axial strain rate images were estimated with an ultrasound carotid elastography technique based on an optical flow algorithm. Four textural features of strain rate images-contrast, homogeneity, correlation and angular second moment-were derived based on the gray-level co-occurrence matrix in plaque regions to quantify the deformation distribution pattern. Conventional elastographic indices based on the magnitude of the absolute strain rate, such as the maximum, mean, median, standard deviation and 99th percentile of the axial strain rate, were also obtained for comparison. Composition measurement with magnetic resonance imaging identified 30 plaques as vulnerable and the other 50 as stable. The four textural features, as well as the magnitude of strain rate images, significantly differed between the two groups of plaques. The best performing features for plaque classification were found to be the contrast and 99th percentile of the absolute strain rate, with a comparative area under the receiver operating characteristic curve of 0.81; a slightly higher maximum accuracy of plaque classification can be achieved by the textural feature of contrast (83.8% vs. 81.3%). The results indicate that the use of texture analysis in plaque classification is feasible and that larger local deformations and higher level of complexity in deformation patterns (associated with the elastic or stiffness heterogeneity of plaque tissues) are more likely to occur in vulnerable plaques.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Manwei Huang
- Department of Sonography, China Meitan General Hospital, Beijing, China
| | - Lingyun Huang
- Clinical Sites Research Program, Philips Research China, Shanghai, China
| | - Xihai Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Chun Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China; Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China.
| |
Collapse
|
16
|
Merei B, Badel P, Davis L, Sutton MA, Avril S, Lessner SM. Atherosclerotic plaque delamination: Experiments and 2D finite element model to simulate plaque peeling in two strains of transgenic mice. J Mech Behav Biomed Mater 2017; 67:19-30. [DOI: 10.1016/j.jmbbm.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023]
|
17
|
Fekkes S, Swillens AES, Hansen HHG, Saris AECM, Nillesen MM, Iannaccone F, Segers P, de Korte CL. 2-D Versus 3-D Cross-Correlation-Based Radial and Circumferential Strain Estimation Using Multiplane 2-D Ultrafast Ultrasound in a 3-D Atherosclerotic Carotid Artery Model. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1543-1553. [PMID: 27576246 DOI: 10.1109/tuffc.2016.2603189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three-dimensional (3-D) strain estimation might improve the detection and localization of high strain regions in the carotid artery (CA) for identification of vulnerable plaques. This paper compares 2-D versus 3-D displacement estimation in terms of radial and circumferential strain using simulated ultrasound (US) images of a patient-specific 3-D atherosclerotic CA model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on the literature data. A Philips L11-3 linear array transducer was simulated, which transmitted plane waves at three alternating angles at a pulse repetition rate of 10 kHz. Interframe (IF) radio-frequency US data were simulated in Field II for 191 equally spaced longitudinal positions of the internal CA. Accumulated radial and circumferential displacements were estimated using tracking of the IF displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least-squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2-D and 3-D methods was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3-D displacement estimation for the entire cardiac cycle. The 3-D technique clearly outperformed the 2-D technique in phases with high IF longitudinal motion. In fact, the large IF longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2-D technique.
Collapse
|
18
|
de Korte CL, Fekkes S, Nederveen AJ, Manniesing R, Hansen HRHG. Review: Mechanical Characterization of Carotid Arteries and Atherosclerotic Plaques. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1613-1623. [PMID: 27249826 DOI: 10.1109/tuffc.2016.2572260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of death and is in the majority of cases due to the formation of atherosclerotic plaques in arteries. Initially, thickening of the inner layer of the arterial wall occurs. Continuation of this process leads to plaque formation. The risk of a plaque to rupture and thus to induce an ischemic event is directly related to its composition. Consequently, characterization of the plaque composition and its proneness to rupture are of crucial importance for risk assessment and treatment strategies. The carotid is an excellent artery to be imaged with ultrasound because of its superficial position. In this review, ultrasound-based methods for characterizing the mechanical properties of the carotid wall and atherosclerotic plaque are discussed. Using conventional echography, the intima media thickness (IMT) can be quantified. There is a wealth of studies describing the relation between IMT and the risk for myocardial infarction and stroke. Also the carotid distensibility can be quantified with ultrasound, providing a surrogate marker for the cross-sectional mechanical properties. Although all these parameters are associated with CVD, they do not easily translate to individual patient risk. Another technique is pulse wave velocity (PWV) assessment, which measures the propagation of the pressure pulse over the arterial bed. PWV has proven to be a marker for global arterial stiffness. Recently, an ultrasound-based method to estimate the local PWV has been introduced, but the clinical effectiveness still needs to be established. Other techniques focus on characterization of plaques. With ultrasound elastography, the strain in the plaque due to the pulsatile pressure can be quantified. This technique was initially developed using intravascular catheters to image coronaries, but recently noninvasive methods were successfully developed. A high correlation between the measured strain and the risk for rupture was established. Acoustic radiation force impulse (ARFI) imaging also provides characterization of local plaque components based on mechanical properties. However, both elastography and ARFI provide an indirect measure of the elastic modulus of tissue. With shear wave imaging, the elastic modulus can be quantified, although the carotid artery is one of the most challenging tissues for this technique due to its size and geometry. Prospective studies still have to establish the predictive value of these techniques for the individual patient. Validation of ultrasound-based mechanical characterization of arteries and plaques remains challenging. Magnetic resonance imaging is often used as the "gold" standard for plaque characterization, but its limited resolution renders only global characterization of the plaque. CT provides information on the vascular tree, the degree of stenosis, and the presence of calcified plaque, while soft plaque characterization remains limited. Histology still is the gold standard, but is available only if tissue is excised. In conclusion, elastographic ultrasound techniques are well suited to characterize the different stages of vascular disease.
Collapse
|
19
|
Hansen HHG, de Borst GJ, Bots ML, Moll FL, Pasterkamp G, de Korte CL. Validation of Noninvasive In Vivo Compound Ultrasound Strain Imaging Using Histologic Plaque Vulnerability Features. Stroke 2016; 47:2770-2775. [PMID: 27686104 DOI: 10.1161/strokeaha.116.014139] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/24/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Carotid plaque rupture is a major cause of stroke. Key issue for risk stratification is early identification of rupture-prone plaques. A noninvasive technique, compound ultrasound strain imaging, was developed providing high-resolution radial deformation/strain images of atherosclerotic plaques. This study aims at in vivo validation of compound ultrasound strain imaging in patients by relating the measured strains to typical features of vulnerable plaques derived from histology after carotid endarterectomy. MATERIALS AND METHODS Strains were measured in 34 severely stenotic (>70%) carotid arteries at the culprit lesion site within 48 hours before carotid endarterectomy. In all cases, the lumen-wall boundary was identifiable on B-mode ultrasound, and the imaged cross-section did not move out of the imaging plane from systole to diastole. After endarterectomy, the plaques were processed using a validated histology analysis technique. RESULTS Locally elevated strain values were observed in regions containing predominantly components related to plaque vulnerability, whereas lower values were observed in fibrous, collagen-rich plaques. The median strain of the inner plaque layer (1 mm thickness) was significantly higher (P<0.01) for (fibro)atheromatous (n=20, strain=0.27%) than that for fibrous plaques (n=14, strain=-0.75%). Also, a significantly larger area percentage of the inner layer revealed strains above 0.5% for (fibro)atheromatous (45.30%) compared with fibrous plaques (31.59%). (Fibro)atheromatous plaques were detected with a sensitivity, specificity, positive predictive value, and negative predictive value of 75%, 86%, 88%, and 71%, respectively. Strain did not significantly correlate with fibrous cap thickness, smooth muscle cell, or macrophage concentration. CONCLUSIONS Compound ultrasound strain imaging allows differentiating (fibro)atheromatous from fibrous carotid artery plaques.
Collapse
Affiliation(s)
- Hendrik H G Hansen
- From the Medical Ultrasound Imaging Center, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands (H.H.G.H., C.L.d.K.); and Department of Vascular Surgery (G.J.d.B., F.L.M.), Julius Center for Health Sciences and Primary Care (M.L.B.), and Laboratory of Experimental Cardiology and Laboratory of Clinical Chemistry (G.P.), University Medical Center Utrecht, The Netherlands.
| | - Gert Jan de Borst
- From the Medical Ultrasound Imaging Center, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands (H.H.G.H., C.L.d.K.); and Department of Vascular Surgery (G.J.d.B., F.L.M.), Julius Center for Health Sciences and Primary Care (M.L.B.), and Laboratory of Experimental Cardiology and Laboratory of Clinical Chemistry (G.P.), University Medical Center Utrecht, The Netherlands
| | - Michiel L Bots
- From the Medical Ultrasound Imaging Center, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands (H.H.G.H., C.L.d.K.); and Department of Vascular Surgery (G.J.d.B., F.L.M.), Julius Center for Health Sciences and Primary Care (M.L.B.), and Laboratory of Experimental Cardiology and Laboratory of Clinical Chemistry (G.P.), University Medical Center Utrecht, The Netherlands
| | - Frans L Moll
- From the Medical Ultrasound Imaging Center, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands (H.H.G.H., C.L.d.K.); and Department of Vascular Surgery (G.J.d.B., F.L.M.), Julius Center for Health Sciences and Primary Care (M.L.B.), and Laboratory of Experimental Cardiology and Laboratory of Clinical Chemistry (G.P.), University Medical Center Utrecht, The Netherlands
| | - Gerard Pasterkamp
- From the Medical Ultrasound Imaging Center, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands (H.H.G.H., C.L.d.K.); and Department of Vascular Surgery (G.J.d.B., F.L.M.), Julius Center for Health Sciences and Primary Care (M.L.B.), and Laboratory of Experimental Cardiology and Laboratory of Clinical Chemistry (G.P.), University Medical Center Utrecht, The Netherlands
| | - Chris L de Korte
- From the Medical Ultrasound Imaging Center, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands (H.H.G.H., C.L.d.K.); and Department of Vascular Surgery (G.J.d.B., F.L.M.), Julius Center for Health Sciences and Primary Care (M.L.B.), and Laboratory of Experimental Cardiology and Laboratory of Clinical Chemistry (G.P.), University Medical Center Utrecht, The Netherlands
| |
Collapse
|
20
|
Phase-Sensitive 2D Motion Estimators Using Frequency Spectra of Ultrasonic Echoes. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6070195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Huang C, Pan X, He Q, Huang M, Huang L, Zhao X, Yuan C, Bai J, Luo J. Ultrasound-Based Carotid Elastography for Detection of Vulnerable Atherosclerotic Plaques Validated by Magnetic Resonance Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:365-377. [PMID: 26553205 DOI: 10.1016/j.ultrasmedbio.2015.09.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/27/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Ultrasound-based carotid elastography has been developed to estimate the mechanical properties of atherosclerotic plaques. The objective of this study was to evaluate the in vivo capability of carotid elastography in vulnerable plaque detection using high-resolution magnetic resonance imaging as reference. Ultrasound radiofrequency data of 46 carotid plaques from 29 patients (74 ± 5 y old) were acquired and inter-frame axial strain was estimated with an optical flow method. The maximum value of absolute strain rate for each plaque was derived as an indicator for plaque classification. Magnetic resonance imaging of carotid arteries was performed on the same patients to classify the plaques into stable and vulnerable groups for carotid elastography validation. The maximum value of absolute strain rate was found to be significantly higher in vulnerable plaques (2.15 ± 0.79 s(-1), n = 27) than in stable plaques (1.21 ± 0.37 s(-1), n = 19) (p < 0.0001). Receiver operating characteristic curve analysis was performed, and the area under the curve was 0.848. Therefore, the in vivo capability of carotid elastography to detect vulnerable plaques, validated by magnetic resonance imaging, was proven, revealing the potential of carotid elastography as an important tool in atherosclerosis assessment and stroke prevention.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Xiaochang Pan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Manwei Huang
- Department of Sonography, China Meitan General Hospital, Beijing, China
| | - Lingyun Huang
- Clinical Sites Research Program, Philips Research China, Shanghai, China
| | - Xihai Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China.
| | - Chun Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China; Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jing Bai
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China.
| |
Collapse
|
22
|
Wang Z, Liu N, Zhang L, Li X, Han X, Peng Y, Dang M, Sun L, Tian J. Real-Time Elastography Visualization and Histopathological Characterization of Rabbit Atherosclerotic Carotid Arteries. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:176-184. [PMID: 26381920 DOI: 10.1016/j.ultrasmedbio.2015.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 07/21/2015] [Accepted: 08/08/2015] [Indexed: 06/05/2023]
Abstract
To evaluate the feasibility of non-invasive vascular real-time elastography imaging (RTE) in visualizing the composition of rabbit carotid atherosclerotic plaque as determined by histopathology, a rabbit model of accelerated carotid atherosclerosis was used. Thirty rabbits were randomly divided into two groups of 15 rabbits each. The first group was fed a cholesterol-rich diet and received balloon-induced injury the left common carotid artery endothelium, whereas the second group only received a cholesterol-rich diet. The rabbits were all examined in vivo with HITACHI non-invasive vascular real-time elastography (Hi-RTE) at baseline and 12 wk, and results from the elastography were compared with American Heart Association histologic classifications. Hi-RTE and the American Heart Association histologic classifications had good agreement, with weighted Cohen's kappa (95% confidence internal) of 0.785 (0.649-0.920). Strains of segmented plaques that were stained in different colors were statistically different (p < 0.0001). The sensitivity and specificity of elastograms for detecting a lipid core were 95.5% and 61.5%, respectively, and the area under the receiver operating characteristic curve was 0.789, with a 95% confidence interval of 0.679 to 0.876. This study is the first to indicate the feasibility of utilizing Hi-RTE in visualizing normal and atherosclerotic rabbit carotid arteries non-invasively. This affordable and reliable method can be widely applied in research of both animal and human peripheral artery atherosclerosis.
Collapse
Affiliation(s)
- ZhenZhen Wang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - NaNa Liu
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - LiFeng Zhang
- Department of Ultrasound, DaQing Fourth Hospital, DaQing, China
| | - XiaoYing Li
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - XueSong Han
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - YanQing Peng
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - MeiZheng Dang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - LiTao Sun
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - JiaWei Tian
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
23
|
Yuan J, Teng Z, Feng J, Zhang Y, Brown AJ, Gillard JH, Jing Z, Lu Q. Influence of material property variability on the mechanical behaviour of carotid atherosclerotic plaques: a 3D fluid-structure interaction analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2015; 31:e02722. [PMID: 25940741 PMCID: PMC4528233 DOI: 10.1002/cnm.2722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/10/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Mechanical analysis has been shown to be complementary to luminal stenosis in assessing atherosclerotic plaque vulnerability. However, patient-specific material properties are not available and the effect of material properties variability has not been fully quantified. Media and fibrous cap (FC) strips from carotid endarterectomy samples were classified into hard, intermediate and soft according to their incremental Young's modulus. Lipid and intraplaque haemorrhage/thrombus strips were classified as hard and soft. Idealised geometry-based 3D fluid-structure interaction analyses were performed to assess the impact of material property variability in predicting maximum principal stress (Stress-P1 ) and stretch (Stretch-P1 ). When FC was thick (1000 or 600 µm), Stress-P1 at the shoulder was insensitive to changes in material stiffness, whereas Stress-P1 at mid FC changed significantly. When FC was thin (200 or 65 µm), high stress concentrations shifted from the shoulder region to mid FC, and Stress-P1 became increasingly sensitive to changes in material properties, in particular at mid FC. Regardless of FC thickness, Stretch-P1 at these locations was sensitive to changes in material properties. Variability in tissue material properties influences both the location and overall stress/stretch value. This variability needs to be accounted for when interpreting the results of mechanical modelling.
Collapse
Affiliation(s)
- Jianmin Yuan
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Zhongzhao Teng
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Jiaxuan Feng
- Department of Vascular Surgery, Changhai Hospital, Changhai Road, Shanghai, 200433, China
| | - Yongxue Zhang
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Vascular Surgery, Changhai Hospital, Changhai Road, Shanghai, 200433, China
| | - Adam J Brown
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Jonathan H Gillard
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Zaiping Jing
- Department of Vascular Surgery, Changhai Hospital, Changhai Road, Shanghai, 200433, China
| | - Qingsheng Lu
- Department of Vascular Surgery, Changhai Hospital, Changhai Road, Shanghai, 200433, China
| |
Collapse
|
24
|
Liu F, Yong Q, Zhang Q, Liu P, Yang Y. Real-time tissue elastography for the detection of vulnerable carotid plaques in patients undergoing endarterectomy: a pilot study. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:705-712. [PMID: 25619789 DOI: 10.1016/j.ultrasmedbio.2014.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/19/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
We examined the utility of ultrasonic real-time tissue elastography (RTE) and conventional B-mode ultrasound (US) in the detection of vulnerable carotid atherosclerotic plaques. This prospective study comprised 19 patients scheduled for carotid endarterectomy. Results obtained from pre-operative RTE and B-mode US and post-operative pathology were compared. RTE encoded low, average and high deformability as blue, green and red, respectively. Tissue hardness was scored on a 5-point scale, and relative strains were calculated. The relative strain was 1.12 ± 0.14 for fibrous plaques (n = 4), 0.28 ± 0.07 for atherosclerotic plaques (n = 5), 0.47 ± 0.31 for intraplaque hemorrhage/thrombosis (n = 5) and 0.98 ± 1.04 for complex plaques (n = 5). The sensitivity, specificity and accuracy of detection of vulnerable plaques were 25%, 100% and 84.2% for B-mode US, 50%, 100% and 89.4% for RTE and 62.5%, 100% and 94.7% for the combination. Ultrasonic RTE is a potential candidate for a non-invasive and effective approach to identify vulnerable atherosclerotic plaques in the carotid artery.
Collapse
Affiliation(s)
- Fengju Liu
- Department of Ultrasound, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Qiang Yong
- Department of Ultrasound, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.
| | - Qinyi Zhang
- Stroke Center, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yuguang Yang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
25
|
Albinsson J, Brorsson S, Ahlgren AR, Cinthio M. Improved tracking performance of Lagrangian block-matching methodologies using block expansion in the time domain: in silico, phantom and in vivo evaluations. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2508-2520. [PMID: 25130445 DOI: 10.1016/j.ultrasmedbio.2014.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to evaluate tracking performance when an extra reference block is added to a basic block-matching method, where the two reference blocks originate from two consecutive ultrasound frames. The use of an extra reference block was evaluated for two putative benefits: (i) an increase in tracking performance while maintaining the size of the reference blocks, evaluated using in silico and phantom cine loops; (ii) a reduction in the size of the reference blocks while maintaining the tracking performance, evaluated using in vivo cine loops of the common carotid artery where the longitudinal movement of the wall was estimated. The results indicated that tracking accuracy improved (mean = 48%, p < 0.005 [in silico]; mean = 43%, p < 0.01 [phantom]), and there was a reduction in size of the reference blocks while maintaining tracking performance (mean = 19%, p < 0.01 [in vivo]). This novel method will facilitate further exploration of the longitudinal movement of the arterial wall.
Collapse
Affiliation(s)
- John Albinsson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Sofia Brorsson
- School of Business and Engineering, PRODEA Research Group, Halmstad University, Halmstad, Sweden; Health and Welfare, Dala Sports Academy, Dalarna University, Falun, Sweden
| | - Asa Rydén Ahlgren
- Clinical Physiology and Nuclear Medicine Unit, Department of Clinical Sciences, Lund University, Malmo, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Qian M, Niu L, Wong KKL, Abbott D, Zhou Q, Zheng H. Pulsatile Flow Characterization in a Vessel Phantom With Elastic Wall Using Ultrasonic Particle Image Velocimetry Technique: The Impact of Vessel Stiffness on Flow Dynamics. IEEE Trans Biomed Eng 2014; 61:2444-50. [DOI: 10.1109/tbme.2014.2320443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
A new high-resolution spectral approach to noninvasively evaluate wall deformations in arteries. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:606202. [PMID: 24688596 PMCID: PMC3943247 DOI: 10.1155/2014/606202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/23/2013] [Accepted: 12/05/2013] [Indexed: 11/28/2022]
Abstract
By locally measuring changes on arterial wall thickness as a function of pressure, the related Young modulus can be evaluated. This physical magnitude has shown to be an important predictive factor for cardiovascular diseases. For evaluating those changes, imaging segmentation or time correlations of ultrasonic echoes, coming from wall interfaces, are usually employed. In this paper, an alternative low-cost technique is proposed to locally evaluate variations on arterial walls, which are dynamically measured with an improved high-resolution calculation of power spectral densities in echo-traces of the wall interfaces, by using a parametric autoregressive processing. Certain wall deformations are finely detected by evaluating the echoes overtones peaks with power spectral estimations that implement Burg and Yule Walker algorithms. Results of this spectral approach are compared with a classical cross-correlation operator, in a tube phantom and “in vitro” carotid tissue. A circulating loop, mimicking heart periods and blood pressure changes, is employed to dynamically inspect each sample with a broadband ultrasonic probe, acquiring multiple A-Scans which are windowed to isolate echo-traces packets coming from distinct walls. Then the new technique and cross-correlation operator are applied to evaluate changing parietal deformations from the detection of displacements registered on the wall faces under periodic regime.
Collapse
|
28
|
Razani M, Luk TW, Mariampillai A, Siegler P, Kiehl TR, Kolios MC, Yang VX. Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples. BIOMEDICAL OPTICS EXPRESS 2014; 5:895-906. [PMID: 24688822 PMCID: PMC3959849 DOI: 10.1364/boe.5.000895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/16/2014] [Accepted: 02/19/2014] [Indexed: 05/04/2023]
Abstract
In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus.
Collapse
Affiliation(s)
- Marjan Razani
- Department of Physics, Ryerson University, Toronto, Canada
| | - Timothy W.H. Luk
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Canada
| | - Adrian Mariampillai
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Canada
| | - Peter Siegler
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Canada
| | - Tim-Rasmus Kiehl
- Department of Pathology, University Health Network, Toronto, Ontario Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | | - Victor X.D. Yang
- Department of Physics, Ryerson University, Toronto, Canada
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Mercure E, Destrempes F, Roy Cardinal MH, Porée J, Soulez G, Ohayon J, Cloutier G. A local angle compensation method based on kinematics constraints for non-invasive vascular axial strain computations on human carotid arteries. Comput Med Imaging Graph 2014; 38:123-36. [DOI: 10.1016/j.compmedimag.2013.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 06/28/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022]
|
30
|
Wan J, He F, Zhao Y, Zhang H, Zhou X, Wan M. Non-invasive vascular radial/circumferential strain imaging and wall shear rate estimation using video images of diagnostic ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:622-636. [PMID: 24361217 DOI: 10.1016/j.ultrasmedbio.2013.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 09/28/2013] [Accepted: 10/13/2013] [Indexed: 06/03/2023]
Abstract
The aim of this work was to develop a convenient method for radial/circumferential strain imaging and shear rate estimation that could be used as a supplement to the current routine screening for carotid atherosclerosis using video images of diagnostic ultrasound. A reflection model-based correction for gray-scale non-uniform distribution was applied to B-mode video images before strain estimation to improve the accuracy of radial/circumferential strain imaging when applied to vessel transverse cross sections. The incremental and cumulative radial/circumferential strain images can then be calculated based on the displacement field between consecutive B-mode images. Finally, the transverse Doppler spectra acquired at different depths along the vessel diameter were used to construct the spatially matched instantaneous wall shear values in a cardiac cycle. Vessel phantom simulation results revealed that the signal-to-noise ratio and contrast-to-noise ratio of the radial and circumferential strain images were increased by 2.8 and 5.9 dB and by 2.3 and 4.4 dB, respectively, after non-uniform correction. Preliminary results for 17 patients indicated that the accuracy of radial/circumferential strain images was improved in the lateral direction after non-uniform correction. The peak-to-peak value of incremental strain and the maximum cumulative strain for calcified plaques are evidently lower than those for other plaque types, and the echolucent plaques had higher values, on average, than the mixed plaques. Moreover, low oscillating wall shear rate values, found near the plaque and stenosis regions, are closely related to plaque formation. In conclusion, the method described can provide additional valuable results as a supplement to the current routine ultrasound examination for carotid atherosclerosis and, therefore, has significant potential as a feasible screening method for atherosclerosis diagnosis in the future.
Collapse
Affiliation(s)
- Jinjin Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fangli He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yongfeng Zhao
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongmei Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaodong Zhou
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
31
|
Teng Z, Sadat U, Brown AJ, Gillard JH. Plaque hemorrhage in carotid artery disease: pathogenesis, clinical and biomechanical considerations. J Biomech 2014; 47:847-58. [PMID: 24485514 PMCID: PMC3994507 DOI: 10.1016/j.jbiomech.2014.01.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 12/21/2022]
Abstract
Stroke remains the most prevalent disabling illness today, with internal carotid artery luminal stenosis due to atheroma formation responsible for the majority of ischemic cerebrovascular events. Severity of luminal stenosis continues to dictate both patient risk stratification and the likelihood of surgical intervention. But there is growing evidence to suggest that plaque morphology may help improve pre-existing risk stratification criteria. Plaque components such a fibrous tissue, lipid rich necrotic core and calcium have been well investigated but plaque hemorrhage (PH) has been somewhat overlooked. In this review we discuss the pathogenesis of PH, its role in dictating plaque vulnerability, PH imaging techniques, marterial properties of atherosclerotic tissues, in particular, those obtained based on in vivo measurements and effect of PH in modulating local biomechanics.
Collapse
Affiliation(s)
- Zhongzhao Teng
- University Department of Radiology, University of Cambridge, UK; Department of Engineering, University of Cambridge, UK.
| | - Umar Sadat
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Adam J Brown
- Department of Cardiovascular Medicine, University of Cambridge, UK
| | | |
Collapse
|
32
|
Bouvier A, Deleaval F, Doyley MM, Yazdani SK, Finet G, Le Floc'h S, Cloutier G, Pettigrew RI, Ohayon J. A direct vulnerable atherosclerotic plaque elasticity reconstruction method based on an original material-finite element formulation: theoretical framework. Phys Med Biol 2013; 58:8457-76. [PMID: 24240392 DOI: 10.1088/0031-9155/58/23/8457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The peak cap stress (PCS) amplitude is recognized as a biomechanical predictor of vulnerable plaque (VP) rupture. However, quantifying PCS in vivo remains a challenge since the stress depends on the plaque mechanical properties. In response, an iterative material finite element (FE) elasticity reconstruction method using strain measurements has been implemented for the solution of these inverse problems. Although this approach could resolve the mechanical characterization of VPs, it suffers from major limitations since (i) it is not adapted to characterize VPs exhibiting high material discontinuities between inclusions, and (ii) does not permit real time elasticity reconstruction for clinical use. The present theoretical study was therefore designed to develop a direct material-FE algorithm for elasticity reconstruction problems which accounts for material heterogeneities. We originally modified and adapted the extended FE method (Xfem), used mainly in crack analysis, to model material heterogeneities. This new algorithm was successfully applied to six coronary lesions of patients imaged in vivo with intravascular ultrasound. The results demonstrated that the mean relative absolute errors of the reconstructed Young's moduli obtained for the arterial wall, fibrosis, necrotic core, and calcified regions of the VPs decreased from 95.3 ± 15.56%, 98.85 ± 72.42%, 103.29 ± 111.86% and 95.3 ± 10.49%, respectively, to values smaller than 2.6 × 10(-8) ± 5.7 × 10(-8)% (i.e. close to the exact solutions) when including modified-Xfem method into our direct elasticity reconstruction method.
Collapse
Affiliation(s)
- Adeline Bouvier
- Laboratory TIMC-IMAG/DyCTiM, UJF, CNRS UMR 5525, In3S, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Biomechanics of atherosclerotic coronary plaque: site, stability and in vivo elasticity modeling. Ann Biomed Eng 2013; 42:269-79. [PMID: 24043605 DOI: 10.1007/s10439-013-0888-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Coronary atheroma develop in local sites that are widely variable among patients and are considerably variable in their vulnerability for rupture. This article summarizes studies conducted by our collaborative laboratories on predictive biomechanical modeling of coronary plaques. It aims to give insights into the role of biomechanics in the development and localization of atherosclerosis, the morphologic features that determine vulnerable plaque stability, and emerging in vivo imaging techniques that may detect and characterize vulnerable plaque. Composite biomechanical and hemodynamic factors that influence the actual site of development of plaques have been studied. Plaque vulnerability, in vivo, is more challenging to assess. Important steps have been made in defining the biomechanical factors that are predictive of plaque rupture and the likelihood of this occurring if characteristic features are known. A critical key in defining plaque vulnerability is the accurate quantification of both the morphology and the mechanical properties of the diseased arteries. Recently, an early IVUS based palpography technique developed to assess local strain, elasticity and mechanical instabilities has been successfully revisited and improved to account for complex plaque geometries. This is based on an initial best estimation of the plaque components' contours, allowing subsequent iteration for elastic modulus assessment as a basis for plaque stability determination. The improved method has also been preliminarily evaluated in patients with successful histologic correlation. Further clinical evaluation and refinement are on the horizon.
Collapse
|
34
|
Franquet A, Avril S, Le Riche R, Badel P, Schneider FC, Li ZY, Boissier C, Favre JP. A new method for the in vivo identification of mechanical properties in arteries from cine MRI images: theoretical framework and validation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:1448-1461. [PMID: 23591477 DOI: 10.1109/tmi.2013.2257828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Quantifying the stiffness properties of soft tissues is essential for the diagnosis of many cardiovascular diseases such as atherosclerosis. In these pathologies it is widely agreed that the arterial wall stiffness is an indicator of vulnerability. The present paper focuses on the carotid artery and proposes a new inversion methodology for deriving the stiffness properties of the wall from cine-MRI (magnetic resonance imaging) data. We address this problem by setting-up a cost function defined as the distance between the modeled pixel signals and the measured ones. Minimizing this cost function yields the unknown stiffness properties of both the arterial wall and the surrounding tissues. The sensitivity of the identified properties to various sources of uncertainty is studied. Validation of the method is performed on a rubber phantom. The elastic modulus identified using the developed methodology lies within a mean error of 9.6%. It is then applied to two young healthy subjects as a proof of practical feasibility, with identified values of 625 kPa and 587 kPa for one of the carotid of each subject.
Collapse
Affiliation(s)
- Alexandre Franquet
- CIS-EMSE, CNRS UMR 5146, Ecole Nationale Supérieure des Mines, F-42023 Saint-Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kuo WH, Jian DW, Wang TG, Wang YC. Neck muscle stiffness quantified by sonoelastography is correlated with body mass index and chronic neck pain symptoms. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1356-1361. [PMID: 23683408 DOI: 10.1016/j.ultrasmedbio.2012.11.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/14/2012] [Accepted: 11/15/2012] [Indexed: 06/02/2023]
Abstract
This study aimed to quantify neck muscle stiffness in the normal population with ultrasound elastography. We applied the acoustic radiation force impulse technique and measured shear wave velocities (SWVs) as representative values. The mean ± standard deviation values of SWV in 20 healthy volunteers were 2.09 ± 0.45, 1.21 ± 0.30, 1.12 ± 0.17 and 0.97 ± 0.10 m/s for the trapezius, levator scapulae, scalene anterior and sternocleidomastoid muscles, respectively. The SWV values of the four muscles significantly differed (Kruskal-Wallis test, p < 0.001). The SWV values for the trapezius muscle correlated with body mass indexes (Pearson's correlation, p = 0.034). Subjects with chronic neck pain symptoms had significantly stiffer trapezius muscle (Mann-Whitney U test, p = 0.008). This study demonstrated the technique and feasibility of quantifying neck muscle stiffness using acoustic radiation force impulse elastography and shear wave velocity detection. Further study is necessary to evaluate its diagnostic power in assessing various neck muscle diseases.
Collapse
Affiliation(s)
- Wen-Hsiu Kuo
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, School of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
36
|
Chai CK, Akyildiz AC, Speelman L, Gijsen FJ, Oomens CW, van Sambeek MR, van der Lugt A, Baaijens FP. Local axial compressive mechanical properties of human carotid atherosclerotic plaques—characterisation by indentation test and inverse finite element analysis. J Biomech 2013; 46:1759-66. [PMID: 23664315 DOI: 10.1016/j.jbiomech.2013.03.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 10/26/2022]
|
37
|
Miyamoto M, Kotani K, Okada K, Ando A, Hasegawa H, Kanai H, Ishibashi S, Yamada T, Taniguchi N. Arterial wall elasticity measured using the phased tracking method and atherosclerotic risk factors in patients with type 2 diabetes. J Atheroscler Thromb 2013; 20:678-87. [PMID: 23648429 DOI: 10.5551/jat.16220] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The aim of this study was to investigate the relationship between atherosclerotic manifestations and brachial and radial arterial wall elasticity (AWE) measured using the phased tracking method in patients with type 2 diabetes mellitus (T2DM). METHODS This study included T2DM patients (n= 220, mean age 59 years) without a history of stroke or coronary artery disease. The brachial AWE, radial AWE, carotid mean intima-media thickness (IMT), max-IMT and flow-mediated vasodilation (FMD) were measured. The patients were classified according to the number of atherosclerotic risk factors, including obesity, dyslipidemia and hypertension. Group 1 included T2DM patients only, group 2 included patients with two risk factors, group 3 included patients with three risk factors and group 4 included patients with four risk factors. The patients were also divided into two groups according to microangiopathic complications, including retinopathy and nephropathy. The between-group differences were analyzed. RESULTS The brachial AWE (548, 697, 755 and 771 kPa for groups 1, 2, 3 and 4, respectively) and radial AWE (532, 637, 717 and 782 kPa for groups 1, 2, 3 and 4, respectively) significantly increased in association with an increasing number of risk factors. The brachial AWE and radial AWE were significantly higher in the patients with microangiopathic complications than in those without microangiopathic complications (brachial AWE 797 and 694 kPa and radial AWE 780 and 660 kPa, respectively). Receiver operating characteristic curve analyses revealed that, for brachial AWE and radial AWE, the area under the curve was equal to the max-IMT and higher than the mean-IMT and FMD. CONCLUSIONS Upper limb AWE measurement can reflect the degree of atherosclerosis risk overload and may be useful for evaluating vascular complications in T2DM patients.
Collapse
Affiliation(s)
- Michiaki Miyamoto
- Department of Clinical Laboratory Medicine, Jichi Medical University, Tochigi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hansen HH, Richards MS, Doyley MM, de Korte CL. Noninvasive vascular displacement estimation for relative elastic modulus reconstruction in transversal imaging planes. SENSORS 2013; 13:3341-57. [PMID: 23478602 PMCID: PMC3658750 DOI: 10.3390/s130303341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 12/03/2022]
Abstract
Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF) data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding.
Collapse
Affiliation(s)
- Hendrik H.G. Hansen
- Medical UltraSound Imaging Center (MUSIC), Department of Radiology, Radboud University Nijmegen Medical Center, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +31-2436-14730; Fax: +31-2436-14427
| | - Michael S. Richards
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Hopeman Engineering Building, P.O. Box 270126, Rochester, NY 14627, USA; E-Mails: (M.S.R.); (M.M.D.)
| | - Marvin M. Doyley
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Hopeman Engineering Building, P.O. Box 270126, Rochester, NY 14627, USA; E-Mails: (M.S.R.); (M.M.D.)
| | - Chris L. de Korte
- Medical UltraSound Imaging Center (MUSIC), Department of Radiology, Radboud University Nijmegen Medical Center, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands; E-Mail:
| |
Collapse
|
39
|
Observation of local elastic distribution in aortic tissues under static strain condition by use of a scanning haptic microscope. J Artif Organs 2012. [PMID: 23180224 DOI: 10.1007/s10047-012-0674-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to observe variation in the local elastic distribution in aortic tissue walls under different static strain conditions, including physiological strain, by use of a scanning haptic microscope (SHM). Strain was applied by stretching aortic tissues in the circumferential direction by the simple tensile method or by the rod-insertion method to mimic in vivo internal pressure loading. SHM measurements in a saline solution at room temperature were performed on canine thoracic aorta using a glass needle probe with a diameter of ca 5 μm and a scanning area and point pitch of 160 × 80 μm and 2 μm, respectively. Under strain of 0-0.23, corresponding to internal pressure of 0-150 mmHg, wavy-shaped elastin fibers stretched until they were almost straightened, and the average elastic modulus increased almost linearly. Although there was little difference between the images obtained for the two different stretching methods, under high strain (>0.36; 250 mmHg) significant circumferential orientation of the collagen fibrils occurred with an increase in the average elastic modulus. It was concluded that the pressure resistance of the aorta under physiological strain was mainly afforded by elastin fibers; collagen fibrils contributed little except under much higher pressures.
Collapse
|
40
|
McCormick M, Varghese T, Wang X, Mitchell C, Kliewer MA, Dempsey RJ. Methods for robust in vivo strain estimation in the carotid artery. Phys Med Biol 2012; 57:7329-53. [PMID: 23079725 DOI: 10.1088/0031-9155/57/22/7329] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A hierarchical block-matching motion tracking algorithm for strain imaging is presented. Displacements are estimated with improved robustness and precision by utilizing a Bayesian regularization algorithm and an unbiased subsample interpolation technique. A modified least-squares strain estimator is proposed to estimate strain images from a noisy displacement input while addressing the motion discontinuity at the wall-lumen boundary. Methods to track deformation over the cardiac cycle incorporate a dynamic frame skip criterion to process data frames with sufficient deformation to produce high signal-to-noise displacement and strain images. Algorithms to accumulate displacement and/or strain on particles in a region of interest over the cardiac cycle are described. New methods to visualize and characterize the deformation measured with the full 2D strain tensor are presented. Initial results from patients imaged prior to carotid endarterectomy suggest that strain imaging detects conditions that are traditionally considered high risk including soft plaque composition, unstable morphology, abnormal hemodynamics and shear of plaque against tethering tissue can be exacerbated by neoangiogenesis. For example, a maximum absolute principal strain exceeding 0.2 is observed near calcified regions adjacent to turbulent flow, protrusion of the plaque into the arterial lumen and regions of low echogenicity associated with soft plaques. Non-invasive carotid strain imaging is therefore a potentially useful tool for detecting unstable carotid plaque.
Collapse
Affiliation(s)
- M McCormick
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
41
|
Measurement of regional pulse wave velocity using very high frame rate ultrasound. J Med Ultrason (2001) 2012; 40:91-8. [PMID: 27277096 DOI: 10.1007/s10396-012-0400-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/01/2012] [Indexed: 10/27/2022]
|
42
|
Niu L, Qian M, Song R, Meng L, Liu X, Zheng H. A texture matching method considering geometric transformations in noninvasive ultrasonic measurement of arterial elasticity. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:524-533. [PMID: 22266234 DOI: 10.1016/j.ultrasmedbio.2011.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/12/2011] [Accepted: 12/07/2011] [Indexed: 05/31/2023]
Abstract
Measurement of arterial elasticity can provide an important reference for understanding arterial wall changes that may occur in the early stages of atherosclerosis. Conventional correlation-based methods for evaluating arterial wall movements consider only the translation, ignoring the rotation and deformation, which limits the accuracy of measurement of arterial displacement and its biomechanical properties. This article proposes a novel texture matching method based on ultrasonic B-mode image considering geometric transformations to accurately measure arterial displacement and acquire arterial elasticity noninvasively. The method was validated by simulated images with rotation and deformation and further by measurements in vitro arterial phantom and in vivo common carotid arteries of 20 healthy volunteers. Simulation results demonstrate that the method can improve the accuracy of measurement of arterial displacement. Experimental results show that the elastic modulus of the arterial phantom agrees well with the results obtained from mechanical tests, deviating only 4.1%. The mean elastic modulus of the common carotid arteries is 361.7 ± 93.5 kPa. The texture matching method was shown to be able to measure the displacement and elasticity of the arterial wall with complex geometric transformations and may be clinically useful for early detecting and monitoring atherosclerosis.
Collapse
Affiliation(s)
- Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | | | | | | | | |
Collapse
|
43
|
Dahlén EM, Andreasson T, Cinthio M, Nystrom FH, Östgren CJ, Länne T. Is there an underestimation of intima-media thickness based on M-mode ultrasound technique in the abdominal aorta? Clin Physiol Funct Imaging 2011; 32:1-4. [PMID: 22152072 DOI: 10.1111/j.1475-097x.2011.01045.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measuring intima-media thickness (IMT) in the common carotid artery (CCA) is a valuable resource for the evaluation of subclinical atherosclerosis. The main objective of this study was to explore whether a B-mode ultrasound technique, Philips ATL, and an M-mode ultrasound technique, Wall Track System (WTS), show interchangeable results when measured in CCA and the abdominal aorta (AA). A total of 24 healthy, young subjects were examined. IMT and lumen diameter (LD) of the AA and the CCA were measured twice by two skilled ultrasonographers with two different ultrasound equipment B-mode: (Philips, ATL and M-mode: WTS).The intra-observer variability of IMT in CCA and AA using B-mode showed a coefficient of variation 8% and 9%, and with M-mode 11% and 15%, respectively. Interobserver variability of IMT in CCA and AA using B-mode was 6% and 12%, and with M-mode 11% and 18%, respectively. CCA IMT was 0·53 ± 0·07 and 0·53 ± 0·09 mm using B-mode and M-mode, respectively. However, in AA, IMT was 0·61 ± 0·05 and 0·54 ± 0·10 mm using B-mode and M-mode, respectively. Thus, AA IMT was 11·5% thicker using B-mode (P < 0·01). We received adequate IMT readings from the carotid artery as well as the AA using two commonly used B-mode and M-mode techniques. B-mode technique seems to show less variability, especially in the AA. More importantly, the two techniques measured different IMT thickness in the aorta, emphasizing the importance of using similar technique when comparing the impact of absolute values of IMT on cardiovascular disease.
Collapse
Affiliation(s)
- Elsa M Dahlén
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
44
|
Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. AN OVERVIEW OF ELASTOGRAPHY - AN EMERGING BRANCH OF MEDICAL IMAGING. Curr Med Imaging 2011; 7:255-282. [PMID: 22308105 PMCID: PMC3269947 DOI: 10.2174/157340511798038684] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
From times immemorial manual palpation served as a source of information on the state of soft tissues and allowed detection of various diseases accompanied by changes in tissue elasticity. During the last two decades, the ancient art of palpation gained new life due to numerous emerging elasticity imaging (EI) methods. Areas of applications of EI in medical diagnostics and treatment monitoring are steadily expanding. Elasticity imaging methods are emerging as commercial applications, a true testament to the progress and importance of the field.In this paper we present a brief history and theoretical basis of EI, describe various techniques of EI and, analyze their advantages and limitations, and overview main clinical applications. We present a classification of elasticity measurement and imaging techniques based on the methods used for generating a stress in the tissue (external mechanical force, internal ultrasound radiation force, or an internal endogenous force), and measurement of the tissue response. The measurement method can be performed using differing physical principles including magnetic resonance imaging (MRI), ultrasound imaging, X-ray imaging, optical and acoustic signals.Until recently, EI was largely a research method used by a few select institutions having the special equipment needed to perform the studies. Since 2005 however, increasing numbers of mainstream manufacturers have added EI to their ultrasound systems so that today the majority of manufacturers offer some sort of Elastography or tissue stiffness imaging on their clinical systems. Now it is safe to say that some sort of elasticity imaging may be performed on virtually all types of focal and diffuse disease. Most of the new applications are still in the early stages of research, but a few are becoming common applications in clinical practice.
Collapse
|
45
|
|
46
|
de Korte CL, Hansen HHG, van der Steen AFW. Vascular ultrasound for atherosclerosis imaging. Interface Focus 2011; 1:565-75. [PMID: 22866231 PMCID: PMC3262270 DOI: 10.1098/rsfs.2011.0024] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/11/2011] [Indexed: 11/12/2022] Open
Abstract
Cardiovascular disease is a leading cause of death in the Western world. Therefore, detection and quantification of atherosclerotic disease is of paramount importance to monitor treatment and possible prevention of acute events. Vascular ultrasound is an excellent technique to assess the geometry of vessel walls and plaques. The high temporal as well as spatial resolution allows quantification of luminal area and plaque size and volume. While carotid arteries can be imaged non-invasively, scanning of coronary arteries requires invasive intravascular catheters. Both techniques have already demonstrated their clinical applicability. Using linear array technology, detection of disease as well as monitoring of pharmaceutical treatment in carotid arteries are feasible. Data acquired with intravascular ultrasound catheters have proved to be especially beneficial in understanding the development of atherosclerotic disease in coronary arteries. With the introduction of vascular elastography not only the geometry of plaques but also the risk for rupture of plaques might be identified. These so-called vulnerable plaques are frequently not flow-limiting and rupture of these plaques is responsible for the majority of cerebral and cardiac ischaemic events. Intravascular ultrasound elastography studies have demonstrated a high correlation between high strain and vulnerable plaque features, both ex vivo and in vivo. Additionally, pharmaceutical intervention could be monitored using this technique. Non-invasive vascular elastography has recently been developed for carotid applications by using compound scanning. Validation and initial clinical evaluation is currently being performed. Since abundance of vasa vasorum (VV) is correlated with vulnerable plaque development, quantification of VV might be a unique tool to even prevent this from happening. Using ultrasound contrast agents, it has been demonstrated that VV can be identified and quantified. Although far from routine clinical application, non-invasive and intravascular ultrasound VV imaging might pave the road to prevent atherosclerotic disease in an early phase. This paper reviews the conventional vascular ultrasound techniques as well as vascular ultrasound strain and vascular ultrasound VV imaging.
Collapse
Affiliation(s)
- Chris L. de Korte
- Clinical Physics Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Hendrik H. G. Hansen
- Clinical Physics Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Anton F. W. van der Steen
- Thoraxcentre Biomedical Engineering, ErasmusMC, Rotterdam, The Netherlands
- Interuniversity Cardiology Institute of The Netherlands, Utrecht, The Netherlands
| |
Collapse
|
47
|
Beaussier H, Naggara O, Calvet D, Joannides R, Guegan-Massardier E, Gerardin E, Iacob M, LaLoux B, Bozec E, Bellien J, Touze E, Masson I, Thuillez C, Oppenheim C, Boutouyrie P, Laurent S. Mechanical and Structural Characteristics of Carotid Plaques by Combined Analysis With Echotracking System and MR Imaging. JACC Cardiovasc Imaging 2011; 4:468-77. [DOI: 10.1016/j.jcmg.2011.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 01/05/2011] [Accepted: 01/07/2011] [Indexed: 11/25/2022]
|
48
|
Mercure E, Deprez JF, Fromageau J, Basset O, Soulez G, Cloutier G, Maurice RL. A compensative model for the angle-dependence of motion estimates in noninvasive vascular elastography. Med Phys 2011; 38:727-35. [DOI: 10.1118/1.3539701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Cheng DC, Schmidt-Trucksäss A, Liu CH, Liu SH. Automated detection of the arterial inner walls of the common carotid artery based on dynamic B-mode signals. SENSORS 2010; 10:10601-19. [PMID: 22163488 PMCID: PMC3231092 DOI: 10.3390/s101210601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/12/2010] [Accepted: 11/18/2010] [Indexed: 11/25/2022]
Abstract
In this paper we propose a novel scheme able to automatically detect the intima and adventitia of both near and far walls of the common carotid artery in dynamic B-mode RF (radiofrequency) image sequences, with and without plaques. Via this automated system the lumen diameter changes along the heart cycle can be detected. Three image sequences have been tested and all results are compared to manual tracings made by two professional experts. The average errors for near and far wall detection are 0.058 mm and 0.067 mm, respectively. This system is able to analyze arterial plaques dynamically which is impossible to do manually due to the tremendous human workload involved.
Collapse
Affiliation(s)
- Da-Chuan Cheng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-4-2205-2121 ext. 7625; Fax: +886-4-2233-4175
| | - Arno Schmidt-Trucksäss
- Institute of Exercise and Health Sciences, University of Basel, Basel, Switzerland; E-Mail:
| | - Chung-Hsiang Liu
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan; E-Mail:
| | - Shing-Hong Liu
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung, Taiwan; E-Mail:
| |
Collapse
|
50
|
Le Floc'h S, Cloutier G, Finet G, Tracqui P, Pettigrew RI, Ohayon J. On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study. Phys Med Biol 2010; 55:5701-21. [PMID: 20826899 DOI: 10.1088/0031-9155/55/19/006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peak cap stress amplitude is recognized as a good indicator of vulnerable plaque (VP) rupture. However, such stress evaluation strongly relies on a precise, but still lacking, knowledge of the mechanical properties exhibited by the plaque components. As a first response to this limitation, our group recently developed, in a previous theoretical study, an original approach, called iMOD (imaging modulography), which reconstructs elasticity maps (or modulograms) of atheroma plaques from the estimation of strain fields. In the present in vitro experimental study, conducted on polyvinyl alcohol cryogel arterial phantoms, we investigate the benefit of coupling the iMOD procedure with the acquisition of intravascular ultrasound (IVUS) measurements for detection of VP. Our results show that the combined iMOD-IVUS strategy: (1) successfully detected and quantified soft inclusion contours with high positive predictive and sensitivity values of 89.7 ± 3.9% and 81.5 ± 8.8%, respectively, (2) estimated reasonably cap thicknesses larger than ∼300 µm, but underestimated thinner caps, and (3) quantified satisfactorily Young's modulus of hard medium (mean value of 109.7 ± 23.7 kPa instead of 145.4 ± 31.8 kPa), but overestimated the stiffness of soft inclusions (mean Young`s moduli of 31.4 ± 9.7 kPa instead of 17.6 ± 3.4 kPa). All together, these results demonstrate a promising benefit of the new iMOD-IVUS clinical imaging method for in vivo VP detection.
Collapse
Affiliation(s)
- Simon Le Floc'h
- Laboratory TIMC-DynaCell, UJF, CNRS UMR 5525, In3S, Grenoble, France
| | | | | | | | | | | |
Collapse
|