1
|
Soares JHN, Raff GW, Fineman JR, Datar SA. Respiratory mechanics and gas exchange in an ovine model of congenital heart disease with increased pulmonary blood flow and pressure. Front Physiol 2023; 14:1188824. [PMID: 37362431 PMCID: PMC10288580 DOI: 10.3389/fphys.2023.1188824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
In a model of congenital heart disease (CHD), we evaluated if chronically increased pulmonary blood flow and pressure were associated with altered respiratory mechanics and gas exchange. Respiratory mechanics and gas exchange were evaluated in 6 shunt, 7 SHAM, and 7 control age-matched lambs. Lambs were anesthetized and mechanically ventilated for 15 min with tidal volume of 10 mL/kg, positive end-expiratory pressure of 5 cmH2O, and inspired oxygen fraction of 0.21. Respiratory system, lung and chest wall compliances (Crs, CL and Ccw, respectively) and resistances (Rrs, RL and Rcw, respectively), and the profile of the elastic pressure-volume curve (%E2) were evaluated. Arterial blood gases and volumetric capnography variables were collected. Comparisons between groups were performed by one-way ANOVA followed by Tukey-Kramer test for normally distributed data and with Kruskal-Wallis test followed by Steel-Dwass test for non-normally distributed data. Average Crs and CL in shunt lambs were 30% and 58% lower than in control, and 56% and 68% lower than in SHAM lambs, respectively. Ccw was 52% and 47% higher and Rcw was 53% and 40% lower in shunt lambs compared to controls and SHAMs, respectively. No difference in %E2 was identified between groups. No difference in respiratory mechanics was observed between control and SHAM lambs. In shunt lambs, Rcw, Crs and CL were decreased and Ccw was increased when compared to control and SHAM lambs. Pulmonary gas exchange did not seem to be impaired in shunt lambs when compared to controls and SHAMs.
Collapse
Affiliation(s)
- Joao Henrique N. Soares
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Gary W. Raff
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Jeffrey R. Fineman
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Sanjeev A. Datar
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Roles of Endothelin B Receptors and Endothelial Nitric Oxide Synthase in the Regulation of Pulmonary Hemodynamic in Cirrhotic Rats. J Cardiovasc Pharmacol 2020; 73:178-185. [PMID: 30839511 DOI: 10.1097/fjc.0000000000000650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Hepatopulmonary syndrome and portopulmonary hypertension are common complications of liver disorders. This study aimed to determine roles of ET-B receptors and endothelial-derived NO synthase in the regulation of pulmonary hemodynamic in cirrhotic rats. METHODS Male Sprague-Dawley rats were divided into the Sham and common bile duct ligation (CBDL) groups. After 28 days, animals were anesthetized, and the right ventricle, femoral artery, and vein cannulated. Then, intravenous injection of BQ-788 (a selective ET-B receptor antagonist) and L-NAME (eNOS inhibitor) were performed sequentially. RESULTS After the first injection of BQ-788, the right ventricular systolic pressure (RVSP) and mean arterial systemic pressure increased only in the Sham group. L-NAME increased RVSP in the Sham and CBDL groups, whereas mean arterial systemic pressure elevated only in the Sham group significantly. Reinjection of BQ-788 increased RVSP in the Sham group, whereas it decreased RVSP in the CBDL group. Both plasma NO metabolites and lung endothelin-1 increased in the CBDL group. CONCLUSION ET-B receptors on the endothelial cells play roles in the regulation of pulmonary and systemic vascular tone in normal condition through the NO-mediated pathway, whereas ET-B receptors on the smooth muscle cells have a role in the pulmonary vascular tone in liver cirrhosis.
Collapse
|
3
|
Rivera-Lebron BN, Risbano MG. Ambrisentan: a review of its use in pulmonary arterial hypertension. Ther Adv Respir Dis 2017; 11:233-244. [PMID: 28425346 PMCID: PMC5933647 DOI: 10.1177/1753465817696040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease defined by an elevation in pulmonary arterial pressure that can lead to right heart failure and death. Ambrisentan is a selective endothelin receptor antagonist approved for the treatment of idiopathic, heritable PAH and connective tissue disease-associated PAH. Ambrisentan has been shown to improve exercise capacity and hemodynamics with an acceptable side-effect profile. It has also proven to be safely used in combination with other PAH-specific medications, especially with phosphodiesterase-5 inhibitors. In the recent randomized trial, AMBITION, it was shown that upfront combination therapy of ambrisentan and tadalafil significantly decreased the risk of clinical failure compared with monotherapy. This review describes the drug profile of ambrisentan and its safety and efficacy in the treatment of PAH.
Collapse
Affiliation(s)
- Belinda N. Rivera-Lebron
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael G. Risbano
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh Medical Center, 3459 Fifth Avenue, Montefiore Hospital, NW 628, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Chies AB, de Oliveira PB, Rossignoli PDS, Baptista RDFF, de Lábio RW, Payão SLM. Prostanoids counterbalance the synergism between endothelin-1 and angiotensin II in mesenteric veins of trained rats. Peptides 2017; 88:67-73. [PMID: 28012855 DOI: 10.1016/j.peptides.2016.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 11/30/2022]
Abstract
Exercise-induced adaptations of the modulating mechanisms that influence the angiotensin (Ang II) responses assume different features depending on the venous bed. In femoral veins, exercise mobilizes vasodilator prostanoids to cooperate with NO in order to maintain reduced Ang II responses. On the other hand, exercise's influence on the Ang II responses in veins that drain blood from the mesenteric region has been poorly described. Therefore, the present study aimed to identify the effects of a single bout of exercise, as well as exercise training, on the Ang II responses in mesenteric veins. The present study also aimed to investigate the involvement of prostanoids, NO and ET-1 in eventual exercise-induced modifications in these veins. To this end, mesenteric veins taken from resting-sedentary, exercised-sedentary, resting-trained and exercised-trained animals were studied in organ baths. In addition, the mRNA expression of prepro-endothelin-1 (ppET-1), as well as that of the ETA and ETB receptors, were quantified by real-time PCR in these veins. The results show that, either in absence or in presence of L-NAME, the Ang II responses were not different between groups. In the presence of indomethacin, higher Ang II responses were observed in the resting-trained animals than in the resting-sedentary animals. This difference, however, disappeared when L-NAME, BQ-123 or BQ-788 were added during incubation. In addition, no differences in ppET-1, ETA or ETB mRNA expression were observed between groups. Furthermore, in the presence of PD123,319, the Ang II responses in the exercised-sedentary animals were higher than those in the resting-sedentary animals. In conclusion, exercise training mobilizes endothelin-1 (ET-1) to reinforce the Ang II-induced responses mainly through ETA activation. On the other hand, vasodilator prostanoids are mobilized to act in parallel with NO in order to counterbalance the Ang II responses that have been potentiated by ET-1 in these trained animals.
Collapse
|
5
|
Selej M, Romero AJ, Channick RN, Clozel M. Development of macitentan for the treatment of pulmonary arterial hypertension. Ann N Y Acad Sci 2015; 1358:68-81. [PMID: 26291180 DOI: 10.1111/nyas.12856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a serious, chronic condition that, without early recognition and treatment, leads to progressive right heart failure and death. The dual endothelin receptor antagonist macitentan was designed through a deliberate discovery process to maximize endothelin-axis blockade while improving adverse-effect profiles compared with previous compounds. Macitentan's efficacy was demonstrated in an event-driven morbidity and mortality study of treatment-naive and background PAH therapy-treated symptomatic patients. Compared to placebo, 10 mg of macitentan significantly reduced the relative risk of morbidity and mortality by 45%, primarily by delaying PAH worsening, most prominently in World Health Organization (WHO) functional class II and III PAH patients. Macitentan reduced the incidence of the composite end point of PAH-related hospitalizations and mortality and improved WHO FC and exercise capacity (6-min walk distance). Furthermore, it significantly improved cardiopulmonary hemodynamics and quality of life, and had a favorable safety and tolerability profile. To date, this was the largest and longest prospective trial for PAH. Macitentan, currently the only approved oral PAH treatment shown to be safe and effective in delaying long-term progression and reducing PAH-related hospitalizations, has changed treatment paradigms from goal-directed to long-term outcome-oriented therapy.
Collapse
Affiliation(s)
- Mona Selej
- Actelion Pharmaceuticals, US, Inc, South San Francisco, California
| | - Alain J Romero
- Actelion Pharmaceuticals, US, Inc, South San Francisco, California
| | - Richard N Channick
- Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
6
|
Sidharta PN, Treiber A, Dingemanse J. Clinical pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist macitentan. Clin Pharmacokinet 2015; 54:457-71. [PMID: 25860376 PMCID: PMC4412377 DOI: 10.1007/s40262-015-0255-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vascular system, which leads to right-sided heart failure and ultimately death if untreated. Treatments to regulate the pulmonary vascular pressure target the prostacyclin, nitric oxide, and endothelin (ET) pathways. Macitentan, an oral, once-daily, dual ETA and ETB receptor antagonist with high affinity and sustained receptor binding is the first ET receptor antagonist to show significant reduction of the risk of morbidity and mortality in PAH patients in a large-scale phase III study with a long-term outcome. Here we present a review of the available clinical pharmacokinetic, pharmacodynamic, pharmacokinetic/pharmacodynamic relationship, and drug-drug interaction data of macitentan in healthy subjects, patients with PAH, and in special populations.
Collapse
Affiliation(s)
- P N Sidharta
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, 4123, Allschwil, Switzerland,
| | | | | |
Collapse
|
7
|
Sidharta PN, Krähenbühl S, Dingemanse J. Pharmacokinetic and pharmacodynamic evaluation of macitentan , a novel endothelin receptor antagonist for the treatment of pulmonary arterial hypertension. Expert Opin Drug Metab Toxicol 2015; 11:437-49. [PMID: 25604973 DOI: 10.1517/17425255.2015.1000859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a chronic disorder of the pulmonary vasculature characterized by elevated mean pulmonary arterial pressure eventually leading to right-sided heart failure and premature death. Macitentan is an oral, once-daily, dual endothelin (ET)A and ETB receptor antagonist with high affinity and sustained receptor binding that was approved in the USA, Europe, Canada, and Switzerland for the treatment of PAH. AREAS COVERED This review discusses the pharmacokinetics (PK) and pharmacodynamics (PD) of macitentan and its drug interaction potential based on preclinical and clinical data. EXPERT OPINION Up to date, macitentan is the only registered treatment for PAH that significantly reduced morbidity and mortality as a combined endpoint in a long-term event-driven study. The safety profile of macitentan is favorable with respect to hepatic safety and edema/fluid retention and may be better than that of other ET receptor antagonists such as bosentan and ambrisentan. The PK profile supports a once-a-day dosing regimen. Macitentan has limited interactions with other drugs. Based on these characteristics macitentan is an important new addition to the treatment of PAH.
Collapse
Affiliation(s)
- Patricia N Sidharta
- Actelion Pharmaceuticals Ltd., Department of Clinical Pharmacology , Gewerbestrasse 16, CH-4123 Allschwil , Switzerland +41 61 656686 ; +41 61 5656200 ;
| | | | | |
Collapse
|
8
|
Chronic overcirculation-induced pulmonary arterial hypertension in aorto-caval shunt. Microvasc Res 2014; 94:73-9. [PMID: 24862700 DOI: 10.1016/j.mvr.2014.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
Abstract
Pulmonary arterial hypertension is a common complication of congenital heart defects with left-to-right shunts. Current preclinical models do not reproduce clinical characteristics of shunt-related pulmonary hypertension. Aorto-caval shunt was firstly described as a model of right ventricle volume overload. The pathophysiology and the possible determination of pulmonary arterial hypertension of different periods of shunt exposure are still undefined. A method to create standardized, reproducible aorto-caval shunt was developed in growing rats (260±40 g). Three groups of animals were considered: shunt exposure for 10 weeks, shunt exposure for 20 weeks and control (sham laparotomy). Echocardiography and magnetic resonance revealed increased right ventricular end diastolic area in shunt at 10 weeks compared to control. Hemodynamic analysis demonstrated increased right ventricular afterload and increased effective pulmonary arterial elastance (Ea) in shunt at 20 weeks compared to control (1.29±0.20 vs. 0.14±0.06 mmHg/μl, p=0.004). At the same time point, the maximal slope of end-systolic pressure-volume relationship (Ees) decreased (0.5±0.2 mmHg/ml vs. 1.2±0.3, p<0.001). Consequently, right ventricular-arterial coupling was markedly deteriorated with a ≈50% decrease in the ratio of end-systolic to pulmonary artery elastance (Ees/Ea). Finally, left ventricular preload diminished (≈30% decrease in left ventricular end-diastolic volume). Histology demonstrated medial hypertrophy and small artery luminal narrowing. Chronic exposure to aorto-caval shunt is a reliable model to produce right ventricular volume overload and secondary pulmonary arterial hypertension. This model could be an alternative with low mortality and high reproducibility for investigators on the underlying mechanisms of shunt-related pulmonary hypertension.
Collapse
|
9
|
Richard V. [Endothelin: From discovery to pharmacotherapeutic innovations]. Presse Med 2014; 43:742-55. [PMID: 24797866 DOI: 10.1016/j.lpm.2014.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/25/2013] [Accepted: 01/20/2014] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Endothelin (ET) is a major therapeutic target in cardiopulmonary diseases. The purpose of this review is to present the main concepts concerning ET biology, its pathophysiological roles and the major pharmacological and medical advances recently developed around the concept of ET receptor blockade. METHODS Analysis of PubMed database (keywords: endothelin, endothelin receptor antagonists, pulmonary hypertension, etc.), and of abstract originating from recent international meetings. RESULTS ET is a peptide produced by vascular endothelial cells as well as by many other tissues. Both its production and its effects are activated in pathological situations associated with endothelial dysfunction. ET is characterized by a strong tropism toward tissues because of its polarized release, the strong tissue receptor density and high affinity of the receptors for the peptide. ET exerts several vascular effects, including vasoconstriction, proliferation and hypertrophy, as well as non-vascular effects, notably stimulation of cardiac hypertrophy, tissue fibrosis and inflammation. Both vascular and non-vascular effects depend on the stimulation of two receptor subtypes, ETA and ETB. ET receptor antagonists (ERA) demonstrated beneficial effects in many different pre-clinical models of cardiovascular and pulmonary diseases, and constitute a first-line treatment of patients with pulmonary arterial hypertension (PAH). Recently, the targeted search for a novel ERA led to the development of macitentan which, compared to existing ERA, show optimized tissue penetration, increased receptor affinity and in vivo pharmacological efficacy in pre-clinical models, associated with a favorable profile, in terms of hepatic safety and drug interactions. The clinical efficacy of macitentan in the treatment of PAH was recently demonstrated in the SERAPHIN trial, which contrasts with previous PAH trials because of its long duration, the high number of patients enrolled, and its primary endpoint evaluating morbidity/mortality. Results show a significant reduction of the primary composite morbidity/mortality endpoint (taking into account both progression of PAH and death) by 30 and 45% with macitentan 3 and 10mg, respectively, compared to placebo, and confirm on the large scale the favorable tolerance profile, especially at the hepatic level. CONCLUSION The extensive knowledge on the complexity of the ET system allowed the synthesis of a new antagonist optimized, in terms of pharmacological efficacy and safety, which also show promising therapeutic effects in PAH patients, with demonstrated results in a prospective study using a composite primary endpoint of morbidity-mortality.
Collapse
Affiliation(s)
- Vincent Richard
- CHU de Rouen, service de pharmacologie, unité Inserm U1096, UFR médecine pharmacie de Rouen, 76183 Rouen cedex, France.
| |
Collapse
|
10
|
Sun X, Sharma S, Fratz S, Kumar S, Rafikov R, Aggarwal S, Rafikova O, Lu Q, Burns T, Dasarathy S, Wright J, Schreiber C, Radman M, Fineman JR, Black SM. Disruption of endothelial cell mitochondrial bioenergetics in lambs with increased pulmonary blood flow. Antioxid Redox Signal 2013; 18:1739-52. [PMID: 23244702 PMCID: PMC3619212 DOI: 10.1089/ars.2012.4806] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS The mitochondrial dysfunction in our lamb model of congenital heart disease with increased pulmonary blood flow (PBF) (Shunt) is associated with disrupted carnitine metabolism. Our recent studies have also shown that asymmetric dimethylarginine (ADMA) levels are increased in Shunt lambs and ADMA increases the nitration of mitochondrial proteins in lamb pulmonary arterial endothelial cells (PAEC) in a nitric oxide synthase (NOS)-dependent manner. Thus, we determined whether there was a mechanistic link between endothelial nitric oxide synthase (eNOS), ADMA, and the disruption of carnitine homeostasis in PAEC. RESULTS Exposure of PAEC to ADMA induced the redistribution of eNOS to the mitochondria, resulting in an increase in carnitine acetyl transferase (CrAT) nitration and decreased CrAT activity. The resulting increase in acyl-carnitine levels resulted in mitochondrial dysfunction and the disruption of mitochondrial bioenergetics. Since the addition of L-arginine prevented these pathologic changes, we examined the effect of L-arginine supplementation on carnitine homeostasis, mitochondrial function, and nitric oxide (NO) signaling in Shunt lambs. We found that the treatment of Shunt lambs with L-arginine prevented the ADMA-mediated mitochondrial redistribution of eNOS, the nitration-mediated inhibition of CrAT, and maintained carnitine homeostasis. In turn, adenosine-5'-triphosphate levels and eNOS/heat shock protein 90 interactions were preserved, and this decreased NOS uncoupling and enhanced NO generation. INNOVATION Our data link alterations in cellular L-arginine metabolism with the disruption of mitochondrial bioenergetics and implicate altered carnitine homeostasis as a key player in this process. CONCLUSION L-arginine supplementation may be a useful therapy to prevent the mitochondrial dysfunction involved in the pulmonary vascular alterations secondary to increased PBF.
Collapse
Affiliation(s)
- Xutong Sun
- Pulmonary Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dickinson MG, Bartelds B, Borgdorff MAJ, Berger RMF. The role of disturbed blood flow in the development of pulmonary arterial hypertension: lessons from preclinical animal models. Am J Physiol Lung Cell Mol Physiol 2013; 305:L1-14. [PMID: 23624788 DOI: 10.1152/ajplung.00031.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive pulmonary vasoproliferative disorder characterized by the development of unique neointimal lesions, including concentric laminar intima fibrosis and plexiform lesions. Although the histomorphology of neointimal lesions is well described, the pathogenesis of PAH and neointimal development is largely unknown. After three decades of PAH pathobiology research the focus has shifted from vasoconstriction towards a mechanism of cancer-like angioproliferation. In this concept the role of disturbed blood flow is seen as an important trigger in the development of vascular remodeling. For instance, in PAH associated with congenital heart disease, increased pulmonary blood flow (i.e., systemic-to-pulmonary shunt) is an essential trigger for the occurrence of neointimal lesions and PAH development. Still, questions remain about the exact role of these blood flow characteristics in disease progression. PAH animal models are important for obtaining insight in new pathobiological processes and therapeutical targets. However, as for any preclinical model the pathophysiological mechanism and clinical course has to be comparable to the human disease that it mimics. This means that animal models mimicking human PAH ideally are characterized by: a hit recognized in human disease (e.g., altered pulmonary blood flow), specific vascular remodeling resembling human neointimal lesions, and disease progression that leads to right ventriclular dysfunction and death. A review that underlines the current knowledge of PAH due to disturbed flow is still lacking. In this review we will summarize the current knowledge obtained from PAH animal models associated with disturbed pulmonary blood flow and address questions for future treatment strategies for PAH.
Collapse
Affiliation(s)
- Michael G Dickinson
- Center for Congenital Heart Diseases, Division of Pediatric Cardiology Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
12
|
Ishida H, Kogaki S, Ichimori H, Narita J, Nawa N, Ueno T, Takahashi K, Kayatani F, Kishimoto H, Nakayama M, Sawa Y, Beghetti M, Ozono K. Overexpression of endothelin-1 and endothelin receptors in the pulmonary arteries of failed Fontan patients. Int J Cardiol 2012; 159:34-9. [DOI: 10.1016/j.ijcard.2011.02.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/06/2011] [Indexed: 11/30/2022]
|
13
|
Aggarwal S, Gross C, Fineman JR, Black SM. Oxidative stress and the development of endothelial dysfunction in congenital heart disease with increased pulmonary blood flow: lessons from the neonatal lamb. Trends Cardiovasc Med 2012; 20:238-46. [PMID: 22293025 DOI: 10.1016/j.tcm.2011.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital heart diseases associated with increased pulmonary blood flow commonly leads to the development of pulmonary hypertension. However, most patients who undergo histological evaluation have advanced pulmonary hypertension, and therefore it has been difficult to investigate aberrations in signaling cascades that precede the development of overt vascular remodeling. This review discusses the role played by both oxidative and nitrosative stress in the lung and their impact on the signaling pathways that regulate vasodilation, vessel growth, and vascular remodeling in the neonatal lung exposed to increased pulmonary blood flow.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
14
|
Mazzuca MQ, Khalil RA. Vascular endothelin receptor type B: structure, function and dysregulation in vascular disease. Biochem Pharmacol 2012; 84:147-62. [PMID: 22484314 DOI: 10.1016/j.bcp.2012.03.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 12/21/2022]
Abstract
Endothelin-1 (ET-1) is a major regulator of vascular function, acting via both endothelin receptor type A (ET(A)R) and type B (ET(B)R). Although the role of ET(A)R in vascular smooth muscle (VSM) contraction has been studied, little is known about ET(B)R. ET(B)R is a G-protein coupled receptor with a molecular mass of ~50 kDa and 442 amino acids arranged in seven transmembrane domains. Alternative splice variants of ET(B)R and heterodimerization and cross-talk with ET(A)R may affect the receptor function. ET(B)R has been identified in numerous blood vessels with substantial effects in the systemic, renal, pulmonary, coronary and cerebral circulation. ET(B)R in the endothelium mediates the release of relaxing factors such as nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor, and could also play a role in ET-1 clearance. ET(B)R in VSM mediates increases in [Ca(2+)](i), protein kinase C, mitogen-activated protein kinase and other pathways of VSM contraction and cell growth. ET-1/ET(A)R signaling has been associated with salt-sensitive hypertension (HTN) and pulmonary arterial hypertension (PAH), and ET(A)R antagonists have shown some benefits in these conditions. In search for other pathogenetic factors and more effective approaches, the role of alterations in endothelial ET(B)R and VSM ET(B)R in vascular dysfunction, and the potential benefits of modulators of ET(B)R in treatment of HTN and PAH are being examined. Combined ET(A)R/ET(B)R antagonists could be more efficacious in the management of conditions involving upregulation of ET(A)R and ET(B)R in VSM. Combined ET(A)R antagonist with ET(B)R agonist may need to be evaluated in conditions associated with decreased endothelial ET(B)R expression/activity.
Collapse
Affiliation(s)
- Marc Q Mazzuca
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
15
|
Spradley FT, Ho DH, Kang KT, Pollock DM, Pollock JS. Changing standard chow diet promotes vascular NOS dysfunction in Dahl S rats. Am J Physiol Regul Integr Comp Physiol 2011; 302:R150-8. [PMID: 22031779 DOI: 10.1152/ajpregu.00482.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We hypothesized that vascular nitric oxide synthase (NOS) function and expression is differentially regulated in adult Dahl salt-sensitive rats maintained on Teklad or American Institutes of Nutrition (AIN)-76A standard chow diets from 3 to 16 wk old. At 16 wk old, acetylcholine (ACh)-mediated vasorelaxation and phenylephrine (PE)-mediated vasoconstriction in the presence and absence of NOS inhibitor, N(ω)-nitro-L-arginine methyl ester (L-NAME), was assessed in small-resistance mesenteric arteries and aortas. Rats maintained on either diet throughout the study had similar responses to ACh and PE in the presence or absence of L-NAME in both vascular preparations. We reasoned that changing from one diet to another as adults may induce vascular NOS dysfunction. In the absence of L-NAME, small arteries from Teklad-fed rats switched to AIN-76 diet and vice versa had similar responses to ACh and PE. Small-arterial NOS function was maintained in rats switched to AIN-76A from Teklad diet, whereas NOS function in response to ACh and PE was lost in the small arteries from rats changed to Teklad from AIN-76A diet. This loss of NOS function was echoed by reduced expression of NOS3, as well as phosphorylated NOS3. The change in NOS phenotype in the small arteries was observed without changes in blood pressure. Aortic responses to ACh or PE in the presence or absence of L-NAME were similar in all diet groups. These data indicate that changing standard chow diets leads to small arterial NOS dysfunction and reduced NOS signaling, predisposing Dahl salt-sensitive rats to vascular disease.
Collapse
Affiliation(s)
- Frank T Spradley
- Section of Experimental Medicine, Department of Medicine, Medical College of Georgia, Georgia Health Sciences University, Augusta, 30912, USA
| | | | | | | | | |
Collapse
|
16
|
Oishi P, Datar SA, Fineman JR. Pediatric pulmonary arterial hypertension: current and emerging therapeutic options. Expert Opin Pharmacother 2011; 12:1845-64. [PMID: 21609302 DOI: 10.1517/14656566.2011.585636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a rare disease in neonates, infants and children that is associated with significant morbidity and mortality. An adequate understanding of the controlling pathophysiologic mechanisms is lacking and although mortality has decreased as therapeutic options have increased over the past several decades, outcomes remain unacceptable. AREAS COVERED This review summarizes the currently available therapies for neonates, infants and children with PAH and describes emerging therapies in the context of what is known about the underlying pathophysiology of the disease. EXPERT OPINION All of the currently approved PAH therapies impact one of three endothelial-based pathways: nitric oxide-guanosine-3'-5'cyclic monophosphate, prostacyclin or endothelin-1. The beneficial effects of these agents may relate to their impact on pulmonary vascular tone, and/or their antiproliferative and antithrombotic properties. Fundamental advances in PAH therapy are likely to relate to: i) a better understanding of PAH subpopulations, allowing for therapies to be better tailored to individual patients and pathophysiologic processes; and ii) therapies that promote the regression of advanced structural remodeling.
Collapse
Affiliation(s)
- Peter Oishi
- Cardiovascular Research Institute, Division of Critical Care Medicine, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-1346, USA.
| | | | | |
Collapse
|
17
|
O'Callaghan DS, Savale L, Yaïci A, Natali D, Jaïs X, Parent F, Montani D, Humbert M, Simonneau G, Sitbon O. Endothelin receptor antagonists for the treatment of pulmonary arterial hypertension. Expert Opin Pharmacother 2011; 12:1585-96. [PMID: 21504371 DOI: 10.1517/14656566.2011.564159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Endothelin is a key mediator in the pathophysiology of pulmonary arterial hypertension (PAH). Its effects are mediated through the activation of two associated receptor subtypes, termed A and B. Therapeutic strategies that modulate the activity of endothelin are, therefore, of interest to improve the functional status of patients with PAH. AREAS COVERED The rationale for the use of endothelin receptor antagonists as a therapeutic class in PAH and pertinent data from important clinical studies are presented in this review. Areas for future research are also suggested. EXPERT OPINION The availability of the endothelin receptor antagonist class of agents represents a significant addition to the therapeutic armamentarium which is available for the treatment of PAH. Comparative studies are warranted to establish whether selective endothelin-A receptor antagonism is more advantageous than dual receptor antagonism. Future studies of endothelin receptor antagonists will increasingly focus on the potential of a combination of different PAH therapeutic classes and will employ 'harder' clinical end points. This is of crucial importance to ensure that future developments are both worthwhile and acceptable to patients, physicians, health system payers and regulatory authorities.
Collapse
|
18
|
Yagi S, Akaike M, Aihara KI, Iwase T, Sumitomo-Ueda Y, Yoshida S, Matsumoto T, Sata M. Bosentan improves systemic sclerosis-related peripheral circulation insufficiency. Int J Cardiol 2011; 147:472-5. [PMID: 21296436 DOI: 10.1016/j.ijcard.2011.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/08/2011] [Indexed: 01/20/2023]
|
19
|
Boesen EI, Pollock JS, Pollock DM. Contrasting effects of intervention with ETA and ETB receptor antagonists in hypertension induced by angiotensin II and high-salt diet. Can J Physiol Pharmacol 2011; 88:802-7. [PMID: 20725138 DOI: 10.1139/y10-051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin (ET) receptor antagonists are antihypertensive and renoprotective in angiotensin II (AngII)-induced hypertension if administered when AngII infusion commences, but their effects on established hypertension are poorly understood. We therefore tested the effects of intervening with an ETA (ABT-627) or ETB (A-192621) receptor antagonist after establishing hypertension with AngII (65 ng/min s.c.) plus 8% NaCl diet (AngII-HS) in rats. Prior to administration of ABT-627, AngII-HS and AngII-HS plus ABT-627 groups displayed robust hypertension (mean arterial pressure (MAP), 170 +/- 5 and 165 +/- 5 mm Hg versus 110 +/- 3 mm Hg in normal salt control rats at day 7, P < 0.05). Administering ABT-627 from day 8 of AngII-HS treatment prevented further rises in MAP (168 +/- 5 and 191 +/- 3 mm Hg at day 13 in AngII-HS plus ABT-627 and AngII-HS, P < 0.001), without blunting the significant increases in urinary protein (19-fold), albumin (25-fold), or MCP-1 excretion (6- to 8-fold) or the reduction in creatinine clearance. Administering A-192621 from day 8 mildly exacerbated AngII-HS induced hypertension (P < 0.05 for AngII-HS versus AngII-HS plus A-192621 on days 11 and 12 only) and reduced plasma nitrite/nitrate concentration (P < 0.05), without affecting proteinuria, albuminuria, or creatinine clearance. These results confirm the importance of ETA receptor signaling in maintaining AngII-HS hypertension and suggest that including ETB receptor blockade in therapeutic approaches to treating hypertension would be ineffective or even counterproductive.
Collapse
Affiliation(s)
- Erika I Boesen
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Boulevard, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
20
|
Meoli DF, White RJ. Endothelin-1 induces pulmonary but not aortic smooth muscle cell migration by activating ERK1/2 MAP kinase. Can J Physiol Pharmacol 2011; 88:830-9. [PMID: 20725141 DOI: 10.1139/y10-059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin 1 (ET-1) is an endogenous peptide that promotes vasoconstriction, endothelial and smooth muscle cell (SMC) proliferation, and fibrosis. ET-1 receptor antagonists are an important treatment strategy for pulmonary arterial hypertension, but less effective in systemic vascular disease. This observation suggests a special role for ET-1 in the pulmonary circulation. We hypothesized that ET-1 contributes to the pathogenesis of pulmonary arterial hypertension, in part, by promoting pulmonary vascular SMC migration. ET-1 treatment promoted migration in 3 distinct types of cultured pulmonary SMC. Pulmonary SMC migration was blocked by an ETA receptor selective agonist and a combined ETA-ETB antagonist, but not by a selective ETB antagonist. In contrast to the effect on pulmonary SMCs, ET-1 had no effect on migration of aortic SMCs. Flow cytometry showed that the ETA receptor was expressed at comparable levels on pulmonary and aortic SMCs, excluding receptor density as an explanation for the divergent effect. ET-1-induced pulmonary SMC migration was blocked by the structurally distinct MEK inhibitors PD98059 and U0126, consistent with a role for ERK1/2 MAP kinase. By Western blot in cultured cells and immunohistochemistry in ex vivo vessels, ET-1 stimulated phosphorylation of ERK1/2 as efficaciously as platelet-derived growth factor in pulmonary, but not aortic, SMCs. In conclusion, ET-1 induces SMC migration, with the ETA receptor tightly coupled to ERK1/2 phosphorylation only in the pulmonary circulation. This finding may help explain the striking difference in the efficacy of endothelin receptor blockers for pulmonary hypertension as compared to that for systemic cardiovascular disease.
Collapse
Affiliation(s)
- David F Meoli
- Aab Cardiovascular Research Institute and Department of Pulmonary and Critical Care Medicine, University of Rochester, 400 Red Creek Drive, Suite 110, Rochester, NY 14623, USA
| | | |
Collapse
|
21
|
Farrow KN, Steinhorn RH. Phosphodiesterases: emerging therapeutic targets for neonatal pulmonary hypertension. Handb Exp Pharmacol 2011:251-277. [PMID: 21695644 PMCID: PMC3209584 DOI: 10.1007/978-3-642-17969-3_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pulmonary hypertension in the neonate is associated with multiple underlying problems such as respiratory distress syndrome, meconium aspiration syndrome, congenital diaphragmatic hernia, bronchopulmonary dysplasia, sepsis, or congenital heart disease. Because of the heterogeneous group of disorders, the therapeutic approach and response often depends on the underlying disease. In many of these conditions, there is evidence that cyclic nucleotide signaling and specifically phosphodiesterases (PDEs) are disrupted. PDE inhibitors represent an emerging class of pulmonary vasodilators in adults. Studies are now under way to evaluate the utility, efficacy, and safety of such therapies in infants with pulmonary hypertension.
Collapse
Affiliation(s)
- Kathryn N. Farrow
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, 310 E. Superior St., Morton 4-685D, Chicago, IL 60611, USA,
| | - Robin H. Steinhorn
- Division of Neonatology, Children’s Memorial Hospital and Northwestern University, 2300 Children’s Plaza #45, Chicago, IL 60611, USA,
| |
Collapse
|
22
|
Rondelet B, Dewachter L, Kerbaul F, Dewachter C, Hubloue I, Fesler P, Franck S, Remmelink M, Brimioulle S, Naeije R. Sildenafil added to sitaxsentan in overcirculation-induced pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2010; 299:H1118-23. [DOI: 10.1152/ajpheart.00418.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental left-to-right shunt-induced pulmonary arterial hypertension (PAH) can be partially prevented by the endothelin-A receptor blocker sitaxsentan or by the phosphodiesterase-5 inhibitor sildenafil. We hypothesized that the combined administration of these drugs would completely prevent shunt-induced PAH, arguing in favor of a major role of endothelial dysfunction in the initiation of the disease. Twenty-four 3-wk-old piglets were randomized to a sham operation or to placebo, sitaxsentan therapy, or sitaxsentan combined with sildenafil after the anastomosis of the left subclavian artery to the pulmonary arterial trunk. Three months later, the animals underwent a hemodynamic evaluation, followed by pulmonary tissue sampling for morphometry and quantitative real-time PCR for endothelin-1, angiopoietin-1, and bone morphogenetic protein receptor (BMPR) signaling molecules. Three months of left-to-right shunting induced an increase in pulmonary vascular resistance (PVR) and medial thickness, an overexpression of endothelin-1, and angiopoietin-1 and decreased expressions of BMPR-2 and BMPR-1A. Sitaxsentan partially prevented a shunt-induced increase in PVR, medial thickness, and associated biological disturbances. Sildenafil combined with sitaxsentan normalized PVR, medial thickness, and the expression of endothelin-1. However, the expression of angiopoietin-1 remained increased, and the expressions of BMPR-1A and BMPR-2 were incompletely returned to normal. The coupling of right ventricular end-systolic to arterial elastances was maintained in all circumstances. Sitaxsentan combined with sildenafil prevents shunt-induced PAH more effectively than sitaxsentan alone, suggesting a major role for the targeted signaling pathways in the initiation of the disease. Sitaxsentan alone or combined with sildenafil did not affect right ventricular function.
Collapse
Affiliation(s)
- Benoit Rondelet
- Laboratory of Physiology, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
- Heart and Lung Transplantation Unit, Departments of Cardiac and Thoracic Surgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | - François Kerbaul
- Laboratory of Physiology, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
- Department of Anesthesiology and Critical Care, Hôpital La Timone, Marseille, France
| | - Céline Dewachter
- Laboratory of Physiology, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | - Ives Hubloue
- Laboratory of Physiology, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
- Department of Emergency, Academisch Ziekenhuis, Vrije Universiteit Brussels, Brussels, Belgium
| | - Pierre Fesler
- Laboratory of Physiology, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
- Department of Internal Medicine, Hôpital Lapeyronie, Montpellier, France
| | - Stephane Franck
- Department of Critical Care, Hôpital Tivoli, Université Libre de Bruxelles, La Louvière, Belgium
| | - Myriam Remmelink
- Department of Pathology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Serge Brimioulle
- Laboratory of Physiology, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
- Department of Critical Care, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Naeije
- Laboratory of Physiology, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
23
|
Fu LW, Guo ZL, Longhurst JC. Endogenous endothelin stimulates cardiac sympathetic afferents during ischaemia. J Physiol 2010; 588:2473-86. [PMID: 20442267 DOI: 10.1113/jphysiol.2010.188730] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Myocardial ischaemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Previous studies have shown that a brief period of myocardial ischaemia increases endothelin in cardiac venous plasma draining ischaemic myocardium and that exogenous endothelin excites cutaneous group III and IV sensory nerve fibres. The present study tested the hypothesis that endogenous endothelin stimulates cardiac afferents during ischaemia through direct activation of endothelin A receptors (ET(A)Rs). Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anaesthetized cats. Single fields of 38 afferents (CV = 0.25-3.86 m s(-1)) were identified in the left or right ventricle with a stimulating electrode. Five minutes of myocardial ischaemia stimulated all 38 cardiac afferents (8 Adelta, 30 C-fibres) and the responses of these 38 afferents to chemical stimuli were further studied in the following protocols. In the first protocol, injection of endothelin 1 (ET-1, 1, 2 and 4 microg) into the left atrium (LA) stimulated seven ischaemically sensitive cardiac afferents in a dose-dependent manner. Second, BQ-123, a selective ET(A)R antagonist, abolished the responses of nine afferents to 2 microg of ET-1 injected into the left atrium and attenuated the ischaemia-related increase in activity of eight other afferents by 51%. In contrast, blockade of ET(B) receptors caused inconsistent responses to exogenous ET-1 as well as to ischaemia. Furthermore, in the absence of ET(A)R blockade, cardiac afferents responded consistently to repeated administration of ET-1 (n = 7) and to recurrent myocardial ischaemia (n = 7). Finally, using an immunocytochemical staining approach, we observed that ET(A) receptors were expressed in cardiac sensory neurons in thoracic dorsal root ganglia. Taken together, these data indicate that endogenous endothelin contributes to activation of cardiac afferents during myocardial ischaemia through direct stimulation of ET(A) receptors likely to be located in the cardiac sensory nervous system.
Collapse
Affiliation(s)
- Liang-Wu Fu
- Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
24
|
Keller RL, Tacy TA, Hendricks-Munoz K, Xu J, Moon-Grady AJ, Neuhaus J, Moore P, Nobuhara KK, Hawgood S, Fineman JR. Congenital diaphragmatic hernia: endothelin-1, pulmonary hypertension, and disease severity. Am J Respir Crit Care Med 2010; 182:555-61. [PMID: 20413632 DOI: 10.1164/rccm.200907-1126oc] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Endothelin-1 (ET1) is dysregulated in pulmonary hypertension (PH). It may be important in the pathobiology of congenital diaphragmatic hernia (CDH). OBJECTIVES We hypothesized that ET1 levels in the first month would be higher in infants with CDH who subsequently expired or were discharged on oxygen (poor outcome). We further hypothesized that ET1 levels would be associated with concurrent severity of PH. METHODS We sampled plasma at 24 to 48 hours, and 1, 2, and 4 weeks of age in 40 prospectively enrolled newborns with CDH. We performed echocardiograms to estimate pulmonary artery pressure at less than 48 hours of age and weekly to 4 weeks. PH was classified in relationship to systemic blood pressure (SBP): less than 2/3 SBP, 2/3 SBP-systemic is related to pressure, or systemic-to-suprasystemic pressure. MEASUREMENTS AND MAIN RESULTS ET1 levels at 1 and 2 weeks were higher in infants with poor outcome compared with infants discharged on room air (median and interquartile range: 27.2 [22.6, 33.7] vs. 19.1 [16.1, 29.5] pg/ml, P = 0.03; and 24.9 [17.6, 39.5] vs. 17.4 [13.7, 21.8] pg/ml, P = 0.01 at 1 and 2 weeks, respectively). Severity of PH was significantly associated with increasing ET1 levels at 2 weeks (16.1 [13.7, 21.8], 21.0 [17.4, 31.1], and 23.6 [21.9, 39.5] pg/ml for increasing PH class, P = 0.03). Increasing severity of PH was also associated with poor outcome at that time (P = 0.001). CONCLUSIONS Infants with CDH and poor outcome have higher plasma ET1 levels and severity of PH than infants discharged on room air. Severity of PH is associated with ET1 levels.
Collapse
Affiliation(s)
- Roberta L Keller
- Department of Pediatrics, University of California San Francisco, 94143, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Increased tissue endothelin-1 and endothelin-B receptor expression in temporal arteries from patients with giant cell arteritis. Ophthalmology 2009; 117:628-36. [PMID: 20036012 DOI: 10.1016/j.ophtha.2009.07.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/01/2009] [Accepted: 07/30/2009] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Endothelin (ET)-1 has been implicated in the atherosclerotic process and during inflammation. Similarity in the development process of giant cell arteritis (GCA) and atherosclerosis exists. Several ET receptor antagonists have been developed, principally to target cardiovascular disease states. High doses of corticosteroids currently are used in the treatment of GCA, whereas other treatments are not as reliably effective. The present study was performed to elucidate the role for ET-1, ET(A), and ET(B) receptors in GCA. DESIGN Experimental, retrospective immunohistochemical study of temporal arteries using archival formalin-fixed, paraffin-embedded tissue. PARTICIPANTS The study included 10 patients with GCA and 10 control patients with clinically suspected GCA but diagnosed not to have GCA. METHODS Immunohistochemistry, with anti ET-1, anti-ET(A), and anti-ET(B) antibodies, was performed on formalin-fixed and paraffin-embedded temporal arteries. MAIN OUTCOME MEASURES Endothelin-1, ET(A), and ET(B) receptor immunostaining intensities were quantified. RESULTS Temporal arteries from the patients with GCA showed the typical histologic features, including intimal thickening, disruption or loss of the elastic lamina, and inflammatory infiltrates of lymphocytes, macrophages, and multinucleated giant cells. These features were associated with increased ET-1 and ET(B) receptor immunoreactivity in the medial layer of the temporal arteries and endothelial cells in patients with GCA compared with the controls. The increased ET-1 and ET(B) receptor immunoreactivity occurred in vascular smooth muscle cells (SMCs) and multinucleated giant cells. The ET-1 and ET(B) receptor immunoreactivity correlated with the degree of systemic inflammation. No changes were observed in ET(A) receptor expression in SMCs or endothelial cells compared with controls. CONCLUSIONS The results suggest a role for ET-1 and ET(B) receptors in GCA. Inhibiting the ET system may provide a corticosteroid-sparing alternative in the treatment of GCA.
Collapse
|
26
|
Liu Y, Yang J, Ren H, He D, Pascua A, Armando MI, Yang C, Zhou L, Felder RA, Jose PA, Zeng C. Inhibitory effect of ETB receptor on Na(+)-K(+) ATPase activity by extracellular Ca(2+) entry and Ca(2+) release from the endoplasmic reticulum in renal proximal tubule cells. Hypertens Res 2009; 32:846-52. [PMID: 19662022 DOI: 10.1038/hr.2009.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The kidney is important in the long-term regulation of blood pressure and sodium homeostasis. Stimulation of ETB receptors in the kidney increases sodium excretion, in part, by decreasing sodium transport in the medullary thick ascending limb of Henle and in collecting duct. However, the role of ETB receptor on Na(+)-K(+) ATPase activity in renal proximal tubule (RPT) cells is not well defined. The purpose of this study is to test the hypothesis that ETB receptor inhibits Na(+)-K(+) ATPase activity in rat RPT cells, and investigate the mechanism(s) by which such an action is produced. In RPT cells from Wistar-Kyoto rats, stimulation of ETB receptors by the ETB receptor agonist, BQ3020, decreased Na(+)-K(+) ATPase activity, determined by ATP hydrolysis (control=0.38+/-0.02, BQ3020=0.26+/-0.03, BQ788=0.40+/-0.06, BQ3020+BQ788=0.37+/-0.04, n=5, P<0.01). The ETB receptor-mediated inhibition of Na(+)-K(+) ATPase activity was dependent on an increase in intracellular calcium, because this effect was abrogated by a chelator of intracellular-free calcium (BAPTA-AM; 5 x 10(-3) M 15 min(-1)), Ca(2+) channel blocker (10(-6) M 15 min(-1) nicardipine) and PI3 kinase inhibitor (10(-7) M per wortmannin). An inositol 1,4,5-trisphosphate (IP3) receptor blocker (2-aminoethyl diphenyl borate; 10(-4) M 15 min(-1)) also blocked the inhibitory effect of the ETB receptor on Na(+)-K(+)ATPase activity (control=0.39+/-0.06, BQ3020=0.25+/-0.01, 2-APB=0.35+/-0.05, BQ3020+ 2-APB=0.35+/-0.06, n=4, P<0.01). The calcium channel agonist (BAY-K8644; 10(-6) M 15 min(-1)) inhibited Na(+)-K(+) ATPase activity, an effect that was blocked by a phosphatidylinositol-3 kinase inhibitor (10(-7) M 15 min(-1) wortmannin). In rat RPT cells, activation of the ETB receptor inhibits Na(+)-K(+) ATPase activity by facilitating extracellular Ca(2+) entry and Ca(2+) release from endoplasmic reticulum.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Pollock DM, Boesen EI, Black SM. Does targeting the lipophilic milieu provide advantages for an endothelin antagonist? Mol Interv 2009; 9:75-8. [PMID: 19401539 DOI: 10.1124/mi.9.2.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- David M Pollock
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912-2500, USA.
| | | | | |
Collapse
|
29
|
Affiliation(s)
- Stuart Rich
- From the Section of Cardiology, University of Chicago, Chicago, Ill
| |
Collapse
|
30
|
Clinical significance of plasma endothelin-1 level after bosentan administration in pulmonary arterial hypertension. J Cardiol 2009; 53:374-80. [PMID: 19477379 DOI: 10.1016/j.jjcc.2009.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND Endothelin (ET)-1 has been shown to play a significant pathogenic role in pulmonary arterial hypertension (PAH). However, the pathobiological significance of increased ET-1 concentration after administration of ET receptor antagonist in patients with PAH has not yet been fully examined. METHODS In 16 PAH patients, plasma ET-1 concentration was measured at 0, 1, 3, 6, and 24h after a single 62.5mg dose of bosentan, a dual ET receptor antagonist, and the peak and 24-h change in ET-1 concentration from baseline were examined. The severity of PAH was evaluated by hemodynamic parameters, 6-min walk distance, New York Heart Association (NYHA) functional class, and brain natriuretic peptide (BNP). RESULTS Plasma ET-1 concentration significantly increased from 1.93+/-0.12 to 3.36+/-0.18 pg/ml after bosentan administration in PAH patients (p<0.01). The peak-to-baseline ratio of ET-1 concentration after bosentan administration showed a significant positive correlation with baseline ET-1 concentration (p<0.05). After 4-week bosentan administration, NYHA functional class improved in 7 patients but was not changed in 9 patients. The optimal cut-off point of % change of ET-1 concentration at 24h for discriminating the two groups was 30%. According to this cut-off point, patients were divided into the higher (n=7) and the lower (n=9) groups. NYHA functional class did not change in the lower group, but significantly improved (p<0.01) in the higher group after 4-week bosentan administration. In addition, plasma BNP levels significantly decreased from baseline in the higher group compared with those in the lower group after 12-week bosentan administration (-44+/-11% vs. 7+/-20%, p<0.05). CONCLUSIONS Although the population in this study is small and heterogeneous, measurement of plasma ET-1 concentration after bosentan administration might predict the responsiveness to bosentan treatment, and be useful in the determination of effective therapy in treatment of PAH patients.
Collapse
|
31
|
Steiner MK, Preston IR. Optimizing endothelin receptor antagonist use in the management of pulmonary arterial hypertension. Vasc Health Risk Manag 2009; 4:943-52. [PMID: 19183742 PMCID: PMC2605321 DOI: 10.2147/vhrm.s2270] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endothelin receptor antagonism has emerged as an important therapeutic approach in pulmonary arterial hypertension (PAH). Bench to bedside scientific research has shown that endothelin-1 (ET-1) is overexpressed in several forms of pulmonary vascular disease and may play an important pathogenetic role in the development and progression of PAH. Oral endothelin receptor antagonists (ERAs) improved exercise capacity, functional status, pulmonary hemodymanics, and delayed the time to clinical worsening in several randomized placebo-controlled trials. Two ERAs are currently approved by the US Food and Drug Administration: bosentan, a dual ERA for patients with class III and IV PAH, and ambrisentan, a selective ERA for patients with class II and III PAH. Sitaxsentan, another selective ERA, has been approved in Europe, Canada, and Australia. The objective of this review is to evaluate the available evidence describing the pharmacology, efficacy, safety, and tolerability, and patient-focused perspectives regarding the different types of endothelin receptor antagonists. Ongoing and forthcoming randomized trials are also highlighted including the approach of combining this class of drugs with other drugs that target different cellular pathways believed to be etiologically important in PAH.
Collapse
Affiliation(s)
- M Kathryn Steiner
- Pulmonary Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
32
|
Richard V, Solans V, Favre J, Henry JP, Lallemand F, Thuillez C, Marie I. Role of endogenous endothelin in endothelial dysfunction in murine model of systemic sclerosis: tight skin mice 1. Fundam Clin Pharmacol 2009; 22:649-55. [PMID: 19049669 DOI: 10.1111/j.1472-8206.2008.00634.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Systemic sclerosis (SSc) is a systemic inflammatory disorder, resulting in severe vascular dysfunction. The endothelin (ET) system has vasoconstrictor and profibrotic properties and has been shown to be activated in SSc. ET antagonists are currently used in SSc-related pulmonary arterial hypertension, but the endothelial impact of ET antagonists remains less known in SSc. We thus assessed the effects of the dual ET(A)-ET(B) antagonist, bosentan, on endothelial dysfunction in a murine model of SSc, the heterozygous tight-skin mice 1 (TSK1(+)). Six-week-old TSK1(+) were either untreated or treated for 6 weeks with bosentan (100 mg/kg/day), and compared with controls. Endothelial function was evaluated in isolated mesenteric resistance arteries, using a small vessel myograph. TSK1(+) displayed endothelial dysfunction, as shown by a decreased response of mesenteric arteries to acetylcholine, especially in the presence of L-nitro-arginine methyl ester (L-NAME), corresponding to NO-independent, prostaglandin-mediated relaxation. The NO-independent relaxation was partially restored in bosentan-treated TSK1(+), and this was abolished by a cyclo-oxygenase inhibitor. Therefore, the murine model of SSc, TSK1(+) exhibits severe endothelial dysfunction of peripheral resistance arteries. The ET antagonist bosentan prevents endothelial alterations, suggesting a major role of ET in the adverse vascular effects of SSc.
Collapse
Affiliation(s)
- Vincent Richard
- Inserm U644 & Rouen University Hospital, Institute for Biomedical Research and IFRMP 23, University of Rouen, Rouen, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Mercier O, Sage E, de Perrot M, Tu L, Marcos E, Decante B, Baudet B, Hervé P, Dartevelle P, Eddahibi S, Fadel E. Regression of flow-induced pulmonary arterial vasculopathy after flow correction in piglets. J Thorac Cardiovasc Surg 2009; 137:1538-46. [PMID: 19464477 DOI: 10.1016/j.jtcvs.2008.07.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 06/23/2008] [Accepted: 07/26/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Chronic thromboembolic pulmonary hypertension is due to partial obstruction of the pulmonary arterial bed and may resolve after pulmonary thromboendarterectomy. Persistent pulmonary hypertension, the main complication after pulmonary thromboendarterectomy, may reflect vessel alterations induced by high flow in unobstructed lung territories. The aim of this study was to determine whether correcting high flow led to reversal of the vasculopathy in piglets. METHODS The effects of high pulmonary blood flow were investigated 5 weeks after creation of an aortopulmonary shunt (n = 10), and reversibility of vessel disease was evaluated at 1 week (n = 10) and 5 weeks after shunt closure (n = 10), compared to sham-operated animals (n = 10). Hemodynamic variables, pulmonary artery reactivity, and morphometry were recorded. We also investigated the endothelin, angiopoietin, and nitric oxide synthase pathways. RESULTS High flow increased medial thickness in distal pulmonary arteries (55.6% +/- 1.2% vs 35.9% +/- 0.8%; P < .0001) owing to an increase of smooth muscle cell proliferation (proliferating cell nuclear antigen labeling). The endothelium-dependent relaxation was altered (P < .05). This phenomenon was associated to an overexpression of endothelin-1, endothelin-A, angiopoietin 1, angiopoietin 2, and Tie-2 (P < .05). After 1 week of shunt closure, all overexpressed genes returned to control values, the proliferation of smooth muscle cells stopped, and smooth muscle cell apoptosis increased (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling), preceding the normalization of the wall thickness hypertrophy and the pulmonary artery vasoreactivity observed at 5 weeks after shunt closure. CONCLUSION These results demonstrate that endothelin-1 and angiopoietin pathways are involved in vasculopathy development and may be important therapeutic targets for preventing persistent pulmonary hypertension after pulmonary thromboendarterectomy.
Collapse
Affiliation(s)
- Olaf Mercier
- Laboratoire de Chirurgie Expérimentale UPRES-EA 2705, Uninersité Paris XI Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Casserly B, Klinger JR. Ambrisentan for the treatment of pulmonary arterial hypertension. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 2:265-80. [PMID: 19920913 PMCID: PMC2761178 DOI: 10.2147/dddt.s3057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ambrisentan is an endothelin receptor antagonist (ERA) that was recently approved for treatment of pulmonary arterial hypertension (PAH). Endothelin (ET) is a potent vasoconstrictor with mitogenic, hypertrophic and pro-inflammatory properties that is upregulated in pulmonary hypertensive diseases. The biologic effects of ET are mediated by 2 cell surface receptors termed ETA and ETB. ETA mediates the vasoconstrictor effect of ET on vascular smooth muscle, whereas ETB is expressed primarily on vascular endothelial cells where it induces nitric oxide synthesis and acts to clear ET from the circulation. Ambrisentan is the first ETA selective ERA approved for use in the US. Recently published clinical trials in patients with PAH demonstrate improvement in functional capacity and pulmonary hemodynamics similar to other ETA selective and non-selective ERAs. Its once daily dosing and lower incidence of serum aminotransferase elevation offer potential advantages over other ERAs, but further experience with this agent is needed to fully understand its long-term efficacy and safety. This review discusses the endothelin family of proteins and receptors and their role in the pathophysiology of pulmonary hypertensive diseases. It also examines the development process, safety profile and clinical trials that have resulted in ambrisentan being approved for treatment of PAH.
Collapse
Affiliation(s)
- Brian Casserly
- Division of Pulmonary Medicine, The Memorial Hospital of Rhode Island, 593 Eddy Street, Pawtucket, RI 02903, USA
| | | |
Collapse
|
35
|
Abman SH. Role of Endothelin Receptor Antagonists in the Treatment of Pulmonary Arterial Hypertension. Annu Rev Med 2009; 60:13-23. [DOI: 10.1146/annurev.med.59.110106.212434] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Steven H. Abman
- Pediatric Heart Lung Center, University of Colorado School of Medicine and The Children's Hospital, Aurora, Colorado 80045;
| |
Collapse
|
36
|
Diseases of the Pulmonary Vascular System. THE RESPIRATORY TRACT IN PEDIATRIC CRITICAL ILLNESS AND INJURY 2009. [PMCID: PMC7124039 DOI: 10.1007/978-1-84800-925-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Stolz D, Christ-Crain M, Morgenthaler NG, Miedinger D, Leuppi J, Müller C, Bingisser R, Struck J, Müller B, Tamm M. Plasma Pro-Adrenomedullin But Not Plasma Pro-Endothelin Predicts Survival in Exacerbations of COPD. Chest 2008; 134:263-272. [DOI: 10.1378/chest.08-0047] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
38
|
Cacoub P, Amoura Z, Langleben D. La prise en charge thérapeutique de l’hypertension artérielle pulmonaire par les antagonistes des récepteurs de l’endothéline en 2008. Rev Med Interne 2008; 29:283-9. [DOI: 10.1016/j.revmed.2007.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
|
39
|
Ray L, Mathieu M, Jespers P, Hadad I, Mahmoudabady M, Pensis A, Motte S, Peters IR, Naeije R, McEntee K. Early increase in pulmonary vascular reactivity with overexpression of endothelin-1 and vascular endothelial growth factor in canine experimental heart failure. Exp Physiol 2008; 93:434-42. [DOI: 10.1113/expphysiol.2007.040469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Naeije R, Huez S. Expert opinion on available options treating pulmonary arterial hypertension. Expert Opin Pharmacother 2007; 8:2247-65. [DOI: 10.1517/14656566.8.14.2247] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Langleben D. Endothelin receptor antagonists in the treatment of pulmonary arterial hypertension. Clin Chest Med 2007; 28:117-25, viii. [PMID: 17338931 DOI: 10.1016/j.ccm.2006.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The recognition that endothelin-1 contributes to the pathogenesis of pulmonary arterial hypertension has led to the development of clinically useful endothelin receptor antagonists that improve symptoms and functional capacity and alter the natural history of the disease in a beneficial way. The antagonists have varying degrees of selectivity for the two classes of endothelin receptor, termed ETA and ETB, and the varying degrees may translate into clinical differences. Endothelin receptor antagonists have become an integral part of therapy for pulmonary arterial hypertension, and the indications for their use are expanding.
Collapse
|
42
|
Schneider MP, Boesen EI, Pollock DM. Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol 2007. [PMID: 17002597 DOI: 10.1146/annurev.pharmtox.47.120505.105134.contrasting] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
First identified as a powerful vasoconstrictor, endothelin has an extremely diverse set of actions that influence homeostatic mechanisms throughout the body. Two receptor subtypes, ET(A) and ET(B), which usually have opposing actions, mediate the actions of endothelin. ET(A) receptors function to promote vasoconstriction, growth, and inflammation, whereas ET(B) receptors produce vasodilation, increases in sodium excretion, and inhibit growth and inflammation. Potent and selective receptor antagonists have been developed and have shown promising results in the treatment of cardiovascular diseases such as pulmonary arterial hypertension, acute and chronic heart failure, hypertension, renal failure, and atherosclerosis. However, results are often contradictory and complicated because of the tissue-specific vasoconstrictor actions of ET(B) receptors and the fact that endothelin is an autocrine and paracrine factor whose activity is difficult to measure in vivo. Considerable questions remain regarding whether ET(A)-selective or nonselective ET(A)/ET(B) receptor antagonists would be useful in a range of clinical settings.
Collapse
Affiliation(s)
- Markus P Schneider
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
43
|
Schneider MP, Boesen EI, Pollock DM. Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol 2007; 47:731-59. [PMID: 17002597 PMCID: PMC2825895 DOI: 10.1146/annurev.pharmtox.47.120505.105134] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
First identified as a powerful vasoconstrictor, endothelin has an extremely diverse set of actions that influence homeostatic mechanisms throughout the body. Two receptor subtypes, ET(A) and ET(B), which usually have opposing actions, mediate the actions of endothelin. ET(A) receptors function to promote vasoconstriction, growth, and inflammation, whereas ET(B) receptors produce vasodilation, increases in sodium excretion, and inhibit growth and inflammation. Potent and selective receptor antagonists have been developed and have shown promising results in the treatment of cardiovascular diseases such as pulmonary arterial hypertension, acute and chronic heart failure, hypertension, renal failure, and atherosclerosis. However, results are often contradictory and complicated because of the tissue-specific vasoconstrictor actions of ET(B) receptors and the fact that endothelin is an autocrine and paracrine factor whose activity is difficult to measure in vivo. Considerable questions remain regarding whether ET(A)-selective or nonselective ET(A)/ET(B) receptor antagonists would be useful in a range of clinical settings.
Collapse
Affiliation(s)
- Markus P Schneider
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
44
|
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a rare syndrome of fatigue and dyspnoea, caused by increased pulmonary vascular resistance and right heart failure without an identifiable pulmonary or cardiac cause. Despite important recent advances in treatment the condition remains incurable. BACKGROUND Experimental animal models of PAH rely on hypoxic or monocrotaline injected rodents, the creation of left to right shunts in lambs or piglets, ligation of the ductus arteriosus in newborn lambs, genetically manipulated rodents and tissue culture. Hypoxic pulmonary hypertension is usually only moderate and limited to medial hypertrophy with varying degrees of adventitial change, but may progress to extensive remodelling in some species. Monocrotaline induced pulmonary hypertension is severe with prominent medial hypertrophy, inflammatory adventitial remodelling and, initially, pulmonary oedema and endothelial apoptosis. Pulmonary hypertension induced by shunting remains the most realistic model of PAH but causes only moderate increase in vascular resistance due to medial hypertrophy. Pulmonary hypertension of the newborn is severe but largely vasospastic, with predominant medial hypertrophy. An increasing number of genetically manipulated rodents are becoming available for the investigation of specific signalling pathways. VIEWPOINT While none of the models has yet reproduced PAH each allows investigation of a specific hypothesis. Recent progress has resulted from genetic manipulation and molecular and cellular approaches. CONCLUSIONS Animal models of PAH share basic biological abnormalities which, together with the study of lung tissue from patients with severe disease should lead to better understanding of the pathology and therapeutic innovation.
Collapse
Affiliation(s)
- R Naeije
- Laboratoire de Physiologie, Faculté de Médecine de l'Université Libre de Bruxelles, Belgique.
| | | |
Collapse
|
45
|
Rondelet B, Kerbaul F, Vivian GF, Hubloue I, Huez S, Fesler P, Remmelink M, Brimiouille S, Salmon I, Naeije R. Sitaxsentan for the prevention of experimental shunt-induced pulmonary hypertension. Pediatr Res 2007; 61:284-8. [PMID: 17314684 DOI: 10.1203/pdr.0b013e318030d169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We previously reported on the partial prevention of experimental shunt-induced pulmonary arterial hypertension (PAH) by the nonselective endothelin (ET) ET-A/ET-B receptor antagonist bosentan. As the respective roles of the ET-A and ET-B receptor signaling in the pathobiology of the disease remain undefined, we investigated the effects of selective ET-A receptor blockade by sitaxsentan in the same early stage PAH model. Twenty-one 3-wk-old piglets were randomized to placebo or sitaxsentan therapy (1.5 mg/kg/d), after anastomosis of the left subclavian artery to the pulmonary arterial trunk or after a sham operation. Three months later, the animals underwent a hemodynamic evaluation, followed by pulmonary tissue sampling for morphometry and real-time-quantitative-PCR for ET-1, angiopoietin-1, and bone morphogenetic receptor (BMPR) signaling molecules. Three months of left to right shunting induced an increase in pulmonary vascular resistance (PVR) and medial thickness, an overexpression of ET-1, ET-B receptor, and angiopoietin-1, and a decreased expression of BMPR-2 and BMPR-1A. Pretreatment with sitaxsentan prevented shunt-induced increase in PVR and decreased medial thickness by 64%. Sitaxsentan therapy completely prevented the decreased expression of BMPR-2 and limited the overexpression of ET-1, ET-B and angiopoietin-1, and the decreased expression of BMPR-1A. In conclusion, selective ET-A receptor blockade partially prevents shunt-induced PAH.
Collapse
Affiliation(s)
- Benoit Rondelet
- Laboratory of Physiology, Department of Cardiac Surgery, Hôpital Erasme, Université Libre de B-1070 Bruxelles, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gladwin MT, Kato G. Hemolysis-Associated Endothelial Dysfunction and Pulmonary Hypertension, an Emerging Cause of Death in the Hemoglobinopathies. ACTA ACUST UNITED AC 2007. [DOI: 10.21693/1933-088x-6.1.23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mark T. Gladwin
- Chief, Vascular Medicine Branch, National Heart, Lung, and Blood Institute, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Gregory Kato
- Vascular Medicine Branch, National Heart, Lung, and Blood Institute, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
47
|
Clozel M, Flores S. Endothelin receptors as drug targets in chronic cardiovascular diseases: the rationale for dual antagonism. Drug Dev Res 2007. [DOI: 10.1002/ddr.20156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
|
49
|
Sitbon O, Beghetti M, Petit J, Iserin L, Humbert M, Gressin V, Simonneau G. Bosentan for the treatment of pulmonary arterial hypertension associated with congenital heart defects. Eur J Clin Invest 2006; 36 Suppl 3:25-31. [PMID: 16919007 DOI: 10.1111/j.1365-2362.2006.01685.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bosentan is an effective first-line therapy in New York Heart Association (NYHA) III patients with idiopathic pulmonary arterial hypertension (PAH). Pre-clinical data support the rationale for the potential benefit of bosentan in PAH associated with congenital heart disease (CHD). MATERIALS AND METHODS We performed a retrospective analysis of patients with PAH-associated CHD who were treated with bosentan on top of conventional therapy. Bosentan was started at 62.5 mg bid for 4 weeks, then titrated to 125 mg bid. New York Heart Association (NYHA) functional class, 6-min walking distance (6MWD), Borg dyspnoea index, arterial oxygen saturation and cardiopulmonary haemodynamic data (cardiac output, pulmonary blood flow and systemic and pulmonary vascular resistances) were collected at baseline and at follow up. RESULTS Twenty-seven patients (23 females, mean 35 +/- 15 years) with NYHA class III-IV PAH-associated CHD (not repaired in 23 cases) were treated with bosentan for a mean 18.3 +/- 9.9 months. Bosentan improved 6MWD from 298 +/- 92 m at baseline to 355 +/- 82 m at 3 months (P = 0.0002) and to 364 +/- 92 m (P = 0.0001) at the last follow up (mean 15.2 +/- 9.7 months). At the last follow up, 13 patients had improved (= 1 NYHA class) and 14 remained stable. A favourable effect was observed in pulmonary blood flow and pulmonary vascular resistance for the 11 available patients. No change in pulse oximetry or liver enzyme elevation was reported. CONCLUSIONS Bosentan improves exercise capacity, functional class and haemodynamics in most patients with PAH-associated CHD, without serious side-effects, suggesting bosentan may be an important treatment option for these patients.
Collapse
Affiliation(s)
- O Sitbon
- Hôpital Antoine Béclère, Service de Pneumologie, Clamart, France.
| | | | | | | | | | | | | |
Collapse
|
50
|
Vizza CD, Letizia C, Badagliacca R, Sciomer S, Poscia R, Della Rocca G, Iacoboni C, Leonardo DL, Quattrucci S, Dario C, Luigi P, Fedele F. Plasma adrenomedullin and endothelin-1 concentration during low-dose dobutamine infusion: Relationship between pulmonary uptake and pulmonary vascular pressure/flow characteristics. ACTA ACUST UNITED AC 2006; 136:85-91. [PMID: 16815566 DOI: 10.1016/j.regpep.2006.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 04/28/2006] [Indexed: 02/02/2023]
Abstract
AIM To study the role of endothelin (ET-1) and adrenomedullin (AM) on pulmonary vascular pressure/flow characteristic (pulmonary arterial pressure/cardiac output (Pap/CO)) during low-dose dobutamine infusion. METHODS Case control study of 14 patients (12 men, 2 women) with severe lung disease (chronic obstructive pulmonary disease, COPD n=5; cystic fibrosis, CF n=9) and 5 control subjects (CTRL, 4 men, 1 woman). ET-1 and AM plasma levels in pulmonary artery (mixed venous blood, ven) and aorta or femoral artery (arterial, art), were measured at baseline and during dobutamine infusion (5-10-15 mcg kg(-1) min(-1)). The Ppa/CO coordinates obtained at baseline and during dobutamina infusion for each patients were used to calculate the Slope and Intercept by linear regression analysis. RESULTS Baseline hemodynamics measurements were similar in the three groups with a trend towards a mild elevation in Ppa in CF group (Ppa mm Hg: CTRL 19+/-3.5, COPD 19.4+/-5.5, CF 22.7+/-7.5). Baseline plasma ET-1(ET-1ven pg ml(-1): CTRL 13.9+/-6.7, COPD 20.1+/-14, CF 20.4+/-7.1; ET-1art pg ml(-1): CTRL 16.7+/-6.4, COPD 20.1+/-11.7, CF 18.1+/-3.9) and AM (AMven pg ml(-1): CTRL 15.8+/-5, COPD 31.8+/-17.6, CF 27.7+/-7.6; AMart pg ml(-1): CTRL 15.9+/-1.4, COPD 21.4+/-3.8, CF 27+/-7.6) showed a trend towards higher value among patients' groups compared to the controls. Baseline ET-1 pulmonary gradient did not show significant difference among the three groups as well AM pulmonary gradient. Dobutamine infusion caused a comparable increase of heart rate and CO in the three groups. Mean pulmonary pressure had a trend towards a greater increase in COPD and CF than in controls, consequently, pulmonary Pap/CO relationship showed a steeper slope in patients' groups (Slope mm Hg L(-1) min(-1): CTRL 0.9+/-0.3, COPD 2.1+/-0.8 p<0.02 vs. CTRL, CF 1.9+/-0.9 p<0.03 vs CTRL). During dobutamine plasma ET-1 and AM showed a great individual variability resulting in no significant difference among groups. ET-1 pulmonary gradient showed a trend towards pulmonary uptake in patients' groups (ET-1art-ven pg min(-1): CTRL 2.7+/-2.9, COPD-6.1+/-7.8, CF -4+/-4.8) while AM pulmonary gradient did not show any particular pattern. During dobutamine ET-1 was significantly correlated to Pap/CO characteristics (Slope and ET-1ven, r=-0.59, p<0.05; Slope and ET-1art-ven, r=-0.60, p<0.05; Intercept and ET-1art-ven, r=0.63, p<0.004), and ET-1art-ven was the only independent variable related to Slope and Intercept. CONCLUSIONS In patients with moderate pulmonary vascular impairment, ET-1 pulmonary gradient, but not AM pulmonary gradient, is inversely correlated with pulmonary incremental resistance, suggesting a role of ET-1 in the regulation of pulmonary vascular resistance.
Collapse
Affiliation(s)
- Carmine Dario Vizza
- Department of Cardiovascular and Respiratory Sciences, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|