1
|
Ibrahim DM, Fomina A, Bouten CVC, Smits AIPM. Functional regeneration at the blood-biomaterial interface. Adv Drug Deliv Rev 2023; 201:115085. [PMID: 37690484 DOI: 10.1016/j.addr.2023.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/01/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The use of cardiovascular implants is commonplace in clinical practice. However, reproducing the key bioactive and adaptive properties of native cardiovascular tissues with an artificial replacement is highly challenging. Exciting new treatment strategies are under development to regenerate (parts of) cardiovascular tissues directly in situ using immunomodulatory biomaterials. Direct exposure to the bloodstream and hemodynamic loads is a particular challenge, given the risk of thrombosis and adverse remodeling that it brings. However, the blood is also a source of (immune) cells and proteins that dominantly contribute to functional tissue regeneration. This review explores the potential of the blood as a source for the complete or partial in situ regeneration of cardiovascular tissues, with a particular focus on the endothelium, being the natural blood-tissue barrier. We pinpoint the current scientific challenges to enable rational engineering and testing of blood-contacting implants to leverage the regenerative potential of the blood.
Collapse
Affiliation(s)
- Dina M Ibrahim
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Aleksandra Fomina
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Graduate School of Life Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
2
|
Rasheed A, Tsai R, Cummins CL. Loss of the Liver X Receptors Disrupts the Balance of Hematopoietic Populations, With Detrimental Effects on Endothelial Progenitor Cells. J Am Heart Assoc 2018; 7:JAHA.117.007787. [PMID: 29739800 PMCID: PMC6015321 DOI: 10.1161/jaha.117.007787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The liver X receptors (LXRs; α/β) are nuclear receptors known to regulate cholesterol homeostasis and the production of select hematopoietic populations. The objective of this study was to determine the importance of LXRs and a high‐fat high‐cholesterol diet on global hematopoiesis, with special emphasis on endothelial progenitor cells (EPCs), a vasoreparative cell type that is derived from bone marrow hematopoietic stem cells. Methods and Results Wild‐type and LXR double‐knockout (Lxrαβ−/−) mice were fed a Western diet (WD) to increase plasma cholesterol levels. In WD‐fed Lxrαβ−/− mice, flow cytometry and complete blood cell counts revealed that hematopoietic stem cells, a myeloid progenitor, and mature circulating myeloid cells were increased; EPC numbers were significantly decreased. Hematopoietic stem cells from WD‐fed Lxrαβ−/− mice showed increased cholesterol content, along with increased myeloid colony formation compared with chow‐fed mice. In contrast, EPCs from WD‐fed Lxrαβ−/− mice also demonstrated increased cellular cholesterol content that was associated with greater expression of the endothelial lineage markers Cd144 and Vegfr2, suggesting accelerated differentiation of the EPCs. Treatment of human umbilical vein endothelial cells with conditioned medium collected from these EPCs increased THP‐1 monocyte adhesion. Increased monocyte adhesion to conditioned medium–treated endothelial cells was recapitulated with conditioned medium from Lxrαβ−/−EPCs treated with cholesterol ex vivo, suggesting cholesterol is the main component of the WD inducing EPC dysfunction. Conclusions LXRs are crucial for maintaining the balance of hematopoietic cells in a hypercholesterolemic environment and for mitigating the negative effects of cholesterol on EPC differentiation/secretome changes that promote monocyte‐endothelial adhesion.
Collapse
Affiliation(s)
- Adil Rasheed
- Department of Pharmaceutical Sciences, University of Toronto, Ontario, Canada
| | - Ricky Tsai
- Department of Pharmaceutical Sciences, University of Toronto, Ontario, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Ontario, Canada .,Banting and Best Diabetes Centre, Toronto, Ontario, Canada.,The Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Berezin AE. Endothelial progenitor cells dysfunction and impaired tissue reparation: The missed link in diabetes mellitus development. Diabetes Metab Syndr 2017; 11:215-220. [PMID: 27578620 DOI: 10.1016/j.dsx.2016.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus (DM) is considered a leading cause of premature cardiovascular (CV) mortality and morbidity in general population and in individuals with known CV disease. Recent animal and clinical studies have shown that reduced number and weak function of endothelial progenitor cells (EPCs) may not only indicate to higher CV risk, but contribute to the impaired heart and vessels reparation in patients with DM. Moreover, EPCs having a protective impact on the vasculature may mediate the functioning of other organs and systems. Therefore, EPCs dysfunction is probably promising target for DM treatment strategy, while the role of restoring of EPCs number and functionality in CV risk diminish and reduce of DM-related complications is not fully clear. The aim of the review is summary of knowledge regarding EPCs dysfunction in DM patients.
Collapse
Affiliation(s)
- Alexander E Berezin
- State Medical University of Zaporozhye, 26, Mayakovsky av., Zaporozhye, UA, 69035, Ukraine.
| |
Collapse
|
4
|
Rutten B, Roest M, McClellan EA, Sels JW, Stubbs A, Jukema JW, Doevendans PA, Waltenberger J, van Zonneveld AJ, Pasterkamp G, De Groot PG, Hoefer IE. Platelet density per monocyte predicts adverse events in patients after percutaneous coronary intervention. Thromb Haemost 2015; 115:353-60. [PMID: 26423019 DOI: 10.1160/th15-03-0227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/24/2015] [Indexed: 12/24/2022]
Abstract
Monocyte recruitment to damaged endothelium is enhanced by platelet binding to monocytes and contributes to vascular repair. Therefore, we studied whether the number of platelets per monocyte affects the recurrence of adverse events in patients after percutaneous coronary intervention (PCI). Platelet-monocytes complexes with high and low median fluorescence intensities (MFI) of the platelet marker CD42b were isolated using cell sorting. Microscopic analysis revealed that a high platelet marker MFI on monocytes corresponded with a high platelet density per monocyte while a low platelet marker MFI corresponded with a low platelet density per monocyte (3.4 ± 0.7 vs 1.4 ± 0.1 platelets per monocyte, P=0.01). Using real-time video microscopy, we observed increased recruitment of high platelet density monocytes to endothelial cells as compared with low platelet density monocytes (P=0.01). Next, we classified PCI scheduled patients (N=263) into groups with high, medium and low platelet densities per monocyte and assessed the recurrence of adverse events. After multivariate adjustment for potential confounders, we observed a 2.5-fold reduction in the recurrence of adverse events in patients with a high platelet density per monocyte as compared with a low platelet density per monocyte [hazard ratio=0.4 (95% confidence interval, 0.2-0.8), P=0.01]. We show that a high platelet density per monocyte increases monocyte recruitment to endothelial cells and predicts a reduction in the recurrence of adverse events in patients after PCI. These findings may imply that a high platelet density per monocyte protects against recurrence of adverse events.
Collapse
Affiliation(s)
- Bert Rutten
- Dr. Bert Rutten, Department of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, the Netherlands, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Efimenko AY, Kochegura TN, Akopyan ZA, Parfyonova YV. Autologous Stem Cell Therapy: How Aging and Chronic Diseases Affect Stem and Progenitor Cells. Biores Open Access 2015; 4:26-38. [PMID: 26309780 PMCID: PMC4497652 DOI: 10.1089/biores.2014.0042] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During recent years different types of adult stem/progenitor cells have been successfully applied for the treatment of many pathologies, including cardiovascular diseases. The regenerative potential of these cells is considered to be due to their high proliferation and differentiation capacities, paracrine activity, and immunologic privilege. However, therapeutic efficacy of the autologous stem/progenitor cells for most clinical applications remains modest, possibly because of the attenuation of their regenerative potential in aged patients with chronic diseases such as cardiovascular diseases and metabolic disorders. In this review we will discuss the risk factors affecting the therapeutic potential of adult stem/progenitor cells as well as the main approaches to mitigating them using the methods of regenerative medicine.
Collapse
Affiliation(s)
- Anastasia Yu. Efimenko
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatiana N. Kochegura
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Zhanna A. Akopyan
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Yelena V. Parfyonova
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
- Laboratory of Angiogenesis, Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| |
Collapse
|
6
|
Bi S, Tan X, Ali SQ, Wei L. Isolation and characterization of peripheral blood-derived endothelial progenitor cells from broiler chickens. Vet J 2014; 202:396-9. [DOI: 10.1016/j.tvjl.2014.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 06/02/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022]
|
7
|
Zhu D, Wallace EM, Lim R. Cell-based therapies for the preterm infant. Cytotherapy 2014; 16:1614-28. [PMID: 25154811 DOI: 10.1016/j.jcyt.2014.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 06/14/2014] [Accepted: 06/26/2014] [Indexed: 12/31/2022]
Abstract
The severely preterm infant receives a multitude of life-saving interventions, many of which carry risks of serious side effects. Cell therapy is an important and promising arm of regenerative medicine that may address a number of these problems. Most forms of cellular therapy use stem/progenitor cells or stem-like cells, which have the capacity to migrate, engraft and exert anti-inflammatory effects. Although some of these cell-based therapies have made their way to clinical trials in adults, little headway has been made in the neonatal patient group. This review discusses the efficacy of cell therapy in preclinical studies to date and their potential applications to diseases that afflict many prematurely born infants. Specifically, we identify the major hurdles that must be overcome before cell therapies can be safely used in the neonatal intensive care unit.
Collapse
Affiliation(s)
- Dandan Zhu
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
8
|
Zhou J, Chen L, Fan Y, Jiang J, Wan J. Atorvastatin increases endothelial progenitor cells in balloon-injured mouse carotid artery. Can J Physiol Pharmacol 2014; 92:369-74. [PMID: 24773377 DOI: 10.1139/cjpp-2013-0292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we aimed to investigate the effects of atorvastatin on accelerated reendothelialization after carotid balloon injury. A mouse model of carotid arterial injury was established, followed by intragastric administration of atorvastatin at a dose of 0.6 mg·(kg body mass)–1·d–1. Pathological sections of carotid artery stained with hematoxylin and eosin were observed under light microscopy. Expression levels of eNOS mRNA and protein were detected with real-time quantitative PCR and Western blot analysis, respectively. Proliferation and differentiation of endothelial progenitor cells (EPCs) were observed after treatment, in vitro. Reendothelialization appeared on the neovascular surface, while intimal hyperplasia was inhibited after treatment with atorvastatin. Numbers of CD31-positive cells increased after atorvastatin treatment, as did the number of leucocyte antigen positive cells. The expression of cell markers, such as CD34, eNOS, and VEGF-R, were higher in the atorvastatin-treated group of mononuclear cells. EPC numbers increased with the concentration of atorvastatin. The expression of eNOS mRNA was reduced in the mice with carotid artery injury that were treated with normal saline. The expression levels of eNOS protein were increased in atorvastatin treatment group. In conclusion, atorvastatin stimulates EPCs to differentiate into endothelial cells and promotes the repair of carotid arterial injury.
Collapse
Affiliation(s)
- Jianpo Zhou
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Chen
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yiling Fan
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jiyao Jiang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jieqing Wan
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
9
|
Vizio B, Biasi F, Scirelli T, Novarino A, Prati A, Ciuffreda L, Montrucchio G, Poli G, Bellone G. Pancreatic-carcinoma-cell-derived pro-angiogenic factors can induce endothelial-cell differentiation of a subset of circulating CD34+ progenitors. J Transl Med 2013; 11:314. [PMID: 24341512 PMCID: PMC3878561 DOI: 10.1186/1479-5876-11-314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 12/07/2013] [Indexed: 12/20/2022] Open
Abstract
Background CD34+ progenitor cells comprise both hematopoietic and endothelial progenitor cells. Recent studies suggest that circulating endothelial progenitor cells are recruited into the angiogenic vascular system of several cancers, including pancreatic carcinoma, and that they correlate with clinical progress. However, whether endothelial progenitor cell mobilization occurs in response to cytokine release by tumor cells is still unclear. Methods The chemotactic- and/or differentiating-activities of the poorly-differentiated pancreatic carcinoma cell line PT45, and of the immortal H6c7 cell line, a line of near-normal pancreatic duct epithelial cells, on endothelial progenitor cells were investigated in vitro using circulating CD34+ as model. Results The study showed that Vascular Endothelial Growth Factor produced by PT45 cells and, at lesser extent, by H6c7 cells, predominantly chemoattract peripheral blood CD34+ expressing the type 2 relative receptor. Addition of PT45-conditioned medium to CD34+ cells, cultured under conditions supporting myeloid cell development, diverted the differentiation of a subset of these progenitor cells into cells expressing endothelial cell markers, such as CD146, CD105, VE-cadherin and von Willebrand Factor-related antigen. Moreover, these endothelial-like cells formed capillary networks in vitro, chiefly through the release of Angiopoietin-1 by PT45 cells. Conclusions The results demonstrate that pancreatic-carcinoma cells potentially attract circulating endothelial progenitor cells to the tumor site, by releasing high levels of pro-angiogenic factors such as Vascular Endothelial Growth Factor and Angiopoietin-1, and may direct the differentiation of these cell subsets of the CD34+ cell population into endothelial cells; the latter cells may become a component of the newly-formed vessels, contributing to angiogenesis-mediated tumor growth and metastasis.
Collapse
|
10
|
Effect of conversion from ciclosporin to tacrolimus on endothelial progenitor cells in stable long-term kidney transplant recipients. Transplantation 2013; 95:1338-45. [PMID: 23594858 DOI: 10.1097/tp.0b013e31828fabb3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Endothelial progenitor cell (EPC) counts are proposed surrogate markers for vascular function and cardiovascular risk. The effect of tacrolimus (TAC) on EPC is unknown. METHODS In this randomized controlled trial, we assigned 148 stable long-term kidney transplant recipients (KTR) to maintaining ciclosporin (CSA) or to commencing TAC-based immunosuppression at a 2:1 ratio. EPC counts (CD34/KDR) after 24 months were defined as primary endpoint. RESULTS The intent-to-treat analysis included 141 KTR (estimated glomerular filtration rate, 46.7 [40.1-61.8] mL/min per 1.73 m). Median (interquartile range [IQR]) EPC counts at baseline and month 24 were 6 (2-9) and 3 (1-9) cells and 4 (2-8) and 2 (0-5) cells per 5×10 mononuclear cells in CSA and TAC, respectively. Median (IQR) circulating angiogenic cells at baseline and month 24 were 28 (10.7-57) and 44.33 (14.6-59.8) cells and 22 (10.8-41) and 21 (9.7-49.5) cells per high-power field in CSA and TAC, respectively. Median (IQR) endothelial cell colony-forming units count per well at baseline and month 24 were 10.5 (3.3-34.3) and 4.38 (1.7-26.5) in CSA and significantly declined from 9.31 (1.8-29.3) to 4.13 (1.1-9.5) in TAC (P=0.003). There were no cardiovascular events in either group. CONCLUSION Although late conversion from CSA to TAC appears safe in KTR, conversion to TAC has no favorable effect on EPC. Low EPC levels are associated with a higher risk of subsequent cardiovascular events and are therefore of prognostic value. Their trend to decline over time deserves further examination.
Collapse
|
11
|
Povsic TJ, Sloane R, Zhou J, Pieper CF, Pearson MP, Peterson ED, Green JB, Cohen HJ, Morey MC. Lower levels of circulating progenitor cells are associated with low physical function and performance in elderly men with impaired glucose tolerance: a pilot substudy from the VA Enhanced Fitness trial. J Gerontol A Biol Sci Med Sci 2013; 68:1559-66. [PMID: 23682163 DOI: 10.1093/gerona/glt067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Aging is marked by a decline in physical function. Although the biological underpinnings for this remain unclear, loss of regenerative capacity has been proposed as one cause of the loss of physical function that occurs over time. The quantity of circulating progenitor cells (CPCs) may be one reflection of regenerative capability. We sought to determine whether certain specific CPC subpopulations were associated with physical function. METHODS Baseline CPCs were measured in 129 randomized participants in the Enhanced Fitness clinical trial based on the cell surface markers CD34, CD133, CD146, and CD14 and aldehyde dehydrogenase (ALDH) activity. Physical function was assessed using usual and rapid gait speed, 6-minute walk distance, chair stand time, and balance time. RESULTS Low counts of early angiogenic CPCs identified as CD34(+), CD34(+)CD133(+), and ALDH-bright (ALDH(br)) cells were associated with low usual gait speed (p < .005, p < .001, and p < .007), rapid gait speed (p < .001, p < .003, and p < .001), and 6-minute walking distance (all comparisons p < .001), and longer time required to complete five chair stands (p < .006, p < .002, and p < .004). CPC counts of mature endothelial or monocytic markers were not associated with physical function. CONCLUSIONS The numbers of CD34(+) and ALDH(br) CPCs are significantly lower in patients with impaired physical function. Further studies are needed to determine the underlying causes for this association.
Collapse
Affiliation(s)
- Thomas J Povsic
- Box 103208, Duke University Medical Center, Durham, NC 27708.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gremmels H, Fledderus JO, van Balkom BWM, Verhaar MC. Transcriptome analysis in endothelial progenitor cell biology. Antioxid Redox Signal 2011; 15:1029-42. [PMID: 20812873 DOI: 10.1089/ars.2010.3594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of endothelial progenitor cells (EPCs) is a promising new treatment option for cardiovascular diseases. Many of the underlying mechanisms that result in an improvement of endothelial function in vivo remain poorly elucidated to this date, however. We summarize the current positions and potential applications of gene-expression profiling in the field of EPC biology. Based on our own and published gene-expression data, we demonstrate that gene-expression profiling can efficiently be used to characterize different EPC types. Furthermore, we highlight the potential of gene-expression profiling for the analysis of changes that EPCs undergo during culture and examine changes in gene transcription in diseased patients. Transcriptome profiling is a powerful tool for the characterization and functional analysis of EPCs in health and disease.
Collapse
Affiliation(s)
- Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
13
|
Freguin-Bouilland C, Alkhatib B, David N, Lallemand F, Bessou JP, Boyer O, Thuillez C, Plissonnier D. Syngeneic Bone Marrow Cell Therapy Prevents Intimal Proliferation in Allogeneic Vascular Transplantation. J Surg Res 2011; 168:143-8. [DOI: 10.1016/j.jss.2009.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 09/03/2009] [Accepted: 10/13/2009] [Indexed: 11/29/2022]
|
14
|
Preconditioned Endothelial Progenitor Cells Reduce Formation of Melanoma Metastases through SPARC-Driven Cell–Cell Interactions and Endocytosis. Cancer Res 2011; 71:4748-57. [DOI: 10.1158/0008-5472.can-10-2449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Ebner P, Picard F, Richter J, Darrelmann E, Schneider M, Strauer BE, Brehm M. Accumulation of VEGFR-2+/CD133+ cells and decreased number and impaired functionality of CD34+/VEGFR-2+ cells in patients with SLE. Rheumatology (Oxford) 2010; 49:63-72. [PMID: 19995856 DOI: 10.1093/rheumatology/kep335] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Inflammation and atherosclerosis are the major causes of cardiovascular disease (CVD) in SLE. Both traditional and disease-specific risk factors contribute to the formation of endothelial dysfunction. Endothelial progenitor cells (EPCs) have the ability to restore endothelial integrity. The aim of this study was to determine whether the number and function of EPCs are altered in SLE. METHODS Nineteen patients with SLE and 19 controls were analysed. VEGF receptor-2 (VEGFR-2)(+)/CD133(+) and CD34(+)/VEGFR-2(+) cells were quantified by flow cytometry. EPC differentiation was measured by DiI-acLDL/Lectin I staining. Furthermore, apoptosis, proliferation capacity, migration capacity and clonogenic ability of EPCs were determined. RESULTS VEGFR-2(+)/CD133(+) cells were enhanced in SLE [215 (37) vs 122 (11) cells/1 x 10(6) lymphocytes; P = 0.029], whereas the number [106 (13) vs 215 (27) cells/1 x 10(6) lymphocytes; P = 0.002] and the proliferation rate [96% (6%) vs 143% (19%); P = 0.008] of CD34(+)/VEGFR-2(+) cells were decreased compared with controls. Additionally, EPCs in SLE showed an increased apoptosis [7% (1.4%) vs 3% (0.4%); P = 0.004], an impaired differentiation [36 (5) vs 121 (20) cells/mm(2); P < 0.001] and a reduced migratory capacity [116% (4%) vs 139% (4%); P = 0.001]. CONCLUSIONS Our results suggest that the mobilization of progenitor cells is unaffected in SLE, but the diminished number and the altered functionality of circulating CD34(+)/VEGFR-2(+) cells reduce the ability to repair vascular damage and thus may trigger the development of atherosclerosis in SLE.
Collapse
Affiliation(s)
- Petra Ebner
- Department of Internal Medicine, Division of Cardiology, Pneumology and Angiology, Heinrich-Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The mammalian kidney is a highly complex organ that requires the precise structural arrangement of multiple cell types for effective function. The need to filter large volumes of plasma at the glomerulus followed by active reabsorption of nearly 99% of that filtrate by the tubules creates vulnerability in both compartments for cell injury. Thus maintenance of cell viability and replacement of those cells that are lost are essential for functional stability of the kidney. This review addresses our current understanding of how cells from the glomerular, tubular, and interstitial compartments arise during development and the manner in which they may be regenerated in the adult organ. In addition, we discuss the data regarding the role of organ-specific and bone marrow-derived stem and progenitor cells in the replacement/repair process, as well as the potential for ex vivo programming of stem cells toward a renal lineage.
Collapse
Affiliation(s)
- Jian-Kan Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
17
|
Koga M, Sudo R, Abe Y, Yamamoto K, Ando J, Ikeda M, Tanishita K. Contribution of Rat Endothelial Progenitor Cells on Three-Dimensional Network FormationIn Vitro. Tissue Eng Part A 2009; 15:2727-39. [DOI: 10.1089/ten.tea.2008.0417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Masaki Koga
- Department of System Design Engineering, Keio University, Yokohama, Japan
| | - Ryo Sudo
- Department of System Design Engineering, Keio University, Yokohama, Japan
| | - Yoshinori Abe
- Department of System Design Engineering, Keio University, Yokohama, Japan
| | - Kimiko Yamamoto
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Joji Ando
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mariko Ikeda
- Department of System Design Engineering, Keio University, Yokohama, Japan
| | - Kazuo Tanishita
- Department of System Design Engineering, Keio University, Yokohama, Japan
| |
Collapse
|
18
|
Imanishi T, Tsujioka H, Akasaka T. Endothelial progenitor cells dysfunction and senescence: contribution to oxidative stress. Curr Cardiol Rev 2008; 4:275-86. [PMID: 20066135 PMCID: PMC2801859 DOI: 10.2174/157340308786349435] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 02/07/2023] Open
Abstract
The identification of endothelial progenitor cells (EPCs) has led to a significant paradigm in the field of vascular biology and opened a door to the development of new therapeutic approaches. Based on the current evidence, it appears that EPCs may make both direct contribution to neovascularization and indirectly promote the angiogenic function of local endothelial cells via secretion of angiogenic factors. This concept of arterial wall repair mediated by bone marrow (BM)-derived EPCs provided an alternative to the local "response to injury hypothesis" for development of atherosclerotic inflammation. Increased oxidant stress has been proposed as a molecular mechanism for endothelial dysfunction, in part by reducing nitric oxide (NO) bioavailability. EPCs function may also be highly dependent on a well-controlled oxidant stress because EPCs NO bioavailability (which is highly sensitive to oxidant stress) is critical for their in vivo function. The critical question is whether oxidant damage directly leads to an impairment in EPCs function. It was revealed that activation of angiotensin II (Ang II) type 1 receptor stimulates nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase in the vascular endothelium and leads to production of reactive oxygen species. We observed that Ang II accelerates both BM- and peripheral blood (PB)-derived EPCs senescence by a gp91phox-mediated increase of oxidative stress, resulting in EPCs dysfunction. Consistently, both Ang II receptor 1 blockers (ARBs) and angiotensin converting enzyme (ACE) inhibitors have been reported to increase the number of EPCs in patients with cardiovascular disease. In this review, we describe current understanding of the contributions of oxidative stress in cardiovascular disease, focusing on the potential mechanisms of EPCs senescence.
Collapse
Affiliation(s)
- Toshio Imanishi
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama City, Wakayama 641-8510, Japan
| | | | | |
Collapse
|
19
|
Povsic TJ, Goldschmidt-Clermont PJ. Review: Endothelial progenitor cells: markers of vascular reparative capacity. Ther Adv Cardiovasc Dis 2008; 2:199-213. [DOI: 10.1177/1753944708093412] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Assessment of the propensity for vascular events has been based on measurement of risk factors predisposing one to vascular injury. These assessments are based on the strong associations between risk factors such as hypertension, cholesterol levels, smoking, and diabetes which were first described almost a half century ago. The more recent discovery of the relationship between ongoing inflammation and clinical outcomes has led to a variety of blood-based assays which may impart additional knowledge about an individual's propensity for future cardiovascular events. Vascular health is now better represented as a balance between ongoing injury and resultant vascular repair, mediated at least in part by circulating endothelial progenitor cells. To date, one's risk for vascular events has focused exclusively on assessing propensity for vascular damage, either by assessing conventional risk factors which were initially identified over half a century ago, or more recently by assessing markers of inflammation and other circulating factors which area related to subsequent clinical events. Circulating endothelial progenitor cells play important roles in accelerating endothelialization at areas of vascular damage, and EPC enumeration is a viable strategy for assessing reparative capacity. To date, EPC numbers have been correlated with the numbers of cardiovascular risk factors, extent of coronary disease, and future cardiovascular events. Given that EPC enumeration and functional characterization represent the only assessment of the reparative side of the balance between damage and renovation, this technique may offer independent and different assessment of propensity to cardiovascular injury, greatly improving risk stratification of patients.
Collapse
Affiliation(s)
- Thomas J. Povsic
- Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA,
| | | |
Collapse
|
20
|
Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A. Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 2008; 197:496-503. [PMID: 18249408 DOI: 10.1016/j.atherosclerosis.2007.12.039] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 12/12/2007] [Accepted: 12/24/2007] [Indexed: 12/29/2022]
Abstract
In the last 10 years an increasing interest has been devoted to the study of endothelial progenitor cells (EPCs), a subtype of immature cells involved in endothelial repair and neoangiogenesis. EPCs have been discovered as a novel integrated part of the cardiovascular system, which plays a comprehensive role in tissue homeostasis. Consistently, alterations and/or reduction of the circulating EPC pool have been associated with different manifestations of cardiovascular disorders and atherosclerosis. This is why, the extent of the EPC pool is now considered a mirror of vascular health, while EPC reduction has become a surrogate biomarker of cardiovascular risk and of the ongoing vascular damage. Unfortunately, the methods used to study EPCs still lack standardization, and this is significantly decelerating progress in the field. In this review, we focus on some aspects related to the two methods used to assess circulating EPCs: flow cytometry and cell culture. We uncover the many traps hidden in the choice of the right protocol, and suggest the best solutions on the basis of evidence and background theories.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Clinical and Experimental Medicine, Metabolic Division, University of Padova, Medical School, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Zhang SJ, Zhang H, Hou M, Zheng Z, Zhou J, Su W, Wei Y, Hu S. Is it possible to obtain "true endothelial progenitor cells" by in vitro culture of bone marrow mononuclear cells? Stem Cells Dev 2007; 16:683-90. [PMID: 17784841 DOI: 10.1089/scd.2006.0062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro-cultured bone marrow cells have been shown to contain some low-density lipoprotein (LDL) uptake-positive cells. Although a small portion of LDL uptake-positive cells had expression for endothelial markers, all of them demonstrated a phagocytosis function similar to monocyte/macrophages and expression of the panleukocyte surface marker CD45 and monocyte marker CD14. These LDL uptake-positive cells did not show significant proliferative capacity and died out gradually in long-term culture. In contrast, the bone marrow-derived LDL uptake-negative cells showed strong proliferation and expression of typical mesenchymal surface markers CD29 and CD44. Although cultured under endothelial promoting conditions, these mesenchymal stem cells (MSCs) did not show any sign of differentiation toward endothelial cells. In conclusion, adult bone marrow-derived LDL uptake-positive cells that have been reported so far actually are monocytes/macrophages that can express some endothelial markers but are not "true endothelial progenitor cells" (EPCs). MSCs, which are the only cell type that shows strong proliferation during long-term adherent culture for bone marrow cells, do not differentiate toward the endothelial lineage when grown under endothelial promoting conditions.
Collapse
Affiliation(s)
- Shi Ju Zhang
- Research Center for Cardiovascular Regenerative Medicine, Ministry of Health, and Department of Cardiovascular Surgery, Cardiovascular Institute and Fu-Wai Hospital, PUMC and CAMS, Beijing, 100037, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Miyamoto Y, Suyama T, Yashita T, Akimaru H, Kurata H. Bone marrow subpopulations contain distinct types of endothelial progenitor cells and angiogenic cytokine-producing cells. J Mol Cell Cardiol 2007; 43:627-35. [PMID: 17900610 DOI: 10.1016/j.yjmcc.2007.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 06/26/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
Therapeutic angiogenesis can be induced by the implantation of bone marrow cells (BMCs). However, the mechanism of BMC-mediated neovascularization remains to be clarified. We investigated the differential activities of bone marrow subpopulations in angiogenesis and cytokine production. BMCs were separated into positive and negative fractions by surface expression of Mac-1, Gr-1, CD19, and c-kit, respectively. After 7 days of culture in the presence of vascular endothelial growth factor (VEGF), the cells produced adherent cells which incorporate acetylated low-density lipoprotein (acLDL). Mac-1(+) and Mac-1(-) cells produced almost equal numbers of acLDL(+) cells, but only Mac-1(-) cells expressed endothelial markers, including Flk-1, vWF, and CD31. Similarly, the expression of endothelial markers was detected in Gr-1(-), CD19(-), and c-kit(+) BMC fractions at 7-day cultures, but not in Gr-1(+), CD19(+), or c-kit(-) cells. In contrast, freshly isolated Mac-1(+) and Gr-1(+) BMCs expressed higher levels of mRNAs for angiogenic cytokines (including VEGF-A, FGF-2, and HGF) than Mac-1(-) and Gr-1(-) cells, respectively. Moreover, Mac-1(+)/c-kit(+) BMC subpopulation expressed higher levels of VEGF-A and SDF-1 mRNAs than other subpopulations. These data demonstrate that a relatively small proportion of VEGF-cultured adherent cells are true endothelial cells with a Flk-1(+)/vWF(+)/CD31(+) phenotype. Moreover, endothelial stem/progenitor cells (EPCs) are limited primarily to Mac-1(-), Gr-1(-), and c-kit(+) BMC populations. In contrast, angiogenic cytokine mRNAs were also produced by Mac-1(+), Gr-1(+), and c-kit(-) BMCs, suggesting the heterogeneity of effector cell types for neovasculatization therapy.
Collapse
Affiliation(s)
- Yoshiaki Miyamoto
- Cardio Inc. Kobe Lab, Translational Research and Informatics, Room 417, 1-5-4 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
24
|
Westerweel PE, Luijten RKMAC, Hoefer IE, Koomans HA, Derksen RHWM, Verhaar MC. Haematopoietic and endothelial progenitor cells are deficient in quiescent systemic lupus erythematosus. Ann Rheum Dis 2007; 66:865-70. [PMID: 17329307 PMCID: PMC1955125 DOI: 10.1136/ard.2006.065631] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is associated with a high prevalence of cardiovascular disease. Circulating endothelial progenitor cells (EPCs) contribute to vascular regeneration and repair, thereby protecting against atherosclerotic disease. EPCs are derived from CD34+ haematopoietic stem cells (HSCs), which have an increased propensity for apoptosis in the bone marrow of patients with SLE. AIM To determine whether circulating HSCs and EPCs are reduced in SLE, contributing to an increased cardiovascular risk. METHODS Progenitor cells were sampled from 15 female patients with SLE in prolonged clinical remission from their disease and 15 matched healthy controls. HSC and CD34+KDR+ EPCs were quantified by flow cytometry. Annexin V staining was used to identify apoptotic cells. RESULTS Patients with SLE had reduced levels of circulating CD34+ HSCs and CD34+KDR+ EPCs, associated with increased HSC apoptosis. Compared with controls, the fraction of HSCs that could be identified as EPCs was higher in patients with SLE, consistent with a primary defect of HSCs. EPC outgrowth from mononuclear cells, which depends mainly on CD34- cells, was unaffected. CONCLUSIONS Patients with SLE have lower levels of circulating HSCs and EPCs, even during clinical remission. The data suggest that increased HSC apoptosis is the underlying cause for this depletion. These observations indicate that progenitor cell-mediated endogenous vascular repair is impaired in SLE, which may contribute to the accelerated development of atherosclerosis.
Collapse
Affiliation(s)
- Peter E Westerweel
- Department of Vascular Medicine, F02.126, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Shantsila E, Watson T, Tse HF, Lip GYH. Endothelial colony forming units: are they a reliable marker of endothelial progenitor cell numbers? Ann Med 2007; 39:474-9. [PMID: 17886173 DOI: 10.1080/07853890701329283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Flow cytometry and cell culture, the two main laboratory techniques employed for counting endothelial progenitor cells (EPCs), have serious limitations. Mononuclear cells cultured in media favouring endothelial growth allow cells to replicate and differentiate/mature. EPCs under these circumstances tend to form groups of cells called endothelial colony forming units (EC-CFUs). EC-CFUs are widely accepted as a surrogate as an estimate of EPC number and function in cell culture. However, some important limitations may restrict the assumption that EC-CFUs reflect EPC numbers accurately. OUR FINDINGS Our own experience of EPC culture in atrial fibrillation has demonstrated that: 1) the size of EC-CFUs and proportion of single cells fluctuate significantly, even on the same culture plate; 2) the ability of EPCs to migrate towards one another to form EC-CFUs varies; and 3) the rate of EPC differentiation and proliferation may significantly affect the number of EC-CFUs, despite similarities in EPC counts on separate plates. In contrast, the count of differentiated cultured EPCs by flow cytometry with specific mature endothelial markers (e.g. CD146, vascular endothelial (VE) cadherin) is a potentially more objective alternative. SUMMARY Endothelial CFU counts represent the cumulative characteristics of EPC quantity and their functional characteristics, and cannot be reliably used for the estimation of EPC numbers in peripheral blood or the bone marrow. Until stronger definition(s) of bone marrow or peripheral blood population(s) of EPCs are developed, flow cytometry may be the more optimal technique for EPC quantification.
Collapse
Affiliation(s)
- Eduard Shantsila
- Haemostasis Thrombosis and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham, England, UK
| | | | | | | |
Collapse
|
26
|
Zhang SJ, Zhang H, Wei YJ, Su WJ, Liao ZK, Hou M, Zhou JY, Hu SS. Adult endothelial progenitor cells from human peripheral blood maintain monocyte/macrophage function throughout in vitro culture. Cell Res 2006; 16:577-84. [PMID: 16775629 DOI: 10.1038/sj.cr.7310075] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mononuclear cells (MNCs) isolated from peripheral blood by density gradient centrifugation were plated on human fibronectin-coated culture plates and cultured in EGM-2 medium. Attached spindle-shaped cells, reported as endothelial progenitor cells (EPCs) by some investigators, had elongated from adherent round cells, but had not proliferated from a small number of cells as supposed previously. The growth curve of the primary EPCs showed that the cells had little proliferative capacity. Flow cytometry analysis showed that the cells could express some of the endothelial lineage markers, while they could also express CD14, which is considered a marker of monocyte/macrophage lineages throughout culture. In endothelial function assays, the cells demonstrated a lower level of expression of eNOS than mature endothelial cells in the reverse transcription-polymerase chain reaction and did not show an ability to develop tube-like structures in angiogenesis assay in vitro. In this study, we identified the monocytoid function of EPCs by the combined Dil-labeled acetylated low-density lipoprotein (Dil-Ac-LDL) and Indian ink uptake tests. All the cells were double positive for Dil-Ac-LDL and Indian ink uptake at days 4, 14 and 28 of culture, which means the EPCs maintained monocytoid function throughout the culture. Therefore, although adult EPCs from peripheral MNCs have some endothelial lineage properties, they maintain typical monocytic function and have little proliferative capacity.
Collapse
Affiliation(s)
- Shi Ju Zhang
- Research Center for Cardiovascular Regenerative Medicine, Ministry of Health, West District, Beijing 100037, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
van Zonneveld AJ, Rabelink TJ. Endothelial progenitor cells: biology and therapeutic potential in hypertension. Curr Opin Nephrol Hypertens 2006; 15:167-72. [PMID: 16481884 DOI: 10.1097/01.mnh.0000214774.42103.ec] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW In this review, we summarize some of the recent advances in our understanding of the biology of endothelial progenitor cells, and discuss the potential relevance of these progenitor cells for endothelial function and associated microvascular abnormalities that can form the structural basis of essential hypertension. RECENT FINDINGS Both in experimental models of hypertension and in patients with hypertension, the function of endothelial progenitor cells is impaired. Also, some antihypertensive drugs that have been associated with reversal of endothelial function and microvascular rarefaction appear to correct endothelial progenitor cell dysfunction. SUMMARY While information on endothelial progenitor biology is still limited in patients with hypertension in comparison with, for example, patients with coronary artery disease, it is a topic that warrants the attention of researchers in the hypertension field, as it may have important implications for the development of organ damage, and potentially could be linked to the pathogenesis of hypertension itself.
Collapse
Affiliation(s)
- Anton-Jan van Zonneveld
- Department of Nephrology and Hypertension, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
28
|
English D, Klasko SK, Sanberg PR. Elusive mechanisms of "stem cell"-mediated repair of cerebral damage. Exp Neurol 2006; 199:10-5. [PMID: 16730352 DOI: 10.1016/j.expneurol.2006.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 03/05/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Denis English
- Department of Neurosurgery, Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Bruce B. Downs Blvd., MDC-78, Tampa, FL 36112, USA.
| | | | | |
Collapse
|
29
|
Abstract
Adult bone marrow and peripheral blood contain small subsets of mononuclear cells that can be differentiated into endothelial-like cells in vitro. Experimental and clinical transplantation of such cell isolates--often referred to as endothelial stem/progenitor cells--into ischaemic or infarcted areas shows their incorporation into sites of new vessel growth along with improvement of regional blood flow. Emerging evidence suggests that these beneficial effects on vascular growth can be attributed to the paracrine activation of resident endothelial cells, rather than their integration into new endothelium. Autologous endothelial progenitor cells can also substitute for native vessel-derived endothelial cells in tissue-engineered vascular autografts.
Collapse
Affiliation(s)
- Andreas H Zisch
- Department of Obstetrics, University Hospital Zurich, Frauenklinikstr. 10, 8091, Switzerland.
| |
Collapse
|
30
|
Walenta K, Friedrich EB, Sehnert F, Werner N, Nickenig G. In vitro differentiation characteristics of cultured human mononuclear cells—implications for endothelial progenitor cell biology. Biochem Biophys Res Commun 2005; 333:476-82. [PMID: 15961064 DOI: 10.1016/j.bbrc.2005.05.153] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
Endothelial progenitor cells (EPCs) have been implicated in the pathogenesis and treatment of cardiovascular disease. By use of quantitative uptake of DiLDL and lectin staining, EPCs have been characterized reliably. However, the exact nature and function of this cell population still remains poorly defined. In an attempt to further clarify the cell surface characteristics of EPCs, mononuclear cells (MNCs) were isolated from human blood and cell surface expression patterns were defined by FACS analysis before and after differentiation for 1-10 days in cell culture. "Classical" double staining for DiLDL and Ulex europaeus increases to 89.2 /- 0.05 after 10 days in culture. Looking at EPC-specific markers by FACS analysis, 0.18 +/- 0.11% of freshly isolated MNCs express CD34, 0.13 +/- 0.08% CD133, 0.59 +/-0.51% VEGFr2, 0.01 +/- 0.02% CD34/VEGFr2, 0.09 +/- 0.05% CD34/CD133, 0.58 +/- 0.13% CD34/CD31, and 0.02 +/- 0.01% CD34/CD146, respectively. Induction of the endothelial phenotype is evidenced by positive staining for VEGFr2, CD146, and CD31, and occurs in co-expression with stem cell markers in less than 2 +/- 0.52% of cultured cells. Expression of CD34 increases to 0.38 +/- 0.10% after 10 days, whereas the CD133(+) cell population shows an initial peak at 24h (0.29 +/- 0.18%) before decreasing to 0.15 +/- 0.02% at day 10. EPCs co-expressing CD34/CD133 increase to 0.19 +/- 0.09% after 10 days, and EPCs double-positive for CD34/VEGFr2 increase to 1.45 +/- 1.03%. Looking at leukocyte, lymphocyte, and monocyte lineage markers, 56.27 +/- 0.15% of freshly isolated MNCs express CD45, 7.13 +/- 0.02% CD14, and 38.65 +/- 0.01% CD3. Over the 10-day culture period, expression of CD45 decreases to 28.48 +/- 0.18%, CD3 to 23.11 +/- 0.02%, and CD14 to 0.09 +/- 0.02%. Cells co-expressing CD3/CD45 decrease from 38.88 +/- 0.33% to 24.86 +/- 2.49% after 10 days in culture. These findings extend present knowledge by showing that human MNCs differentiate at a very low rate to EPCs, while a majority of the cultured cell population remain committed to the leukocyte or lymphocyte lineage. Careful surface marker analysis might be necessary when using in vitro EPC differentiation systems.
Collapse
Affiliation(s)
- Katrin Walenta
- Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, 66421 Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
31
|
Wu H, Riha GM, Yang H, Li M, Yao Q, Chen C. Differentiation and Proliferation of Endothelial Progenitor Cells from Canine Peripheral Blood Mononuclear Cells1,2. J Surg Res 2005; 126:193-8. [PMID: 15919419 DOI: 10.1016/j.jss.2005.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 01/22/2005] [Accepted: 01/24/2005] [Indexed: 12/17/2022]
Abstract
BACKGROUND The isolation, differentiation, and expansion of endothelial progenitor cells (EPCs) from peripheral blood have potential applicability in areas of therapeutic neovascularization, vascular repair, and tissue engineering. The purpose of the current study was to elucidate a simple method of isolation and differentiation of EPCs by defining the endothelial morphology, surface marker expression, and proliferative capacity of EPC outgrowth from canine peripheral blood mononuclear cells (PBMCs). MATERIALS AND METHODS PBMCs were isolated from fresh canine blood and cultured in fibronectin-coated plates in which EPCs were identified from cell morphology and outgrowth characteristics. Cell surface markers were determined with flow cytometry analysis to identify differentiation of cultured and subcultured colonies. A hematologic counter with phase contrast microscopy was used to study cell growth curves of EPCs as compared with mature human coronary artery endothelial cells. RESULTS During the first week of canine PBMC culture, cells were morphologically round and varied in size, but in the course of the second and third week of culture, the cells, respectively, became spindle-shaped and displayed an endothelium-like cobblestone morphology with outgrowth. CD34 was significantly decreased at 21 days as compared with 7 days culture (36.04% to 21.37%), whereas vWF (from 77.26% to 96.37%) and eNOS (from 0% to 14.97%) were significantly increased. VEGFR-2 was slightly increased, and P1H12 (CD146) was unchanged. Subcultured canine EPCs displayed a higher proliferation rate as compared to mature human coronary artery endothelial cells in the same culture conditions. CONCLUSIONS These data demonstrate that canine EPCs can be isolated and cultured from the canine PBMC fraction. These outgrowth cells displayed characteristics of endothelial morphology with endothelial cell-specific surface markers. Furthermore, it was revealed that canine EPCs have a greater growth potential as compared to mature endothelial cells. This study suggests that PBMCs could be used as a source of EPCs for potential applications in tissue engineering and vascular therapy.
Collapse
Affiliation(s)
- Huakang Wu
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|