1
|
Kasai T, Kohno T, Shimizu W, Ando S, Joho S, Osada N, Kato M, Kario K, Shiina K, Tamura A, Yoshihisa A, Fukumoto Y, Takata Y, Yamauchi M, Shiota S, Chiba S, Terada J, Tonogi M, Suzuki K, Adachi T, Iwasaki Y, Naruse Y, Suda S, Misaka T, Tomita Y, Naito R, Goda A, Tokunou T, Sata M, Minamino T, Ide T, Chin K, Hagiwara N, Momomura S. JCS 2023 Guideline on Diagnosis and Treatment of Sleep Disordered Breathing in Cardiovascular Disease. Circ J 2024; 88:1865-1935. [PMID: 39183026 DOI: 10.1253/circj.cj-23-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Affiliation(s)
- Takatoshi Kasai
- Division of School of Health Science, Department of Pathobiological Science and Technology, Faculty of Medicine, Tottori University
| | - Takashi Kohno
- Department of Cardiovascular Medicine, Kyorin University Faculty of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School
| | - Shinichi Ando
- Sleep Medicine Center, Fukuokaken Saiseikai Futsukaichi Hospital
| | - Shuji Joho
- Second Department of Internal Medicine, University of Toyama
| | - Naohiko Osada
- Department of Cardiology, St. Marianna University School of Medicine
| | - Masahiko Kato
- Division of School of Health Science, Department of Pathobiological Science and Technology, Faculty of Medicine, Tottori University
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine
| | | | | | - Akiomi Yoshihisa
- Department of Clinical Laboratory Sciences, Fukushima Medical University School of Health Science
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine
| | | | - Motoo Yamauchi
- Department of Clinical Pathophysiology of Nursing and Department of Respiratory Medicine, Nara Medical University
| | - Satomi Shiota
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Jiro Terada
- Department of Respiratory Medicine, Japanese Red Cross Narita Hospital
| | - Morio Tonogi
- 1st Depertment of Oral & Maxillofacial Surgery, Nihon Univercity School of Dentistry
| | | | - Taro Adachi
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Yuki Iwasaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School
| | - Yoshihisa Naruse
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine
| | - Shoko Suda
- Department of Cardiovascular Medicine, Juntendo University School of Medicine
| | - Tomofumi Misaka
- Department of Clinical Laboratory Sciences, Fukushima Medical University School of Health Science
- Department of Cardiovascular Medicine, Fukushima Medical University
| | | | - Ryo Naito
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Ayumi Goda
- Department of Cardiovascular Medicine, Kyorin University Faculty of Medicine
| | - Tomotake Tokunou
- Division of Cardiology, Department of Medicine, Fukuoka Dental College
| | - Makoto Sata
- Department of Pulmonology and Infectious Diseases, National Cerebral and Cardiovascular Center
| | | | - Tomomi Ide
- Faculty of Medical Sciences, Kyushu University
| | - Kazuo Chin
- Graduate School of Medicine and Faculty of Medicine, Kyoto University
| | - Nobuhisa Hagiwara
- YUMINO Medical Corporation
- Department of Cardiology, Tokyo Women's Medical University
| | | |
Collapse
|
2
|
Kambayashi R, Goto A, Takahara A, Saito H, Izumi-Nakaseko H, Takei Y, Akie Y, Hori M, Sugiyama A. Characterization of remodeling processes in the atria of atrioventricular block dogs: Utility as an early-stage atrial fibrillation model. J Pharmacol Sci 2024; 156:19-29. [PMID: 39068031 DOI: 10.1016/j.jphs.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
To characterize utility of atrioventricular block (AVB) dogs as atrial fibrillation (AF) model, we studied remodeling processes occurring in their atria in acute (<2 weeks) and chronic (>4 weeks) phases. Fifty beagle dogs were used. Holter electrocardiogram demonstrated that paroxysmal AF occurred immediately after the production of AVB, of which duration tended to be prolonged in chronic phase. Electrophysiological analysis showed that inter-atrial conduction time and duration of burst pacing-induced AF increased in the chronic phase compared with those in the acute phase, but that atrial effective refractory period was hardly altered. Echocardiographic study revealed that diameters of left atrium, right pulmonary vein and inferior vena cava increased similarly in the acute and chronic phases. Histological evaluation indicated that hypertrophy and fibrosis in atrial tissue increased in the chronic phase. Electropharmacological characterization showed that i.v. pilsicainide effectively suppressed burst pacing-induced AF with increasing atrial conduction time and refractoriness of AVB dogs in chronic phase, but that i.v. amiodarone did not exert such electrophysiological effects. Taken together, AVB dogs in chronic phase appear to possess such pathophysiology as developed in the atria of early-stage AF patients, and therefore they can be used to evaluate drug candidates against early-stage AF.
Collapse
Affiliation(s)
- Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Ai Goto
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Akira Takahara
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Hiroyuki Saito
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan; CMIC Bioresearch Center, CMIC Pharma Science Co., Ltd., 10221 Kobuchisawa, Hokuto, Yamanashi 408-0044, Japan
| | - Hiroko Izumi-Nakaseko
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Yoshinori Takei
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Yasuki Akie
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan; CMIC Bioresearch Center, CMIC Pharma Science Co., Ltd., 10221 Kobuchisawa, Hokuto, Yamanashi 408-0044, Japan
| | - Masaaki Hori
- Department of Radiology, Faculty of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan; Yamanashi Research Center of Clinical Pharmacology, 73-5 Hatta, Fuefuki, Yamanashi 406-0023, Japan; Organization for the Promotion of Research and Social Collaboration, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan.
| |
Collapse
|
3
|
Takahashi Y, Yamaguchi T, Otsubo T, Nakashima K, Shinzato K, Osako R, Shichida S, Kawano Y, Fukui A, Kawaguchi A, Aishima S, Saito T, Takahashi N, Node K. Histological validation of atrial structural remodelling in patients with atrial fibrillation. Eur Heart J 2023; 44:3339-3353. [PMID: 37350738 PMCID: PMC10499545 DOI: 10.1093/eurheartj/ehad396] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND AND AIMS This study aimed to histologically validate atrial structural remodelling associated with atrial fibrillation. METHODS AND RESULTS Patients undergoing atrial fibrillation ablation and endomyocardial atrial biopsy were included (n = 230; 67 ± 12 years old; 69 women). Electroanatomic mapping was performed during right atrial pacing. Voltage at the biopsy site (Vbiopsy), global left atrial voltage (VGLA), and the proportion of points with fractionated electrograms defined as ≥5 deflections in each electrogram (%Fractionated EGM) were evaluated. SCZtotal was calculated as the total width of slow conduction zones, defined as regions with a conduction velocity of <30 cm/s. Histological factors potentially associated with electroanatomic characteristics were evaluated using multiple linear regression analyses. Ultrastructural features and immune cell infiltration were evaluated by electron microscopy and immunohistochemical staining in 33 and 60 patients, respectively. Fibrosis, intercellular space, myofibrillar loss, and myocardial nuclear density were significantly associated with Vbiopsy (P = .014, P < .001, P < .001, and P = .002, respectively) and VGLA (P = .010, P < .001, P = .001, and P < .001, respectively). The intercellular space was associated with the %Fractionated EGM (P = .001). Fibrosis, intercellular space, and myofibrillar loss were associated with SCZtotal (P = .028, P < .001, and P = .015, respectively). Electron microscopy confirmed plasma components and immature collagen fibrils in the increased intercellular space and myofilament lysis in cardiomyocytes, depending on myofibrillar loss. Among the histological factors, the severity of myofibrillar loss was associated with an increase in macrophage infiltration. CONCLUSION Histological correlates of atrial structural remodelling were fibrosis, increased intercellular space, myofibrillar loss, and decreased nuclear density. Each histological component was defined using electron microscopy and immunohistochemistry studies.
Collapse
Affiliation(s)
- Yuya Takahashi
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Takanori Yamaguchi
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Toyokazu Otsubo
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Kana Nakashima
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Kodai Shinzato
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Ryosuke Osako
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Shigeki Shichida
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Yuki Kawano
- Division of Cardiology, Saiseikai Futsukaichi Hospital, 3-13-1, Yumachi, Chikushino, Fukoka 818-8516, Japan
| | - Akira Fukui
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Atsushi Kawaguchi
- Education and Research Center for Community Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Saga University, Saga, Japan
| | - Tsunenori Saito
- Department of Cardiovascular Medicine, Nippon Medical School Tama Nagayama Hospital, Tama, Tokyo, Japan
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
4
|
Zenger B, Bergquist JA, Busatto A, Good WW, Rupp LC, Sharma V, MacLeod RS. Tipping the scales of understanding: An engineering approach to design and implement whole-body cardiac electrophysiology experimental models. Front Physiol 2023; 14:1100471. [PMID: 36744034 PMCID: PMC9893785 DOI: 10.3389/fphys.2023.1100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023] Open
Abstract
The study of cardiac electrophysiology is built on experimental models that span all scales, from ion channels to whole-body preparations. Novel discoveries made at each scale have contributed to our fundamental understanding of human cardiac electrophysiology, which informs clinicians as they detect, diagnose, and treat complex cardiac pathologies. This expert review describes an engineering approach to developing experimental models that is applicable across scales. The review also outlines how we applied the approach to create a set of multiscale whole-body experimental models of cardiac electrophysiology, models that are driving new insights into the response of the myocardium to acute ischemia. Specifically, we propose that researchers must address three critical requirements to develop an effective experimental model: 1) how the experimental model replicates and maintains human physiological conditions, 2) how the interventions possible with the experimental model capture human pathophysiology, and 3) what signals need to be measured, at which levels of resolution and fidelity, and what are the resulting requirements of the measurement system and the access to the organs of interest. We will discuss these requirements in the context of two examples of whole-body experimental models, a closed chest in situ model of cardiac ischemia and an isolated-heart, torso-tank preparation, both of which we have developed over decades and used to gather valuable insights from hundreds of experiments.
Collapse
Affiliation(s)
- Brian Zenger
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, United States
- Spencer Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Jake A. Bergquist
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, United States
| | - Anna Busatto
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, United States
| | | | - Lindsay C. Rupp
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, United States
| | - Vikas Sharma
- Spencer Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Rob S. MacLeod
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
5
|
Dhillon GS, Honarbakhsh S, Graham A, Ahluwalia N, Abbas H, Welch S, Daw H, Chow A, Earley MJ, Providencia R, Schilling RJ, Lambiase PD, Hunter RJ. Driver characteristics associated with structurally and electrically remodeled atria in persistent atrial fibrillation. Heart Rhythm O2 2022; 3:631-638. [PMID: 36589910 PMCID: PMC9795306 DOI: 10.1016/j.hroo.2022.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background Recent studies suggest persistent atrial fibrillation (AF) is maintained by localized focal or rotational electrical activations termed drivers. Objective The purpose of this study was to evaluate how left atrial (LA) dilation and time in AF impact persistent AF mechanisms. Methods Patients with persistent AF <2 years underwent electrocardiographic image mapping. Potential drivers (PDs) were defined as rotational wavefront activity ≥1.5 revolutions or focal activations. Distribution of PDs was recorded using an 18-segment model. Results One hundred patients were enrolled (age 61.3 ± 12.1 years). Of these patients, 47 were hypertensive, 14 had diabetes mellitus, and 10 had ischemic heart disease. AF duration was 8 [5-15] months. Median LA diameter was 39 [33-43] mm. Although LA dimensions did not correlate with overall PD burden or distribution, there was a modest correlation between increasing LA area (r = 0.235; P = .024) and LA volume (r = 0.216; P = .039) with proportion of PDs that were rotational. Although time in AF did not correlate with overall PD burden or distribution, there was a correlation between time in AF and the number of focal PDs (r = 0.203; P = .044). Female gender, increasing age, and hypertension also were associated with an increase in focal PDs. Conclusion This is the first study to demonstrate different AF mechanisms in patient subgroups. Greater understanding of patient-specific AF mechanisms may facilitate a tailored approach to AF mapping and ablation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ross J. Hunter
- Address reprint requests and correspondence: Dr Ross Hunter, Barts Heart Centre, Barts Heart NHS Trust, West Smithfield, London EC1A 7BE, United Kingdom.
| |
Collapse
|
6
|
The Complex Relation between Atrial Cardiomyopathy and Thrombogenesis. Cells 2022; 11:cells11192963. [PMID: 36230924 PMCID: PMC9563762 DOI: 10.3390/cells11192963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Heart disease, as well as systemic metabolic alterations, can leave a ‘fingerprint’ of structural and functional changes in the atrial myocardium, leading to the onset of atrial cardiomyopathy. As demonstrated in various animal models, some of these changes, such as fibrosis, cardiomyocyte hypertrophy and fatty infiltration, can increase vulnerability to atrial fibrillation (AF), the most relevant manifestation of atrial cardiomyopathy in clinical practice. Atrial cardiomyopathy accompanying AF is associated with thromboembolic events, such as stroke. The interaction between AF and stroke appears to be far more complicated than initially believed. AF and stroke share many risk factors whose underlying pathological processes can reinforce the development and progression of both cardiovascular conditions. In this review, we summarize the main mechanisms by which atrial cardiomyopathy, preceding AF, supports thrombogenic events within the atrial cavity and myocardial interstitial space. Moreover, we report the pleiotropic effects of activated coagulation factors on atrial remodeling, which may aggravate atrial cardiomyopathy. Finally, we address the complex association between AF and stroke, which can be explained by a multidirectional causal relation between atrial cardiomyopathy and hypercoagulability.
Collapse
|
7
|
Sagawa Y, Nagata Y, Miwa N, Yamaguchi T, Watanabe K, Kaneko M, Nakamura T, Nozato T, Ashikaga T, Goya M, Sasano T. Alcohol Consumption Is Associated With Postablation Recurrence but Not Changes in Atrial Substrate in Patients With Atrial Fibrillation: Insight from a High-Density Mapping Study. J Am Heart Assoc 2022; 11:e025697. [PMID: 35766315 PMCID: PMC9333400 DOI: 10.1161/jaha.121.025697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background The association between alcohol consumption, atrial substrate, and outcomes after atrial fibrillation (AF) ablation remains controversial. This study evaluated the impacts of drinking on left atrial substrate and AF recurrence after ablation. Methods and Results We prospectively enrolled 110 patients with AF without structural heart disease (64±12 years) from 2 institutions. High‐density left atrial electroanatomic mapping was performed using a high‐density grid multipolar catheter. We investigated the impact of alcohol consumption on left atrial voltage, left atrial conduction velocity, and AF ablation outcome. Patients were classified as abstainers (<1 drink/wk), mild drinkers (1–7 drinks/wk), or moderate‐heavy drinkers (>7 drinks/wk). High‐density mapping (mean 2287±600 points/patient) was performed on 49 abstainers, 27 mild drinkers, and 34 moderate‐heavy drinkers. Low‐voltage zone and slow‐conduction zone were identified in 39 (35%) and 54 (49%) patients, respectively. There was no significant difference in the proportions of low‐voltage zone and slow‐conduction zone among the 3 groups. The success rate after a single ablation was significantly lower in drinkers than in abstainers (79.3% versus 95.9% at 12 months; mean follow‐up, 18±8 months; P=0.013). The success rate after a single or multiple ablations was not significantly different among abstainers and drinkers. In multivariate analysis, alcohol consumption (P=0.02) and the presence of a low‐voltage zone (P=0.032) and slow‐conduction zone (P=0.02) were associated with AF recurrence after a single ablation, while low‐voltage zone (P=0.023) and slow‐conduction zone (P=0.024) were associated with AF recurrence after a single or multiple ablations. Conclusions Alcohol consumption was associated with AF recurrence after a single ablation but not changes in atrial substrate.
Collapse
Affiliation(s)
- Yuichiro Sagawa
- Department of Cardiology Japanese Red Cross Musashino Hospital Tokyo Japan
| | - Yasutoshi Nagata
- Department of Cardiology Japanese Red Cross Musashino Hospital Tokyo Japan
| | - Naoyuki Miwa
- Cardiovascular Center Tsuchiura Kyodo Hospital Tsuchiura Japan
| | | | - Keita Watanabe
- Department of Cardiology Japanese Red Cross Musashino Hospital Tokyo Japan
| | - Masakazu Kaneko
- Department of Cardiology Japanese Red Cross Musashino Hospital Tokyo Japan
| | - Tomofumi Nakamura
- Department of Cardiology Japanese Red Cross Musashino Hospital Tokyo Japan
| | - Toshihiro Nozato
- Department of Cardiology Japanese Red Cross Musashino Hospital Tokyo Japan
| | - Takashi Ashikaga
- Department of Cardiology Japanese Red Cross Musashino Hospital Tokyo Japan
| | - Masahiko Goya
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Tokyo Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Tokyo Japan
| |
Collapse
|
8
|
Ke X, Zhang J, Huang X, Li S, Leng M, Ye Z, Li G. Construction and Analysis of the lncRNA-miRNA-mRNA Network Based on Competing Endogenous RNA in Atrial Fibrillation. Front Cardiovasc Med 2022; 9:791156. [PMID: 35141302 PMCID: PMC8818759 DOI: 10.3389/fcvm.2022.791156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Background Accumulated studies have revealed that long non-coding RNAs (lncRNAs) play critical roles in human diseases by acting as competing endogenous RNAs (ceRNAs). However, functional roles and regulatory mechanisms of lncRNA-mediated ceRNA in atrial fibrillation (AF) remain unknown. In the present study, we aimed to construct the lncRNA-miRNA-mRNA network based on ceRNA theory in AF by using bioinformatic analyses of public datasets. Methods Microarray data sets of GSE115574 and GSE79768 from the Gene Expression Omnibus database were downloaded. Twenty-one AF right atrial appendage (RAA) samples and 22 sinus rhythm (SR) subjects RAA samples were selected for subsequent analyses. After merging all microarray data and adjusting for batch effect, differentially expressed genes were identified. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out. A ceRNA network was constructed. Result A total of 8 lncRNAs and 43 mRNAs were significantly differentially expressed with fold change >1.5 (p < 0.05) in RAA samples of AF patients when compared with SR. GO and KEGG pathway analysis showed that cardiac muscle contraction pathway were involved in AF development. The ceRNA was predicted by co-expressing LOC101928304/ LRRC2 from the constructional network analysis, which was competitively combined with miR-490-3p. The expression of LOC101928304 and LRRC were up-regulated in myocardial tissue of patients with AF, while miR-490-3p was down-regulated. Conclusion We constructed the LOC101928304/miR-490-3p/LRRC2 network based on ceRNA theory in AF in the bioinformatic analyses of public datasets. The ceRNA network found from this study may help improve our understanding of lncRNA-mediated ceRNA regulatory mechanisms in the pathogenesis of AF.
Collapse
Affiliation(s)
- Xiangyu Ke
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junguo Zhang
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xin Huang
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuai Li
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meifang Leng
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zebing Ye
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Zebing Ye
| | - Guowei Li
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, Hamilton, ON, Canada
- Guowei Li
| |
Collapse
|
9
|
Verheule S, Schotten U. Electrophysiological Consequences of Cardiac Fibrosis. Cells 2021; 10:cells10113220. [PMID: 34831442 PMCID: PMC8625398 DOI: 10.3390/cells10113220] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022] Open
Abstract
For both the atria and ventricles, fibrosis is generally recognized as one of the key determinants of conduction disturbances. By definition, fibrosis refers to an increased amount of fibrous tissue. However, fibrosis is not a singular entity. Various forms can be distinguished, that differ in distribution: replacement fibrosis, endomysial and perimysial fibrosis, and perivascular, endocardial, and epicardial fibrosis. These different forms typically result from diverging pathophysiological mechanisms and can have different consequences for conduction. The impact of fibrosis on propagation depends on exactly how the patterns of electrical connections between myocytes are altered. We will therefore first consider the normal patterns of electrical connections and their regional diversity as determinants of propagation. Subsequently, we will summarize current knowledge on how different forms of fibrosis lead to a loss of electrical connectivity in order to explain their effects on propagation and mechanisms of arrhythmogenesis, including ectopy, reentry, and alternans. Finally, we will discuss a histological quantification of fibrosis. Because of the different forms of fibrosis and their diverging effects on electrical propagation, the total amount of fibrosis is a poor indicator for the effect on conduction. Ideally, an assessment of cardiac fibrosis should exclude fibrous tissue that does not affect conduction and differentiate between the various types that do; in this article, we highlight practical solutions for histological analysis that meet these requirements.
Collapse
|
10
|
Remodeling of Cardiac Gap Junctional Cell-Cell Coupling. Cells 2021; 10:cells10092422. [PMID: 34572071 PMCID: PMC8465208 DOI: 10.3390/cells10092422] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
The heart works as a functional syncytium, which is realized via cell-cell coupling maintained by gap junction channels. These channels connect two adjacent cells, so that action potentials can be transferred. Each cell contributes a hexameric hemichannel (=connexon), formed by protein subuntis named connexins. These hemichannels dock to each other and form the gap junction channel. This channel works as a low ohmic resistor also allowing the passage of small molecules up to 1000 Dalton. Connexins are a protein family comprising of 21 isoforms in humans. In the heart, the main isoforms are Cx43 (the 43 kDa connexin; ubiquitous), Cx40 (mostly in atrium and specific conduction system), and Cx45 (in early developmental states, in the conduction system, and between fibroblasts and cardiomyocytes). These gap junction channels are mainly located at the polar region of the cardiomyocytes and thus contribute to the anisotropic pattern of cardiac electrical conductivity. While in the beginning the cell–cell coupling was considered to be static, similar to an anatomically defined structure, we have learned in the past decades that gap junctions are also subject to cardiac remodeling processes in cardiac disease such as atrial fibrillation, myocardial infarction, or cardiomyopathy. The underlying remodeling processes include the modulation of connexin expression by e.g., angiotensin, endothelin, or catecholamines, as well as the modulation of the localization of the gap junctions e.g., by the direction and strength of local mechanical forces. A reduction in connexin expression can result in a reduced conduction velocity. The alteration of gap junction localization has been shown to result in altered pathways of conduction and altered anisotropy. In particular, it can produce or contribute to non-uniformity of anisotropy, and thereby can pre-form an arrhythmogenic substrate. Interestingly, these remodeling processes seem to be susceptible to certain pharmacological treatment.
Collapse
|
11
|
JavaCyte, a novel open-source tool for automated quantification of key hallmarks of cardiac structural remodeling. Sci Rep 2020; 10:20074. [PMID: 33208780 PMCID: PMC7675975 DOI: 10.1038/s41598-020-76932-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/24/2020] [Indexed: 11/08/2022] Open
Abstract
Many cardiac pathologies involve changes in tissue structure. Conventional analysis of structural features is extremely time-consuming and subject to observer bias. The possibility to determine spatial interrelations between these features is often not fully exploited. We developed a staining protocol and an ImageJ-based tool (JavaCyte) for automated histological analysis of cardiac structure, including quantification of cardiomyocyte size, overall and endomysial fibrosis, spatial patterns of endomysial fibrosis, fibroblast density, capillary density and capillary size. This automated analysis was compared to manual quantification in several well-characterized goat models of atrial fibrillation (AF). In addition, we tested inter-observer variability in atrial biopsies from the CATCH-ME consortium atrial tissue bank, with patients stratified by their cardiovascular risk profile for structural remodeling. We were able to reproduce previous manually derived histological findings in goat models for AF and AV block (AVB) using JavaCyte. Furthermore, strong correlation was found between manual and automated observations for myocyte count (r = 0.94, p < 0.001), myocyte diameter (r = 0.97, p < 0.001), endomysial fibrosis (r = 0.98, p < 0.001) and capillary count (r = 0.95, p < 0.001) in human biopsies. No significant variation between observers was observed (ICC = 0.89, p < 0.001). We developed and validated an open-source tool for high-throughput, automated histological analysis of cardiac tissue properties. JavaCyte was as accurate as manual measurements, with less inter-observer variability and faster throughput.
Collapse
|
12
|
Ravelli F, Masè M. MicroRNAs: New contributors to mechano-electric coupling and atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:146-156. [PMID: 33011190 DOI: 10.1016/j.pbiomolbio.2020.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 12/29/2022]
Abstract
Atrial fibrillation (AF) is a multifactorial disease, which often occurs in the presence of underlying cardiac abnormalities and is supported by electrophysiological and structural alterations, generally referred to as atrial remodeling. Abnormal substrates are commonly encountered in various conditions that predispose to AF, such as hypertension, heart failure, obesity, and sleep apnea, in which atrial stretch plays a key mechanistic role. Emerging evidence suggests a role for microRNAs (small non-coding RNAs) in the pathogenesis of AF, where they can act as post-transcriptional regulators of the genes involved in atrial remodeling. This review summarizes the experimental and clinical evidence that supports the role of microRNAs in the modulation of atrial electrical and structural remodeling with a focus on overload-induced atrial alterations, and discusses the potential contribution of microRNAs to mechano-electrical coupling and AF.
Collapse
Affiliation(s)
- Flavia Ravelli
- Laboratory of Biophysics and Biosignals, University of Trento, Trento, Italy.
| | - Michela Masè
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy; Healthcare Research and Innovation Program, IRCS-HTA, Bruno Kessler Foundation, Trento, Italy
| |
Collapse
|
13
|
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia encountered in humans and is a significant source of morbidity and mortality. Despite its prevalence, our mechanistic understanding is incomplete, the therapeutic options have limited efficacy, and are often fraught with risks. A better biological understanding of AF is needed to spearhead novel therapeutic avenues. Although "natural" AF is nearly nonexistent in most species, animal models have contributed significantly to our understanding of AF and some therapeutic options. However, the impediments of animal models are also apparent and stem largely from the differences in basic physiology as well as the complexities underlying human AF; these preclude the creation of a "perfect" animal model and have obviated the translation of animal findings. Herein, we review the vast array of AF models available, spanning the mouse heart (weighing 1/1000th of a human heart) to the horse heart (10× heavier than the human heart). We attempt to highlight the features of each model that bring value to our understanding of AF but also the shortcomings and pitfalls. Finally, we borrowed the concept of a SWOT analysis from the business community (which stands for strengths, weaknesses, opportunities, and threats) and applied this introspective type of analysis to animal models for AF. We identify unmet needs and stress that is in the context of rapidly advancing technologies, these present opportunities for the future use of animal models.
Collapse
Affiliation(s)
- Dominik Schüttler
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.).,Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University Munich (LMU), Germany (D.S., P.T., S.C.)
| | - Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (A.B., K.L., W.J.H.).,Cardiac Arrhythmia Service, Division of Cardiology, Massachusetts General Hospital, Boston (A.B., W.J.H.)
| | - Stefan Kääb
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.)
| | - Kichang Lee
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (A.B., K.L., W.J.H.)
| | - Philipp Tomsits
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.).,Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University Munich (LMU), Germany (D.S., P.T., S.C.)
| | - Sebastian Clauss
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.).,Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University Munich (LMU), Germany (D.S., P.T., S.C.)
| | - William J Hucker
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (A.B., K.L., W.J.H.).,Cardiac Arrhythmia Service, Division of Cardiology, Massachusetts General Hospital, Boston (A.B., W.J.H.)
| |
Collapse
|
14
|
Change in Atrial Fibrillation Burden over Time in Patients with Nonpermanent Atrial Fibrillation. Cardiol Res Pract 2020; 2020:9583409. [PMID: 32377430 PMCID: PMC7183533 DOI: 10.1155/2020/9583409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction The natural course of atrial fibrillation (AF) is not well defined. We aimed to investigate the change in AF burden over time and its associated risk factors among AF patients. Methods Fifty-four participants with recently documented paroxysmal or persistent AF were enrolled. Main exclusion criteria were permanent AF or previous catheter ablation for AF. AF burden was calculated as time in AF divided by total recording time using yearly continuous 7-day Holter-ECG recordings. A relative change ≥10% or an absolute change >0.5% in AF burden between two yearly Holter-ECG recordings was considered significant. Results Mean age was 67 years, 72% were men. The proportion of patients with no recorded AF increased from 53.7% at baseline to 78.6% (p=0.1) after 4 years of follow-up. In 7-day Holter-ECG recordings performed after baseline, 23.7% of participants had a decrease and 23.7% an increase in AF burden. In separate mixed effect models, AF burden over time was associated with prior stroke (β 42.59, 95% CI (23.40; 61.77); p < 0.0001), BNP (β 0.05, CI (0.02; 0.09); p=0.005) end-diastolic (β 0.49, CI (0.23; 0.74); p=0.0003) as well as end-systolic (β 0.25, CI (0.05; 0.46); p=0.02) left atrial volume, left atrial ejection fraction (β −0.43, CI (−0.76;−0.10); p=0.01), E-wave (β 36.67, CI (12.96; 60.38); p=0.003), and deceleration time (β −0.1, CI (−0.16; −0.05); p=0.002). In a multivariable model, a history of prior stroke (β 29.87, CI (2.61; 57.13); p=0.03) and BNP levels (β 0.05, CI (0.01; 0.08); p=0.007) remained significantly associated with AF burden. Conclusions Few patients with paroxysmal or persistent AF have AF episodes on yearly 7-day Holter-ECG recordings, and AF progression is rare. AF burden was independently associated with a history of prior stroke and BNP levels.
Collapse
|
15
|
Guichard JB, Xiong F, Qi XY, L'Heureux N, Hiram R, Xiao J, Naud P, Tardif JC, Da Costa A, Nattel S. Role of atrial arrhythmia and ventricular response in atrial fibrillation induced atrial remodelling. Cardiovasc Res 2020; 117:462-471. [PMID: 31977017 DOI: 10.1093/cvr/cvaa007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/13/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS No studies have assessed the specific contributions of atrial fibrillation (AF)-related atrial vs. associated ventricular arrhythmia to remodelling. This study assessed the roles of atrial arrhythmia vs. high ventricular rate in AF-associated remodelling. METHODS AND RESULTS Four primary dog-groups (12/group) were subjected to 3-week pacing: 600-b.p.m. atrial tachypacing maintaining AF [AF w/o- atrioventricular block (AVB)]; atrial tachypacing with atrioventricular-node ablation (AF+AVB) and ventricular-demand pacing (80 b.p.m.); 160-b.p.m. ventricular-tachypacing (V160) reproducing the response rate during AF; and sinus rhythm with AVB/ventricular-pacing at 80-b.p.m. (control group). At terminal study, left-atrial (LA) effective refractory period (ERP) was reduced equally in both AF groups (w/o-AVB and AF+AVB). AF-inducibility was increased strongly in AF groups (w/o-AVB and AF+AVB) and modestly in V160. AF duration was significantly increased in AF w/o-AVB but not in AF+AVB or V160. Conduction velocity was decreased in AF w/o-AVB, to a greater extent than in AF+AVB and V160. Atrial fibrous-tissue content was increased in AF w/o-AVB, AF+AVB and V160, with collagen-gene up-regulation only in AF w/o-AVB. Connexin43 gene expression was reduced only in AF w/o-AVB. An additional group of 240-b.p.m. ventricular tachypacing dogs (VTP240; to induce heart failure) was studied: vs. other tachypaced groups, VTP240 caused greater fibrosis, but no change in LA-ERP or AF-inducibility. VTP240 also increased AF duration, strongly decreased left ventricular ejection fraction, and was the only group with LA natriuretic-peptide activation. CONCLUSION The atrial tachyarrhythmia and rapid ventricular response during AF produce distinct atrial remodelling; both contribute to the arrhythmogenic substrate, providing new insights into AF-related remodelling and novel considerations for ventricular rate-control.
Collapse
Affiliation(s)
- Jean-Baptiste Guichard
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Belanger Street, Montreal H1T 1C8, Quebec, Canada.,Department of Cardiology, University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne 42000, France
| | - Feng Xiong
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Belanger Street, Montreal H1T 1C8, Quebec, Canada
| | - Xiao-Yan Qi
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Belanger Street, Montreal H1T 1C8, Quebec, Canada
| | - Nathalie L'Heureux
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Belanger Street, Montreal H1T 1C8, Quebec, Canada
| | - Roddy Hiram
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Belanger Street, Montreal H1T 1C8, Quebec, Canada
| | - Jiening Xiao
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Belanger Street, Montreal H1T 1C8, Quebec, Canada
| | - Patrice Naud
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Belanger Street, Montreal H1T 1C8, Quebec, Canada
| | - Jean-Claude Tardif
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Belanger Street, Montreal H1T 1C8, Quebec, Canada
| | - Antoine Da Costa
- Department of Cardiology, University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne 42000, France
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Belanger Street, Montreal H1T 1C8, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University Montreal, Montreal, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
| |
Collapse
|
16
|
Clauss S, Bleyer C, Schüttler D, Tomsits P, Renner S, Klymiuk N, Wakili R, Massberg S, Wolf E, Kääb S. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat Rev Cardiol 2020; 16:457-475. [PMID: 30894679 DOI: 10.1038/s41569-019-0179-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arrhythmias are common and contribute substantially to cardiovascular morbidity and mortality. The underlying pathophysiology of arrhythmias is complex and remains incompletely understood, which explains why mostly only symptomatic therapy is available. The evaluation of the complex interplay between various cell types in the heart, including cardiomyocytes from the conduction system and the working myocardium, fibroblasts and cardiac immune cells, remains a major challenge in arrhythmia research because it can be investigated only in vivo. Various animal species have been used, and several disease models have been developed to study arrhythmias. Although every species is useful and might be ideal to study a specific hypothesis, we suggest a practical trio of animal models for future use: mice for genetic investigations, mechanistic evaluations or early studies to identify potential drug targets; rabbits for studies on ion channel function, repolarization or re-entrant arrhythmias; and pigs for preclinical translational studies to validate previous findings. In this Review, we provide a comprehensive overview of different models and currently used species for arrhythmia research, discuss their advantages and disadvantages and provide guidance for researchers who are considering performing in vivo studies.
Collapse
Affiliation(s)
- Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.
| | - Christina Bleyer
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Simone Renner
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Reza Wakili
- Universitätsklinikum Essen, Westdeutsches Herz- und Gefäßzentrum Essen, Essen, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Eckhard Wolf
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| |
Collapse
|
17
|
Piktel JS, Wilson LD. Translational Models of Arrhythmia Mechanisms and Susceptibility: Success and Challenges of Modeling Human Disease. Front Cardiovasc Med 2019; 6:135. [PMID: 31552276 PMCID: PMC6748164 DOI: 10.3389/fcvm.2019.00135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023] Open
Abstract
We discuss large animal translational models of arrhythmia susceptibility and sudden cardiac death, focusing on important considerations when interpreting the data derived before applying them to human trials. The utility of large animal models of arrhythmia and the pros and cons of specific translational large animals used will be discussed, including the necessary tradeoffs between models designed to derive mechanisms vs. those to test therapies. Recent technical advancements which can be applied to large animal models of arrhythmias to better elucidate mechanistic insights will be introduced. Finally, some specific examples of past successes and challenges in translating the results of large animal models of arrhythmias to clinical trials and practice will be examined, and common themes regarding the success and failure of translating studies to therapy in man will be discussed.
Collapse
Affiliation(s)
| | - Lance D. Wilson
- Department of Emergency Medicine, Emergency Care Research Institute and Heart and Vascular Research Center, MetroHealth Campus of Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
18
|
Hao L, Ren M, Rong B, Xie F, Lin MJ, Zhao YC, Yue X, Han WQ, Zhong JQ. TWEAK/Fn14 mediates atrial-derived HL-1 myocytes hypertrophy via JAK2/STAT3 signalling pathway. J Cell Mol Med 2018; 22:4344-4353. [PMID: 29971943 PMCID: PMC6111870 DOI: 10.1111/jcmm.13724] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 05/13/2018] [Indexed: 12/11/2022] Open
Abstract
Atrial myocyte hypertrophy is one of the most important substrates in the development of atrial fibrillation (AF). The TWEAK/Fn14 axis is a positive regulator of cardiac hypertrophy in cardiomyopathy. This study therefore investigated the effects of Fn14 on atrial hypertrophy and underlying cellular mechanisms using HL‐1 atrial myocytes. In patients with AF, Fn14 protein levels were higher in atrial myocytes from atrial appendages, and expression of TWEAK was increased in peripheral blood mononuclear cells, while TWEAK serum levels were decreased. In vitro, Fn14 expression was up‐regulated in response to TWEAK treatment in HL‐1 atrial myocytes. TWEAK increased the expression of ANP and Troponin T, and Fn14 knockdown counteracted the effect. Inhibition of JAK2, STAT3 by specific siRNA attenuated TWEAK‐induced HL‐1 atrial myocytes hypertrophy. In conclusion, TWEAK/Fn14 axis mediates HL‐1 atrial myocytes hypertrophy partly through activation of the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Li Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Manyi Ren
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Bing Rong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Fei Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Ming-Jie Lin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Ya-Chao Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Xin Yue
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Wen-Qiang Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Jing-Quan Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
19
|
Manninger M, Zweiker D, van Hunnik A, Alogna A, Prassl AJ, Schipke J, Zeemering S, Zirngast B, Schönleitner P, Schwarzl M, Herbst V, Thon-Gutschi E, Huber S, Rohrer U, Ebner J, Brussee H, Pieske BM, Heinzel FR, Verheule S, Antoons G, Lueger A, Mühlfeld C, Plank G, Schotten U, Post H, Scherr D. Arterial hypertension drives arrhythmia progression via specific structural remodeling in a porcine model of atrial fibrillation. Heart Rhythm 2018; 15:1328-1336. [PMID: 29803020 DOI: 10.1016/j.hrthm.2018.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Arterial hypertension (HT) contributes to progression of atrial fibrillation (AF) via unknown mechanisms. OBJECTIVE We aimed to characterize electrical and structural changes accounting for increased AF stability in a large animal model of rapid atrial pacing (RAP)-induced AF combined with desoxycorticosterone acetate (DOCA)-induced HT. METHODS Eighteen pigs were instrumented with right atrial endocardial pacemaker leads and custom-made pacemakers to induce AF by continuous RAP (600 beats/min). DOCA pellets were subcutaneously implanted in a subgroup of 9 animals (AF+HT group); the other 9 animals served as controls (AF group). Final experiments included electrophysiology studies, endocardial electroanatomic mapping, and high-density mapping with epicardial multielectrode arrays. In addition, 3-dimensional computational modeling was performed. RESULTS DOCA implantation led to secondary HT (median [interquartile range] aortic pressure 109.9 [100-137] mm Hg in AF+HT vs 82.2 [79-96] mm Hg in AF; P < .05), increased AF stability (55.6% vs 12.5% of animals with AF episodes lasting >1 hour; P < .05), concentric left ventricular hypertrophy, atrial dilatation (119 ± 31 cm2 in AF+HT vs 78 ± 23 cm2 in AF; P < .05), and fibrosis. Collagen accumulation in the AF+HT group was mainly found in non-intermyocyte areas (1.62 ± 0.38 cm3 in AF+HT vs 0.96 ± 0.3 cm3 in AF; P < .05). Left and right atrial effective refractory periods, action potential durations, endo- and epicardial conduction velocities, and measures of AF complexity were comparable between the 2 groups. A 3-dimensional computational model confirmed an increase in AF stability observed in the in vivo experiments associated with increased atrial size. CONCLUSION In this model of secondary HT, higher AF stability after 2 weeks of RAP is mainly driven by atrial dilatation.
Collapse
Affiliation(s)
- Martin Manninger
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria.
| | - David Zweiker
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Arne van Hunnik
- Department of Physiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Alessio Alogna
- Department of Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Anton J Prassl
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Stef Zeemering
- Department of Physiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Birgit Zirngast
- Department of Cardiothoracic Surgery, Medical University of Graz, Graz, Austria
| | - Patrick Schönleitner
- Department of Physiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Michael Schwarzl
- Department of General and Interventional Cardiology, University Heart Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Viktoria Herbst
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Eva Thon-Gutschi
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Stefan Huber
- Department of Cardiothoracic Surgery, Medical University of Graz, Graz, Austria
| | - Ursula Rohrer
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Jakob Ebner
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Helmut Brussee
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Burkert M Pieske
- Department of Physiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Frank R Heinzel
- Department of Physiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Gudrun Antoons
- Department of Physiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Andreas Lueger
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Heiner Post
- Department of Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany; Department of Cardiology, Contilia Heart and Vessel Centre, St. Marien-Hospital Mülheim, Mülheim, Germany
| | - Daniel Scherr
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria; Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
20
|
Hohl M, Lau DH, Müller A, Elliott AD, Linz B, Mahajan R, Hendriks JML, Böhm M, Schotten U, Sanders P, Linz D. Concomitant Obesity and Metabolic Syndrome Add to the Atrial Arrhythmogenic Phenotype in Male Hypertensive Rats. J Am Heart Assoc 2017; 6:JAHA.117.006717. [PMID: 28919580 PMCID: PMC5634308 DOI: 10.1161/jaha.117.006717] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Besides hypertension, obesity and the metabolic syndrome have recently emerged as risk factors for atrial fibrillation. This study sought to delineate the development of an arrhythmogenic substrate for atrial fibrillation in hypertension with and without concomitant obesity and metabolic syndrome. Methods and Results We compared obese spontaneously hypertensive rats (SHR‐obese, n=7–10) with lean hypertensive controls (SHR‐lean, n=7–10) and normotensive rats (n=7–10). Left atrial emptying function (MRI) and electrophysiological parameters were characterized before the hearts were harvested for histological and biochemical analyses. At the age of 38 weeks, SHR‐obese, but not SHR‐lean, showed increased body weight and impaired glucose tolerance together with dyslipidemia compared with normotensive rats. Mean blood pressure was similarly increased in SHR‐lean and SHR‐obese when compared with normotensive rats (178±9 and 180±8 mm Hg [not significant] versus 118±5 mm Hg, P<0.01 for both), but left ventricular end‐diastolic pressure was more increased in SHR‐obese than in SHR‐lean. Impairment of left atrial emptying function, increase in total atrial activation time, and conduction heterogeneity, as well as prolongation of inducible atrial fibrillation durations, were more pronounced in SHR‐obese as compared with SHR‐lean. Histological and biochemical examinations revealed enhanced triglycerides and more pronounced fibrosis in the left atrium of SHR‐obese. Besides increased expression of profibrotic markers in SHR‐lean and SHR‐obese, the profibrotic extracellular matrix protein osteopontin was highly upregulated only in SHR‐obese. Conclusions In addition to hypertension alone, concomitant obesity and metabolic syndrome add to the atrial arrhythmogenic phenotype by impaired left atrial emptying function, local conduction abnormalities, interstitial atrial fibrosis formation, and increased propensity for atrial fibrillation.
Collapse
Affiliation(s)
- Mathias Hohl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Australia
| | - Andreas Müller
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Adrian D Elliott
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Australia
| | - Benedikt Linz
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Rajiv Mahajan
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Australia
| | - Jeroen M L Hendriks
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Australia
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Ulrich Schotten
- Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, The Netherlands
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Australia
| | - Dominik Linz
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany .,Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Australia
| |
Collapse
|
21
|
Thanigaimani S, McLennan E, Linz D, Mahajan R, Agbaedeng TA, Lee G, Kalman JM, Sanders P, Lau DH. Progression and reversibility of stretch induced atrial remodeling: Characterization and clinical implications. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:376-386. [PMID: 28734850 DOI: 10.1016/j.pbiomolbio.2017.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia and across the developed nations, it contributes to increasing hospitalizations and healthcare burden. Several comorbidities and risk factors including hypertension, heart failure, obstructive sleep apnoea and obesity are known to play an important role in the initiation and perpetuation of AF and atrial stretch or dilatation may play a central mechanistic role. The impact of atrial stretch in the development of AF can vary dependent on the underlying disease. This review focuses on understanding the substrate for AF in conditions of acute and chronic stretch and in the presence of common co-morbidities or risk factors through the review of findings in both animal and human studies. Additionally, the reversibility of atrial remodeling following stretch release will also be discussed. Identification of clinical conditions associated with increased atrial stretch as well as the treatment or prevention of these conditions may help to prevent AF progression and improve sinus rhythm maintenance.
Collapse
Affiliation(s)
- Shivshankar Thanigaimani
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Emma McLennan
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Dominik Linz
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Rajiv Mahajan
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Thomas A Agbaedeng
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Geoffrey Lee
- Department of Cardiology, Royal Melbourne Hospital and Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan M Kalman
- Department of Cardiology, Royal Melbourne Hospital and Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| |
Collapse
|
22
|
Linz D, Hohl M, Dhein S, Ruf S, Reil JC, Kabiri M, Wohlfart P, Verheule S, Böhm M, Sadowski T, Schotten U. Cathepsin A mediates susceptibility to atrial tachyarrhythmia and impairment of atrial emptying function in Zucker diabetic fatty rats. Cardiovasc Res 2016; 110:371-80. [DOI: 10.1093/cvr/cvw071] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/25/2016] [Indexed: 02/01/2023] Open
|
23
|
Podd SJ, Freemantle N, Furniss SS, Sulke N. First clinical trial of specific IKACh blocker shows no reduction in atrial fibrillation burden in patients with paroxysmal atrial fibrillation: pacemaker assessment of BMS 914392 in patients with paroxysmal atrial fibrillation. Europace 2015; 18:340-6. [PMID: 26462707 DOI: 10.1093/europace/euv263] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/11/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS To assess the efficacy of BMS 914392 on atrial fibrillation (AF) burden reduction in 20 patients with pacemakers and paroxysmal atrial fibrillation (PAF). BMS 914392 is a potent, selective, oral inhibitor of the IKACh current and has been shown to suppress AF, whilst having no effect on the ventricular refractory period. This is the first efficacy study of BMS 914392 in patients with PAF. METHODS AND RESULTS The study was a four-way, crossover, double-blind design. A total of 20 patients with PAF and dual-chamber pacemakers were recruited. The pacemakers allowed beat-to-beat monitoring. Anti-arrhythmic drugs were withdrawn. Patients received low-dose (10 mg OD), medium-dose (10 mg TDS), and high-dose (20 mg TDS) BMS 914392 or placebo for 3 weeks before being crossed to the next phase. Patients underwent a washout period, four treatment phases and a final washout phase. Atrial fibrillation burden was downloaded from their pacemakers at the end of each study phase. BMS 914392 did not reduce AF burden when compared with placebo (10 mg OD P = 0.56, 10 mg TDS P = 0.22, 20 mg TDS P = 0.23). Heart rate and corrected QT (QTc) were not affected by BMS 914392. Adverse event (AE) rates did not differ from placebo in any of the treatment groups, with no serious AEs recorded. CONCLUSION BMS 914932 has not been shown to reduce AF burden in patients with PAF and pacemakers using beat-to-beat pacemaker monitoring throughout the study. BMS 914392 was well tolerated and did not affect QTc or reduce heart rate. TRIAL REGISTRATION Clinicaltrials.gov: NCT01356914.
Collapse
Affiliation(s)
- Steven J Podd
- Cardiology Research Department, East Sussex Healthcare NHS Trust, Eastbourne District General Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD, UK
| | - Nicholas Freemantle
- Department of Primary Care and Population Health, PRIMENT Clinical Trials Unit, UCL Medical School, London, UK
| | - Stephen S Furniss
- Cardiology Research Department, East Sussex Healthcare NHS Trust, Eastbourne District General Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD, UK
| | - Neil Sulke
- Cardiology Research Department, East Sussex Healthcare NHS Trust, Eastbourne District General Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD, UK
| |
Collapse
|
24
|
Mints Y, Yarmohammadi H, Khurram IM, Hoyt H, Hansford R, Zimmerman SL, Steinberg SJ, Judge DP, Tomaselli GF, Calkins H, Zipunnikov V, Nazarian S. Association of common variations on chromosome 4q25 and left atrial volume in patients with atrial fibrillation. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 9:39-45. [PMID: 26005361 PMCID: PMC4431477 DOI: 10.4137/cmc.s21712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/01/2015] [Accepted: 02/09/2015] [Indexed: 01/08/2023]
Abstract
AIMS Recent studies have shown that several genetic variants near the PITX2 locus on chromosome 4q25 are associated with atrial fibrillation (AF). However, the mechanism that mediates this association remains unclear. Basic murine studies suggest that reduced PITX2 expression is associated with left atrial dilatation. We sought to examine the association between single nucleotide polymorphisms (SNPs) near PITX2 and left atrial size in patients with AF. METHODS We prospectively enrolled 96 consecutive patients (mean age 60 ± 10 years, 72% male) with drug-resistant AF (57% paroxysmal, 38% persistent, and 5% long-standing persistent) who underwent catheter ablation. Following DNA extraction from blood obtained pre-operatively, SNPs rs10033464 and rs2200733 were genotyped using the Sequenom MassARRAY. Left atrial volume (LAV) was determined using three-dimensional imaging (CT or MRI prior to first ablation) and by investigators blinded to genotype results. RESULTS The minor allele frequencies at SNPs rs10033464 and rs2200733 were 0.14 and 0.25, respectively. Using multivariable linear regression, homozygosity for the minor allele at rs10033464 (recessive model) was independently associated with larger LAV (P = 0.002) after adjustment for age, gender, BMI, height, type, and duration of AF, left ventricular ejection fraction, history of hypertension, valve disease, and antiarrhythmic drug use. The strength of the association was reconfirmed in a bootstrap study with 1000 resamplings. In contrast, no association was found between rs2200733 variant alleles and LAV. CONCLUSION SNP rs10033464 near the PITX2 locus on 4q25 is associated with LAV. Left atrial dilatation may mediate the association of common variants at 4q25 with AF.
Collapse
Affiliation(s)
- Yuliya Mints
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Hirad Yarmohammadi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Irfan M Khurram
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Hana Hoyt
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Rozann Hansford
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Steven J Steinberg
- Department of Neurology and Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel P Judge
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Gordon F Tomaselli
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Hugh Calkins
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Vadim Zipunnikov
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Saman Nazarian
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA. ; Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
25
|
Linz D, Hunnik AV, Ukena C, Mahfoud F, Ewen S, Verheule S, Böhm M, Schotten U. Effects of renal denervation on atrial arrhythmogenesis. Future Cardiol 2014; 10:813-22. [DOI: 10.2217/fca.14.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Atrial fibrillation is the most common sustained arrhythmia and is associated with significant morbidity and mortality. In addition to mechanisms such as atrial stretch and atrial remodeling, the activity of the autonomic nervous system has also been suggested to contribute to the progression from paroxysmal to persistent atrial fibrillation. Catheter-based renal denervation was introduced as a minimally invasive approach to reduce renal and whole body sympathetic activation with accompanying blood pressure reduction and left-ventricular morphological and functional improvement in drug-resistant hypertension. This review focuses on the potential effects of renal denervation on different arrhythmogenic mechanisms in the atrium and discusses potential anti-remodeling effects in atrial fibrillation patients with hypertension, heart failure and sleep apnea.
Collapse
Affiliation(s)
- Dominik Linz
- Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Germany
| | - Arne van Hunnik
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Christian Ukena
- Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Germany
| | - Felix Mahfoud
- Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Germany
| | - Sebastian Ewen
- Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Germany
| | - Sander Verheule
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Michael Böhm
- Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Germany
| | - Ulrich Schotten
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| |
Collapse
|
26
|
Simopoulos V, Tagarakis G, Hatziefthimiou A, Skoularigis I, Triposkiadis F, Trantou V, Tsilimingas N, Aidonidis I. Effectiveness of aldosterone antagonists for preventing atrial fibrillation after cardiac surgery in patients with systolic heart failure: a retrospective study. Clin Res Cardiol 2014; 104:31-7. [DOI: 10.1007/s00392-014-0754-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/11/2014] [Indexed: 01/01/2023]
|
27
|
Koivumäki JT, Seemann G, Maleckar MM, Tavi P. In silico screening of the key cellular remodeling targets in chronic atrial fibrillation. PLoS Comput Biol 2014; 10:e1003620. [PMID: 24853123 PMCID: PMC4031057 DOI: 10.1371/journal.pcbi.1003620] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 03/30/2014] [Indexed: 02/07/2023] Open
Abstract
Chronic atrial fibrillation (AF) is a complex disease with underlying changes in electrophysiology, calcium signaling and the structure of atrial myocytes. How these individual remodeling targets and their emergent interactions contribute to cell physiology in chronic AF is not well understood. To approach this problem, we performed in silico experiments in a computational model of the human atrial myocyte. The remodeled function of cellular components was based on a broad literature review of in vitro findings in chronic AF, and these were integrated into the model to define a cohort of virtual cells. Simulation results indicate that while the altered function of calcium and potassium ion channels alone causes a pronounced decrease in action potential duration, remodeling of intracellular calcium handling also has a substantial impact on the chronic AF phenotype. We additionally found that the reduction in amplitude of the calcium transient in chronic AF as compared to normal sinus rhythm is primarily due to the remodeling of calcium channel function, calcium handling and cellular geometry. Finally, we found that decreased electrical resistance of the membrane together with remodeled calcium handling synergistically decreased cellular excitability and the subsequent inducibility of repolarization abnormalities in the human atrial myocyte in chronic AF. We conclude that the presented results highlight the complexity of both intrinsic cellular interactions and emergent properties of human atrial myocytes in chronic AF. Therefore, reversing remodeling for a single remodeled component does little to restore the normal sinus rhythm phenotype. These findings may have important implications for developing novel therapeutic approaches for chronic AF.
Collapse
Affiliation(s)
- Jussi T. Koivumäki
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Oslo, Norway
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gunnar Seemann
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mary M. Maleckar
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Oslo, Norway
| | - Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| |
Collapse
|
28
|
Linz D, van Hunnik A, Ukena C, Ewen S, Mahfoud F, Schirmer SH, Lenski M, Neuberger HR, Schotten U, Böhm M. Renal denervation: effects on atrial electrophysiology and arrhythmias. Clin Res Cardiol 2014; 103:765-74. [PMID: 24682223 DOI: 10.1007/s00392-014-0695-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/26/2014] [Indexed: 12/13/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with significant morbidity and mortality. Currently, atrial endocardial catheter ablation, mainly targeting focal discharges in the pulmonary veins, is the most widely used interventional treatment of drug-refractory AF. Despite technical improvements, results are not yet optimal. There is ongoing search for alternative and/or complementary interventional targets. Conditions associated with increased sympathetic activation such as hypertension, heart failure and sleep apnea lead to structural, neural and electrophysiological changes in the atrium thereby contributing to the progression from paroxysmal to persistent AF and increasing recurrence rate of AF after PVI. Until now, interventional modulation of autonomic nervous system was limited by highly invasive techniques. Catheter-based renal denervation (RDN) was introduced as a minimally invasive approach to reduce renal and whole body sympathetic activation with accompanying blood pressure control and left-ventricular morphological and functional changes in resistant hypertension. This review focuses on the potential atrial antiarrhythmic and antiremodeling effects of RDN in AF patients with hypertension, heart failure, and sleep apnea and discusses the possible role of RDN in the treatment of AF.
Collapse
Affiliation(s)
- Dominik Linz
- Klinik für Innere Medizin III Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Kirrberger Str. 1, Geb. 40, 66421, Homburg/Saar, Germany,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Takahara A, Hagiwara M, Namekata I, Tanaka H. Pulmonary Vein Myocardium as a Possible Pharmacological Target for the Treatment of Atrial Fibrillation. J Pharmacol Sci 2014. [DOI: 10.1254/jphs.14r09cp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
30
|
Wu JT, Dong JZ, Wang SL, Chu YJ, Wang LX, Yang CK. Efficacy of Catheter Ablation for Atrial Fibrillation in Patients With a Permanent Pacemaker for Atrioventricular Block. Int Heart J 2014; 55:489-93. [DOI: 10.1536/ihj.14-099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jin-Tao Wu
- Department of Cardiology, Henan Provincial People’s Hospital, Zhengzhou University
| | - Jian-Zeng Dong
- Department of Cardiology, Center for Atrial Fibrillation, Beijing Anzhen Hospital, Capital Medical University
| | - Shan-Ling Wang
- Department of Cardiology, Henan Provincial People’s Hospital, Zhengzhou University
| | - Ying-Jie Chu
- Department of Cardiology, Henan Provincial People’s Hospital, Zhengzhou University
| | - Li-Xia Wang
- Department of Cardiology, Henan Provincial People’s Hospital, Zhengzhou University
| | - Chao-Kuan Yang
- Department of Cardiology, Henan Provincial People’s Hospital, Zhengzhou University
| |
Collapse
|
31
|
Abstract
Disruption of sleep causes adverse health outcomes and poor quality of life. People with sleep disruption have higher levels than people without disrupted sleep of depression and anxiety and increased rates of cardiovascular diseases. Women have a higher incidence than men of insomnia and depression related to poor sleep. The types of complaints differ significantly between the sexes. Women are more likely than men to complain of insomnia, headache, irritability, and fatigue than the "typical" symptoms of loud snoring and breathing cessation during sleep. Hormones play an important role in sleep in women. Reproductive hormones were found to have a protective effect on sleep apnea in women of premenopausal age. Pregnancy is another period when the prevalence of sleep apnea and restless leg syndrome increases from hormonal effect. Cardiovascular mortality is high in women with obstructive sleep apnea. Continuous positive airway pressure therapy improves outcomes in most cases of obstructive sleep apnea. The epidemiology, risk factors, diagnostic criteria, and therapies for the three most common sleep disorders (insomnia, obstructive sleep apnea, and restless leg syndrome), along with effects of menopause, pregnancy, and social factors on sleep in women, are key considerations for clinicians caring for female patients across the adult life span.
Collapse
|
32
|
Velagapudi P, Turagam MK, Leal MA, Kocheril AG. Atrial fibrosis: a risk stratifier for atrial fibrillation. Expert Rev Cardiovasc Ther 2013; 11:155-60. [PMID: 23405837 DOI: 10.1586/erc.12.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atrial fibrillation (AF), especially persistent and long-standing persistent AF, may result in electro-anatomical changes in the left atrium, resulting in remodeling and deposition of fibrous tissue. There are emerging data that atrial substrate modification may increase the risk of thromboembolic complications, including stroke. Several studies have reported that atrial fibrosis is due to complex interactions among several cellular and neurohumoral mediators. Late gadolinium enhancement MRI has been reported to allow quantitative assessment of myocardial fibrosis in patients at risk of developing a stroke. Current stroke risk stratification criteria for AF do not utilize atrial fibrosis as an independent risk factor despite its association with AF and stroke. Further research is required in developing adequate risk stratification tools for predicting the stroke risk and catheter ablation outcomes in AF.
Collapse
Affiliation(s)
- Poonam Velagapudi
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | | | | | | |
Collapse
|
33
|
Greiser M, Schotten U. Dynamic remodeling of intracellular Ca2+ signaling during atrial fibrillation. J Mol Cell Cardiol 2013; 58:134-42. [DOI: 10.1016/j.yjmcc.2012.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/23/2022]
|
34
|
Namekata I, Tsuneoka Y, Tanaka H. Electrophysiological and Pharmacological Properties of the Pulmonary Vein Myocardium. Biol Pharm Bull 2013; 36:2-7. [DOI: 10.1248/bpb.b212020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Iyuki Namekata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Yayoi Tsuneoka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
35
|
Roosimaa M, Põdramägi T, Kadaja L, Ruusalepp A, Paju K, Puhke R, Eimre M, Orlova E, Piirsoo A, Peet N, Gellerich FN, Seppet E. Dilation of human atria: increased diffusion restrictions for ADP, overexpression of hexokinase 2 and its coupling to oxidative phosphorylation in cardiomyocytes. Mitochondrion 2012; 13:399-409. [PMID: 23268198 DOI: 10.1016/j.mito.2012.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 12/14/2022]
Abstract
Cardiac energy metabolism with emphasis on mitochondria was addressed in atrial tissue from patients with overload-induced atrial dilation. Structural remodeling of dilated (D) atria manifested as intracellular accumulation of fibrillar aggregates, lipofuscin, signs of myolysis and autophagy. Despite impaired complex I dependent respiration and increased diffusion restriction for ADP, no changes regarding adenylate and creatine kinase occurred. We observed 7-fold overexpression of HK2 gene in D atria with concomitant 2-fold greater activation of mitochondrial oxygen consumption by glucose, which might represent an adaption to increased energy requirements and impaired mitochondrial function by effectively joining glycolysis and oxidative phosphorylation.
Collapse
Affiliation(s)
- Mart Roosimaa
- Institute of Biomedicine, Faculty of Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Electrophysiological effects of acute atrial stretch on persistent atrial fibrillation in patients undergoing open heart surgery. Heart Rhythm 2012; 10:322-30. [PMID: 23128018 DOI: 10.1016/j.hrthm.2012.10.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND The electrophysiologic effects of acute atrial dilatation and dedilatation in humans with chronic atrial fibrillation remains to be elucidated. OBJECTIVE To study the electrophysiological effects of acute atrial dedilatation and subsequent dilatation in patients with long-standing persistent atrial fibrillation (AF) with structural heart disease undergoing elective cardiac surgery. METHODS Nine patients were studied. Mean age was 71 ± 10 years, and left ventricular ejection was 46% ± 6%. Patients had at least moderate mitral valve regurgitation and dilated atria. After sternotomy and during extracorporal circulation, mapping was performed on the beating heart with 2 multielectrode arrays (60 electrodes each, interelectrode distance 1.5 mm) positioned on the lateral wall of the right atrium (RA) and left atrium (LA). Atrial pressure and size were altered by modifying extracorporal circulation. AF electrograms were recorded at baseline after dedilation and after dilatation of the atria afterward. RESULTS At baseline, the median AF cycle length (mAFCL) was 184 ± 27 ms in the RA and 180 ± 17 ms in the LA. After dedilatation, the mAFCL shortened significantly to 168 ± 13 ms in the RA and to 168 ± 20 ms in the LA. Dilatation lengthened mAFCL significantly to 189 ± 17 ms in the RA and to 185 ± 23 ms in the LA. Conduction block (CB) at baseline was 14.3% ± 3.6% in the RA and 17.3% ± 5.5% in the LA. CB decreased significantly with dedilatation to 7.4% ± 2.9% in the RA and to 7.9% ± 6.3% in the LA. CB increased significantly with dilatation afterward to 15.0% ± 8.3% in the RA and to 18.5% ± 16.0% in the LA. CONCLUSIONS Acute dedilatation of the atria in patients with long-standing persistent AF causes a decrease in the mAFCL in both atria. Subsequent dilatation increased the mAFCL. The amount of CB decreased with dedilatation and increased with dilatation afterward in both atria.
Collapse
|
37
|
Atrial remodeling in varying clinical substrates within beating human hearts: Relevance to atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:278-94. [DOI: 10.1016/j.pbiomolbio.2012.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 11/19/2022]
|
38
|
|
39
|
Tsai WC, Wang JH, Lin YJ, Tsao HM, Chang SL, Lo LW, Hu YF, Chang CJ, Tang WH, Huang SY, Suenari K, Tuan TC, Chen SA. Consistency of the automatic algorithm in detecting complex fractionated electrograms using an electroanatomical navigation system. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2012; 35:980-9. [PMID: 22816370 DOI: 10.1111/j.1540-8159.2012.03444.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The different settings of the automatic algorithm in the Carto system (Carto XP, Biosense Webster, Diamond Bar, CA, USA) used for detecting complex fractionated electrograms (CFEs) during atrial fibrillation (AF) may influence the identification of the fragmented electrograms. OBJECTIVES We aimed to evaluate the impact of the different parameters on the detection of CFEs and the efficacy of the substrate modification after pulmonary vein isolation (PVI). METHODS A total of 1,159 electrograms were analyzed from 11 consecutive patients (age = 56 ± 12 years). The effect of the different algorithm factors, such as the high-voltage thresholds (0.12, 0.25, 0.5, 20 mV), detection algorithms (average complex interval [ACI] vs interval confidence level), and recording duration (2.5 seconds vs 5 seconds), on the disparities of the CFEs was investigated. RESULTS The proportion of the different grades of CFEs depended on the detection algorithm and recording duration. The high-voltage threshold would not affect the consistency of the CFEs irrespective of the different settings of the detection algorithm or recording duration. High-grade CFEs were most consistent with an ACI algorithm and recording duration of 5 seconds (Cronbach's alpha = 0.952). Ablation consisting of a PVI and high-grade CFE sites converted AF directly to sinus rhythm in eight of 11 patients or into atrial tachycardia in one of 11. CONCLUSIONS The distribution and consistency of the CFE detection depended on the detection algorithm and recording duration, but not on the high-voltage threshold. Under the ACI algorithm and a recording duration of 5 seconds, high-grade CFE sites remained highest consistency.
Collapse
Affiliation(s)
- Wen-Chin Tsai
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Burashnikov A, Pourrier M, Gibson JK, Lynch JJ, Antzelevitch C. Rate-dependent effects of vernakalant in the isolated non-remodeled canine left atria are primarily due to block of the sodium channel: comparison with ranolazine and dl-sotalol. Circ Arrhythm Electrophysiol 2012; 5:400-8. [PMID: 22322366 DOI: 10.1161/circep.111.968305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Several clinical trials have shown that vernakalant is effective in terminating recent onset atrial fibrillation (AF). The electrophysiological actions of vernakalant are not fully understood. METHODS AND RESULTS Here we report the results of a blinded study comparing the in vitro canine atrial electrophysiological effects of vernakalant, ranolazine, and dl-sotalol. Action potential durations (APD(50,75,90)), effective refractory period (ERP), post repolarization refractoriness (PRR), maximum rate of rise of the action potential (AP) upstroke (V(max)), diastolic threshold of excitation (DTE), conduction time (CT), and the shortest S(1)-S(1) permitting 1:1 activation (S(1)-S(1)) were measured using standard stimulation and microelectrode recording techniques in isolated normal, non-remodeled canine arterially perfused left atrial preparations. Vernakalant caused variable but slight prolongation of APD(90) (P=not significant), but significant prolongation of APD(50) at 30 μmol/L and rapid rates. In contrast, ranolazine and dl-sotalol produced consistent concentration- and reverse rate-dependent prolongation of APD(90). Vernakalant and ranolazine caused rate-dependent, whereas dl-sotalol caused reverse rate-dependent, prolongation of ERP. Significant rate-dependent PRR developed with vernakalant and ranolazine, but not with dl-sotalol. Other sodium channel-mediated parameters (ie, V(max), CT, DTE, and S(1)-S(1)) also were depressed significantly by vernakalant and ranolazine, but not by dl-sotalol. Only vernakalant elevated AP plateau voltage, consistent with blockade of ultrarapid delayed rectified potassium current and transient outward potassium current. CONCLUSIONS In isolated canine left atria, the effects of vernakalant and ranolazine were characterized by use-dependent inhibition of sodium channel-mediated parameters, and those of dl-sotalol by reverse rate-dependent prolongation of APD(90) and ERP. This suggests that during the rapid activation rates of AF, the I(Na) blocking action of the mixed ion channel blocker vernakalant takes prominence. This mechanism may explain vernakalant's anti-AF efficacy.
Collapse
|
42
|
Goudis CA, Kallergis EM, Vardas PE. Extracellular matrix alterations in the atria: insights into the mechanisms and perpetuation of atrial fibrillation. Europace 2012; 14:623-30. [PMID: 22237583 DOI: 10.1093/europace/eur398] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Atrial fibrillation is the most common arrhythmia in clinical practice and is associated with increased cardiovascular morbidity and mortality. Atrial fibrosis, a detrimental process that causes imbalance in extracellular matrix deposition and degradation, has been implicated as a substrate for atrial fibrillation, but the precise mechanisms of structural remodelling and the relationship between atrial fibrosis and atrial fibrillation are not completely understood. A large number of experimental and clinical studies have shed light on the mechanisms of atrial fibrosis at the molecular and cellular level, including interactions between matrix metalloproteinases and their endogenous tissue inhibitors, and profibrotic signals through specific molecules and mediators such as angiotensin II, transforming growth factor-β1, connective tissue growth factor, and platelet-derived growth factor. This review focuses on the mechanisms of atrial fibrosis and highlights the relationship between atrial fibrosis and atrial fibrillation.
Collapse
Affiliation(s)
- Christos A Goudis
- Department of Cardiology, University General Hospital, Heraklion, Crete, Voutes 71110, Greece
| | | | | |
Collapse
|
43
|
Johnson DM, de Jong MMJ, Crijns HJGM, Carlsson LG, Volders PGA. Reduced ventricular proarrhythmic potential of the novel combined ion-channel blocker AZD1305 versus dofetilide in dogs with remodeled hearts. Circ Arrhythm Electrophysiol 2011; 5:201-9. [PMID: 22080293 DOI: 10.1161/circep.111.963025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AZD1305 is an investigational antiarrhythmic agent for management of atrial fibrillation. It blocks various cardiac ion currents at different potencies and has atrial-predominant electrophysiological effects. We investigated the electrophysiological and proarrhythmic effects of AZD1305 versus dofetilide in dogs with chronic complete atrioventricular block and myocardial hypertrophic remodeling. METHODS AND RESULTS AZD1305 was administered to anesthetized mongrel dogs before and >2 weeks after the induction of atrioventricular block and ventricular and atrial electrophysiological parameters were assessed. In all dogs, the selective I(Kr) blocker dofetilide was used to examine susceptibility to acquired torsades de pointes in chronic atrioventricular block and for comparison. At normal sinus rhythm, AZD1305 increased QT and RR intervals from 290±7 to 397±15 ms (+37%, P<0.0001) and from 603±22 to 778±32 ms (+29%, P=0.002), respectively. In the same animals at chronic atrioventricular block, AZD1305 increased the QT interval from 535±28 to 747±36 ms (+40%, P<0.0001), similar to the QT prolongation by dofetilide (511±22 to 703±45 ms [+38%, P<0.0001]). AZD1305 slightly slowed the idioventricular rhythm. Whereas all (n=14) chronic atrioventricular block animals exhibited torsades de pointes on dofetilide, the arrhythmia was induced in only 4 of 11 dogs after AZD1305. Beat-to-beat variability of left-ventricular monophasic-action-potential duration increased after dofetilide (2.3±0.2 to 6.3±0.7 ms; P<0.0001) but not after AZD1305 (2.8±0.3 to 3.7±0.3 ms; P=0.20) despite similar left-ventricular monophasic-action-potential duration prolongations. CONCLUSIONS Despite causing similar degrees of repolarization delay as the selective I(Kr) blocker dofetilide, the combined ion-channel blocker AZD1305 induces less repolarization instability and has a lower ventricular proarrhythmic potential in the remodeled dog heart.
Collapse
Affiliation(s)
- Daniel M Johnson
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Reid K Nakamura
- Advanced Veterinary Care Center, 15926 Hawthorne Blvd, Lawndale, CA 90260, USA.
| | | |
Collapse
|
45
|
Dong M, Liu T, Li G. Atrial cardiomyopathy—a not yet classified cardiomyopathy? Int J Cardiol 2011; 151:394-6. [PMID: 21783266 DOI: 10.1016/j.ijcard.2011.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/03/2011] [Indexed: 10/18/2022]
|
46
|
Reilly SN, Jayaram R, Nahar K, Antoniades C, Verheule S, Channon KM, Alp NJ, Schotten U, Casadei B. Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: implications for the antiarrhythmic effect of statins. Circulation 2011; 124:1107-17. [PMID: 21844076 DOI: 10.1161/circulationaha.111.029223] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND An altered nitric oxide-redox balance has been implicated in the pathogenesis of atrial fibrillation (AF). Statins inhibit NOX2-NADPH oxidases and prevent postoperative AF but are less effective in AF secondary prevention; the mechanisms underlying these findings are poorly understood. METHODS AND RESULTS By using goat models of pacing-induced AF or of atrial structural remodeling secondary to atrioventricular block and right atrial samples from 130 patients undergoing cardiac surgery, we found that the mechanisms responsible for the NO-redox imbalance differ between atria and with the duration and substrate of AF. Rac1 and NADPH oxidase activity and the protein level of NOX2 and p22phox were significantly increased in the left atrium of goats after 2 weeks of AF and in patients who developed postoperative AF in the absence of differences in leukocytes infiltration. Conversely, in the presence of longstanding AF or atrioventricular block, uncoupled nitric oxide synthase activity (secondary to reduced BH4 content and/or increased arginase activity) and mitochondrial oxidases accounted for the biatrial increase in reactive oxygen species. Atorvastatin caused a mevalonate-reversible inhibition of Rac1 and NOX2-NADPH oxidase activity in right atrial samples from patients who developed postoperative AF, but it did not affect reactive oxygen species, nitric oxide synthase uncoupling, or BH4 in patients with permanent AF. CONCLUSIONS Upregulation of atrial NADPH oxidases is an early but transient event in the natural history of AF. Changes in the sources of reactive oxygen species with atrial remodeling may explain why statins are effective in the primary prevention of AF but not in its management.
Collapse
Affiliation(s)
- Svetlana N Reilly
- Department of Cardiovascular Medicine, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Reil JC, Hohl M, Selejan S, Lipp P, Drautz F, Kazakow A, Münz BM, Müller P, Steendijk P, Reil GH, Allessie MA, Böhm M, Neuberger HR. Aldosterone promotes atrial fibrillation. Eur Heart J 2011; 33:2098-108. [DOI: 10.1093/eurheartj/ehr266] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 2011; 91:265-325. [PMID: 21248168 DOI: 10.1152/physrev.00031.2009] [Citation(s) in RCA: 863] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is an arrhythmia that can occur as the result of numerous different pathophysiological processes in the atria. Some aspects of the morphological and electrophysiological alterations promoting AF have been studied extensively in animal models. Atrial tachycardia or AF itself shortens atrial refractoriness and causes loss of atrial contractility. Aging, neurohumoral activation, and chronic atrial stretch due to structural heart disease activate a variety of signaling pathways leading to histological changes in the atria including myocyte hypertrophy, fibroblast proliferation, and complex alterations of the extracellular matrix including tissue fibrosis. These changes in electrical, contractile, and structural properties of the atria have been called "atrial remodeling." The resulting electrophysiological substrate is characterized by shortening of atrial refractoriness and reentrant wavelength or by local conduction heterogeneities caused by disruption of electrical interconnections between muscle bundles. Under these conditions, ectopic activity originating from the pulmonary veins or other sites is more likely to occur and to trigger longer episodes of AF. Many of these alterations also occur in patients with or at risk for AF, although the direct demonstration of these mechanisms is sometimes challenging. The diversity of etiological factors and electrophysiological mechanisms promoting AF in humans hampers the development of more effective therapy of AF. This review aims to give a translational overview on the biological basis of atrial remodeling and the proarrhythmic mechanisms involved in the fibrillation process. We pay attention to translation of pathophysiological insights gained from in vitro experiments and animal models to patients. Also, suggestions for future research objectives and therapeutical implications are discussed.
Collapse
Affiliation(s)
- Ulrich Schotten
- Department of Physiology, University Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Workman AJ, Smith GL, Rankin AC. Mechanisms of termination and prevention of atrial fibrillation by drug therapy. Pharmacol Ther 2011; 131:221-41. [PMID: 21334377 DOI: 10.1016/j.pharmthera.2011.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 01/13/2023]
Abstract
Atrial fibrillation (AF) is a disorder of the rhythm of electrical activation of the cardiac atria. It is the most common cardiac arrhythmia, has multiple aetiologies, and increases the risk of death from stroke. Pharmacological therapy is the mainstay of treatment for AF, but currently available anti-arrhythmic drugs have limited efficacy and safety. An improved understanding of how anti-arrhythmic drugs affect the electrophysiological mechanisms of AF initiation and maintenance, in the setting of the different cardiac diseases that predispose to AF, is therefore required. A variety of animal models of AF has been developed, to represent and control the pathophysiological causes and risk factors of AF, and to permit the measurement of detailed and invasive parameters relating to the associated electrophysiological mechanisms of AF. The purpose of this review is to examine, consolidate and compare available relevant data on in-vivo electrophysiological mechanisms of AF suppression by currently approved and investigational anti-arrhythmic drugs in such models. These include the Vaughan Williams class I-IV drugs, namely Na(+) channel blockers, β-adrenoceptor antagonists, action potential prolonging drugs, and Ca(2+) channel blockers; the "upstream therapies", e.g., angiotensin converting enzyme inhibitors, statins and fish oils; and a variety of investigational drugs such as "atrial-selective" multiple ion channel blockers, gap junction-enhancers, and intracellular Ca(2+)-handling modulators. It is hoped that this will help to clarify the main electrophysiological mechanisms of action of different and related drug types in different disease settings, and the likely clinical significance and potential future exploitation of such mechanisms.
Collapse
Affiliation(s)
- A J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom.
| | | | | |
Collapse
|
50
|
Greiser M, Lederer WJ, Schotten U. Alterations of atrial Ca(2+) handling as cause and consequence of atrial fibrillation. Cardiovasc Res 2010; 89:722-33. [PMID: 21159669 DOI: 10.1093/cvr/cvq389] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Atrial fibrillation (AF) is the most prevalent sustained arrhythmia. As the most important risk factor for embolic stroke, AF is associated with a high morbidity and mortality. Despite decades of research, successful (pharmacological and interventional) 'ablation' of the arrhythmia remains challenging. AF is characterized by a diverse aetiology, including heart failure, hypertension, and valvular disease. Based on this understanding, new treatment strategies that are specifically tailored to the underlying pathophysiology of a certain 'type' of AF are being developed. One important aspect of AF pathophysiology is altered intracellular Ca(2+) handling. Due to the increase in the atrial activation rate and the subsequent initial [Ca(2+)](i) overload, AF induces 'remodelling' of intracellular Ca(2+) handling. Current research focuses on unravelling the contribution of altered intracellular Ca(2+) handling to different types of AF. More specifically, changes in intracellular Ca(2+) homeostasis preceding the onset of AF, in conditions which predispose to AF (e.g. heart failure), appear to be different from changes in Ca(2+) handling developing after the onset of AF. Here we review and critique altered intracellular Ca(2+) handling and its contribution to three specific aspects of AF pathophysiology, (i) excitation-transcription coupling and Ca(2+)-dependent signalling pathways, (ii) atrial contractile dysfunction, and (iii) arrhythmogenicity.
Collapse
Affiliation(s)
- Maura Greiser
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|