1
|
Chen Y, Wu Y, Feng W, Luo X, Xiao B, Ding X, Gu Y, Lu Y, Yu Y. Vav2 promotes ductus arteriosus anatomic closure via the remodeling of smooth muscle cells by Rac1 activation. J Mol Med (Berl) 2023; 101:1567-1585. [PMID: 37804474 DOI: 10.1007/s00109-023-02377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
The ductus arteriosus (DA), bridging the aorta and pulmonary artery, immediately starts closing after birth. Remodeling of DA leads to anatomic obstruction to prevent repatency. Several histological changes, especially extracellular matrices (ECMs) deposition and smooth muscle cells (SMCs) migration bring to anatomic closure. The genetic etiology and mechanism of DA closure remain elusive. We have previously reported a novel copy number variant containing Vav2 in patent ductus arteriosus (PDA) patients, but its specific role in DA closure remains unknown. The present study revealed that the expression of Vav2 was reduced in human patent DA, and it was less enrichment in the adjacent aorta. Matrigel experiments demonstrated that Vav2 could promote SMC migration from PDA patient explants. Smooth muscle cells with Vav2 overexpression also presented an increased capacity in migration and downregulated contractile-related proteins. Meanwhile, SMCs with Vav2 overexpression exhibited higher expression of collagen III and lessened protein abundance of lysyl oxidase, and both changes are beneficial to DA remodeling. Overexpression of Vav2 resulted in increased activity of Rac1, Cdc42, and RhoA in SMCs. Further investigation noteworthily found that the above alterations caused by Vav2 overexpression were particularly reversed by Rac1 inhibitor. A heterozygous, rare Vav2 variant was identified in PDA patients. Compared with the wild type, this variant attenuated Vav2 protein expression and weakened the activation of downstream Rac1, further impairing its functions in SMCs. In conclusion, Vav2 functions as an activator for Rac1 in SMCs to promote SMCs migration, dedifferentiation, and ECMs production. Deleterious variant potentially induces Vav2 loss of function, further providing possible molecular mechanisms about Vav2 in PDA pathogenesis. These findings enriched the current genetic etiology of PDA, which may provide a novel target for prenatal diagnosis and treatment. KEY MESSAGES: Although we have proposed the potential association between Vav2 and PDA incidence through whole exome sequencing, the molecular mechanisms underlying Vav2 in PDA have never been reported. This work, for the first time, demonstrated that Vav2 was exclusively expressed in closed DAs. Moreover, we found that Vav2 participated in the process of anatomic closure by mediating SMCs migration, dedifferentiation, and ECMs deposition through Rac1 activation. Our findings first identified a deleterious Vav2 c.701C>T variant that affected its function in SMCs by impairing Rac1 activation, which may lead to PDA defect. Vav2 may become an early diagnosis and an effective intervention target for PDA clinical therapy.
Collapse
Affiliation(s)
- Yinghui Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yizhuo Wu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Weiqi Feng
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xueyang Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Bing Xiao
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xiaowei Ding
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yongjia Gu
- Department of Stomatology, Shidong Hospital of Yangpu District, Shanghai, 200438, China.
| | - Yanan Lu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Yu Yu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Yarboro MT, Boatwright N, Sekulich DC, Hooper CW, Wong T, Poole SD, Berger CD, Brown AJ, Jetter CS, Sucre JMS, Shelton EL, Reese J. A novel role for PGE 2-EP 4 in the developmental programming of the mouse ductus arteriosus: consequences for vessel maturation and function. Am J Physiol Heart Circ Physiol 2023; 325:H687-H701. [PMID: 37566109 PMCID: PMC10643004 DOI: 10.1152/ajpheart.00294.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
The ductus arteriosus (DA) is a vascular shunt that allows oxygenated blood to bypass the developing lungs in utero. Fetal DA patency requires vasodilatory signaling via the prostaglandin E2 (PGE2) receptor EP4. However, in humans and mice, disrupted PGE2-EP4 signaling in utero causes unexpected patency of the DA (PDA) after birth, suggesting another role for EP4 during development. We used EP4-knockout (KO) mice and acute versus chronic pharmacological approaches to investigate EP4 signaling in DA development and function. Expression analyses identified EP4 as the primary EP receptor in the DA from midgestation to term; inhibitor studies verified EP4 as the primary dilator during this period. Chronic antagonism recapitulated the EP4 KO phenotype and revealed a narrow developmental window when EP4 stimulation is required for postnatal DA closure. Myography studies indicate that despite reduced contractile properties, the EP4 KO DA maintains an intact oxygen response. In newborns, hyperoxia constricted the EP4 KO DA but survival was not improved, and permanent remodeling was disrupted. Vasomotion and increased nitric oxide (NO) sensitivity in the EP4 KO DA suggest incomplete DA development. Analysis of DA maturity markers confirmed a partially immature EP4 KO DA phenotype. Together, our data suggest that EP4 signaling in late gestation plays a key developmental role in establishing a functional term DA. When disrupted in EP4 KO mice, the postnatal DA exhibits signaling and contractile properties characteristic of an immature DA, including impairments in the first, muscular phase of DA closure, in addition to known abnormalities in the second permanent remodeling phase.NEW & NOTEWORTHY EP4 is the primary EP receptor in the ductus arteriosus (DA) and is critical during late gestation for its development and eventual closure. The "paradoxical" patent DA (PDA) phenotype of EP4-knockout mice arises from a combination of impaired contractile potential, altered signaling properties, and a failure to remodel associated with an underdeveloped immature vessel. These findings provide new mechanistic insights into women who receive NSAIDs to treat preterm labor, whose infants have unexplained PDA.
Collapse
Affiliation(s)
- Michael T Yarboro
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Naoko Boatwright
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Deanna C Sekulich
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher W Hooper
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ting Wong
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Stanley D Poole
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Courtney D Berger
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alexus J Brown
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher S Jetter
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jennifer M S Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Elaine L Shelton
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Jeff Reese
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
3
|
Abstract
Patent ductus arteriosus (PDA) may be found in 0.1-0.2% of term infants, but the average incidence is at least five-fold higher in premature infants, correlating inversely with birth weight and gestational age. While not all patients with a PDA require treatment, the deleterious effects of persistent left-to-right shunting across the ductus can have important short- and long-term consequences. Medical and interventional approaches to PDA closure have evolved greatly in the past decade and add to the decision-making pathways. This article summarizes the pathophysiology of PDA and characterizes the medical, surgical and endovascular treatment approaches.
Collapse
|
4
|
Understanding the pathobiology in patent ductus arteriosus in prematurity-beyond prostaglandins and oxygen. Pediatr Res 2019; 86:28-38. [PMID: 30965358 DOI: 10.1038/s41390-019-0387-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/05/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
The ductus arteriosus (DA) is probably the most intriguing vessel in postnatal hemodynamic transition. DA patency in utero is an active state, in which prostaglandin E2 (PGE2) and nitric monoxide (NO), play an important role. Since the DA gets programmed for postnatal closure as gestation advances, in preterm infants the DA frequently remains patent (PDA). PGE2 exposure programs functional postnatal closure by inducing gene expression of ion channels and phosphodiesterases and anatomical closure by inducing intimal thickening. Postnatally, oxygen inhibits potassium and activates calcium channels, which ultimately leads to a rise in intracellular calcium concentration consequently inducing phosphorylation of the myosin light chain and thereby vasoconstriction of the DA. Since ion channel expression is lower in preterm infants, oxygen induced functional vasoconstriction is attenuated in comparison with full term newborns. Furthermore, the preterm DA is more sensitive to both PGE2 and NO compared to the term DA pushing the balance toward less constriction. In this review we explain the physiology of DA patency in utero and subsequent postnatal functional closure. We will focus on the pathobiology of PDA in preterm infants and the (un)intended effect of antenatal exposure to medication on both fetal and neonatal DA vascular tone.
Collapse
|
5
|
Yarboro MT, Durbin MD, Herington JL, Shelton EL, Zhang T, Ebby CG, Stoller JZ, Clyman RI, Reese J. Transcriptional profiling of the ductus arteriosus: Comparison of rodent microarrays and human RNA sequencing. Semin Perinatol 2018; 42:212-220. [PMID: 29910032 PMCID: PMC6064668 DOI: 10.1053/j.semperi.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DA closure is crucial for the transition from fetal to neonatal life. This closure is supported by changes to the DA's signaling and structural properties that distinguish it from neighboring vessels. Examining transcriptional differences between these vessels is key to identifying genes or pathways responsible for DA closure. Several microarray studies have explored the DA transcriptome in animal models but varied experimental designs have led to conflicting results. Thorough transcriptomic analysis of the human DA has yet to be performed. A clear picture of the DA transcriptome is key to guiding future research endeavors, both to allow more targeted treatments in the clinical setting, and to understand the basic biology of DA function. In this review, we use a cross-species cross-platform analysis to consider all available published rodent microarray data and novel human RNAseq data in order to provide high priority candidate genes for consideration in future DA studies.
Collapse
Affiliation(s)
- Michael T. Yarboro
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Matthew D. Durbin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Jennifer L. Herington
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Elaine L. Shelton
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Tao Zhang
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Cris G. Ebby
- Rutgers New Jersey Medical School, Newark, NJ 08901
| | - Jason Z. Stoller
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ronald I. Clyman
- Department of Pediatrics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Jeff Reese
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Vanderbilt University, 1125 Light Hall/MRB IV Bldg., 2215 B Garland Ave., Nashville, TN 37232; Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232.
| |
Collapse
|
6
|
Paracetamol in Patent Ductus Arteriosus Treatment: Efficacious and Safe? BIOMED RESEARCH INTERNATIONAL 2017; 2017:1438038. [PMID: 28828381 PMCID: PMC5554551 DOI: 10.1155/2017/1438038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/22/2017] [Accepted: 06/11/2017] [Indexed: 12/19/2022]
Abstract
In preterm infants, failure or delay in spontaneous closure of Ductus Arteriosus (DA), resulting in the condition of Patent Ductus Arteriosus (PDA), represents a significant issue. A prolonged situation of PDA can be associated with several short- and long-term complications. Despite years of researches and clinical experience on PDA management, unresolved questions about the treatment and heterogeneity of clinical practices in different centers still remain, in particular regarding timing and modality of intervention. Nowadays, the most reasonable strategy seems to be reserving the treatment only to hemodynamically significant PDA. The first-line therapy is medical, and ibuprofen, related to several side effects especially in terms of nephrotoxicity, is the drug of choice. Administration of oral or intravenous paracetamol (acetaminophen) recently gained attention, appearing effective as traditional nonsteroidal anti-inflammatory drugs (NSAIDs) in PDA closure, with lower toxicity. The results of the studies analyzed in this review mostly support paracetamol efficacy in ductal closure, with inconstant low and transient elevation of liver enzymes as reported side effect. However, more studies are needed to confirm if this therapy shows a real safety profile and to evaluate its long-term outcomes, before considering paracetamol as first-choice drug in PDA treatment.
Collapse
|
7
|
Yokoyama U. Prostaglandin E-mediated molecular mechanisms driving remodeling of the ductus arteriosus. Pediatr Int 2015; 57:820-7. [PMID: 26228894 DOI: 10.1111/ped.12769] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022]
Abstract
The ductus arteriosus (DA), a fetal arterial connection between the pulmonary arteries and aorta, normally closes after birth. Persistent DA patency usually has life-threatening consequences. In certain DA-dependent congenital heart diseases, however, patient survival depends on maintaining DA patency. Complete closure of the DA involves both functional closure, induced by muscle contraction, and anatomical closure, achieved through morphological and molecular remodeling. Anatomical closure of the DA is associated with the formation of intimal thickening, which is characterized by deposition of extracellular matrix in the subendothelial region, sparse elastic fiber formation, and migration of medial smooth muscle cells into the subendothelial space. In addition, fetal molecular remodeling that is suitable for postnatal muscle contraction has been observed in the DA. After the second trimester, high concentration of prostaglandin E2 (PGE2) causes the DA to dilate through the remainder of the fetal period. Emerging evidence from studies using pharmacological approaches and genetically modified mice suggests that, in addition to its vasodilatory effect, this chronic exposure to PGE2 promotes DA-specific anatomical and molecular remodeling through EP4, one of four receptor subtypes for PGE2. Signals that are downstream of PGE2-EP4, such as cyclic AMP (cAMP)-protein kinase A (PKA), exchange protein activated by cAMP (Epac), phospholipase C, and Wnt/β-catenin, may be involved in the regulation of intimal thickening, elastogenesis, and contraction-related genes. Understanding the physiological role of PGE2 in DA remodeling could enable more effective regulation of PDA, both in isolation and in the context of congenital cardiac anomalies.
Collapse
Affiliation(s)
- Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Shelton EL, Ector G, Galindo CL, Hooper CW, Brown N, Wilkerson I, Pfaltzgraff ER, Paria BC, Cotton RB, Stoller JZ, Reese J. Transcriptional profiling reveals ductus arteriosus-specific genes that regulate vascular tone. Physiol Genomics 2014; 46:457-66. [PMID: 24790087 DOI: 10.1152/physiolgenomics.00171.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Failure of the ductus arteriosus (DA) to close at birth can lead to serious complications. Conversely, certain profound congenital cardiac malformations require the DA to be patent until corrective surgery can be performed. In each instance, clinicians have a very limited repertoire of therapeutic options at their disposal - indomethacin or ibuprofen to close a patent DA (PDA) and prostaglandin E1 to maintain patency of the DA. Neither treatment is specific to the DA and both may have deleterious off-target effects. Therefore, more therapeutic options specifically targeted to the DA should be considered. We hypothesized the DA possesses a unique genetic signature that would set it apart from other vessels. A microarray was used to compare the genetic profiles of the murine DA and ascending aorta (AO). Over 4,000 genes were differentially expressed between these vessels including a subset of ion channel-related genes. Specifically, the alpha and beta subunits of large-conductance calcium-activated potassium (BKCa) channels are enriched in the DA. Gain- and loss-of-function studies showed inhibition of BKCa channels caused the DA to constrict, while activation caused DA relaxation even in the presence of O2. This study identifies subsets of genes that are enriched in the DA that may be used to develop DA-specific drugs. Ion channels that regulate DA tone, including BKCa channels, are promising targets. Specifically, BKCa channel agonists like NS1619 maintain DA patency even in the presence of O2 and may be clinically useful.
Collapse
Affiliation(s)
- Elaine L Shelton
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Gerren Ector
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Cristi L Galindo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Christopher W Hooper
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Naoko Brown
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Irene Wilkerson
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elise R Pfaltzgraff
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bibhash C Paria
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Robert B Cotton
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jason Z Stoller
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jeff Reese
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
9
|
|
10
|
Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y. The Prostanoid EP4 Receptor and Its Signaling Pathway. Pharmacol Rev 2013; 65:1010-52. [DOI: 10.1124/pr.112.007195] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
11
|
Majed BH, Khalil RA. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol Rev 2012; 64:540-82. [PMID: 22679221 DOI: 10.1124/pr.111.004770] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prostacyclin (PGI(2)) is a member of the prostanoid group of eicosanoids that regulate homeostasis, hemostasis, smooth muscle function and inflammation. Prostanoids are derived from arachidonic acid by the sequential actions of phospholipase A(2), cyclooxygenase (COX), and specific prostaglandin (PG) synthases. There are two major COX enzymes, COX1 and COX2, that differ in structure, tissue distribution, subcellular localization, and function. COX1 is largely constitutively expressed, whereas COX2 is induced at sites of inflammation and vascular injury. PGI(2) is produced by endothelial cells and influences many cardiovascular processes. PGI(2) acts mainly on the prostacyclin (IP) receptor, but because of receptor homology, PGI(2) analogs such as iloprost may act on other prostanoid receptors with variable affinities. PGI(2)/IP interaction stimulates G protein-coupled increase in cAMP and protein kinase A, resulting in decreased [Ca(2+)](i), and could also cause inhibition of Rho kinase, leading to vascular smooth muscle relaxation. In addition, PGI(2) intracrine signaling may target nuclear peroxisome proliferator-activated receptors and regulate gene transcription. PGI(2) counteracts the vasoconstrictor and platelet aggregation effects of thromboxane A(2) (TXA(2)), and both prostanoids create an important balance in cardiovascular homeostasis. The PGI(2)/TXA(2) balance is particularly critical in the regulation of maternal and fetal vascular function during pregnancy and in the newborn. A decrease in PGI(2)/TXA(2) ratio in the maternal, fetal, and neonatal circulation may contribute to preeclampsia, intrauterine growth restriction, and persistent pulmonary hypertension of the newborn (PPHN), respectively. On the other hand, increased PGI(2) activity may contribute to patent ductus arteriosus (PDA) and intraventricular hemorrhage in premature newborns. These observations have raised interest in the use of COX inhibitors and PGI(2) analogs in the management of pregnancy-associated and neonatal vascular disorders. The use of aspirin to decrease TXA(2) synthesis has shown little benefit in preeclampsia, whereas indomethacin and ibuprofen are used effectively to close PDA in the premature newborn. PGI(2) analogs have been used effectively in primary pulmonary hypertension in adults and have shown promise in PPHN. Careful examination of PGI(2) metabolism and the complex interplay with other prostanoids will help design specific modulators of the PGI(2)-dependent pathways for the management of pregnancy-related and neonatal vascular disorders.
Collapse
Affiliation(s)
- Batoule H Majed
- Harvard Medical School, Brigham and Women's Hospital, Division of Vascular Surgery, 75 Francis St., Boston, MA 02115, USA
| | | |
Collapse
|
12
|
Abstract
The ductus arteriosus is a vital fetal structure designed to close shortly after birth. Although many physiologic and pharmacologic investigations have characterized the closure of this structure, genetic studies of persistent patency of the ductus arteriosus (patent ductus arteriosus, PDA) are relatively recent. Progress in the identification of specific genes associated with PDA is well behind that of many adult-onset diseases because of several reasons ranging from the lack of large biorepositories for this unique population to the belief that any genetic contribution to PDA is minimal. Viewing the PDA as a complex, developmentally influenced disease with both genetic and environmental risk factors has resulted in initial successes in some genetic studies. We will introduce several genetic approaches, which have been or are currently being applied to the study of PDA, that have been successful in identifying polymorphisms associated with adult diseases. Genetic investigations of PDA will be discussed with respect to heritability, in general, and to specific risk genes. Several animal models that have been used to study PDA-related genes will also be presented. Further advances in discovering genetic variation causing PDA will drive the more rational use of current therapies, and may help identify currently unknown targets for future therapeutic manipulation.
Collapse
Affiliation(s)
- Hanine Hajj
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
13
|
Gournay V. The ductus arteriosus: physiology, regulation, and functional and congenital anomalies. Arch Cardiovasc Dis 2010; 104:578-85. [PMID: 22117910 DOI: 10.1016/j.acvd.2010.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/25/2010] [Accepted: 06/28/2010] [Indexed: 11/26/2022]
Abstract
Over the last three decades, knowledge about fundamental and clinical aspects of the ductus arteriosus has substantially improved, leading to considerable progress in the management of various cardiac diseases involving the ductus. The identification of the mechanisms regulating ductal patency led to design pharmacological drugs to achieve medical closure of PDA in premature infants, or inversely to maintain patency in neonates with duct-dependent congenital heart diseases. Concurrently, widespread availability of echocardiography has improved the detection of congenital PDA, resulting in earlier treatment. Closure of PDA, by either surgery or transcatheter techniques, can now be achieved safely, resulting in a decrease in the incidence of severe complications of PDA.
Collapse
Affiliation(s)
- Véronique Gournay
- Pediatric cardiology unit, CHU de Nantes, 38, boulevard Jean-Monnet, 44093 Nantes cedex, France.
| |
Collapse
|
14
|
Antonucci R, Bassareo P, Zaffanello M, Pusceddu M, Fanos V. Patent ductus arteriosus in the preterm infant: new insights into pathogenesis and clinical management. J Matern Fetal Neonatal Med 2010; 23 Suppl 3:34-7. [DOI: 10.3109/14767058.2010.509920] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Giniger RP, Buffat C, Millet V, Simeoni U. Renal effects of ibuprofen for the treatment of patent ductus arteriosus in premature infants. J Matern Fetal Neonatal Med 2009; 20:275-83. [PMID: 17437233 DOI: 10.1080/14767050701227950] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In recent years ibuprofen has been proposed for the treatment of patent ductus arteriosus (PDA) as it has been proved to be equally as effective as indomethacin and shows fewer cerebral blood flow, intestinal and renal hemodynamic effects. A number of studies and several meta-analyses comparing both drugs are now available that debate whether indomethacin or ibuprofen should be used for PDA prophylaxis or closure. This review examines the available knowledge on the specific issue of the effects of ibuprofen on kidney function, as improved renal tolerance is a major argument in favor of its use in the routine treatment of PDA. There is sufficient evidence to consider that ibuprofen, at the currently proposed dosing regimen, has a similar efficacy to indomethacin but is better tolerated by the neonatal kidney when employed for the treatment of established PDA. However, adverse effects of ibuprofen have been evidenced both in trials on the use of ibuprofen for the prevention of PDA and of intraventricular hemorrhage-periventricular hemorrhage (IVH-PVH), and in experimental studies on a neonatal, anesthetized animal model. Thus ibuprofen, as with other cyclooxygenase (COX) inhibitors, may not be exempt from causing renal adverse effects, especially in circumstances when renal prostaglandin activation is maximal (i.e., when administrated early after birth, in more immature patients and in certain situations such as in the anesthetized rabbit). However, although the issue has been addressed extensively in the last decades, there is insufficient evidence that therapeutic intervention in PDA is beneficial in terms of mortality or clinically significant morbidity outcomes. Studies aimed at resolving this key issue are still needed.
Collapse
Affiliation(s)
- R P Giniger
- Faculté de Médecine, Université de la Méditerranée and Division of Neonatology La Conception Hospital, AP-HM, Marseille, France
| | | | | | | |
Collapse
|
16
|
Developmental changes in the effects of prostaglandin E2 in the chicken ductus arteriosus. J Comp Physiol B 2008; 179:133-43. [PMID: 18726601 DOI: 10.1007/s00360-008-0296-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/10/2008] [Accepted: 08/03/2008] [Indexed: 10/21/2022]
Abstract
Prostaglandin E(2) (PGE(2)) is the major vasodilator prostanoid of the mammalian ductus arteriosus (DA). In the present study we analyzed the response of isolated DA rings from 15-, 19- and 21-day-old chicken embryos to PGE(2) and other vascular smooth muscle relaxing agents acting through the cyclic AMP signaling pathway. PGE(2) exhibited a relaxant response in the 15-day DA, but not in the 19- and 21-day DA. Moreover, high concentrations of PGE(2) (>or= 3 microM in 15-day and >or= 1 microM in 19-day and 21-day DA) induced contraction of the chicken DA. The presence of the TP receptor antagonist SQ29,548, unmasked a relaxant effect of PGE(2) in the 19- and 21-day DA and increased the relaxation induced by PGE(2) in the 15-day DA. The presence of the EP receptor antagonist AH6809 abolished PGE(2)-mediated relaxation. The relaxant responses induced by PGE(2) and the beta-adrenoceptor agonist isoproterenol, but not those elicited by the adenylate cyclase activator forskolin or the phosphodiesterase 3 inhibitor milrinone, decreased with maturation. High oxygen concentrations (95%) decreased the relaxation to PGE(2). The relaxing potency and efficacy of isoproterenol and milrinone were higher in the pulmonary than in the aortic side of the DA, whereas no regional differences were found in the response to PGE(2). We conclude that, in contrast to the mammalian situation, PGE(2) is a weak relaxant agent of the chicken DA and, with advancing incubation, it even stimulates TP vasoconstrictive receptors.
Collapse
|
17
|
Thébaud B, Wu XC, Kajimoto H, Bonnet S, Hashimoto K, Michelakis ED, Archer SL. Developmental absence of the O2 sensitivity of L-type calcium channels in preterm ductus arteriosus smooth muscle cells impairs O2 constriction contributing to patent ductus arteriosus. Pediatr Res 2008; 63:176-81. [PMID: 18091358 DOI: 10.1203/pdr.0b013e31815ed059] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Patent ductus arteriosus (PDA) complicates the hospital course of premature infants. Impaired oxygen (O2)-induced vasoconstriction in preterm ductus arteriosus (DA) contributes to PDA and results, in part, from decreased function/expression of O2-sensitive, voltage-gated potassium channels (Kv) in DA smooth muscle cells (DASMCs). This paradigm suggests that activation of the voltage-sensitive L-type calcium channels (CaL), which increases cytosolic calcium ([Ca2+]i), is a passive consequence of membrane depolarization. However, effective Kv gene transfer only partially matures O2 responsiveness in preterm DA. Thus, we hypothesized that CaL are directly O2 sensitive and that immaturity of CaL function in preterm DA contributes to impaired O2 constriction. We show that preterm rabbit DA rings have reduced O2- and 4-aminopyridine (Kv blocker)-induced constriction. Preterm rabbit DASMCs have reduced O2-induced whole-cell calcium current (ICa) and [Ca2+]i. BAY K8644, a CaL activator, increased O2 constriction, ICa, and [Ca]i in preterm DASMCs to levels seen at term but had no effect on human and rabbit term DA. Preterm rabbit DAs have decreased gamma and increased alpha subunit protein expression. We conclude that the CaL in term rabbit and human DASMCs is directly O2 sensitive. Functional immaturity of CaL O2 sensitivity contributes to impaired O2 constriction in premature DA and can be reversed by BAY K8644.
Collapse
Affiliation(s)
- Bernard Thébaud
- Department of Pediatrics, Division of Neonatology, University of Alberta, Edmonton, T6G 2J3, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Maturation of the contractile response of the Emu ductus arteriosus. J Comp Physiol B 2007; 178:401-12. [PMID: 18071713 DOI: 10.1007/s00360-007-0232-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/02/2007] [Accepted: 11/28/2007] [Indexed: 12/28/2022]
Abstract
The avian embryo has a pair of ductus arteriosi that allow the blood to bypass the pulmonary circulation prior to the initiation of lung ventilation. Our objective was to characterize the factors regulating DA tone during the later stages of development in the emu embryo. We examined in vitro the reactivity of the emu ductus from day 39 through 49 of a 50-day incubation. Steady state tension was not altered by the COX inhibitor indomethacin or the nitric oxide synthase inhibitor L-NAME. However, prostaglandin E(2) (PGE(2)) produced a significant relaxation. Norephinephrine and U-46619 produced strong significant contractions in the emu DA and the adrenergic response matured with development. The contractile response to oxygen matured as the embryo developed with significant oxygen-induced contraction on days 45 and 49, but not on day 39 of incubation. The Kv channel inhibitor 4-aminopyridine induced the contraction of the day 48-49 ductus of similar magnitude as the oxygen-induced contraction. The oxygen-induced contraction was reversed by the reducing agent DTT and the electron transport chain inhibitor rotenone. These results suggest that while the emu DA responds to PGE(2), locally produced PGE(2) are not the important regulators of vessel tone. Additionally, relaxation upon addition of the mitochondria electron transport chain inhibitor rotenone suggests that the mitochondria might be acting as vascular oxygen sensors in this system through the production of reactive oxygen species to stimulate the oxygen-induced contraction in a similar fashion to mammals.
Collapse
|
19
|
Antonucci R, Cuzzolin L, Arceri A, Fanos V. Urinary prostaglandin E2 in the newborn and infant. Prostaglandins Other Lipid Mediat 2007; 84:1-13. [PMID: 17643883 DOI: 10.1016/j.prostaglandins.2007.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 04/22/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
Prostaglandin E(2) (PGE(2)) belongs to a family of biologically active lipids derived from the 20-carbon essential fatty acids. Renal PGE(2) is involved in the development of the kidney; it also contributes to regulate renal perfusion and glomerular filtration rate, and controls water and electrolyte balance. Furthermore, this mediator protects the kidney against excessive functional changes during the transition from fetal to extrauterine life, when it counteracts the vasoconstrictive effects of high levels of angiotensin II and other mediators. There is evidence that PGE(2) plays an important pathophysiological role in neonatal conditions of renal stress, and in congenital or acquired nephropaties. Thus, measurement of urinary PGE(2) as an index of renal synthesis of this primary prostaglandin may represent a non-invasive and sensitive method of investigating the homeostatic function of the kidney in early life. The aim of this literature review is to examine urinary PGE(2) as a non-invasive marker of renal homeostasis in the newborn and infant under both physiological and pathological conditions, or during treatments with widely used, potentially toxic drugs.
Collapse
Affiliation(s)
- Roberto Antonucci
- Department of Pediatrics and Clinical Medicine-Section of Neonatal Intensive Care Unit, University of Cagliari, Cagliari, Italy
| | | | | | | |
Collapse
|
20
|
Trivedi DB, Sugimoto Y, Loftin CD. Attenuated cyclooxygenase-2 expression contributes to patent ductus arteriosus in preterm mice. Pediatr Res 2006; 60:669-74. [PMID: 17065565 DOI: 10.1203/01.pdr.0000246480.13170.c0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Patent ductus arteriosus (DA) is the second most common congenital heart defect, the incidence of which is increased in premature infants, although mechanisms responsible are not clear. Our previous studies with genetic or pharmacological inactivation of cyclooxygenase-2 (COX-2) in mice, emphasized the importance of this enzyme in normal DA closure. The current study was designed to determine whether reduced COX-2 expression contributes to patent DA in preterm mice. Real-time PCR analysis indicated that COX-2 expression in the fetal mouse DA significantly increased with advancing gestational age. Furthermore, we observed a significant induction in COX-2 expression in the DA at 3 h after birth at full-term gestation. In contrast, COX-2 expression was significantly attenuated in the DA of preterm neonatal mice. DA closure was incomplete in preterm mice at 3 h postpartum, a time-point when the DA of full-term neonates was completely remodeled. Additionally, COX-2 expression was significantly attenuated in the DA of mice deficient in the prostanoid receptor EP4, which also show a patent DA phenotype, suggesting the importance of this receptor for the induction of COX-2 required for DA closure. Overall, these studies suggest that attenuated expression of COX-2 may contribute to increased patent DA at preterm gestation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cyclooxygenase 1/genetics
- Cyclooxygenase 1/metabolism
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Ductus Arteriosus, Patent/enzymology
- Ductus Arteriosus, Patent/genetics
- Ductus Arteriosus, Patent/physiopathology
- Female
- Fetus/enzymology
- Gene Expression Regulation, Enzymologic
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Pregnancy
- Premature Birth
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP4 Subtype
- Vasoconstriction
Collapse
Affiliation(s)
- Darshini B Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
21
|
Rheinlaender C, Weber SCT, Sarioglu N, Strauss E, Obladen M, Koehne P. Changing expression of cyclooxygenases and prostaglandin receptor EP4 during development of the human ductus arteriosus. Pediatr Res 2006; 60:270-5. [PMID: 16857763 DOI: 10.1203/01.pdr.0000233066.28496.7c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Programmed proliferative degeneration of the human fetal ductus arteriosus (DA) in preparation for its definite postnatal closure has a large developmental variability and is controlled by several signaling pathways, most prominently by prostaglandin (PG) metabolism. Numerous studies in various mammalian species have shown interspecies and developmental differences in ductal protein expression of cyclooxygenase (COX) isoforms and PG E receptor subtypes (EP1-4). We examined COX1, COX2, and EP4 receptor protein expression immunohistochemically in 57 human fetal autopsy DA specimens of 11-38 wk of gestation. According to their histologic maturity, specimens were classified into four stages using a newly designed maturity score that showed that histologic maturity of the DA was not closely related to gestational age. COX1 expression was found in all DA regions and rose steadily during development. COX2 staining remained weak throughout gestation. EP4 receptor staining increased moderately during gestation and was limited to the intima and media. In conclusion, histologic maturity classification helps to address developmentally regulated processes in the fetal DA. Concerning prostaglandin metabolism our findings are in line with animal studies, which assigned COX1 the predominant role in the DA throughout gestation. EP4 receptor presumably plays a key role for active patency of the human DA in the third trimester.
Collapse
Affiliation(s)
- Cornelia Rheinlaender
- Department of Neonatology, Charité Universitätsmedizin Berlin, Campus Virchow Hospital, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Momma K, Toyoshima K, Takeuchi D, Imamura S, Nakanishi T. In vivo reopening of the neonatal ductus arteriosus by a prostanoid EP4-receptor agonist in the rat. Prostaglandins Other Lipid Mediat 2005; 78:117-28. [PMID: 16303610 DOI: 10.1016/j.prostaglandins.2005.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 11/21/2022]
Abstract
Prostaglandin E1 is used to reopen the constricted ductus arteriosus in neonates with ductus-dependent circulation. To clarify possible prostanoid receptor agonists that can reopen the neonatal ductus with fewer side effects, we studied in vivo reopening of the neonatal ductus arteriosus by AE1-329, a prostanoid EP4-receptor agonist, in the rat. Neonatal rats were incubated at 33 degrees C. The inner diameter of the ductus was measured with a microscope and a micrometer following rapid whole-body freezing. Intraesophageal pressure was measured with a Millar micro-tip transducer. The ductus arteriosus constricted quickly after birth, and the inner diameter was 0.80 and 0.08 mm at 0 and 60 min after birth. PGE1 and AE1-329, injected subcutaneously at 60 min after birth, dilated the ductus dose-dependently. Thirty minutes after injection of 10 ng/g of PGE1 and AE1-329, the ductus diameter was 0.52 and 0.65 mm, respectively. The ductus-dilating effect of PGE1 was maximal at 15-30 min, and disappeared at 2 h. The ductus-dilating effect of AE1-329 was prolonged, the ductus was widely open at 6 h, and closed at 12 h after injection of 10 ng/g AE1-329. AE1-259-01 (EP2 agonist) (100 ng/g) did not dilate the neonatal ductus. Respiration was depressed by PGE1, but not by AE1-329. These results indicate the major role of EP4 in the neonatal ductus and that AE1-329, an EP4 agonist, can be used to dilate the neonatal constricted ductus without the side effects shown by EP3, including apnea.
Collapse
Affiliation(s)
- Kazuo Momma
- Section of Pediatric Cardiology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | |
Collapse
|
23
|
Momma K, Toyoshima K, Takeuchi D, Imamura S, Nakanishi T. In vivo constriction of the fetal and neonatal ductus arteriosus by a prostanoid EP4-receptor antagonist in rats. Pediatr Res 2005; 58:971-5. [PMID: 16257930 DOI: 10.1203/01.pdr.0000182182.49476.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Indomethacin is used to constrict the patent ductus arteriosus in premature infants. To clarify possible prostanoid receptor antagonists that can constrict the ductus, we studied in vivo constriction of the fetal and neonatal ductus arteriosus by AE3-208, a prostanoid EP4-receptor antagonist, in rats. Following quick cesarean section of near-term pregnant rats (21 d), neonates were incubated in room air at 33 degrees C. The inner diameter of the ductus was measured with a microscope and a micrometer following rapid whole-body freezing of the fetus and neonate, and sectioning of the thorax in the frontal plane on a freezing microtome. In the control, the ductus arteriosus constricted quickly after birth, and the inner diameter was 0.80 mm in the fetus and 0.06 mm at 90 min after birth. AE3-208, administered orogastrically to the dam, constricted the fetal ductus dose dependently. Maximal ductal constriction was observed 4 h after administration, and the ductal diameters were 0.06 mm and 0.26 mm after administration of 10 mg/kg and 10 ng/kg of AE3-208, respectively. In neonatal rats, AE3-208 injected subcutaneously at 30 min after birth, inhibited dilatation of the ductus by PGE1 dose dependently. PGE1 (10 microg/kg) was injected subcutaneously to the 1-h-old neonatal rat, and the ductal diameters were 0.53 mm and 0.19 mm without and with pretreatment of AE3-208 (10 microg/kg), respectively. These results indicate the major role of EP4 in the fetal and neonatal ductus and show that an EP4 antagonist can be used to constrict the patent ductus of premature infants.
Collapse
Affiliation(s)
- Kazuo Momma
- Section of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | | | | | | | | |
Collapse
|
24
|
Kajino H, Taniguchi T, Fujieda K, Ushikubi F, Muramatsu I. An EP4 receptor agonist prevents indomethacin-induced closure of rat ductus arteriosus in vivo. Pediatr Res 2004; 56:586-90. [PMID: 15295094 DOI: 10.1203/01.pdr.0000139409.25014.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Indomethacin exerts a strong tocolytic effect by suppressing uterine contractions mediated by prostaglandins. However, indomethacin also induces in utero closure of fetal ductus arteriosus (DA), leading to serious neonatal consequences. Using rats, we tested the effect of an agonist for a subtype of prostaglandin E2 receptor (EP4), ONO-AE1-437 and its prodrug ONO-4819, as a DA dilator during indomethacin treatment. In vitro, ONO-AE1-437 exhibited a potent dilatory effect on DA against O(2)- and indomethacin-induced contractions in a concentration-dependent manner. In vivo, rat dams were given indomethacin (10 mg/kg, p.o.) alone or with ONO-4819 (0.3 micrograms/kg/h, s.c.) on d 21 of gestation and pups were delivered 4 h later through cesarean section to evaluate the ratio of diameter of DA to that of pulmonary artery. Pups from dams with no drug had DA/PA ratio of 0.9 +/- 0.05, whereas those from dams with indomethacin alone had a decreased ratio of 0.2 +/- 0.03. When ONO-4819 was co-administered to the dams, the ratio recovered significantly to 0.7 +/- 0.06. The administration of ONO-4819 to the dams did not induce any increase in the uterine activity. These results suggest that administration of an EP4 agonist in addition to indomethacin might prevent adverse reactions of indomethacin on fetal DA without restricting its tocolytic effects.
Collapse
Affiliation(s)
- Hiroki Kajino
- Department of Pediatrics, Asahikawa Medical College, Asahikawa, 078-8510 Japan
| | | | | | | | | |
Collapse
|
25
|
Bouayad A, Fouron JC, Hou X, Beauchamp M, Quiniou C, Abran D, Peri K, Clyman RI, Varma DR, Chemtob S. Developmental regulation of prostaglandin E2 synthase in porcine ductus arteriosus. Am J Physiol Regul Integr Comp Physiol 2004; 286:R903-9. [PMID: 14715488 DOI: 10.1152/ajpregu.00437.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis of PGE2, the major vasodilator prostanoid of the ductus arteriosus (DA), is catalyzed by PGE2 synthases (PGES). The factors implicated in increased PGE2 synthesis in the perinatal DA are not known. We studied the developmental changes of PGES along with that of cyclooxygenase (COX)-2 and cytosolic phospholipase A2 (cPLA2) in the DA of fetal (75-90% gestation) and immediately postnatal newborn (NB) piglets. Levels of microsomal PGES (mPGES), COX-2, and PGE2 in the DA of NB were ∼7-fold higher than in fetus; activities of cytosolic PGES (cPGES) and cPLA2 in DA of the fetus and NB did not differ. Because platelet-activating factor (PAF) could regulate COX-2 expression, the former was measured and found to be more abundant in the DA of the NB than of fetus. PAF elicited an increase in mPGES, COX-2, and PGE2 in fetal DA to levels approaching those of the NB; cPGES, cPLA2, and COX-1 were unaffected. In perinatal NB DA, PAF receptor antagonists BN-52021 and THG-315 reduced mPGES, COX-2, and PGE2 levels and were associated with increased DA tone. It is concluded that PAF contributes in regulating DA tone by governing mPGES, COX-2, and ensuing PGE2 levels in the perinate.
Collapse
Affiliation(s)
- Asmàa Bouayad
- FRCP(C) Research Center, Sainte-Justine Hospital, 3175 Côte Ste-Catherine, Montréal, Quebec H3T 1C5, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Banu SK, Arosh JA, Chapdelaine P, Fortier MA. Molecular cloning and spatio-temporal expression of the prostaglandin transporter: a basis for the action of prostaglandins in the bovine reproductive system. Proc Natl Acad Sci U S A 2003; 100:11747-52. [PMID: 13130075 PMCID: PMC208829 DOI: 10.1073/pnas.1833330100] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Indexed: 11/18/2022] Open
Abstract
Prostaglandins (PGs) play important roles in mammalian reproductive function through autocrine, paracrine, and endocrine actions. However, they predominate as charged anions and diffuse poorly across the plasma membrane. Recently, a PG transporter (PGT) has been found to mediate PG transport across cell membranes. In ruminants, endometrial PGs are transported by a vascular pathway to the ovary to regress or rescue the corpus luteum. There is no report on the role of PGT in the reproductive functions of any species. We have cloned and characterized the bovine PGT (bPGT) that transports different PGs in the following affinity order: PGE2 = PGF2alpha >/= PGD2 much greater than arachidonate. bPGT mRNA and protein are expressed in endometrium, myometrium, and the utero-ovarian plexus (UOP) during the estrous cycle. The level of bPGT expression is higher in endometrium and UOP on the side of corpus luteum between days 13 and 18 of the estrous cycle. bPGT protein is localized in endometrial stroma, luminal epithelial cells, myometrial smooth muscle cells, and vascular smooth muscle cells of uterine vein and artery. In UOP, bPGT is selectively expressed in vascular smooth muscle cells of uterine vein and ovarian artery. Spatio-temporal expression of bPGT in uterine tissues and UOP supports a significant role of bPGT in cellular and compartmental transport of PGs to mediate the endocrine action at the time of luteolysis or establishment of pregnancy in bovine. This study describes and proposes a role of PGT in the regulation of reproductive processes.
Collapse
Affiliation(s)
- Sakhila K Banu
- Département d'Ontogénie et Reproduction, Centre de Recherche en Biologie de la Reproduction, Centre de Recherche du Centre Hospitalier de l'Université Laval, and Département d'Obstétrique et Gynécologie, Université Laval, Ste-Foy, Québec, Canada GIV 4G2
| | | | | | | |
Collapse
|
27
|
Leonhardt A, Glaser A, Wegmann M, Schranz D, Seyberth H, Nüsing R. Expression of prostanoid receptors in human ductus arteriosus. Br J Pharmacol 2003; 138:655-9. [PMID: 12598419 PMCID: PMC1573700 DOI: 10.1038/sj.bjp.0705092] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
1. Prostaglandins play a major role in maintaining ductal patency in utero. Ductal tone is regulated by both locally released and circulating vasodilatory prostaglandins. In infants with ductus arteriosus-dependent congenital heart disease, ductal patency is maintained by intravenous administration of prostaglandin (PG) E(1). Little information is available regarding the expression of prostaglandin receptors in man. 2. By means of RT-PCR and immunohistochemistry we studied the expression of the PGI(2) receptor (IP), the four different PGE(2) receptors (EP1, EP2, EP3 and EP4), and the receptors for thromboxane (Tx) A(2) (TP), PGD(2) (DP) and PGF(2alpha) (FP) in the ductus arteriosus of three newborn infants with ductus arteriosus-dependent congenital heart disease and intravenous infusion of PGE(1) and of one 8 month old child with a patent ductus arteriosus. 3. The EP3, EP4, FP, IP and TP receptor were markedly expressed at the mRNA and protein level, whereas the EP2 receptor was weakly expressed and the EP1 receptor was detected in two out of four tissue specimens only. The DP receptor was not detected in any of the samples. The most pronounced expression, which was located in the media of the ductus arteriosus, was observed for the EP4 and TP receptors followed by IP and FP receptor protein. 4. These data indicate that ductal patency during the infusion of PGE(1) in infants with ductus arteriosus-dependent congenital heart disease might be mediated by the EP4 and IP receptor. The data further suggest that a heterogeneous population of prostanoid receptors may contribute to the regulation of ductus arteriosus tone in humans.
Collapse
Affiliation(s)
- Andreas Leonhardt
- Department of Pediatrics, Philipp's University, 35033 Marburg, Germany
| | - Alexander Glaser
- Department of Pediatrics, Philipp's University, 35033 Marburg, Germany
| | - Markus Wegmann
- Department of Pediatrics, Philipp's University, 35033 Marburg, Germany
| | - Dietmar Schranz
- Department of Pediatrics, Philipp's University, 35033 Marburg, Germany
| | | | - Rolf Nüsing
- Department of Pediatrics, Philipp's University, 35033 Marburg, Germany
- Author for correspondence:
| |
Collapse
|
28
|
Cyclooxygenase isoforms and prostaglandin E2 receptors in the ductus arteriosus. Curr Ther Res Clin Exp 2002. [DOI: 10.1016/s0011-393x(02)80072-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Abstract
The ductus arteriosus is a vascular channel which, although vital to the fetal circulation, rapidly becomes unnecessary and even deleterious after birth. As such, it is 'preprogrammed' to constrict within the first few hours of life. In infants born prematurely this natural closure is often delayed and/or ineffective. In this review, we summarise the current knowledge of the delicately orchestrated control of normal ductal closure, with emphasis on the role of various biochemical mediators. The major focus of this review, however, is on pharmacological approaches designed to prevent and/or treat the persistently patent ductus arteriosus (PDA) which often fails to constrict spontaneously in the premature infant. The standard treatment regimen is based on the administration of 3 doses of the nonselective cyclo-oxygenase inhibitor, indomethacin. We begin by examining, from the vantage point of the ductus, the use of this indomethacin as a tocolytic. It seems that antenatal administration of indomethacin can cause transient, reversible ductus constriction which renders the post-treatment ductus resistant to subsequent closure, both natural and therapeutic. We then review some of the pros and cons associated with the prophylactic administration of indomethacin. Although prophylactic indomethacin is aimed primarily at preventing intraventricular haemorrhages in premature neonates, it does tend to reduce the risk of PDA as well. We then describe some novel therapeutic approaches to effect ductal closure with indomethacin, including the use of continuous infusions to minimise toxic vasoconstrictive phenomena and the use of prolonged maintenance dose to prevent PDA recurrences. Finally we discuss some of the newer agents described more recently which play a role in closing the persistently patent ductus over the next decade. Most prominent of these is ibuprofen which some studies have shown to have less undesirable vasoconstrictive adverse effects. Studies which compare the use of ibuprofen to indomethacin are summarised.
Collapse
Affiliation(s)
- C Hammerman
- Department of Neonatology, Shaare Zedek Medical Center, Jerusalem, Israel.
| | | |
Collapse
|
30
|
Wright DH, Abran D, Bhattacharya M, Hou X, Bernier SG, Bouayad A, Fouron JC, Vazquez-Tello A, Beauchamp MH, Clyman RI, Peri K, Varma DR, Chemtob S. Prostanoid receptors: ontogeny and implications in vascular physiology. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1343-60. [PMID: 11641101 DOI: 10.1152/ajpregu.2001.281.5.r1343] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostanoids exert significant effects on circulatory beds. They play a role in the response of the vasculature to adjustments in perfusion pressure and oxygen and carbon dioxide tension, and they mediate the actions of numerous factors. The role of prostanoids in governing circulation of the perinate is suggested to surpass that in the adult. Prostanoids are abundantly generated in the perinate. They have been implicated in autoregulation of blood flow as studied in brain and eyes. Prostaglandins are also dominant regulators of ductus arteriosus tone. The effects of these autacoids are mediated through specific G protein-coupled receptors. In addition to the pharmacological characterization of the prostanoid receptors, important advances in understanding the biology of these receptors have been made in the last decade. Their cloning and the development of animals with disrupted genes of these receptors have been very informative. The involvement of prostanoid receptors in the developing subject, especially on brain and ocular vasculature and on ductus arteriosus, has also begun to be investigated; the expression of these receptors changes with development. Some but not all of the ontogenic changes in these receptors are attributed to homologous regulation. Interestingly, in the process of elucidating their effects, functional perinuclear prostaglandin E2 receptors have been uncovered. This article reviews prostanoid receptors and addresses implications on the developing subject with attention to vascular physiology.
Collapse
Affiliation(s)
- D H Wright
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G-1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Smith GC, Wu WX, Nijland MJ, Koenen SV, Nathanielsz PW. Effect of gestational age, corticosteroids, and birth on expression of prostanoid EP receptor genes in lamb and baboon ductus arteriosus. J Cardiovasc Pharmacol 2001; 37:697-704. [PMID: 11392466 DOI: 10.1097/00005344-200106000-00007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to determine the effect of corticosteroids, gestational age, and birth on the expression of genes encoding prostanoid receptors in the lamb and baboon ductus arteriosus. The ductus arteriosus was obtained from 34 lambs and eight baboons, including chronically instrumented fetuses of both species exposed to either corticosteroid or vehicle. Expression of prostanoid receptor genes was quantified using Northern blot analysis relative to each of two housekeeping genes. Expression of both the EP3 and EP4 receptor genes was detected in lamb ductus and the level of expression of both genes was unaffected by corticosteroids. Expression of the EP4 receptor gene was lower in the ductus obtained from term lambs compared with preterm lambs and was lower still in neonatal animals, whereas no variation was observed in EP3 receptor gene expression. Expression of the EP4 receptor gene was also confirmed in fetal baboon ductus arteriosus, and maternal administration of corticosteroid did not reduce EP4 receptor gene expression in the baboon. We conclude that advancing gestational age and birth may inhibit prostaglandin E2-mediated relaxation of the ductus through a corticosteroid-independent reduction in EP4 receptor gene expression.
Collapse
Affiliation(s)
- G C Smith
- Laboratory for Pregnancy Newborn Research, College Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| | | | | | | | | |
Collapse
|
32
|
Bouayad A, Kajino H, Waleh N, Fouron JC, Andelfinger G, Varma DR, Skoll A, Vazquez A, Gobeil F, Clyman RI, Chemtob S. Characterization of PGE2 receptors in fetal and newborn lamb ductus arteriosus. Am J Physiol Heart Circ Physiol 2001; 280:H2342-9. [PMID: 11299240 DOI: 10.1152/ajpheart.2001.280.5.h2342] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the role of PGE2 in maintaining ductus arteriosus (DA) patency is well established, the specific PGE2 receptor subtype(s) (EP) involved have not been clearly identified. We used late gestation fetal and neonatal lambs to study developmental regulation of EP receptors. In the fetal DA, radioligand binding and RT-PCR assays virtually failed to detect EP1 but detected EP2, EP3D, and EP4 receptors in equivalent proportions. In the newborn lamb, DA total density was one-third of that found in the fetus and only EP2 was detected. Stimulation of EP2 and EP4 increased cAMP formation and was associated with DA relaxation. Though stimulation of EP3 inhibited cAMP formation, it surprisingly relaxed the fetal DA both in vitro and in vivo. This EP3-induced relaxation was specifically diminished by the ATP-sensitive K(+) (K(ATP)) channel blocker glibenclamide. In conclusion, PGE2 dilates the late gestation fetal DA through pathways that involve either cAMP (EP2 and EP4) or K(ATP) channels (EP3). The loss of EP3 and EP4 receptors in the newborn DA is consistent with its decreased responsiveness to PGE2.
Collapse
Affiliation(s)
- A Bouayad
- Departments of Cardiology, Pediatrics, and Physiology, Université de Montréal, Quebec H3T 1C5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bouayad A, Bernier SG, Asselin P, Hardy P, Bhattacharya M, Quiniou C, Fouron JC, Guerguerian AM, Varma DR, Clyman RI, Chemtob S. Characterization of PGE2 receptors in fetal and newborn ductus arteriosus in the pig. Semin Perinatol 2001; 25:70-5. [PMID: 11339668 DOI: 10.1053/sper.2001.23186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We compared the total density and the relative expression of EP receptor (EP) subtypes in ductus arteriosus (DA) of the newborn with that of the fetal piglet. Saturation binding experiments showed 3-fold less PGE2 receptors in the newborn than in the fetus because of loss of EP3 and EP4 receptors thus explaining, at least partly, the reduced responsiveness to PGE2 of the newborn DA. Displacement experiments showed that the relative proportions of EP2, EP3, and EP4 were similar in the fetal DA but only EP2 was detected in the DA of the newborn pig. Hence, PGE2 effects in the newborn DA seem to be exclusively mediated by EP2 receptors both in vitro and in vivo. These findings may help to propose more specific therapies for regulation of DA's tone in certain newborns for whom conventional therapy is contraindicated.
Collapse
Affiliation(s)
- A Bouayad
- Department of Cardiology, Université de Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Loftin CD, Trivedi DB, Tiano HF, Clark JA, Lee CA, Epstein JA, Morham SG, Breyer MD, Nguyen M, Hawkins BM, Goulet JL, Smithies O, Koller BH, Langenbach R. Failure of ductus arteriosus closure and remodeling in neonatal mice deficient in cyclooxygenase-1 and cyclooxygenase-2. Proc Natl Acad Sci U S A 2001; 98:1059-64. [PMID: 11158594 PMCID: PMC14708 DOI: 10.1073/pnas.98.3.1059] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The transition to pulmonary respiration following birth requires rapid alterations in the structure of the mammalian cardiovascular system. One dramatic change that occurs is the closure and remodeling of the ductus arteriosus (DA), an arterial connection in the fetus that directs blood flow away from the pulmonary circulation. A role for prostaglandins in regulating the closure of this vessel has been supported by pharmacological and genetic studies. The production of prostaglandins is dependent on two cyclooxygenases (COX-1 and COX-2), which are encoded by separate genes. We report here that the absence of either or both COX isoforms in mice does not result in premature closure of the DA in utero. However, 35% of COX-2(-/-) mice die with a patent DA within 48 h of birth. In contrast, the absence of only the COX-1 isoform does not affect closure of the DA. The mortality (35%) and patent DA incidence due to absence of COX-2 is, however, significantly increased (79%) when one copy of the gene encoding COX-1 is also inactivated. Furthermore, 100% of the mice deficient in both isoforms die with a patent DA within 12 h of birth, indicating that in COX-2-deficient mice, the contribution of COX-1 to DA closure is gene dosage-dependent. Together, these data establish roles for COX-1, and especially for COX-2, in the transition of the cardiopulmonary circulation at birth.
Collapse
Affiliation(s)
- C D Loftin
- Laboratory of Environmental Carcinogenesis and Mutagenesis, Comparative Medicine Branch, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Failure of ductus arteriosus closure and remodeling in neonatal mice deficient in cyclooxygenase-1 and cyclooxygenase-2. Proc Natl Acad Sci U S A 2001. [PMID: 11158594 PMCID: PMC14708 DOI: 10.1073/pnas.031573498] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The transition to pulmonary respiration following birth requires rapid alterations in the structure of the mammalian cardiovascular system. One dramatic change that occurs is the closure and remodeling of the ductus arteriosus (DA), an arterial connection in the fetus that directs blood flow away from the pulmonary circulation. A role for prostaglandins in regulating the closure of this vessel has been supported by pharmacological and genetic studies. The production of prostaglandins is dependent on two cyclooxygenases (COX-1 and COX-2), which are encoded by separate genes. We report here that the absence of either or both COX isoforms in mice does not result in premature closure of the DA in utero. However, 35% of COX-2(-/-) mice die with a patent DA within 48 h of birth. In contrast, the absence of only the COX-1 isoform does not affect closure of the DA. The mortality (35%) and patent DA incidence due to absence of COX-2 is, however, significantly increased (79%) when one copy of the gene encoding COX-1 is also inactivated. Furthermore, 100% of the mice deficient in both isoforms die with a patent DA within 12 h of birth, indicating that in COX-2-deficient mice, the contribution of COX-1 to DA closure is gene dosage-dependent. Together, these data establish roles for COX-1, and especially for COX-2, in the transition of the cardiopulmonary circulation at birth.
Collapse
|