1
|
Li D, Huang LT, Zhang CP, Li Q, Wang JH. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front Aging Neurosci 2022; 14:890509. [PMID: 35847662 PMCID: PMC9283766 DOI: 10.3389/fnagi.2022.890509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, commonly occurs in the elderly population, causing a significant medical and economic burden to the aging society worldwide. At present, there are few effective methods that achieve satisfactory clinical results in the treatment of PD. Platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFRs) are important neurotrophic factors that are expressed in various cell types. Their unique structures allow for specific binding that can effectively regulate vital functions in the nervous system. In this review, we summarized the possible mechanisms by which PDGFs/PDGFRs regulate the occurrence and development of PD by affecting oxidative stress, mitochondrial function, protein folding and aggregation, Ca2+ homeostasis, and cell neuroinflammation. These modes of action mainly depend on the type and distribution of PDGFs in different nerve cells. We also summarized the possible clinical applications and prospects for PDGF in the treatment of PD, especially in genetic treatment. Recent advances have shown that PDGFs have contradictory roles within the central nervous system (CNS). Although they exert neuroprotective effects through multiple pathways, they are also associated with the disruption of the blood–brain barrier (BBB). Our recommendations based on our findings include further investigation of the contradictory neurotrophic and neurotoxic effects of the PDGFs acting on the CNS.
Collapse
Affiliation(s)
- Dan Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-pu Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiang Li,
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Jia-He Wang,
| |
Collapse
|
2
|
Sweeney M, Corden B, Cook SA. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle? EMBO Mol Med 2020; 12:e10865. [PMID: 32955172 PMCID: PMC7539225 DOI: 10.15252/emmm.201910865] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is central to the pathology of heart failure, particularly heart failure with preserved ejection fraction (HFpEF). Irrespective of the underlying profibrotic condition (e.g. ageing, diabetes, hypertension), maladaptive cardiac fibrosis is defined by the transformation of resident fibroblasts to matrix-secreting myofibroblasts. Numerous profibrotic factors have been identified at the molecular level (e.g. TGFβ, IL11, AngII), which activate gene expression programs for myofibroblast activation. A number of existing HF therapies indirectly target fibrotic pathways; however, despite multiple clinical trials in HFpEF, a specific clinically effective antifibrotic therapy remains elusive. Therapeutic inhibition of TGFβ, the master-regulator of fibrosis, has unfortunately proven toxic and ineffective in clinical trials to date, and new approaches are needed. In this review, we discuss the pathophysiology and clinical implications of interstitial fibrosis in HFpEF. We provide an overview of trials targeting fibrosis in HFpEF to date and discuss the promise of potential new therapeutic approaches and targets in the context of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Mark Sweeney
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- Wellcome Trust 4i/NIHR Clinical Research FellowImperial CollegeLondonUK
| | - Ben Corden
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Stuart A Cook
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
3
|
Shen S, Wang F, Fernandez A, Hu W. Role of platelet-derived growth factor in type II diabetes mellitus and its complications. Diab Vasc Dis Res 2020; 17:1479164120942119. [PMID: 32744067 PMCID: PMC7510352 DOI: 10.1177/1479164120942119] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus is a type of metabolic disorder characterized by hyperglycaemia with multiple serious complications, such as diabetic neuropathies, diabetic nephropathy, diabetic retinopathy, and diabetic foot. Platelet-derived growth factors are growth factors that regulate cell growth and division, playing a critical role in diabetes and its harmful complications. This review focused on the cellular mechanism of platelet-derived growth factors and their receptors on diabetes development. Furthermore, we raise some proper therapeutic molecular targets for the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Sihong Shen
- BGI Genomics, BGI-Shenzhen, Shenzhen,
China
- Diabetes Research Center, Medical School
of Ningbo University, Ningbo, China
| | - Fuyan Wang
- Diabetes Research Center, Medical School
of Ningbo University, Ningbo, China
| | | | - Weining Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen,
China
| |
Collapse
|
4
|
Wehbe Z, Hammoud S, Soudani N, Zaraket H, El-Yazbi A, Eid AH. Molecular Insights Into SARS COV-2 Interaction With Cardiovascular Disease: Role of RAAS and MAPK Signaling. Front Pharmacol 2020; 11:836. [PMID: 32581799 PMCID: PMC7283382 DOI: 10.3389/fphar.2020.00836] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
In December 2019, reports of viral pneumonia came out of Wuhan city in Hubei province in China. In early 2020, the causative agent was identified as a novel coronavirus (CoV) sharing some sequence similarity with SARS-CoV that caused the severe acute respiratory syndrome outbreak in 2002. The new virus, named SARS-CoV-2, is highly contagious and spread rapidly across the globe causing a pandemic of what became known as coronavirus infectious disease 2019 (COVID-19). Early observations indicated that cardiovascular disease (CVD) patients are at higher risk of progression to severe respiratory manifestations of COVID-19 including acute respiratory distress syndrome. Moreover, further observations demonstrated that SARS-CoV-2 infection can induce de novo cardiac and vascular damage in previously healthy individuals. Here, we offer an overview of the proposed molecular pathways shared by the pathogenesis of CVD and SARS-CoV infections in order to provide a mechanistic framework for the observed interrelation. We examine the crosstalk between the renin-angiotensin-aldosterone system and mitogen activated kinase pathways that potentially links cardiovascular predisposition and/or outcome to SARS-CoV-2 infection. Finally, we summarize the possible effect of currently available drugs with known cardiovascular benefit on these pathways and speculate on their potential utility in mitigating cardiovascular risk and morbidity in COVID-19 patients.
Collapse
Affiliation(s)
- Zena Wehbe
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Safaa Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Nadia Soudani
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon.,Department of Biomedical Sciences, College of Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Abstract
Chronic kidney disease (CKD) is a devastating condition that is reaching epidemic levels owing to the increasing prevalence of diabetes mellitus, hypertension and obesity, as well as ageing of the population. Regardless of the underlying aetiology, CKD is slowly progressive and leads to irreversible nephron loss, end-stage renal disease and/or premature death. Factors that contribute to CKD progression include parenchymal cell loss, chronic inflammation, fibrosis and reduced regenerative capacity of the kidney. Current therapies have limited effectiveness and only delay disease progression, underscoring the need to develop novel therapeutic approaches to either stop or reverse progression. Preclinical studies have identified several approaches that reduce fibrosis in experimental models, including targeting cytokines, transcription factors, developmental and signalling pathways and epigenetic modulators, particularly microRNAs. Some of these nephroprotective strategies are now being tested in clinical trials. Lessons learned from the failure of clinical studies of transforming growth factor β1 (TGFβ1) blockade underscore the need for alternative approaches to CKD therapy, as strategies that target a single pathogenic process may result in unexpected negative effects on simultaneously occurring processes. Additional promising avenues include preventing tubular cell injury and anti-fibrotic therapies that target activated myofibroblasts, the main collagen-producing cells.
Collapse
|
6
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
7
|
AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 2017; 125:4-13. [PMID: 28527699 DOI: 10.1016/j.phrs.2017.05.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/14/2023]
Abstract
The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.
Collapse
|
8
|
Chambers TP, Santiesteban L, Gomez D, Chambers JW. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology 2017; 382:24-35. [PMID: 28315715 DOI: 10.1016/j.tox.2017.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 01/05/2023]
Abstract
Imatinib mesylate is an effective treatment for chronic myelogenous leukemia and gastrointestinal stromal tumors. Although imatinib mesylate is highly tolerable, it has been implicated in severe congestive heart failure in mouse models and patients. A hallmark of imatinib mesylate-induced cardiotoxicity is mitochondrial dysfunction. The mitochondrial scaffold Sab has been implicated in facilitating signaling responsible for mitochondrial dysfunction in a c-Jun N-terminal Kinase (JNK)-dependent manner. We examined the impact of Sab-mediated signaling on imatinib mesylate cardiotoxicity in H9c2 rat cardiomyocyte-like cells. Silencing Sab increased the LD50 of imatinib mesylate 4-fold in H9c2 cells. Disrupting Sab-mediated signaling prevented imatinib mesylate-induced apoptosis as well. Knockdown of Sab or inhibition with a small peptide prevented oxidative stress, which was indicated by decreased reactive oxygen species production, lipid peroxidation, and protein carbonylation. Further, inhibition of Sab-related signaling partially rescued deficits in mitochondrial respiration, ATP production, and membrane potential in imatinib mesylate-treated H9c2 cells. Conversely, over-expression of Sab in H9c2 cells increased the cardiotoxicity of imatinib mesylate in vitro decreasing the LD50 over 4-fold. Sab expression was induced in H9c2 cells following cardiovascular-like stress in an AP-1 dependent manner. These data demonstrate that imatinib mesylate influences mitochondrial signaling leading to mitochondrial dysfunction and cardiotoxicity.
Collapse
Affiliation(s)
- Tara P Chambers
- Department of Human and Molecular Genetics, Florida International University, Miami, FL 33199, United States; Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States
| | - Luis Santiesteban
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL 33199, United States
| | - David Gomez
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL 33199, United States
| | - Jeremy W Chambers
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL 33199, United States; Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
9
|
Lang K, McGarry LJ, Huang H, Dorer D, Kaufman E, Knopf K. Mortality and Vascular Events Among Elderly Patients With Chronic Myeloid Leukemia: A Retrospective Analysis of Linked SEER-Medicare Data. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:275-285.e1. [DOI: 10.1016/j.clml.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/23/2016] [Accepted: 01/27/2016] [Indexed: 11/26/2022]
|
10
|
Beinortas T, Tavorienė I, Žvirblis T, Gerbutavičius R, Jurgutis M, Griškevičius L. Chronic myeloid leukemia incidence, survival and accessibility of tyrosine kinase inhibitors: a report from population-based Lithuanian haematological disease registry 2000-2013. BMC Cancer 2016; 16:198. [PMID: 26956037 PMCID: PMC4782571 DOI: 10.1186/s12885-016-2238-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Currently available chronic myeloid leukaemia (CML) survival reports have originated from more affluent countries. Herein we report the entire country data on incidence and survival of CML, as well as penetrance of tyrosine kinase inhibitors (TKIs) in Lithuania. METHODS We analyzed all patients (N = 601) from the national haematological disease monitoring system who were diagnosed with CML between 2000 and 2013. Crude (CR) and age-standardized (weighted) (ASW(R)) incidence and mortality rates, as well as 1-, 5-, and 10-year relative survival rates (RSR) were calculated. Information on TKI penetration is also reported. RESULTS Throughout the entire 2000-2013 period the median age at diagnosis of CML patients was 62 years. The respective incidence and mortality CRs were 1.28 and 0.78, both characterized by decreasing trends over the observation period. A 5-year RSR increased from 0.33 [95 % CI, 0.27-0.40] in 2000-2004 to 0.55 [95 % CI, 0.47-0.63] in 2005-2009. However, the respective 5-year RSRs for patients aged 65-74 and ≥75 were only 0.33 [95 % CI, 0.24-0.42] and 0.18 [95 % CI 0.07-0.23] during the entire study period. TKI penetrance for CML patients grew from 1.5 % in 2000-2004 to 30.6 % in 2005-2009 and 69.1 % in 2010-2013. TKI penetrance was low in the older age groups (60 % for the 65-74 and 19 % for the ≥75 patient group, in 2010-2013). CONCLUSION Relative CML survival in Lithuania steadily improved and paralleled the increase in TKI treatment availability. Patients above 64 years rarely received TKIs and their relative survival remained low throughout the observation period. The latency of TKI availability may have influenced the survival trends.
Collapse
Affiliation(s)
- Tumas Beinortas
- Clinical Medical School, University of Oxford, Oxford, UK. .,Centre for Evidence-Based Medicine, Clinics of Internal, Family Medicine and Oncology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, 03101, Vilnius, Lithuania.
| | - Ilma Tavorienė
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santariskiu Klinikos, Santariskiu 2, 08661, Vilnius, Lithuania.
| | - Tadas Žvirblis
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santariskiu Klinikos, Santariskiu 2, 08661, Vilnius, Lithuania.
| | - Rolandas Gerbutavičius
- Clinics of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Eivenių g. 2, 50009, Kaunas, Lithuania.
| | - Mindaugas Jurgutis
- Department of Oncology Haematology, Klaipeda Seamen Hospital, Liepojos 45, 92288, Klaipeda, Lithuania.
| | - Laimonas Griškevičius
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santariskiu Klinikos, Santariskiu 2, 08661, Vilnius, Lithuania. .,Clinics of Internal, Family Medicine and Oncology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio str. 21, 03101, Vilnius, Lithuania.
| |
Collapse
|
11
|
Inflammatory and fibrotic processes are involved in the cardiotoxic effect of sunitinib: Protective role of L-carnitine. Toxicol Lett 2015; 241:9-18. [PMID: 26581635 DOI: 10.1016/j.toxlet.2015.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/23/2015] [Accepted: 11/07/2015] [Indexed: 01/12/2023]
Abstract
Sunitinib (Su) is currently approved for treatment of several malignances. However, along with the benefits of disease stabilization, cardiovascular toxicities have also been increasingly recognized. The aim of this study was to analyze which mechanisms are involved in the cardiotoxicity caused by Su, as well as to explore the potential cardioprotective effects of l-carnitine (LC). To this end, four groups of Wistar rats were used: (1) control; (2) rats treated with 400mg LC/kg/day; (3) rats treated with 25mg Su/kg/day; and (4) rats treated with LC+Su simultaneously. In addition, cultured rat cardiomyocytes were treated with an inhibitor of nuclear factor kappa B (NF-κB), in order to examine the role of this transcription factor in this process. An elevation in the myocardial expression of pro-inflammatory cytokines, together with an increase in the mRNA expression of NF-κB, was observed in Su-treated rats. These results were accompanied by an increase in the expression of pro-fibrotic factors, nitrotyrosine and NOX 2 subunit of NADPH oxidase; and by a decrease in that of collagen degradation factor. Higher blood pressure and heart rate levels were also found in Su-treated rats. All these alterations were inhibited by co-administration of LC. Furthermore, cardiotoxic effects of Su were blocked by NF-κB inhibition. Our results suggest that: (i) inflammatory and fibrotic processes are involved in the cardiac toxicity observed following treatment with Su; (ii) these processes might be mediated by the transcription factor NF-κB; (iii) LC exerts a protective effect against arterial hypertension, cardiac inflammation and fibrosis, which are all observed after Su treatment.
Collapse
|
12
|
Yilmaz M, Lahoti A, O'Brien S, Nogueras-González GM, Burger J, Ferrajoli A, Borthakur G, Ravandi F, Pierce S, Jabbour E, Kantarjian H, Cortes JE. Estimated glomerular filtration rate changes in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. Cancer 2015. [PMID: 26217876 DOI: 10.1002/cncr.29587] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Chronic use of tyrosine kinase inhibitors (TKIs) may lead to previously unrecognized adverse events. This study evaluated the incidence of acute kidney injury (AKI) and chronic kidney disease (CKD) in chronic-phase (CP) chronic myeloid leukemia (CML) patients treated with imatinib, dasatinib, and nilotinib. METHODS Four hundred sixty-eight newly diagnosed CP CML patients treated with TKIs were analyzed. The molecular and cytogenetic response data, creatinine, and glomerular filtration rate (GFR) were followed from the start of therapy to the last follow-up (median, 52 months). GFR was estimated with the Modification of Diet in Renal Disease equation. RESULTS Nineteen patients (4%) had TKI-associated AKI. Imatinib was associated with a higher incidence of AKI in comparison with dasatinib and nilotinib (P = .014). Fifty-eight patients (14%) developed CKD while they were receiving a TKI; 49 of these patients (84%) did so while they were being treated with imatinib (P < .001). Besides imatinib, age, a history of hypertension, and diabetes mellitus were also associated with the development of CKD. In patients with no CKD at the baseline, imatinib was shown to reduce GFR over time. Interestingly, imatinib did not cause a significant decline in the GFRs of patients with a history of CKD. Imatinib, dasatinib, and nilotinib increased the mean GFR after 3 months of treatment, and nilotinib led with the most significant increase (P < .001). AKI or CKD had no significant impact on overall cytogenetic and molecular response rates or survival. CONCLUSIONS The administration of TKIs may be safe in the setting of CKD in CP CML patients, but close monitoring is still warranted.
Collapse
Affiliation(s)
- Musa Yilmaz
- Department of Hematology and Oncology, Baylor College of Medicine, Houston, Texas
| | - Amit Lahoti
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Susan O'Brien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Jan Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jorge E Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
13
|
Boor P, Ostendorf T, Floege J. PDGF and the progression of renal disease. Nephrol Dial Transplant 2014; 29 Suppl 1:i45-i54. [PMID: 24493869 DOI: 10.1093/ndt/gft273] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Progressive renal diseases represent a global medical problem, in part because we currently lack effective treatment strategies. Inhibition of platelet-derived growth factors (PDGFs) might represent one such novel strategy. PDGFs are required for normal kidney development by the recruitment of mesenchymal cells to both glomeruli and the interstitium. PDGFs are expressed in renal mesenchymal cells and, upon injury, in epithelial and infiltrating cells. They exert autocrine and paracrine effects on PDGF receptor-bearing mesenchymal cells, i.e. mesangial cells, fibroblasts and vascular smooth-muscle cells, which are crucially involved in progressive renal diseases. Proliferation but also migration and activation of these mesenchymal cells are the major effects mediated by PDGFs. These actions predefine the major roles of PDGFs in renal pathology, particularly in mesangioproliferative glomerulonephritis and interstitial fibrosis. Whereas for the former, the role of PDGFs is very well described and established, the latter is increasingly better documented as well. An involvement of PDGFs in other renal diseases, e.g. acute kidney injury, vascular injury and hypertensive as well as diabetic nephropathy, is less well established or presently unknown. Nevertheless, PDGFs represent a promising therapeutic option for progressive renal diseases, especially those characterized by mesangial cell proliferation and interstitial fibrosis. Clinical studies are eagerly awaited, in particular, since several drugs inhibiting PDGF signalling are available for clinical testing.
Collapse
Affiliation(s)
- Peter Boor
- Department of Nephrology, RWTH University of Aachen, Aachen, Germany
| | | | | |
Collapse
|
14
|
Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 2014; 10:700-11. [PMID: 25311535 DOI: 10.1038/nrneph.2014.184] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a major health and economic burden with a rising incidence. During progression of CKD, the sustained release of proinflammatory and profibrotic cytokines and growth factors leads to an excessive accumulation of extracellular matrix. Transforming growth factor β (TGF-β) and angiotensin II are considered to be the two main driving forces in fibrotic development. Blockade of the renin-angiotensin-aldosterone system has become the mainstay therapy for preservation of kidney function, but this treatment is not sufficient to prevent progression of fibrosis and CKD. Several factors that induce fibrosis have been identified, not only by TGF-β-dependent mechanisms, but also by TGF-β-independent mechanisms. Among these factors are the (partially) TGF-β-independent profibrotic pathways involving connective tissue growth factor, epidermal growth factor and platelet-derived growth factor and their receptors. In this Review, we discuss the specific roles of these pathways, their interactions and preclinical evidence supporting their qualification as additional targets for novel antifibrotic therapies.
Collapse
Affiliation(s)
- Helena M Kok
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Lucas L Falke
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| |
Collapse
|
15
|
Jang SW, Ihm SH, Choo EH, Kim OR, Chang K, Park CS, Kim HY, Seung KB. Imatinib Mesylate Attenuates Myocardial Remodeling Through Inhibition of Platelet-Derived Growth Factor and Transforming Growth Factor Activation in a Rat Model of Hypertension. Hypertension 2014; 63:1228-34. [DOI: 10.1161/hypertensionaha.113.01866] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sung-Won Jang
- From the Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Hyun Ihm
- From the Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Ho Choo
- From the Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ok-Ran Kim
- From the Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kiyuk Chang
- From the Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan-Seok Park
- From the Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Yeol Kim
- From the Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Bae Seung
- From the Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
16
|
Wang-Rosenke Y, Khadzhynov D, Loof T, Mika A, Kawachi H, Neumayer HH, Peters H. Tyrosine kinases inhibition by Imatinib slows progression in chronic anti-thy1 glomerulosclerosis of the rat. BMC Nephrol 2013; 14:223. [PMID: 24119229 PMCID: PMC3816310 DOI: 10.1186/1471-2369-14-223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 09/25/2013] [Indexed: 12/20/2022] Open
Abstract
Background Chronic progressive mesangioproliferative nephropathy represents a major cause of end-stage renal disease worldwide. Until now, effective approaches to stop or even slow its progression are limited. We tested the effects of an inhibitor of PDGF receptor, abl and c-kit tyrosine kinases, Imatinib, in a chronic progressive model of mesangioproliferative glomerulosclerosis. Methods Anti-thy1 glomerulosclerosis was induced by injection of anti-thy1 antibody into uninephrectomized Wistar rats. One week after disease induction, according to the degree of proteinuria, animals were stratified and assigned to chronic glomerulosclerosis (cGS) and cGS plus Imatinib (10 mg/kg body weight/day). In week 20, renoprotective actions of Imatinib were analyzed by a set of functional, histological and molecular biological parameters. Results Untreated cGS rats showed elevation of systolic blood pressure and marked progression in proteinuria, renal fibrosis, cell infiltration, cell proliferation and function lost. Administration of Imatinib went along significantly with lower systolic blood pressure (−10 mmHg) and proteinuria (−33%). Imatinib administration was paralled by significant reductions in tubulointerstitial accumulation of matrix proteins (−44%), collagen I deposition (−86%), expression of TGF-beta1 (−30%), production of fibronectin (−23%), myofibroblast differentiation (−87%), macrophage infiltration (−36%) and cell proliferation (−45%), respectively. In comparison with untreated cGS animals, Imatinib therapy lowered also blood creatinine (−41%) and blood urea concentrations (−36%) and improved creatinine clearance (+25%). Glomerular fibrotic changes were lowered moderately by Imatinib. Conclusions Therapy with Imatinib limits the progressive course of chronic anti-thy1 glomerulosclerosis towards tubulointerstitial fibrosis and renal insufficiency. This was paralleled by direct and indirect sign of TGF-β1 and PDGF inhibition. The findings suggest that the pharmacological principal of inhibition of tyrosine kinases with drugs such as Imatinib might serve as approach for limiting progression of human mesangioproliferative glomerulosclerosis.
Collapse
Affiliation(s)
- Yingrui Wang-Rosenke
- Department of Nephrology and Center of Cardiovascular Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, Berlin D-10117, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ulu N, Mulder GM, Vavrinec P, Landheer SW, Duman-Dalkilic B, Gurdal H, Goris M, Duin M, van Dokkum RPE, Buikema H, van Goor H, Henning RH. Epidermal Growth Factor Receptor Inhibitor PKI-166 Governs Cardiovascular Protection without Beneficial Effects on the Kidney in Hypertensive 5/6 Nephrectomized Rats. J Pharmacol Exp Ther 2013; 345:393-403. [DOI: 10.1124/jpet.113.203497] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
18
|
Heijnen BF, Peutz-Kootstra CJ, Mullins JJ, Janssen BJ, Struijker-Boudier HA. Transient renin–angiotensin system stimulation in an early stage of life causes sustained hypertension in rats. J Hypertens 2011; 29:2369-80. [DOI: 10.1097/hjh.0b013e32834cfcf4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Graciano ML, Mitchell KD. Imatinib ameliorates renal morphological changes in Cyp1a1-Ren2 transgenic rats with inducible ANG II-dependent malignant hypertension. Am J Physiol Renal Physiol 2011; 302:F60-9. [PMID: 21975872 DOI: 10.1152/ajprenal.00218.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was performed to assess the effects of the platelet-derived growth factor (PDGF) receptor kinase inhibitor imatinib mesylate on the renal morphological changes occurring during the development of malignant hypertension in transgenic rats with inducible expression of the Ren2 gene [TGR(Cyp1a1Ren2)]. Arterial blood pressure was measured by radiotelemetry in male Cyp1a1-Ren2 rats during control conditions and during dietary administration of indole-3-carbinol (I3C; 0.3%) for 14 days to induce malignant hypertension. Rats induced with I3C (n = 5) had higher mean arterial pressures (178 ± 4 vs. 109 ± 2 mmHg, P < 0.001) and increased urinary albumin excretion (Ualb; 13 ± 5 vs. 0.6 ± 0.2 mg/day) compared with noninduced rats (n = 5). Chronic administration of imatinib (60 mg·kg(-1)·day(-1) in drinking water, n = 5) did not alter the magnitude of the hypertension (176 ± 8 mmHg) but prevented the increase in Ualb (1.6 ± 0.3 mg/day). Quantitative analysis of proliferating cell nuclear antigen using immunohistochemistry demonstrated increased proliferating cell number in cortical tubules (38 ± 5 vs. 18 ± 1 cells/mm(2)) and cortical interstitium (40 ± 7 vs. 13 ± 6 cells/mm(2)) of hypertensive rat kidneys. Renal cortical fibrosis evaluated by picrosirius red staining showed increased collagen deposition in kidneys of the hypertensive rats (1.6 ± 0.1 vs. 0.4 ± 0.1% of cortical area). Imatinib attenuated the increase in proliferating cell number in cortical tubules and interstitium (22 ± 5 vs. 38 ± 5 and 22 ± 6 vs. 40 ± 7 cells/mm(2), respectively) and reduced the degree of collagen deposition (0.8 ± 0.2 vs. 1.6 ± 0.1%) in the kidneys of hypertensive rats. These findings demonstrate that the renal pathological changes that occur during the development of malignant hypertension in Cyp1a1-Ren2 rats involve activation of PDGF receptor kinase.
Collapse
Affiliation(s)
- Miguel L Graciano
- Dept. of Physiology, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., SL39, New Orleans, LA 70112, USA
| | | |
Collapse
|
20
|
The safety profile of imatinib in CML and GIST: long-term considerations. Arch Toxicol 2011; 86:1-12. [DOI: 10.1007/s00204-011-0729-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/15/2011] [Indexed: 12/16/2022]
|
21
|
Iyoda M, Shibata T, Hirai Y, Kuno Y, Akizawa T. Nilotinib attenuates renal injury and prolongs survival in chronic kidney disease. J Am Soc Nephrol 2011; 22:1486-96. [PMID: 21617123 DOI: 10.1681/asn.2010111158] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The tyrosine kinase inhibitor imatinib is beneficial in experimental renal diseases, but the effect of the new tyrosine kinase inhibitor nilotinib on the progression of renal failure is unknown. We administered either nilotinib or vehicle to Sprague-Dawley rats beginning 2 weeks after 5/6 nephrectomy (Nx) or laparotomy and continuing for 8 weeks. Serum creatinine levels were significantly lower in the nilotinib group after 6 and 8 weeks of treatment. Furthermore, nilotinib-treated rats had less proteinuria, attenuated glomerulosclerosis and tubulointerstitial damage, and reduced macrophage infiltration into the tubulointerstitium. Treatment with nilotinib also significantly decreased renal cortical expression of profibrogenic genes, such as IL-1β and monocyte chemotactic protein-1, which correlated closely with the tubulointerstitial damage score and ED1-positive macrophages score. In addition, nilotinib treatment significantly prolonged survival. Taken together, these results suggest that nilotinib may limit the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
22
|
Abstract
BACKGROUND Spontaneously hypertensive rats (SHRs) are characterized by capillary rarefaction, which may contribute to blood pressure elevation. We hypothesized that capillary rarefaction involves a suppressed angiogenesis; renin inhibition influences anti-angiogenesis homeostasis by acting on angiopoietins; transient renin blockade reduces anti-angiogenesis thereby ameliorating long-lasting blood pressure and cardiac hypertrophy in SHRs. METHODS First, serum angiopoietin-1 and angiopoietin-2 were measured in 2-month old normotensive Wistar-Kyoto rats (WKYs) and SHRs after renin inhibition (aliskiren: 1 and 10 mg/kg per day) or placebo. Second, 4-week old SHRs were prehypertensively treated with aliskiren (1 and 10 mg/kg per day) or placebo for 4 weeks. After 4 weeks of 'drug holiday' 12-week old SHRs were given L-nitro-arginine methyl ester (L-NAME) (25 mg/kg per day) for a 4-week interval to promote capillary rarefaction. Thereafter, mean arterial pressure (MAP), cardiac remodeling, capillary density, pAkt/Akt as marker for cellular survival, pro-angiogenic genes and systemic angiopoietins were investigated. RESULTS Baseline angiopoietin levels were similar between WKYs and SHRs. Renin inhibition increased angiopoietin-1 in SHR and reduced angiopoietin-2 in both WKY and SHR blood pressure independently. Prehypertensive renin inhibition reduced MAP and cardiac hypertrophy in adult SHRs. This was associated with higher cardiac capillary density, pAkt/Akt, pro-angiogenic expression pattern and serum angiopoietin-1, whereas angiopoietin-2 was lower as compared to vehicle-pretreated SHRs. These results were independent of prehypertensive blood pressure lowering by aliskiren. CONCLUSION We conclude that renin inhibition modulates anti-angiogenesis signaling independently of blood pressure by increasing angiopoietin-1/angiopoietin-2 ratio. This promotes in SHR stabilization of endothelial cells, favors pro-angiogenic action and consequently results in higher capillary density.
Collapse
|
23
|
Eißler R, Schmaderer C, Rusai K, Kühne L, Sollinger D, Lahmer T, Witzke O, Lutz J, Heemann U, Baumann M. Hypertension augments cardiac Toll-like receptor 4 expression and activity. Hypertens Res 2011; 34:551-8. [DOI: 10.1038/hr.2010.270] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Jarkowski A, Glode AE, Spangenthal EJ, Wong MKK. Heart Failure Caused by Molecularly Targeted Therapies for Cancer. Pharmacotherapy 2011; 31:62-75. [DOI: 10.1592/phco.31.1.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Sorriento D, Santulli G, Fusco A, Anastasio A, Trimarco B, Iaccarino G. Intracardiac injection of AdGRK5-NT reduces left ventricular hypertrophy by inhibiting NF-kappaB-dependent hypertrophic gene expression. Hypertension 2010; 56:696-704. [PMID: 20660817 DOI: 10.1161/hypertensionaha.110.155960] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several studies underline the role of the transcription factor NF-κB in the development of left cardiac hypertrophy (LVH). We have demonstrated recently that the RGS homology domain within the amino terminus of GRK5 (GRK5-NT) is able to inhibit NF-κB transcription activity and its associated phenotypes. The aim of this study was to evaluate the ability of GRK5-NT to regulate LVH through the inhibition of NF-κB both in vitro and in vivo. In cardiomyoblasts, GRK5-NT inhibits phenylephrine-induced transcription of both NF-κB and atrial natriuretic factor promoters, assessed by luciferase assay, thus confirming a role for this protein in the regulation of cardiomyocyte hypertrophy. In vivo, we explored 2 rat models of LVH, the spontaneously hypertensive rat and the normotensive Wistar Kyoto rat exposed to chronic administration of phenylephrine. Intracardiac injection of an adenovirus encoding for GRK5-NT reduces cardiac mass in spontaneously hypertensive rats and prevents the development of phenylephrine-induced LVH in Wistar Kyoto rats. This associates with inhibition of NF-κB signaling (assessed by NF-κB levels), transcriptional activity and phenotypes (fibrosis and apoptosis). Such phenomenon is independent from hemodynamic changes, because adenovirus encoding for GRK5-NT did not reduce blood pressure levels in spontaneously hypertensive rats or in Wistar Kyoto rats. In conclusion, our study supports the regulation of LVH based on the GRK5-NT inhibition of the NF-κB transduction signaling.
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Clinical Medicine, Cardiovascular and Immunologic Sciences, Federico II University, Naples, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Baumann M, Leineweber K, Tewiele M, Wu K, Türk TR, Su S, Gössl M, Buck T, Wilde B, Heemann U, Kribben A, Witzke O. Imatinib ameliorates fibrosis in uraemic cardiac disease in BALB/c without improving cardiac function. Nephrol Dial Transplant 2010; 25:1817-24. [PMID: 20061323 DOI: 10.1093/ndt/gfp708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cardiovascular disease is one of the major causes of mortality and morbidity in patients with end-stage renal disease (ESRD). It is characterized by multiple left ventricular abnormalities, referred to as 'uraemic cardiomyopathy'. The aim of the study was to investigate uraemic cardiac disease in a mouse model of chronic renal failure induced by subtotal nephrectomy and to evaluate the impact of the tyrosine kinase inhibitor imatinib and its antifibrotic as well as functional properties on the extent of the disease. METHODS Male BALB/c mice were sham operated (SH) or subtotally nephrectomized and either left untreated (5/6) or treated with imatinib (5/6+I: 10 mg/kg/day p.o.) for up to 24 weeks. Cardiac and arterial structure and function were analysed using echocardiography, histology, extent of lipid peroxidation and myography, respectively. RESULTS Subtotal nephrectomy resulted in cardiac dysfunction characterized by reduced fractional shortening (SH: 21.6 +/- 4.7%; 5/6: 11.1 +/- 2.4%; 5/6+I: 8.4 +/- 2.7%; P < 0.05) and ejection fraction (SH: 38.8 +/- 4.5%; 5/6: 26.1 +/- 2.8%; 5/6+I: 18.6 +/- 2.6%; P < 0.05) after 24 weeks. This was associated with impaired endothelium-dependent vasodilatation in mesenteric resistance vessels and elevated cardiac malondialdehyde concentrations as a marker of lipid peroxidation. In this model, the continuous application of the tyrosine kinase inhibitor imatinib was associated with less myocardial fibrosis (SH: 2.52 +/- 0.34%; 5/6: 5.50 +/- 0.18%; 5/6+I: 3.52 +/- 0.52%; P < 0.05), but did not preserve myocardial function. CONCLUSIONS Uraemic cardiac disease in BALB/c results in fibrosis, oxidative damage and endothelial dysfunction. However, the anti-fibrotic activity of imatinib did not ameliorate cardiac dysfunction. Thus, our data suggest that uraemic cardiac disease in this mouse model is driven by oxidative damage and endothelial dysfunction.
Collapse
Affiliation(s)
- Marcus Baumann
- Department of Nephrology, Klinikum rechts der Isar, Technische Universität München, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schellings MWM, Vanhoutte D, van Almen GC, Swinnen M, Leenders JJG, Kubben N, van Leeuwen REW, Hofstra L, Heymans S, Pinto YM. Syndecan-1 amplifies angiotensin II-induced cardiac fibrosis. Hypertension 2010; 55:249-56. [PMID: 20048198 DOI: 10.1161/hypertensionaha.109.137885] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Syndecan-1 (Synd1) is a transmembrane heparan sulfate proteoglycan that functions as a coreceptor for various growth factors and modulates signal transduction. The present study investigated whether Synd1, by affecting growth factor signaling, may play a role in hypertension-induced cardiac fibrosis and dysfunction. Expression of Synd1 was increased significantly in mouse hearts with angiotensin II-induced hypertension, which was spatially related to cardiac fibrosis. Angiotensin II significantly impaired fractional shortening and induced cardiac fibrosis in wild-type mice, whereas these effects were blunted in Synd1-null mice. Angiotensin II significantly increased cardiac expression of connective tissue growth factor and collagen type I and III in wild-type mice, which was blunted in Synd1-null mice. These findings were confirmed in vitro, where angiotensin II induced the expression of both connective tissue growth factor and collagen I in fibroblasts. The absence of Synd1 in either Synd1-null fibroblasts, after knockdown of Synd1 by short hairpin RNA, or after inhibition of heparan sulfates by protamine attenuated this increase, which was associated with reduced phosphorylation of Smad2. In conclusion, loss of Synd1 reduces cardiac fibrosis and dysfunction during angiotensin II-induced hypertension.
Collapse
Affiliation(s)
- Mark W M Schellings
- Department of Cardiology, Cardiovascular Research Institute Maastricht, University Hospital Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sayitoglu M, Haznedaroğlu IC, Hatirnaz O, Erbilgin Y, Aksu S, Koca E, Adiguzel C, Bayik M, Akalin I, Gülbas Z, Akay M, Unal A, Kaynar L, Ovali E, Yilmaz M, Yenerel M, Dagdas S, Ozet G, Ar C, Aydin Y, Soysal T, Durgun B, Ozcebe O, Tukun A, Ilhan O, Ozbek U. Effects of Imatinib Mesylate on Renin–Angiotensin System (RAS) Activity during the Clinical Course of Chronic Myeloid Leukaemia. J Int Med Res 2009; 37:1018-28. [DOI: 10.1177/147323000903700406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The renin–angiotensin system (RAS) is involved in cell growth, proliferation and differentiation in bone marrow in an autocrine–paracrine manner, and it modulates normal and neoplastic haematopoietic cell proliferation. This study aimed to assess expressions of the RAS components, renin, angiotensinogen and angiotensin-converting enzyme (ACE), during imatinib mesylate treatment of patients with chronic myeloid leukaemia (CML). Expressions of RAS components were studied in patients with CML at the time of diagnosis ( n = 83) and at 3, 6 and 12 months after diagnosis ( n = 35) by quantitative real-time polymerase chain reaction. De novo CML patients had increased ACE, angiotensinogen and renin mRNA levels and these expression levels decreased following administration of imatinib. The RAS activities were significantly different among Sokal risk groups of CML, highlighting the altered biological activity of RAS in neoplastic disorders. The results of this study confirm that haematopoietic RAS affects neoplastic cell production, which may be altered via administration of tyrosine kinase inhibitors such as imatinib mesylate.
Collapse
Affiliation(s)
- M Sayitoglu
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - IC Haznedaroğlu
- Department of Internal Medicine, Haematology Division, Hacettepe University Medical Faculty, Ankara, Turkey
| | - O Hatirnaz
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Y Erbilgin
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - S Aksu
- Department of Internal Medicine, Haematology Division, Hacettepe University Medical Faculty, Ankara, Turkey
| | - E Koca
- Department of Internal Medicine, Haematology Division, Hacettepe University Medical Faculty, Ankara, Turkey
| | - C Adiguzel
- Department of Internal Medicine, Haematology Division, Marmara University Medical Faculty, Istanbul, Turkey
| | - M Bayik
- Department of Internal Medicine, Haematology Division, Marmara School of Medicine Hospital, Istanbul, Turkey
| | - I Akalin
- Department of Internal Medicine, Haematology Division, Marmara University Medical Faculty, Istanbul, Turkey
| | | | | | - A Unal
- Department of Internal Medicine, Haematology Division, Osmangazi University Medical Faculty, Eskisehir, Turkey
| | - L Kaynar
- Department of Internal Medicine, Haematology Division, Osmangazi University Medical Faculty, Eskisehir, Turkey
| | - E Ovali
- Department of Internal Medicine, Haematology Division, Erciyes University Medical Faculty, Kayseri, Turkey
| | - M Yilmaz
- Department of Internal Medicine, Haematology Division, Erciyes University Medical Faculty, Kayseri, Turkey
| | - M Yenerel
- Department of Internal Medicine, Haematology Division, Karadeniz Technical University Medical Faculty, Trabzon, Turkey
| | - S Dagdas
- Department of Internal Medicine, Haematology Division, Istanbul University Medical Faculty, Istanbul, Turkey
| | - G Ozet
- Department of Internal Medicine, Haematology Division, Istanbul University Medical Faculty, Istanbul, Turkey
| | - C Ar
- Department of Internal Medicine, Haematology Division, Ankara Numune Hospital, Ankara, Turkey
| | - Y Aydin
- Department of Internal Medicine, Haematology Division, Ankara Numune Hospital, Ankara, Turkey
| | - T Soysal
- Department of Internal Medicine, Haematology Division, Ankara Numune Hospital, Ankara, Turkey
| | - B Durgun
- Department of Internal Medicine, Haematology Division, Istanbul University Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - O Ozcebe
- Department of Internal Medicine, Haematology Division, Hacettepe University Medical Faculty, Ankara, Turkey
| | - A Tukun
- Medical Department, Novartis Oncology Turkey, Istanbul, Turkey
| | - O Ilhan
- Department of Internal Medicine, Genetics Division, Ankara University Medical Faculty, Ankara, Turkey
| | - U Ozbek
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
29
|
Gafter-Gvili A, Ram R, Gafter U, Shpilberg O, Raanani P. Renal failure associated with tyrosine kinase inhibitors--case report and review of the literature. Leuk Res 2009; 34:123-7. [PMID: 19640584 DOI: 10.1016/j.leukres.2009.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/03/2009] [Accepted: 07/04/2009] [Indexed: 11/16/2022]
Abstract
Imatinib mesylate (IM), nilotinib and dasatinib are tyrosine kinase inhibitors (TKIs) that have revolutionized the treatment of chronic myeloid leukemia (CML). Data regarding the effect of TKIs on the kidney or their safety in patients with renal failure is lacking. We describe a patient with CML who developed renal failure during IM treatment which resolved upon discontinuation of the drug and was not exacerbated by the administration of nilotinib. The literature reporting on the association between TKIs and renal failure is reviewed and the postulated mechanisms including tubular dysfunction caused by the drug or tumor lysis syndrome are discussed.
Collapse
Affiliation(s)
- Anat Gafter-Gvili
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | | | | | | | | |
Collapse
|
30
|
Hu Z, Pan XF, Wu FQ, Ma LY, Liu DP, Liu Y, Feng TT, Meng FY, Liu XL, Jiang QL, Chen XQ, Liu JL, Liu P, Chen Z, Chen SJ, Zhou GB. Synergy between proteasome inhibitors and imatinib mesylate in chronic myeloid leukemia. PLoS One 2009; 4:e6257. [PMID: 19606213 PMCID: PMC2705802 DOI: 10.1371/journal.pone.0006257] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 06/05/2009] [Indexed: 11/19/2022] Open
Abstract
Background Resistance developed by leukemic cells, unsatisfactory efficacy on patients with chronic myeloid leukemia (CML) at accelerated and blastic phases, and potential cardiotoxity, have been limitations for imatinib mesylate (IM) in treating CML. Whether low dose IM in combination with agents of distinct but related mechanisms could be one of the strategies to overcome these concerns warrants careful investigation. Methods and Findings We tested the therapeutic efficacies as well as adverse effects of low dose IM in combination with proteasome inhibitor, Bortezomib (BOR) or proteasome inhibitor I (PSI), in two CML murine models, and investigated possible mechanisms of action on CML cells. Our results demonstrated that low dose IM in combination with BOR exerted satisfactory efficacy in prolongation of life span and inhibition of tumor growth in mice, and did not cause cardiotoxicity or body weight loss. Consistently, BOR and PSI enhanced IM-induced inhibition of long-term clonogenic activity and short-term cell growth of CML stem/progenitor cells, and potentiated IM-caused inhibition of proliferation and induction of apoptosis of BCR-ABL+ cells. IM/BOR and IM/PSI inhibited Bcl-2, increased cytoplasmic cytochrome C, and activated caspases. While exerting suppressive effects on BCR-ABL, E2F1, and β-catenin, IM/BOR and IM/PSI inhibited proteasomal degradation of protein phosphatase 2A (PP2A), leading to a re-activation of this important negative regulator of BCR-ABL. In addition, both combination therapties inhibited Bruton's tyrosine kinase via suppression of NFκB. Conclusion These data suggest that combined use of tyrosine kinase inhibitor and proteasome inhibitor might be helpful for optimizing CML treatment.
Collapse
Affiliation(s)
- Zheng Hu
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao-Fen Pan
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fu-Qun Wu
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Li-Yuan Ma
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da-Peng Liu
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Liu
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Science and Technology of China, Hefei, China
| | - Ting-Ting Feng
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Science and Technology of China, Hefei, China
| | - Fan-Yi Meng
- Department of Hematology, Nanfang Hospital Affiliated to Nanfang Medical University, Guangzhou, China
| | - Xiao-Li Liu
- Department of Hematology, Nanfang Hospital Affiliated to Nanfang Medical University, Guangzhou, China
| | - Qian-Li Jiang
- Department of Hematology, Nanfang Hospital Affiliated to Nanfang Medical University, Guangzhou, China
| | - Xiao-Qin Chen
- Department of Hematology, the Cancer Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing-Lei Liu
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Science and Technology of China, Hefei, China
| | - Ping Liu
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (SJC); (GBZ)
| | - Guang-Biao Zhou
- Laboratory of Molecular Target-Based Therapy for Cancer, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Laboratory of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SJC); (GBZ)
| |
Collapse
|
31
|
Schellings MWM, Vanhoutte D, Swinnen M, Cleutjens JP, Debets J, van Leeuwen REW, d'Hooge J, Van de Werf F, Carmeliet P, Pinto YM, Sage EH, Heymans S. Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. ACTA ACUST UNITED AC 2008; 206:113-23. [PMID: 19103879 PMCID: PMC2626676 DOI: 10.1084/jem.20081244] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The matricellular protein SPARC (secreted protein, acidic and rich in cysteine, also known as osteonectin) mediates cell–matrix interactions during wound healing and regulates the production and/or assembly of the extracellular matrix (ECM). This study investigated whether SPARC functions in infarct healing and ECM maturation after myocardial infarction (MI). In comparison with wild-type (WT) mice, animals with a targeted inactivation of SPARC exhibited a fourfold increase in mortality that resulted from an increased incidence of cardiac rupture and failure after MI. SPARC-null infarcts had a disorganized granulation tissue and immature collagenous ECM. In contrast, adenoviral overexpression of SPARC in WT mice improved the collagen maturation and prevented cardiac dilatation and dysfunction after MI. In cardiac fibroblasts in vitro, reduction of SPARC by short hairpin RNA attenuated transforming growth factor β (TGF)–mediated increase of Smad2 phosphorylation, whereas addition of recombinant SPARC increased Smad2 phosphorylation concordant with increased Smad2 phosphorylation in SPARC-treated mice. Importantly, infusion of TGF-β rescued cardiac rupture in SPARC-null mice but did not significantly alter infarct healing in WT mice. These findings indicate that local production of SPARC is essential for maintenance of the integrity of cardiac ECM after MI. The protective effects of SPARC emphasize the potential therapeutic applications of this protein to prevent cardiac dilatation and dysfunction after MI.
Collapse
Affiliation(s)
- Mark W M Schellings
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, University Hospital Maastricht, 6229 HX Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gioni V, Karampinas T, Voutsinas G, Roussidis AE, Papadopoulos S, Karamanos NK, Kletsas D. Imatinib mesylate inhibits proliferation and exerts an antifibrotic effect in human breast stroma fibroblasts. Mol Cancer Res 2008; 6:706-14. [PMID: 18505916 DOI: 10.1158/1541-7786.mcr-07-0355] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor stroma plays an important role in cancer development. In a variety of tumors, such as breast carcinomas, a desmoplastic response, characterized by stromal fibroblast and collagen accumulation, is observed having synergistic effects on tumor progression. However, the effect of known anticancer drugs on stromal cells has not been thoroughly investigated. Imatinib mesylate is a selective inhibitor of several protein tyrosine kinases, including the receptor of platelet-derived growth factor, an important mediator of desmoplasia. Recently, we have shown that imatinib inhibits the growth and invasiveness of human epithelial breast cancer cells. Here, we studied the effect of imatinib on the proliferation and collagen accumulation in breast stromal fibroblasts. We have shown that it blocks the activation of the extracellular signal-regulated kinase and Akt signaling pathways and up-regulates cyclin-dependent kinase inhibitor p21(WAF1), leading to the inhibition of fibroblast proliferation, by arresting them at the G(0)/G(1) phase of the cell cycle. Imatinib inhibits more potently the platelet-derived growth factor-mediated stimulation of breast fibroblast proliferation. By using specific inhibitors, we have found that this is due to the inhibition of the Akt pathway. In addition, imatinib inhibits fibroblast-mediated collagen accumulation. Conventional and quantitative PCR analysis, as well as gelatin zymography, indicates that this is due to the down-regulation of mRNA synthesis of collagen I and collagen III-the main collagen types in breast stroma-and not to the up-regulation or activation of collagenases matrix metalloproteinase 2 and matrix metalloproteinase 9. These data indicate that imatinib has an antifibrotic effect on human breast stromal fibroblasts that may inhibit desmoplastic reaction and thus tumor progression.
Collapse
Affiliation(s)
- Vassiliki Gioni
- Laboratory of Cell Proliferation and Ageing, Institute of Biology, National Center for Scientific Research "Demokritos," 153 10 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
33
|
A potential role for imatinib and other small molecule tyrosine kinase inhibitors in the treatment of systemic and localized sclerosis. J Am Acad Dermatol 2008; 59:654-8. [PMID: 18571768 DOI: 10.1016/j.jaad.2008.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 04/27/2008] [Accepted: 04/30/2008] [Indexed: 12/12/2022]
Abstract
Small molecule tyrosine kinase (TK) inhibitor, such as imatinib, is well established in the treatment of malignancy. Oral administration, high efficacy, and an excellent safety profile have made imatinib a drug of choice for several malignancies and benign conditions. Recent progress in the understanding of several benign conditions has led to the use of TK inhibitors in the treatment of hypereosinophilic syndrome and mastocytosis. Systemic sclerosis (SS) is a recalcitrant disease featuring multiorgan fibrosis and dysfunction. Molecular and biological evidence point to a central role for platelet-derived growth factor receptor, a TK-associated entity, in the pathogenesis of SS. The ability of several TK inhibitors, namely imatinib, to abrogate the activation of platelet-derived growth factor receptor-TK may entail their use in the treatment of SS and possibly more limited forms of sclerosis. Several human studies aiming to examine the use of imatinib in the treatment of SS are currently underway.
Collapse
|
34
|
François H, Coppo P, Hayman JP, Fouqueray B, Mougenot B, Ronco P. Partial fanconi syndrome induced by imatinib therapy: a novel cause of urinary phosphate loss. Am J Kidney Dis 2008; 51:298-301. [PMID: 18215707 DOI: 10.1053/j.ajkd.2007.10.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 10/05/2007] [Indexed: 11/11/2022]
Abstract
Imatinib mesylate (Gleevec, Glivec; Novartis, Basel, Switzerland) is a specific tyrosine kinase inhibitor that has become the gold-standard treatment for patients with chronic myeloid leukemia. Several tyrosine kinases inhibited by imatinib are expressed in the kidney, and although the drug is usually well tolerated, several cases of acute renal failure were reported. We describe for the first time a case of a patient treated by imatinib for chronic myeloid leukemia who developed partial Fanconi syndrome with mild renal failure, which leads to a discussion of the pathophysiological characteristics of imatinib-induced renal toxicity. Patients on long-term imatinib treatment should be monitored for renal failure, as well as proximal tubule dysfunction, including hypophosphatemia.
Collapse
Affiliation(s)
- Helene François
- AP-HP, Assistance Publique-Hôpitaux de Paris, Department of Nephrology and Dialysis, Tenon Hospital, Paris, France.
| | | | | | | | | | | |
Collapse
|
35
|
Baumann M, Bartholome R, Peutz-Kootstra CJ, Smits JFM, Struijker-Boudier HAJ. Sustained tubulo-interstitial protection in SHRs by transient losartan treatment: an effect of decelerated aging? Am J Hypertens 2008; 21:177-82. [PMID: 18188163 DOI: 10.1038/ajh.2007.30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hypertensive target organ damage shows characteristics of accelerated cell turnover and aging. This might have developed during the evolution of hypertension. In the kidney, high cell turnover is mainly restricted to tubular cells. It was the aim of this study to investigate whether a transient intervention in spontaneously hypertensive rats (SHRs) leads to reduced tubular cell turnover and attenuates the renal aging process and tubulo-interstitial damage in the long-term. METHODS SHRs (i) were prehypertensively (weeks 4-8) treated with losartan (ii) or hydralazine (iii) (20 and 4 mg/kg/day, respectively) and compared to Wistar-Kyoto (WKY) rats (iv). Groups were investigated at weeks 8 and 72 (except iii). At both time points tubular cell proliferation (proliferative cell nuclear antigen) and systolic blood pressure (SBP) were evaluated. At week 72, aging parameters such as telomere length were assessed. Renal damage was semiquantitatively assessed (scale: 0-4) by measuring the parenchyma (atrophy) and vasculature (media thickness). RESULTS Treatments equipotently reduced SBP in young SHRs (P < 0.01) but only losartan reduced renal proliferation (proliferative cell nuclear antigen: (i) 2.8 +/- 0.8, (ii) 1.3 +/- 0.3, (iii) 3.0 +/- 0.6, (iv) 0.1 +/- 0.1 cells/mm(2)). In SHRs treated with losartan(SHR-Los) tubular proliferation remained reduced and renal telomere length was significantly greater than in untreated SHRs (fold: (i) 1.0 +/- 0.1, (ii) 2.8 +/- 0.3, P < 0.01). Untreated SHRs (median 2.0, range 1-3; P < 0.007), but not SHR-Los (median 1.0, range 0-2; P = 0.06) demonstrated more tubular atrophy than WKY rats (median 0.5, range 0-1). CONCLUSIONS Transient losartan treatment reduces cell-turnover not only acutely but also for a prolonged period after drug withdrawal. This results in the long-term in reduced aging and attenuated tubulo-interstitial damage, suggesting there exists a modulating effect of angiotensin II (ANGII)-antagonism on long-term cell turnover.
Collapse
|
36
|
Baumann M, Hermans JJR, Janssen BJA, Peutz-Kootstra C, Witzke O, Heemann U, Smits JFM, Boudier HAJS. Transient prehypertensive treatment in spontaneously hypertensive rats: a comparison of spironolactone and losartan regarding long-term blood pressure and target organ damage. J Hypertens 2008; 25:2504-11. [PMID: 17984673 DOI: 10.1097/hjh.0b013e3282ef84f8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE We previously demonstrated that when the renin-angiotensin system (RAS) is transiently blocked by an angiotensin receptor blocker (ARB) in young spontaneously hypertensive rats (SHR), this results in a prolonged blood pressure decrease and protection against target organ damage. Aldosterone is an essential hormone in the RAS, and contributes to pathologic remodeling. Thus, part of the protective effects of the ARB may be due to inhibition of aldosterone-mediated effects. To test this hypothesis, in young SHR, we compared the effectiveness of transient treatment with the mineralocorticoid receptor blocker spironolactone with those obtained by the ARB losartan. METHODS SHR were transiently (i.e. between 4-8 weeks of age) treated with spironolactone (SHR-Spiro: 1 mg/kg per day), losartan (SHR-Los: 20 mg/kg per day) or saline. Rats were followed up until week 72 of age and cardiovascular parameters were repeatedly assessed by echocardiography, radiotelemetry of blood pressure and 24-h urine collection. End-point measurements included direct left ventricular contractility and relaxation, as well as cardiac and renal histomorphology. RESULTS Transient spironolactone treatment reduced blood pressure up to 36 weeks of age and cardiac and renal collagen deposition and tubular atrophy up to 72 weeks of age compared to untreated SHR. Pulse pressure was higher in SHR-Spiro compared to SHR-Los. Cardiac hypertrophy, albuminuria and glomerulosclerosis were not attenuated in SHR-Spiro compared to untreated SHR up to 72 weeks of age, whereas the effects in SHR-Los were ameliorated. CONCLUSIONS Although transient spironolactone treatment leads to prolonged blood pressure reduction and reduced collagen deposition, long-term organ protection only partially exists. Thus, transient spironolactone treatment is less effective than transient losartan treatment.
Collapse
Affiliation(s)
- Marcus Baumann
- Department of Pharmacology and Toxicology, University Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Transactivation of epidermal growth factor receptor in vascular and renal systems in rats with experimental hyperleptinemia: role in leptin-induced hypertension. Biochem Pharmacol 2008; 75:1623-38. [PMID: 18282556 DOI: 10.1016/j.bcp.2008.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/28/2007] [Accepted: 01/02/2008] [Indexed: 01/09/2023]
Abstract
We examined the role of epidermal growth factor (EGF) receptor in the pathogenesis of leptin-induced hypertension in the rat. Leptin, administered in increasing doses (0.1-0.5 mg/kg/day) for 10 days, increased phosphorylation levels of non-receptor tyrosine kinase, c-Src, EGF receptor and extracellular signal-regulated kinases (ERK) in aorta and kidney, which was accompanied by the increase in plasma concentration and urinary excretion of isoprostanes and H2O2. Blood pressure and renal Na+,K+-ATPase activity were higher, whereas urinary sodium excretion was lower in animals receiving leptin. The effects of leptin on renal Na+,K+-ATPase, natriuresis and blood pressure were abolished by NADPH oxidase inhibitor, apocynin, Src kinase inhibitor, PP2, EGF receptor inhibitor, AG1478, protein farnesyltransferase inhibitor, manumycin A, and ERK inhibitor, PD98059. In contrast, inhibitors of insulin-like growth factor-1 and platelet-derived growth factor receptors, AG1024 and AG1295, respectively, only slightly reduced ERK phosphorylation and had no effect on blood pressure in rats receiving leptin. These data indicate that: (1) experimental hyperleptinemia is associated with oxidative stress and c-Src-dependent transactivation of the EGF receptor, which stimulates ERK in vascular wall and the kidney, (2) overactivity of EGF receptor-ERK pathway contributes to leptin-induced hypertension by stimulating renal Na+,K+-ATPase and reducing sodium excretion, (3) inhibitors of c-Src, EGF receptor and ERK may be considered as a novel therapy for hypertension associated with hyperleptinemia, e.g. in patients with obesity and metabolic syndrome.
Collapse
|
38
|
|
39
|
Izzedine H, Rixe O, Billemont B, Baumelou A, Deray G. Angiogenesis Inhibitor Therapies: Focus on Kidney Toxicity and Hypertension. Am J Kidney Dis 2007; 50:203-18. [PMID: 17660022 DOI: 10.1053/j.ajkd.2007.04.025] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 04/24/2007] [Indexed: 12/29/2022]
Abstract
Angiogenesis inhibitors that target the epidermal growth factor (EGF) receptor (EGFR) and vascular endothelial growth factor (VEGF) constitute an important addition to the therapeutic armamentarium for the treatment of patients with metastatic disease. However, because the same growth factors are expressed in the kidneys, these treatment molecules have renal side effects. EGFR is expressed mainly in tubules (mainly distal and collecting segments) and mesangial and parietal epithelial cells. EGF is involved in maintaining tubular integrity and is a potent mitogen for cultured mesangial cells. Few cases of acute renal failure have been reported related to EGFR inhibitors. VEGF and VEGF receptors are still highly expressed in the kidney. VEGF is expressed in podocytes in the glomerulus, and VEGF receptors are present on endothelial, mesangial, and peritubular capillary cells. Signaling between endothelial cells and podocytes is essential for the proper development and maintenance of the filtration function of the kidney glomerulus. The most common renal class effects of VEGF antagonists are both manageable; hypertension and proteinuria commonly regressive on drug withdrawal. There was a dose-dependent increase in risk of proteinuria and hypertension in patients with cancer who received targeted therapies. Furthermore, few patients with glomerulonephritis or thrombotic microangiopathy secondary to treatment were reported. Hypertension is believed to be nitric oxide dependent, whereas proteinuria seems to be related to downregulation of podocyte tight junction protein. This article reviews data relating to hypertension and proteinuria associated with the use of these drugs.
Collapse
Affiliation(s)
- Hassane Izzedine
- Department of Nephrology, Pitie-Salpetriere Hospital, Paris, France.
| | | | | | | | | |
Collapse
|
40
|
Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 2007; 112:417-28. [PMID: 17346243 DOI: 10.1042/cs20060342] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intracellular signal transduction of AngII (angiotensin II) has been implicated in cardiovascular diseases, such as hypertension, atherosclerosis and restenosis after injury. AT(1) receptor (AngII type-1 receptor), a G-protein-coupled receptor, mediates most of the physiological and pathophysiological actions of AngII, and this receptor is predominantly expressed in cardiovascular cells, such as VSMCs (vascular smooth muscle cells). AngII activates various signalling molecules, including G-protein-derived second messengers, protein kinases and small G-proteins (Ras, Rho, Rac etc), through the AT(1) receptor leading to vascular remodelling. Growth factor receptors, such as EGFR (epidermal growth factor receptor), have been demonstrated to be 'trans'-activated by the AT(1) receptor in VSMCs to mediate growth and migration. Rho and its effector Rho-kinase/ROCK are also implicated in the pathological cellular actions of AngII in VSMCs. Less is known about the endothelial AngII signalling; however, recent studies suggest the endothelial AngII signalling positively, as well as negatively, regulates the NO (nitric oxide) signalling pathway and, thereby, modulates endothelial dysfunction. Moreover, selective AT(1)-receptor-interacting proteins have recently been identified that potentially regulate AngII signal transduction and their pathogenic functions in the target organs. In this review, we focus our discussion on the recent findings and concepts that suggest the existence of the above-mentioned novel signalling mechanisms whereby AngII mediates the formation of cardiovascular diseases.
Collapse
Affiliation(s)
- Sadaharu Higuchi
- Cardiovascular Research Center, Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
41
|
Atallah E, Durand JB, Kantarjian H, Cortes J. Congestive heart failure is a rare event in patients receiving imatinib therapy. Blood 2007; 110:1233-7. [PMID: 17449798 DOI: 10.1182/blood-2007-01-070144] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recent preclinical study suggested that imatinib may be cardiotoxic in some patients. We reviewed all reported serious adverse events of cardiac adverse events occurring in patients on clinical trials involving imatinib. Among 1276 patients enrolled, 22 (1.7%) were identified as having symptoms that could be attributed to systolic heart failure. The median age was 70 years (range, 49 to 83 years). The median time from start of imatinib therapy was 162 days (range, 2-2045 days). At the time these events were reported, 8 (0.6%) were considered possibly or probably related to imatinib. A total of 18 patients had previous medical conditions predisposing to cardiac failure: congestive heart failure (CHF; 6 [27%] patients), diabetes mellitus (6 [27%] patients), hypertension (10 [45%] patients), coronary artery disease (CAD; 8 [36%] patients), arrhythmia (3 [14%] patients), and cardiomyopathy (1 [5%] patient). Of the 22 patients, 11 continued imatinib therapy with dose adjustments and management for the CHF symptoms without further complications. Imatinib therapy as a causal factor of CHF is uncommon, mainly seen in elderly patients with preexisting cardiac conditions. Patients with previous cardiac history should be monitored closely and treated aggressively with standard medical therapy, including diuretics, if they develop symptoms suggestive of heart failure.
Collapse
Affiliation(s)
- Ehab Atallah
- Department of Leukemia, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
42
|
de Borst MH, Diks SH, Bolbrinker J, Schellings MW, van Dalen MBA, Peppelenbosch MP, Kreutz R, Pinto YM, Navis G, van Goor H. Profiling of the renal kinome: a novel tool to identify protein kinases involved in angiotensin II-dependent hypertensive renal damage. Am J Physiol Renal Physiol 2007; 293:F428-37. [PMID: 17429032 DOI: 10.1152/ajprenal.00367.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulation of protein kinase activities is crucial in both physiology and disease, but analysis is hampered by the multitude and complexity of kinase networks. We used novel peptide array chips containing 1,152 known kinase substrate sequences to profile different kinase activities in renal lysates from homozygous Ren2 rats, a model characterized by hypertension and angiotensin II (ANG II)-mediated renal fibrosis, compared with Sprague-Dawley (SD) control rats and Ren2 rats treated with an angiotensin-converting enzyme inhibitor (ACEi). Five-wk-old homozygous Ren2 rats were left untreated or treated with the ACEi ramipril (1 mg.kg(-1).day(-1)) for 4 wk; age-matched SD rats served as controls (n = 5 each). Peptide array chips were incubated with renal cortical lysates in the presence of radioactively labeled ATP. Radioactivity incorporated into the substrate motifs was measured to quantify kinase activity. A number of kinases with modulated activities, which might contribute to renal damage, were validated by Western blotting, immunoprecipitation, and immunohistochemistry. Relevant kinases identified by the peptide array and confirmed using conventional techniques included p38 MAP kinase and PDGF receptor-beta, which were increased in Ren2 and reversed by ACEi. Furthermore, insulin receptor signaling was reduced in Ren2 compared with control rats, and G protein-coupled receptor kinase (GRK) activity decreased in Ren2 + ACEi compared with untreated Ren2 rats. Array-based profiling of tissue kinase activities in ANG II-mediated renal damage provides a powerful tool for identification of relevant kinase pathways in vivo and may lead to novel strategies for therapy.
Collapse
Affiliation(s)
- Martin H de Borst
- Dept. of Pathology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Park JK, Fischer R, Dechend R, Shagdarsuren E, Gapeljuk A, Wellner M, Meiners S, Gratze P, Al-Saadi N, Feldt S, Fiebeler A, Madwed JB, Schirdewan A, Haller H, Luft FC, Muller DN. p38 Mitogen-Activated Protein Kinase Inhibition Ameliorates Angiotensin II–Induced Target Organ Damage. Hypertension 2007; 49:481-9. [PMID: 17224470 DOI: 10.1161/01.hyp.0000256831.33459.ea] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated whether or not p38 mitogen-activated protein kinase inhibition ameliorates angiotensin II–induced target organ damage. We used double transgenic rats harboring both human renin and angiotensinogen genes (dTGRs). dTGR, with or without p38 inhibitor (BIRB796; 30 mg/kg per day in the diet), and nontransgenic Sprague–Dawley rats were studied in 2 protocols. In protocol 1 (week 7), systolic blood pressure of untreated dTGRs was 204±4 mm Hg, but partially reduced after BIRB796 treatment (166±7 mm Hg), whereas Sprague–Dawley rats were normotensive. The cardiac hypertrophy index was unchanged in untreated and BIRB796-treated dTGRs. The β-myosin heavy chain expression of BIRB796-treated hearts was significantly lower in BIRB796 compared with dTGRs, indicating a delayed switch to the fetal isoform. BIRB796 treatment significantly reduced cardiac fibrosis, connective tissue growth factor, tumor necrosis factor-α, interleukin-6, and macrophage infiltration. Albuminuria was not reduced in BIRB796-treated dTGRs. Tubular and glomerular damage with tumor necrosis factor-α expression was unaltered, although serum creatinine and cystatin C were normalized. Renal macrophage infiltration, fibrosis, and vessel damage were reduced. In protocol 2 (week 8), we focused on mortality and arrhythmogenic electrical remodeling. Mortality of untreated dTGRs was 100% but was reduced to 10% in the BIRB796 group. Cardiac magnetic field mapping showed prolongation of depolarization and repolarization in untreated dTGRs compared with Sprague–Dawley rats with a partial reduction by BIRB796. Programmed electrical stimulation elicited ventricular tachycardias in 81% of untreated dTGRs but only in 48% of BIRB796-treated dTGRs. In conclusion, BIRB796 improved survival, target organ damage, and arrhythmogenic potential in angiotensin II–induced target organ damage.
Collapse
Affiliation(s)
- Joon-Keun Park
- Medical Faculty of the Charité, Franz Volhard Clinic, HELIOS Klinikum, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Atallah E, Kantarjian H, Cortes J. Emerging Safety Issues with Imatinib and Other Abl Tyrosine Kinase Inhibitors. ACTA ACUST UNITED AC 2007; 7 Suppl 3:S105-12. [PMID: 17382019 DOI: 10.3816/clm.2007.s.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Imatinib and other Abl tyrosine kinase inhibitors (TKIs), such as dasatinib and nilotinib, have significantly improved the outcome of patients with chronic myeloid leukemia. Imatinib and dasatinib are currently Food and Drug Administration (FDA) approved, and nilotinib is expected to gain FDA approval soon. In addition, several other Abl TKIs are being evaluated in various clinical trials. Imatinib has also shown efficacy in the therapy of gastrointestinal stromal tumors, Philadelphia chromosome-positive acute lymphocytic leukemia and hypereosinophilic syndrome. Because of their efficacy, more patients will receive Abl TKIs for a longer period of time. Imatinib was FDA approved after a short follow-up because of its exceptional efficacy and safety profile. The most common adverse events reported included fluid retention, fatigue, diarrhea, and muscle cramps. With longer follow-up, issues related to the long-term use of imatinib have been discussed. Our aim is to review the emerging safety issues of Abl TKIs after a longer follow-up.
Collapse
Affiliation(s)
- Ehab Atallah
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
46
|
Suzuki H, Eguchi S. Growth Factor Receptor Transactivation in Mediating End Organ Damage by Angiotensin II. Hypertension 2006; 47:339-40. [PMID: 16432051 DOI: 10.1161/01.hyp.0000202497.83294.50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|