1
|
Inverse salt sensitivity: an independent risk factor for cardiovascular damage in essential hypertension. J Hypertens 2022; 40:1504-1512. [PMID: 35881450 DOI: 10.1097/hjh.0000000000003174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Salt sensitivity is a powerful risk factor for cardiovascular (CV) disease and mortality in both normotensive and hypertensive patients. We investigated the predictive value of the salt sensitivity phenotype in the development of CV events and hypertensive target organ damage (TOD) among essential hypertensive patients. METHODS Eight hundred forty-four naive hypertensive patients were recruited and underwent an acute saline test during which blood pressure (BP) displayed either no substantial variation (salt-resistant, SR individuals), an increase (salt-sensitive, SS), or a paradoxical decrease (inverse salt-sensitive, ISS). Sixty-one patients with the longest monitored follow-up (median 16 years) for blood pressure and organ damage were selected for the present study. A clinical score for TOD development based on the severity and the age of onset was set up by considering hypertensive heart disease, cerebrovascular damage, microalbuminuria, and vascular events. RESULTS CV events were significantly higher among SS and ISS than in SR patients. The relative risk of developing CV events was 12.67 times higher in SS than SR and 5.94 times higher in ISS than SR patients. The development of moderate to severe TOD was 10-fold higher in SS and over 15-fold higher in ISS than in SR patients. Among the three phenotypes, changes in plasma endogenous ouabain were linked with the blood pressure effects of saline. CONCLUSIONS Salt sensitivity and inverse salt sensitivity appear to be equivalent risk factors for CV events. The response to an acute saline test is predictive of CV damage for newly identified ISS individuals.
Collapse
|
2
|
Is There Association between Altered Adrenergic System Activity and Microvascular Endothelial Dysfunction Induced by a 7-Day High Salt Intake in Young Healthy Individuals. Nutrients 2021; 13:nu13051731. [PMID: 34065261 PMCID: PMC8161165 DOI: 10.3390/nu13051731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/06/2023] Open
Abstract
This study aimed to test the effect of a 7-day high-salt (HS) diet on autonomic nervous system (ANS) activity in young healthy individuals and modulation of ANS on microvascular endothelial function impairment. 47 young healthy individuals took 7-day low-salt (LS) diet (3.5 g salt/day) followed by 7-day high-salt (HS) diet (~14.7 g salt/day). ANS activity was assessed by 24-h urine catecholamine excretion and 5-min heart rate variability (HRV). Skin post-occlusive reactive hyperemia (PORH) and acetylcholine-induced dilation (AChID) were assessed by laser Doppler flowmetry (LDF). Separately, mental stress test (MST) at LS and HS condition was conducted, followed by immediate measurement of plasma metanephrines’ level, 5-min HRV and LDF microvascular reactivity. Noradrenaline, metanephrine and normetanephrine level, low-frequency (LF) HRV and PORH and AChID significantly decreased following HS compared to LS. MST at HS condition tended to increase HRV LF/HF ratio. Spectral analysis of PORH signal, and AChID measurement showed that MST did not significantly affect impaired endothelium-dependent vasodilation due to HS loading. In this case, 7-day HS diet suppressed sympathetic nervous system (SNS) activity, and attenuated microvascular reactivity in salt-resistant normotensive individuals. Suppression of SNS during HS loading represents a physiological response, rather than direct pathophysiological mechanism by which HS diet affects microvascular endothelial function in young healthy individuals.
Collapse
|
3
|
Yang T, Chakraborty S, Mandal J, Mei X, Joe B. Microbiota and Metabolites as Factors Influencing Blood Pressure Regulation. Compr Physiol 2021; 11:1731-1757. [PMID: 33792901 DOI: 10.1002/cphy.c200009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study of microbes has rapidly expanded in recent years due to a surge in our understanding that humans host a plethora of commensal microbes, which reside in their bodies and depending upon their composition, contribute to either normal physiology or pathophysiology. This article provides a general foundation for learning about host-commensal microbial interactions as an emerging area of research. The article is divided into two sections. The first section is dedicated to introducing commensal microbiota and its known effects on the host. The second section is on metabolites, which are biochemicals that the host and the microbes use for bi-directional communication with each other. Together, the sections review what is known about how microbes interact with the host to impact cardiovascular physiology, especially blood pressure regulation. © 2021 American Physiological Society. Compr Physiol 11:1731-1757, 2021.
Collapse
Affiliation(s)
- Tao Yang
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Saroj Chakraborty
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Juthika Mandal
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Xue Mei
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
4
|
Bigalke JA, Gao H, Chen QH, Shan Z. Activation of Orexin 1 Receptors in the Paraventricular Nucleus Contributes to the Development of Deoxycorticosterone Acetate-Salt Hypertension Through Regulation of Vasopressin. Front Physiol 2021; 12:641331. [PMID: 33633591 PMCID: PMC7902066 DOI: 10.3389/fphys.2021.641331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Salt-sensitivity is a major factor in the development of hypertension. The brain orexin system has been observed to play a role in numerous hypertensive animal models. However, orexin’s role in the pathology of salt-sensitive hypertension (SSH) remains to be adequately explored. We assessed the impact of orexin hyperactivity in the pathogenesis of the deoxycorticosterone acetate (DOCA) – salt rat model, specifically through modulation of Arginine Vasopressin (AVP). Adult male rats were separated into three groups: vehicle control, DOCA-salt, and DOCA-salt+OX1R-shRNA. DOCA-salt rats received subcutaneous implantation of a 21-day release, 75 mg DOCA pellet in addition to saline drinking water (1% NaCl and 0.2% KCl). DOCA-salt+OX1R-shRNA rats received bilateral microinjection of AAV2-OX1R-shRNA into the paraventricular nucleus (PVN) to knockdown function of the Orexin 1-Receptor (OX1R) within that area. Following 2-week to allow full transgene expression, a DOCA pellet was administered in addition to saline drinking solution. Vehicle controls received sham DOCA implantation but were given normal water. During the 3-week DOCA-salt or sham treatment period, mean arterial pressure (MAP) and heart rate (HR) were monitored utilizing tail-cuff plethysmography. Following the 3-week period, rat brains were collected for either PCR mRNA analysis, as well as immunostaining. Plasma samples were collected and subjected to ELISA analysis. In line with our hypothesis, OX1R expression was elevated in the PVN of DOCA-salt treated rats when compared to controls. Furthermore, following chronic knockdown of OX1R, the hypertension development normally induced by DOCA-salt treatment was significantly diminished in the DOCA-salt+OX1R-shRNA group. A concurrent reduction in PVN OX1R and AVP mRNA was observed in concert with the reduced blood pressure following AAV2-OX1R-shRNA treatment. Similarly, plasma AVP concentrations appeared to be reduced in the DOCA-salt+OX1R-shRNA group when compared to DOCA-salt rats. These results indicate that orexin signaling, specifically through the OX1R in the PVN are critical for the onset and maintenance of hypertension in the DOCA-salt model. This relationship is mediated, at least in part, through orexin activation of AVP producing neurons, and the subsequent release of AVP into the periphery. Our results outline a promising mechanism underlying the development of SSH through interactions with the brain orexin system.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Department of Psychology, Montana State University, Bozeman, MT, United States
| | - Huanjia Gao
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Health Research Institute, Michigan Technological University, Houghton, MI, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Health Research Institute, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
5
|
DeLalio LJ, Sved AF, Stocker SD. Sympathetic Nervous System Contributions to Hypertension: Updates and Therapeutic Relevance. Can J Cardiol 2020; 36:712-720. [PMID: 32389344 DOI: 10.1016/j.cjca.2020.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
The sympathetic nervous system plays a pivotal role in the long-term regulation of arterial blood pressure through the ability of the central nervous system to integrate neurohumoral signals and differentially regulate sympathetic neural input to specific end organs. Part 1 of this review will discuss neural mechanisms of salt-sensitive hypertension, obesity-induced hypertension, and the ability of prior experiences to sensitize autonomic networks. Part 2 of this review focuses on new therapeutic advances to treat resistant hypertension including renal denervation and carotid baroactivation. Both advances lower arterial blood pressure by reducing sympathetic outflow. We discuss potential mechanisms and areas of future investigation to target the sympathetic nervous system.
Collapse
Affiliation(s)
- Leon J DeLalio
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan F Sved
- Department of Neuroscience, University of Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
6
|
Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2019; 73:e87-e120. [PMID: 30866654 DOI: 10.1161/hyp.0000000000000090] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertension is the most common chronic disease in the world, yet the precise cause of elevated blood pressure often cannot be determined. Animal models have been useful for unraveling the pathogenesis of hypertension and for testing novel therapeutic strategies. The utility of animal models for improving the understanding of the pathogenesis, prevention, and treatment of hypertension and its comorbidities depends on their validity for representing human forms of hypertension, including responses to therapy, and on the quality of studies in those models (such as reproducibility and experimental design). Important unmet needs in this field include the development of models that mimic the discrete hypertensive syndromes that now populate the clinic, resolution of ongoing controversies in the pathogenesis of hypertension, and the development of new avenues for preventing and treating hypertension and its complications. Animal models may indeed be useful for addressing these unmet needs.
Collapse
|
7
|
Sandgren JA, Linggonegoro DW, Zhang SY, Sapouckey SA, Claflin KE, Pearson NA, Leidinger MR, Pierce GL, Santillan MK, Gibson-Corley KN, Sigmund CD, Grobe JL. Angiotensin AT 1A receptors expressed in vasopressin-producing cells of the supraoptic nucleus contribute to osmotic control of vasopressin. Am J Physiol Regul Integr Comp Physiol 2018; 314:R770-R780. [PMID: 29364700 PMCID: PMC6032302 DOI: 10.1152/ajpregu.00435.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG) stimulates the release of arginine vasopressin (AVP) from the neurohypophysis through activation of the AT1 receptor within the brain, although it remains unclear whether AT1 receptors expressed on AVP-expressing neurons directly mediate this control. We explored the hypothesis that ANG acts through AT1A receptors expressed directly on AVP-producing cells to regulate AVP secretion. In situ hybridization and transgenic mice demonstrated localization of AVP and AT1A mRNA in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN), but coexpression of both AVP and AT1A mRNA was only observed in the SON. Mice harboring a conditional allele for the gene encoding the AT1A receptor (AT1Aflox) were then crossed with AVP-Cre mice to generate mice that lack AT1A in all cells that express the AVP gene (AT1AAVP-KO). AT1AAVP-KO mice exhibited spontaneously increased plasma and serum osmolality but no changes in fluid or salt-intake behaviors, hematocrit, or total body water. AT1AAVP-KO mice exhibited reduced AVP secretion (estimated by measurement of copeptin) in response to osmotic stimuli such as acute hypertonic saline loading and in response to chronic intracerebroventricular ANG infusion. However, the effects of these receptors on AVP release were masked by complex stimuli such as overnight dehydration and DOCA-salt treatment, which simultaneously induce osmotic, volemic, and pressor stresses. Collectively, these data support the expression of AT1A in AVP-producing cells of the SON but not the PVN, and a role for AT1A receptors in these cells in the osmotic regulation of AVP secretion.
Collapse
MESH Headings
- Angiotensin II/administration & dosage
- Angiotensin II/pharmacology
- Animals
- Body Water
- Feeding Behavior
- Injections, Intraventricular
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Osmosis
- Paraventricular Hypothalamic Nucleus/metabolism
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
- Sodium, Dietary
- Supraoptic Nucleus/metabolism
- Supraoptic Nucleus/physiology
- Vasoconstrictor Agents/administration & dosage
- Vasoconstrictor Agents/pharmacology
- Vasopressins/biosynthesis
- Vasopressins/physiology
Collapse
Affiliation(s)
| | | | - Shao Yang Zhang
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | | | | | - Nicole A Pearson
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | | | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
| | - Katherine N Gibson-Corley
- Department of Pathology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa , Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
- Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa , Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa , Iowa City, Iowa
| |
Collapse
|
8
|
Abstract
The objective of this review is to provide an in-depth evaluation of how renal nerves regulate renal and cardiovascular function with a focus on long-term control of arterial pressure. We begin by reviewing the anatomy of renal nerves and then briefly discuss how the activity of renal nerves affects renal function. Current methods for measurement and quantification of efferent renal-nerve activity (ERNA) in animals and humans are discussed. Acute regulation of ERNA by classical neural reflexes as well and hormonal inputs to the brain is reviewed. The role of renal nerves in long-term control of arterial pressure in normotensive and hypertensive animals (and humans) is then reviewed with a focus on studies utilizing continuous long-term monitoring of arterial pressure. This includes a review of the effect of renal-nerve ablation on long-term control of arterial pressure in experimental animals as well as humans with drug-resistant hypertension. The extent to which changes in arterial pressure are due to ablation of renal afferent or efferent nerves are reviewed. We conclude by discussing the importance of renal nerves, relative to sympathetic activity to other vascular beds, in long-term control of arterial pressure and hypertension and propose directions for future research in this field. © 2017 American Physiological Society. Compr Physiol 7:263-320, 2017.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason D Foss
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Stocker SD, Lang SM, Simmonds SS, Wenner MM, Farquhar WB. Cerebrospinal Fluid Hypernatremia Elevates Sympathetic Nerve Activity and Blood Pressure via the Rostral Ventrolateral Medulla. Hypertension 2015; 66:1184-90. [PMID: 26416846 DOI: 10.1161/hypertensionaha.115.05936] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023]
Abstract
Elevated NaCl concentrations of the cerebrospinal fluid increase sympathetic nerve activity (SNA) in salt-sensitive hypertension. Neurons of the rostral ventrolateral medulla (RVLM) play a pivotal role in the regulation of SNA and receive mono- or polysynaptic inputs from several hypothalamic structures responsive to hypernatremia. Therefore, the present study investigated the contribution of RVLM neurons to the SNA and pressor response to cerebrospinal fluid hypernatremia. Lateral ventricle infusion of 0.15 mol/L, 0.6 mol/L, and 1.0 mol/L NaCl (5 µL/10 minutes) produced concentration-dependent increases in lumbar SNA, adrenal SNA, and arterial blood pressure, despite no change in splanchnic SNA and a decrease in renal SNA. Ganglionic blockade with chlorisondamine or acute lesion of the lamina terminalis blocked or significantly attenuated these responses, respectively. RVLM microinjection of the gamma-aminobutyric acid (GABAA) agonist muscimol abolished the sympathoexcitatory response to intracerebroventricular infusion of 1 mol/L NaCl. Furthermore, blockade of ionotropic glutamate, but not angiotensin II type 1, receptors significantly attenuated the increase in lumbar SNA, adrenal SNA, and arterial blood pressure. Finally, single-unit recordings of spinally projecting RVLM neurons revealed 3 distinct populations based on discharge responses to intracerebroventricular infusion of 1 mol/L NaCl: type I excited (46%; 11/24), type II inhibited (37%; 9/24), and type III no change (17%; 4/24). All neurons with slow conduction velocities were type I cells. Collectively, these findings suggest that acute increases in cerebrospinal fluid NaCl concentrations selectively activate a discrete population of RVLM neurons through glutamate receptor activation to increase SNA and arterial blood pressure.
Collapse
Affiliation(s)
- Sean D Stocker
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark.
| | - Susan M Lang
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| | - Sarah S Simmonds
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| | - Megan M Wenner
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| | - William B Farquhar
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| |
Collapse
|
10
|
Smith JA, Wang L, Hiller H, Taylor CT, de Kloet AD, Krause EG. Acute hypernatremia promotes anxiolysis and attenuates stress-induced activation of the hypothalamic-pituitary-adrenal axis in male mice. Physiol Behav 2014; 136:91-6. [PMID: 24704193 PMCID: PMC4183739 DOI: 10.1016/j.physbeh.2014.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 02/02/2023]
Abstract
Previous investigation by our laboratory found that acute hypernatremia potentiates an oxytocinergic tone that inhibits parvocellular neurosecretory neurons in the paraventricular nucleus of the hypothalamus (PVN), attenuates restraint-induced surges in corticosterone (CORT), and reduces anxiety-like behavior in male rats. To investigate the neural mechanisms mediating these effects and extend our findings to a more versatile species, we repeated our studies using laboratory mice. In response to 2.0M NaCl injections, mice had increased plasma sodium concentrations which were associated with a blunted rise in CORT subsequent to restraint challenge relative to 0.15M NaCl injected controls. Immunofluorescent identification of the immediate early gene product Fos found that 2.0M NaCl treatment increased the number of activated neurons producing oxytocin in the PVN. To evaluate the effect of acute hypernatremia on PVN neurons producing corticotropin-releasing hormone (CRH), we used the Cre-lox system to generate mice that produced the red fluorescent protein, tdTomato, in cells that had Cre-recombinase activity driven by CRH gene expression. Analysis of brain tissue from these CRH-reporter mice revealed that 2.0M NaCl treatment caused a dramatic reduction in Fos-positive nuclei specifically in CRH-producing PVN neurons. This altered pattern of activity was predictive of alleviated anxiety-like behavior as mice administered 2.0M NaCl spent more time exploring the open arms of an elevated-plus maze than 0.15M NaCl treated controls. Taken together, these results further implicate an oxytocin-dependent inhibition of CRH neurons in the PVN and demonstrate the impact that slight elevations in plasma sodium have on hypothalamic-pituitary-adrenocortical axis output and anxiety-like behavior.
Collapse
Affiliation(s)
- Justin A Smith
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, PO Box 100487, Gainesville, FL 32611, United States.
| | - Lei Wang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, PO Box 100487, Gainesville, FL 32611, United States.
| | - Helmut Hiller
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, PO Box 100487, Gainesville, FL 32611, United States.
| | - Christopher T Taylor
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, PO Box 100487, Gainesville, FL 32611, United States.
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine University of Florida, PO Box 100274, Gainesville, FL 32610, United States.
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, PO Box 100487, Gainesville, FL 32611, United States.
| |
Collapse
|
11
|
Stocker SD, Monahan KD, Browning KN. Neurogenic and sympathoexcitatory actions of NaCl in hypertension. Curr Hypertens Rep 2014; 15:538-46. [PMID: 24052211 DOI: 10.1007/s11906-013-0385-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excess dietary salt intake is a major contributing factor to the pathogenesis of salt-sensitive hypertension. Strong evidence suggests that salt-sensitive hypertension is attributed to renal dysfunction, vascular abnormalities, and activation of the sympathetic nervous system. Indeed, sympathetic nerve transections or interruption of neurotransmission in various brain centers lowers arterial blood pressure (ABP) in many salt-sensitive models. The purpose of this article is to discuss recent evidence that supports a role of plasma or cerebrospinal fluid hypernatremia as a key mediator of sympathoexcitation and elevated ABP. Both experimental and clinical studies using time-controlled sampling have documented that a diet high in salt increases plasma and cerebrospinal fluid sodium concentration. To the extent it has been tested, acute and chronic elevations in sodium concentration activates the sympathetic nervous system in animals and humans. A further understanding of how the central nervous system detects changes in plasma or cerebrospinal fluid sodium concentration may lead to new therapeutic treatment strategies in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Cellular & Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Drive H166, Hershey, PA, 17033, USA,
| | | | | |
Collapse
|
12
|
Wehrwein EA, Yoshimoto M, Guzman P, Shah A, Kreulen DL, Osborn JW. Role of cardiac sympathetic nerves in blood pressure regulation. Auton Neurosci 2014; 183:30-5. [PMID: 24629351 DOI: 10.1016/j.autneu.2014.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 02/19/2014] [Accepted: 02/22/2014] [Indexed: 12/29/2022]
Abstract
Stellate ganglionectomy (SGx) was used to assess the contribution of cardiac sympathetic nerves to neurogenic hypertension in deoxycorticosterone (DOCA)-salt treated rats. Experiments were conducted in two substrains of Sprague-Dawley (SD) rats since previous studies reported bradycardia in Charles River-SD (CR-SD) rats and tachycardia in SASCO-SD (SA-SD) rats with DOCA treatment suggesting different underlying neural mechanisms. Uninephrectomized male rats underwent SGx or SHAM surgery and were instrumented for telemetric monitoring of mean arterial pressure (MAP) and heart rate (HR). After recovery, 0.9% saline solution and DOCA (50mg) were administered. Baseline MAP (Days 0-5 average) after SGx in CR-SD rats (96±2mmHg; n=7) was not significantly different (p=0.08) than CR-SD SHAM rats (103±3mmHg; n=9); however, there was a significantly lower HR during the baseline period (377±7 vs. 432±7bpm, p<0.05) in SGx rats. In SA-SD rats baseline MAP was not different between SGx and SHAM rats and HR was lower in SGx rats (428±8 vs. 371±5bpm, p<0.05). After DOCA treatment in both substrains, MAP and HR were elevated similarly in SHAM and SGx groups showing minimal impact in both groups of SGx on hypertension development. However, overall MAP in SA-SD SHAM rats reached a significantly higher level (155±10mmHg vs 135±5mmHg, p<0.05) than that observed in CR-SD SHAM rats demonstrating that the magnitude of hypertensive response to DOCA-salt treatment varies between substrains. In conclusion, removal of cardiac sympathetic nerves did not alter the development or maintenance of DOCA-salt hypertension in SD rats.
Collapse
Affiliation(s)
- Erica A Wehrwein
- Michigan State University, Department of Physiology, East Lansing, MI, United States
| | - Misa Yoshimoto
- University of Minnesota, Department of Integrative Biology and Physiology, Minneapolis, MN, United States
| | - Pilar Guzman
- University of Minnesota, Department of Integrative Biology and Physiology, Minneapolis, MN, United States
| | - Amit Shah
- Michigan State University, Department of Physiology, East Lansing, MI, United States
| | - David L Kreulen
- Michigan State University, Department of Physiology, East Lansing, MI, United States
| | - John W Osborn
- University of Minnesota, Department of Integrative Biology and Physiology, Minneapolis, MN, United States.
| |
Collapse
|
13
|
Holbein WW, Toney GM. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity. J Appl Physiol (1985) 2013; 114:1689-96. [PMID: 23580603 DOI: 10.1152/japplphysiol.00078.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P < 0.01), analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P < 0.005) in WD rats (+68 ± 6%) than controls (+208 ± 20%), and amplitudes of the early expiratory (postinspiratory) trough and late expiratory burst of sSNA were not different between groups. Further analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.
Collapse
Affiliation(s)
- Walter W Holbein
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
14
|
Vermehren-Schmaedick A, Jenkins VK, Hsieh HY, Brown AL, Page MP, Brooks VL, Balkowiec A. Upregulation of brain-derived neurotrophic factor expression in nodose ganglia and the lower brainstem of hypertensive rats. J Neurosci Res 2012; 91:220-9. [PMID: 23172808 DOI: 10.1002/jnr.23158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/12/2012] [Accepted: 09/20/2012] [Indexed: 01/19/2023]
Abstract
Hypertension leads to structural and functional changes at baroreceptor synapses in the medial nucleus tractus solitarius (NTS), but the underlying molecular mechanisms remain unknown. Our previous studies show that brain-derived neurotrophic factor (BDNF) is abundantly expressed by rat nodose ganglion (NG) neurons, including baroreceptor afferents and their central terminals in the medial NTS. We hypothesized that hypertension leads to upregulation of BDNF expression in NG neurons. To test this hypothesis, we used two mechanistically distinct models of hypertension, the spontaneously hypertensive rat (SHR) and the deoxycorticosterone acetate (DOCA)-salt rat. Young adult SHRs, whose blood pressure was significantly elevated compared with age-matched Wistar-Kyoto (WKY) control rats, exhibited dramatic upregulation of BDNF mRNA and protein in the NG. BDNF transcripts from exon 4, known to be regulated by activity, and exon 9 (protein-coding region) showed the largest increases. Electrical stimulation of dispersed NG neurons with patterns that mimic baroreceptor activity during blood pressure elevations led to increases in BDNF mRNA that were also mediated through promoter 4. The increase in BDNF content of the NG in vivo was associated with a significant increase in the percentage of BDNF-immunoreactive NG neurons. Moreover, upregulation of BDNF in cell bodies of NG neurons was accompanied by a significant increase in BDNF in the NTS region, the primary central target of NG afferents. A dramatic increase in BDNF in the NG was also detected in DOCA-salt hypertensive rats. Together, our study identifies BDNF as a candidate molecular mediator of activity-dependent changes at baroafferent synapses during hypertension.
Collapse
Affiliation(s)
- Anke Vermehren-Schmaedick
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Veitenheimer B, Osborn JW. Effects of intrathecal kynurenate on arterial pressure during chronic osmotic stress in conscious rats. Am J Physiol Heart Circ Physiol 2012; 304:H303-10. [PMID: 23161878 DOI: 10.1152/ajpheart.00629.2012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased plasma osmolality elevates mean arterial pressure (MAP) through activation of the sympathetic nervous system, but the neurotransmitters released in the spinal cord to regulate MAP during osmotic stress remain unresolved. Glutamatergic neurons of the rostral ventrolateral medulla project to sympathetic preganglionic neurons in the spinal cord and are likely activated during conditions of osmotic stress; however, this has not been examined in conscious rats. This study investigated whether increased MAP during chronic osmotic stress depends on activation of spinal glutamate receptors. Rats were chronically instrumented with an indwelling intrathecal (i.t.) catheter for antagonist delivery to the spinal cord and a radiotelemetry transmitter for continuous monitoring of MAP and heart rate. Osmotic stress induced by 48 h of water deprivation (WD) increased MAP by ~15 mmHg. Intrathecal kynurenic acid, a nonspecific antagonist of ionotropic glutamate receptors, decreased MAP significantly more after 48 h of WD compared with the water-replete state. Water-deprived rats also showed a greater fall in MAP in response to i.t. 2-amino-5-phosphonovalerate. Finally, i.t. kynurenic acid also decreased MAP more in an osmotically driven model of neurogenic hypertension, the DOCA-salt rat, compared with normotensive controls. Our results suggest that spinally released glutamate mediates increased MAP during 48-h WD and DOCA-salt hypertension.
Collapse
Affiliation(s)
- Britta Veitenheimer
- The Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
16
|
Gabor A, Leenen FHH. Central neuromodulatory pathways regulating sympathetic activity in hypertension. J Appl Physiol (1985) 2012; 113:1294-303. [PMID: 22773773 DOI: 10.1152/japplphysiol.00553.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The classical neurotransmitters, glutamate and GABA, mediate fast (milliseconds) synaptic transmission and modulate its effectiveness through slow (seconds to minutes) signaling processes. Angiotensinergic pathways, from the lamina terminalis to the paraventricular nucleus (PVN)/supraoptic nucleus and rostral ventrolateral medulla (RVLM), are activated by stimuli such as circulating angiotensin type II (Ang II), cerebrospinal fluid (CSF) sodium ion concentration ([Na(+)]), and possibly plasma aldosterone, leading to sympathoexcitation, largely by decreasing GABA and increasing glutamate release. The aldosterone-endogenous ouabain (EO) pathway is a much slower neuromodulatory pathway. Aldosterone enhances EO release, and the latter increases chronic activity in angiotensinergic pathways by, e.g., increasing expression for Ang I receptor (AT(1)R) and NADPH oxidase subunits in the PVN. Blockade of this pathway does not affect the initial sympathoexcitatory and pressor responses but to a large extent, prevents chronic responses to CSF [Na(+)] or Ang II. Recruitment of these two neuromodulatory pathways allows the central nervous system (CNS) to shift gears to rapidly cause and sustain sympathetic hyperactivity in an efficient manner. Decreased GABA release, increased glutamate release, and enhanced AT(1)R activation in, e.g., the PVN and RVLM contribute to the elevated blood pressure in a number of hypertension models. In Dahl S rats and spontaneous hypertensive rats, high salt activates the CNS aldosterone-EO pathway, and the salt-induced hypertension can be prevented/reversed by specific CNS blockade of any of the steps in the cascade from aldosterone synthase to AT(1)R. Further studies are needed to advance our understanding of how and where in the brain these rapid, slow, and very slow CNS pathways are activated and interact in models of hypertension and other disease states associated with chronic sympathetic hyperactivity.
Collapse
Affiliation(s)
- Alexander Gabor
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
17
|
Acerbo MJ, Johnson AK. Behavioral cross-sensitization between DOCA-induced sodium appetite and cocaine-induced locomotor behavior. Pharmacol Biochem Behav 2011; 98:440-8. [PMID: 21352848 DOI: 10.1016/j.pbb.2011.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 02/04/2011] [Accepted: 02/15/2011] [Indexed: 11/26/2022]
Abstract
Behavioral sensitization involves increases in the magnitude of a response to a stimulus after repeated exposures to the same response initiator. Administration of psychomotor stimulants and the induction of appetitive motivational states associated with natural reinforcers like sugar and salt are among experimental manipulations producing behavioral sensitization. In rats, repeated administration of the mineralocorticoid agonist deoxycorticosterone acetate (DOCA) initially induces incremental increases in daily hypertonic saline consumption (i.e., sensitization of sodium appetite) in spite of the retention of sodium. The present studies investigated whether sodium appetite sensitization induced by DOCA shares mechanisms similar to those of psychomotor stimulant-induced sensitization, and whether there is evidence for reciprocal cross-sensitization. In Experiments 1 and 3, rats received control or cocaine treatments to induce locomotor sensitization. A week later DOCA (or vehicle) was administered to generate a sodium appetite. Animals pretreated with cocaine showed a greater sodium appetite. In Experiment 2, the order of the putative sensitizing treatments was reversed. Rats first received either a series of DOCA or vehicle treatments either with or without access to saline and were later tested for sensitization of the locomotor response to cocaine. Animals pretreated with DOCA without access to saline showed greater locomotor responses to cocaine than animals receiving vehicle treatments. Together these experiments indicate that treatments generating a sustained salt appetite and producing cocaine-induced psychomotor responses show reciprocal behavioral cross-sensitization. The underlying mechanisms accounting for this relationship may be the fact that psychostimulants and an unresolved craving for sodium can act as potent stressors.
Collapse
Affiliation(s)
- Martin J Acerbo
- Departments of Psychology, Pharmacology, and Health and Human Physiology, and the Cardiovascular Center, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
18
|
Veitenheimer B, Osborn JW. Role of spinal V1a receptors in regulation of arterial pressure during acute and chronic osmotic stress. Am J Physiol Regul Integr Comp Physiol 2010; 300:R460-9. [PMID: 21123759 DOI: 10.1152/ajpregu.00371.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vasopressinergic neurons in the paraventricular nucleus project to areas in the spinal cord from which sympathetic nerves originate. This pathway is hypothesized to be involved in the regulation of mean arterial pressure (MAP), particularly under various conditions of osmotic stress. Several studies measuring sympathetic nerve activity support this hypothesis. However, the evidence that spinal vasopressin influences MAP under physiological or pathophysiological conditions in conscious animals is limited. The purpose of this study was to investigate, in conscious rats, if the increases in MAP during acute or chronic osmotic stimuli are due to activation of spinal vasopressin (V1a) receptors. Three conditions of osmotic stress were examined: acute intravenous hypertonic saline, 24- and 48-h water deprivation, and 4 wk of DOCA-salt treatment. Rats were chronically instrumented with an indwelling catheter for intrathecal injections and a radiotelemeter to measure MAP. In normotensive rats, intrathecal vasopressin and V1a agonist increased MAP, heart rate, and motor activity; these responses were blocked by pretreatment with an intrathecal V1a receptor antagonist. However, when the intrathecal V1a antagonist was given during the three conditions of osmotic stress to investigate the role of "endogenous" vasopressin, the antagonist had no effect on MAP, heart rate, or motor activity. Contrary to the hypothesis suggested by previous studies, these findings indicate that spinal V1a receptors are not required for elevations of MAP under conditions of acute or chronic osmotic stress in conscious rats.
Collapse
Affiliation(s)
- Britta Veitenheimer
- Dept. of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA
| | | |
Collapse
|
19
|
Abstract
Hypertension and type 2 diabetes mellitus (T2DM) are powerful risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD), both of which are leading causes of morbidity and mortality worldwide. Research into the pathophysiology of CVD and CKD risk factors has identified salt sensitivity and insulin resistance as key elements underlying the relationship between hypertension and T2DM. Excess dietary salt and caloric intake, as commonly found in westernized diets, is linked not only to increased blood pressure, but also to defective insulin sensitivity and impaired glucose homeostasis. In this setting, activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system (RAAS), as well as increased signaling through the mineralocorticoid receptor (MR), result in increased production of reactive oxygen species and oxidative stress, which in turn contribute to insulin resistance and impaired vascular function. In addition, insulin resistance is not limited to classic insulin-sensitive tissues such as skeletal muscle, but it also affects the cardiovascular system, where it participates in the development of CVD and CKD. Current clinical knowledge points towards an impact of salt restriction, RAAS blockade, and MR antagonism on cardiovascular and renal protection, but also on improved insulin sensitivity and glucose homeostasis.
Collapse
|
20
|
Toney GM, Stocker SD. Hyperosmotic activation of CNS sympathetic drive: implications for cardiovascular disease. J Physiol 2010; 588:3375-84. [PMID: 20603334 DOI: 10.1113/jphysiol.2010.191940] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Evidence now indicates that exaggerated sympathetic nerve activity (SNA) significantly contributes to salt-sensitive cardiovascular diseases. Although CNS mechanisms that support the elevation of SNA in various cardiovascular disease models have been intensively studied, many mechanistic details remain unknown. In recent years, studies have shown that SNA can rise as a result of both acute and chronic increases of body fluid osmolality. These findings have raised the possibility that salt-sensitive cardiovascular diseases could result, at least in part, from direct osmosensory activation of CNS sympathetic drive. In this brief review we emphasize recent findings from several laboratories, including our own, which demonstrate that neurons of the forebrain organum vasculosum laminae terminalis (OVLT) play a pivotal role in triggering hyperosmotic activation of SNA by recruiting neurons in specific regions of the hypothalamus, brainstem and spinal cord. Although OVLT neurons are intrinsically osmosensitive and shrink when exposed to extracellular hypertonicity, it is not yet clear if these processes are functionally linked. Whereas acute hypertonic activation of OVLT neurons critically depends on TRPV1 channels, studies in TRPV1(-/-) mice suggest that acute and long-term osmoregulatory responses remain largely intact. Therefore, acute and chronic osmosensory transduction by OVLT neurons may be mediated by distinct mechanisms. We speculate that organic osmolytes such as taurine and possibly novel processes such as extracellular acidification could contribute to long-term osmosensory transduction by OVLT neurons and might therefore participate in the elevation of SNA in salt-sensitive cardiovascular diseases.
Collapse
Affiliation(s)
- Glenn M Toney
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
21
|
Stocker SD, Madden CJ, Sved AF. Excess dietary salt intake alters the excitability of central sympathetic networks. Physiol Behav 2010; 100:519-24. [PMID: 20434471 DOI: 10.1016/j.physbeh.2010.04.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 04/16/2010] [Accepted: 04/16/2010] [Indexed: 02/07/2023]
Abstract
The ingestion of excess dietary salt (defined as NaCl) is strongly correlated with cardiovascular disease, morbidity, mortality, and is regarded as a major contributing factor to the pathogenesis of hypertension. Although several mechanisms contribute to the adverse consequences of dietary salt intake, accumulating evidence suggests that dietary salt loading produces neurogenically-mediated increases in total peripheral resistance to raise arterial blood pressure (ABP). Evidence from clinical studies and experimental models clearly establishes a hypertensive effect of dietary salt loading in a subset of individuals who are deemed "salt-sensitive". However, we will discuss and present evidence to develop a novel hypothesis to suggest that while chronic increases in dietary salt intake do not elevate mean ABP in "non-salt-sensitive" animals, dietary salt intake does enhance several sympathetic reflexes thereby predisposing these animals and/or individuals to the development of salt-sensitive hypertension. Additional evidence raises an intriguing hypothesis that these enhanced sympathetic reflexes are largely attributed to the ability of excess dietary salt intake to selectively enhance the excitability of sympathetic-regulatory neurons in the rostral ventrolateral medulla. Insight into the cellular mechanisms by which dietary salt intake alters the responsiveness of RVLM circuits will likely provide a foundation for developing new therapeutic approaches to treat salt-sensitive hypertension. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Cellular & Molecular Physiology, Penn State University College of Medicine, 500 University Drive H166, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
22
|
McManus F, MacKenzie SM, Freel EM. Central mineralocorticoid receptors, sympathetic activity, and hypertension. Curr Hypertens Rep 2009; 11:224-30. [DOI: 10.1007/s11906-009-0039-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Ziomber A, Machnik A, Dahlmann A, Dietsch P, Beck FX, Wagner H, Hilgers KF, Luft FC, Eckardt KU, Titze J. Sodium-, potassium-, chloride-, and bicarbonate-related effects on blood pressure and electrolyte homeostasis in deoxycorticosterone acetate-treated rats. Am J Physiol Renal Physiol 2008; 295:F1752-63. [PMID: 18842823 DOI: 10.1152/ajprenal.00531.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Na(+) loading without Cl(-) fails to increase blood pressure in the DOCA model. We compared the changes in the total body (TB) effective Na(+), K(+), Cl(-), and water (TBW) content as well as in intracellular (ICV) or extracellular (ECV) volume in rats receiving DOCA-NaCl, DOCA-NaHCO(3), or DOCA-KHCO(3). We divided 42 male rats into 5 groups. Group 1 was untreated, group 2 received 1% NaCl, and groups 3, 4, and 5 were treated with DOCA and received 1% NaCl, 1.44% NaHCO(3), or 1.7% KHCO(3) to drink. We measured mean arterial blood pressure (MAP) directly after 3 wk. Tissue electrolyte and water content was measured by chemical analysis. Compared with control rats, DOCA-NaCl increased MAP while DOCA-NaHCO(3) and DOCA-KHCO(3) did not. DOCA-NaCl increased TBNa(+) 26% but only moderately increased TBW. DOCA-NaHCO(3) led to similar TBNa(+) excess, while TBW and ICV, but not ECV, were increased more than in DOCA-NaCl rats. DOCA-KHCO(3) did not affect TBNa(+) or volume. At a given TB(Na(+)+K(+)) and TBW, MAP in DOCA-NaCl rats was higher than in control, DOCA-NaHCO(3), and DOCA-KHCO(3) rats, indicating that hypertension in DOCA-NaCl rats was not dependent on TB(Na(+)+K(+)) and water mass balance. Skin volume retention was hypertonic compared with serum and paralleled hypertension in DOCA-NaCl rats. These rats had higher TB(Na(+)+K(+))-to-TBW ratio in accumulated fluid than DOCA-NaHCO(3) rats. DOCA-NaCl rats also had increased intracellular Cl(-) concentrations in skeletal muscle. We conclude that excessive cellular electrolyte redistribution and/or intracellular Na(+) or Cl(-) accumulation may play an important role in the pathogenesis of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Agata Ziomber
- Department of Nephrology and Hypertension, Nikolaus-Fiebiger Center for Molecular Medicine, Glückstr. 6, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shi P, Martinez MA, Calderon AS, Chen Q, Cunningham JT, Toney GM. Intra-carotid hyperosmotic stimulation increases Fos staining in forebrain organum vasculosum laminae terminalis neurones that project to the hypothalamic paraventricular nucleus. J Physiol 2008; 586:5231-45. [PMID: 18755745 DOI: 10.1113/jphysiol.2008.159665] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Body fluid hyperosmolality has long been known to elicit homeostatic responses that range from drinking to inhibition of salt appetite to release of neurohypohyseal hormones (i.e. vasopressin and oxytocin). More recently, it has been recognized that hyperosmolality is capable of also provoking a significant increase of sympathetic nerve activity (SNA). It has been reported that neurones in the forebrain organum vasculosum laminae terminalis (OVLT) and hypothalamic paraventricular nucleus (PVN) each contribute significantly to this response. Here we sought to determine if sympathoexcitatory levels of hyperosmolality activate specifically those OVLT neurones that form a monosynaptic pathway to the PVN. First, we established in anaesthetized rats that graded concentrations of hypertonic NaCl (1.5 and 3.0 osmol kg(-1)) elicit graded increases of renal SNA (RSNA) when infused at a rate of 0.1 ml min(-1) through an internal carotid artery (ICA) - the major vascular supply of the forebrain. Next, infusions were performed in conscious rats in which OVLT neurones projecting to the PVN (OVLT-PVN) were retrogradely labelled with cholera toxin subunit B (CTB). Immunostaining of the immediate early gene product Fos and CTB was performed to quantify osmotic activation of OVLT-PVN neurones. ICA infusions of hypertonic NaCl and mannitol each significantly (P < 0.01-0.001) increased the number of Fos immunoreactive (Fos-ir) neuronal nuclei in the dorsal cap (DC) and lateral margins (LM) of OVLT. In the LM, infusions of 1.5 and 3.0 osmol kg(-1) NaCl produced similar increases in the number of Fos-ir neurones. In the DC, these infusions produced graded increases in Fos expression. Among OVLT neurones with axons projecting directly to the PVN (i.e. CTB-ir), graded hypertonic NaCl infusions again produced graded increases in Fos expression and this was observed in both the DC and LM. Although the DC and LM contained a similar number of OVLT-PVN neurones, the proportion of such neurones that expressed Fos-ir in responses to ICA hypertonic NaCl infusions was greater in the DC (P < 0.001). These findings support the conclusion that PVN-projecting neurones in the DC and LM of OVLT could participate in behavioural, neuroendocrine, and sympathetic nervous system responses to body fluid hyperosmolality.
Collapse
Affiliation(s)
- Peng Shi
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wang Y, Babánková D, Huang J, Swain GM, Wang DH. Deletion of transient receptor potential vanilloid type 1 receptors exaggerates renal damage in deoxycorticosterone acetate-salt hypertension. Hypertension 2008; 52:264-70. [PMID: 18606907 DOI: 10.1161/hypertensionaha.108.110197] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To determine whether the transient receptor potential vanilloid type 1 (TRPV1) channel provides protection against hypertension-induced renal damage, hypertension was induced by uninephrectomy and by giving deoxycorticosterone acetate (DOCA)-salt in wild-type (WT) and TRPV1-null mutant (TRPV1-/-) mice. Mean arterial pressure, as determined by radiotelemetry, increased significantly and reached the peak 7 days after DOCA-salt treatment in both WT and TRPV1-/- mice. There was no difference in mean arterial pressure between the 2 strains at the baseline or at the peak that lasted for 4 treatment weeks. DOCA-salt treatment in both WT and TRPV1-/- mice led to increased urinary excretion of albumin and 8-isoprostane, glomerulosclerosis, renal cortical tubulointerstitial injury, tubulointerstitial fibrosis, increased number of tubular proliferating cell nuclear antigen-positive cells, and renal monocyte/macrophage infiltration, all of which were much more severe in DOCA-salt-treated TRPV1-/- compared with DOCA-salt-treated WT mice. Renal TRPV1 protein expression, but not the renal anandamide content, was elevated in DOCA-salt-treated WT compared with vehicle-treated WT mice. Renal anandamide levels were markedly elevated in DOCA-salt-treated TRPV1-/- but not in vehicle-treated TRPV1-/- mice. Thus, our data show that ablation of the TRPV1 gene exacerbates renal damage induced by DOCA-salt hypertension, indicating that TRPV1 may constitute a protective mechanism against end-organ damage induced by hypertension.
Collapse
Affiliation(s)
- Youping Wang
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
26
|
King AJ, Novotny M, Swain GM, Fink GD. Whole body norepinephrine kinetics in ANG II-salt hypertension in the rat. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1262-7. [PMID: 18256139 DOI: 10.1152/ajpregu.00819.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to investigate total body norepinephrine (NE) kinetics as an index of global sympathetic nervous system (SNS) outflow in a rat model of chronic ANG II-salt hypertension. Male Sprague-Dawley rats fed a 0.4% (normal salt, NS) or 2% (HS) NaCl diet were instrumented with arterial and venous catheters. After 5 days of recovery and a 3-day control period, ANG II (150 ng.kg(-1).min(-1)) was given subcutaneously by minipump for 14 days. Plasma NE levels and total body NE spillover and clearance were determined on control day 3 and ANG II infusion days 7 and 14 using radioisotope dilution principles. To perform this analysis, 3H-NE and NE were measured in arterial plasma after a 90-min infusion of tracer amounts of 3H-NE. Mean arterial pressure (MAP) was similar during the control period in NS and HS rats; however, MAP increased to a higher level in HS rats. During the control period, plasma NE tended to be lower in rats on HS, whereas NE clearance tended to be higher in HS rats. As a result NE spillover was similar in NS and HS rats during the control period. In NS rats, plasma NE, NE spillover, and NE clearance were unchanged by ANG II. In contrast, in rats on the HS diet, plasma NE and NE spillover increased during ANG II infusion, whereas NE clearance was unchanged. In conclusion, a HS diet alone or ANG II infusion in animals fed NS do not affect global sympathetic outflow. However, the additional hypertensive response to ANG II in animals fed HS is accompanied by SNS activation.
Collapse
Affiliation(s)
- Andrew J King
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
27
|
Stocker SD, Osborn JL, Carmichael SP. Forebrain osmotic regulation of the sympathetic nervous system. Clin Exp Pharmacol Physiol 2007; 35:695-700. [PMID: 18067592 DOI: 10.1111/j.1440-1681.2007.04835.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Accumulating evidence in both humans and animals indicates that acute increases in plasma osmolality elevate sympathetic nerve activity (SNA). In addition, plasma hyperosmolality (or hypernatraemia) can produce sustained increases in SNA and arterial blood pressure (ABP) through stimulation of forebrain osmoreceptors. 2. Although an abundance of information exists regarding the osmoregulatory circuits for thirst and secretion of antidiuretic hormone, much less is known about those pathways and synaptic mechanisms linking osmotic perturbations and SNA. To date, the available evidence suggests that osmosensitive sites within the forebrain lamina terminalis, such as the organum vasculosum of the lamina terminalis, are key elements that link plasma hypertonicity to elevated SNA. 3. The major efferent target of osmosensitive regions in the forebrain lamina terminalis is the hypothalamic paraventricular nucleus (PVH). Evidence from a number of studies indicates that the PVH contributes to both acute and chronic osmotically driven increases in SNA. In turn, PVH neurons increase SNA through a direct vasopressinergic spinal pathway and/or a glutamatergic pathway to bulbospinal sympathetic neurons of the rostral ventrolateral medulla. 4. Future studies are needed to: (i) define the contribution of various osmosensitive regions of the forebrain lamina terminalis to acute and chronic osmotically driven increases in SNA; (ii) identify the cellular mechanisms and neural circuitry linking plasma osmolality and SNA; and (iii) define whether such mechanisms contribute to elevated SNA in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | |
Collapse
|
28
|
Osborn JW, Collister JP, Guzman P. Effect of peripheral sympathetic nerve dysfunction on salt sensitivity of arterial pressure. Clin Exp Pharmacol Physiol 2007; 35:273-9. [PMID: 17973927 DOI: 10.1111/j.1440-1681.2007.04827.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. Dysregulation of peripheral sympathetic pathways contributes to some forms of salt-dependent hypertension. However, at the present time it is not known whether salt-induced activation of sympathetic nerves or loss of normal sympathoinhibitory responses to salt-induced volume expansion contributes to neurogenic salt-dependent hypertension. The present study was performed to the test the hypothesis that loss of peripheral sympathetic nerve function results in salt-dependent hypertension. 2. The effect of three pharmacological interventions of sympathetic nerve function on the long-term salt-sensitivity of mean arterial pressure (MAP) were measured: (i) blockade of ganglionic transmission with hexamethonium (HEX; n = 5); (ii) destruction of sympathetic nerve terminals with guanethidine (GUAN; n = 7); and (iii) alpha-adrenoceptor blockade with two specific antagonists, namely prazosin (PRAZ; n = 7) and terazosin (TERAZ; n = 8). 3. Mean arterial pressure and heart rate were measured 24 h/day by radiotelemetry in conscious rats during 5 days of normal and 7 days of high (HNa) dietary sodium intake. Despite marked increases in both sodium and water intake during 7 days of the HNa diet, no statistically significant changes in MAP were observed in HEX, GUAN, PRAZ or TERAZ groups. 4. We conclude that loss of peripheral sympathetic neural pathways alone does not cause salt-dependent hypertension in the rat.
Collapse
Affiliation(s)
- John W Osborn
- Departments of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55105, USA.
| | | | | |
Collapse
|
29
|
Shi P, Stocker SD, Toney GM. Organum vasculosum laminae terminalis contributes to increased sympathetic nerve activity induced by central hyperosmolality. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2279-89. [PMID: 17898124 PMCID: PMC3575105 DOI: 10.1152/ajpregu.00160.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The contribution of the organum vasculosum laminae terminalis (OVLT) in mediating central hyperosmolality-induced increases of sympathetic nerve activity (SNA) and arterial blood pressure (ABP) was assessed in anesthetized rats. Solutions of graded NaCl concentration (150, 375, and 750 mM) were injected (150 mul) into the forebrain vascular supply via an internal carotid artery (ICA). Time-control experiments (n = 6) established that ICA NaCl injections produced short-latency, transient increases of renal SNA (RSNA) and mean ABP (MAP) (P < 0.05-0.001). Responses were graded, highly reproducible, and unaltered by systemic blockade of vasopressin V1 receptors (n = 4). In subsequent studies, stimulus-triggered averaging of RSNA was used to accurately locate the OVLT. Involvement of OVLT in responses to ICA NaCl was assessed by recording RSNA and MAP responses before and 15 min after electrolytic lesion of the OVLT (n = 6). Before lesion, NaCl injections increased RSNA and MAP (P < 0.05-0.001), similar to time control experiments. After lesion, RSNA responses were significantly reduced (P < 0.05-0.001), but MAP responses were unaltered. To exclude a role for fibers of passage, the inhibitory GABA-A receptor agonist muscimol was microinjected into the OVLT (50 pmol in 50 nl) (n = 6). Before muscimol, hypertonic NaCl increased RSNA, lumbar SNA (LSNA), and MAP (P < 0.05-0.001). After muscimol, both RSNA and LSNA were significantly reduced in response to 375 and 750 mM NaCl (P < 0.05). MAP responses were again unaffected. Injections of vehicle (saline) into OVLT (n = 6) and muscimol lateral to OVLT (n = 5) each failed to alter responses to ICA NaCl. We conclude that OVLT neurons contribute to sympathoexcitation by central hyperosmolality.
Collapse
Affiliation(s)
- Peng Shi
- Dept. of Physiology-MC 7756, Univ. of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
30
|
Brooks VL, Freeman KL, Qi Y. Time course of synergistic interaction between DOCA and salt on blood pressure: roles of vasopressin and hepatic osmoreceptors. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1825-34. [PMID: 16857894 DOI: 10.1152/ajpregu.00068.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In DOCA-salt rats, the time course of the synergistic interaction between osmolality and DOCA to produce hypertension is unknown. Therefore, in rats 2 wk after implantation of subcutaneous silicone pellets containing DOCA (65 mg) or no drug (sham), we determined blood pressure (BP) and heart rate (HR) responses, using telemetric pressure transducers, during 2 wk of excess salt ingestion (1% NaCl in drinking water). BP was unaltered in sham rats after increased salt, but in DOCA rats BP increased within 4 h. The initial hypertension of 30–35 mmHg stabilized within 2 days, followed ∼5 days later by a further increment of ∼30 mmHg. HR first decreased during the dark phase; the second phase was linked to an abrupt increase in HR and BP variability and decreased HR variability. Pressor responses to acute intravenous hypertonic saline infusion were doubled in DOCA-treated rats via vasopressin and nonvasopressin mechanisms. Only in DOCA-treated rats, portal vein hypertonic saline infusion increased BP, which was prevented by V1 vasopressin blockade. After 2 wk of DOCA-salt, oral ingestion of water rapidly decreased BP. Intraportal infusion of water did not lower BP in DOCA-salt rats, suggesting that hepatic osmoreceptors were not involved. In summary, the hypertension of DOCA-treated rats consuming excess salt exhibits multiple phases and can be rapidly reversed. Hypertonicity-induced vasopressin and nonvasopressin pressor mechanisms that are augmented by DOCA, and hepatic osmoreceptors may contribute to the initial developmental phase. With time, combined DOCA-salt induces marked changes in the regulation of the autonomic nervous system, which may favor hypertension development.
Collapse
Affiliation(s)
- Virginia L Brooks
- Department of Physiology and Pharmacology L-334, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA.
| | | | | |
Collapse
|
31
|
Journal Club. Kidney Int 2006. [DOI: 10.1038/sj.ki.5002013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|