1
|
Szczepanska-Sadowska E, Czarzasta K, Cudnoch-Jedrzejewska A. Dysregulation of the Renin-Angiotensin System and the Vasopressinergic System Interactions in Cardiovascular Disorders. Curr Hypertens Rep 2018; 20:19. [PMID: 29556787 PMCID: PMC5859051 DOI: 10.1007/s11906-018-0823-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose of Review In many instances, the renin-angiotensin system (RAS) and the vasopressinergic system (VPS) are jointly activated by the same stimuli and engaged in the regulation of the same processes. Recent Findings Angiotensin II (Ang II) and arginine vasopressin (AVP), which are the main active compounds of the RAS and the VPS, interact at several levels. Firstly, Ang II, acting on AT1 receptors (AT1R), plays a significant role in the release of AVP from vasopressinergic neurons and AVP, stimulating V1a receptors (V1aR), regulates the release of renin in the kidney. Secondly, Ang II and AVP, acting on AT1R and V1aR, respectively, exert vasoconstriction, increase cardiac contractility, stimulate the sympathoadrenal system, and elevate blood pressure. At the same time, they act antagonistically in the regulation of blood pressure by baroreflex. Thirdly, the cooperative action of Ang II acting on AT1R and AVP stimulating both V1aR and V2 receptors in the kidney is necessary for the appropriate regulation of renal blood flow and the efficient resorption of sodium and water. Furthermore, both peptides enhance the release of aldosterone and potentiate its action in the renal tubules. Summary In this review, we (1) point attention to the role of the cooperative action of Ang II and AVP for the regulation of blood pressure and the water-electrolyte balance under physiological conditions, (2) present the subcellular mechanisms underlying interactions of these two peptides, and (3) provide evidence that dysregulation of the cooperative action of Ang II and AVP significantly contributes to the development of disturbances in the regulation of blood pressure and the water-electrolyte balance in cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Katarzyna Czarzasta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
2
|
Li XC, Shao Y, Zhuo JL. AT1a receptor signaling is required for basal and water deprivation-induced urine concentration in AT1a receptor-deficient mice. Am J Physiol Renal Physiol 2012; 303:F746-56. [PMID: 22739536 DOI: 10.1152/ajprenal.00644.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well recognized that ANG II interacts with arginine vasopressin (AVP) to regulate water reabsorption and urine concentration in the kidney. The present study used ANG II type 1a (AT(1a)) receptor-deficient (Agtr1a(-/-)) mice to test the hypothesis that AT(1a) receptor signaling is required for basal and water deprivation-induced urine concentration in the renal medulla. Eight groups of wild-type (WT) and Agtr1a(-/-) mice were treated with or without 24-h water deprivation and 1-desamino-8-d-AVP (DDAVP; 100 ng/h ip) for 2 wk or with losartan (10 mg/kg ip) during water deprivation. Under basal conditions, Agtr1a(-/-) mice had lower systolic blood pressure (P < 0.01), greater than threefold higher 24-h urine excretion (WT mice: 1.3 ± 0.1 ml vs. Agtr1a(-/-) mice: 5.9 ± 0.7 ml, P < 0.01), and markedly decreased urine osmolality (WT mice: 1,834 ± 86 mosM/kg vs. Agtr1a(-/-) mice: 843 ± 170 mosM/kg, P < 0.01), without significant changes in 24-h urinary Na(+) excretion. These responses in Agtr1a(-/-) mice were associated with lower basal plasma AVP (WT mice: 105 ± 8 pg/ml vs. Agtr1a(-/-) mice: 67 ± 6 pg/ml, P < 0.01) and decreases in total lysate and membrane aquaporin-2 (AQP2; 48.6 ± 7% of WT mice, P < 0.001) and adenylyl cyclase isoform III (55.6 ± 8% of WT mice, P < 0.01) proteins. Although 24-h water deprivation increased plasma AVP to the same levels in both strains, 24-h urine excretion was still higher, whereas urine osmolality remained lower, in Agtr1a(-/-) mice (P < 0.01). Water deprivation increased total lysate AQP2 proteins in the inner medulla but had no effect on adenylyl cyclase III, phosphorylated MAPK ERK1/2, and membrane AQP2 proteins in Agtr1a(-/-) mice. Furthermore, infusion of DDAVP for 2 wk was unable to correct the urine-concentrating defects in Agtr1a(-/-) mice. These results demonstrate that AT(1a) receptor-mediated ANG II signaling is required to maintain tonic AVP release and regulate V(2) receptor-mediated responses to water deprivation in the inner medulla.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of MississippiMedical Center, 2500 N. State St., Jackson, MS 39216-4505, USA
| | | | | |
Collapse
|
3
|
Herrera VLM, Bagamasbad P, Didishvili T, Decano JL, Ruiz-Opazo N. Overlapping genes in Nalp6/PYPAF5 locus encode two V2-type vasopressin isoreceptors: angiotensin-vasopressin receptor (AVR) and non-AVR. Physiol Genomics 2008; 34:65-77. [PMID: 18413781 DOI: 10.1152/physiolgenomics.00199.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The angiotensin-vasopressin receptor (AVR) responds with equivalent affinities to angiotensin II (ANG II) and vasopressin and is coupled to adenylate cyclase and hence a V2-type vasopressin receptor. AVR maps to the Nalp6 locus and overlaps with the larger Nalp6/PYPAF5 reported to be a T cell/granulocyte-specific, cytoplasmic-specific proapoptotic protein, thus questioning the existence of AVR. Here we confirm, through different experimental modalities, that AVR is distinct from Nalp6/PYPAF5 based on different mRNA and protein sizes, subcellular localization, and tissue-specific expression patterns. Binding studies of PYPAF5-specific Cos1 transfectants detect high-affinity binding to vasopressin but not ANG II, thus assigning PYPAF5 as a non-AVR (NAVR). Signaling array analysis reveals that AVP stimulation of AVR- and NAVR-specific Cos1 transfectants results in diametrical activation as well as coactivation of signaling pathways known to mediate renal sodium and water balance. Likewise, ANG II stimulation of Cos1-AVR transfectants reveals a signaling profile distinct from that of AVP-stimulated Cos1-AVR transfectants. Analysis of genomic organization of the AVR/NAVR locus shows an overlapping gene arrangement with alternative promoter usage resulting in different NH(2) termini for NAVR and AVR. In addition to core promoter elements, androgen and estrogen response elements are detected. Promoter analysis of NAVR/AVR 5'-regulatory region detects transcriptional upregulation by testosterone and synergistic upregulation by testosterone and estrogen, thus suggesting that AVR and/or NAVR contribute to sex-specific V2-type vasopressin-mediated effects. Altogether, confirmation of AVR and identification of NAVR as vasopressin receptors are concordant with emerging vasopressin functions not attributable to V1a, V1b, or V2 receptors and add molecular bases for the multifunctional complexity of vasopressin-mediated functions and regulation.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Section of Molecular Medicine, Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
4
|
Torp M, Brønd L, Hadrup N, Nielsen JB, Praetorius J, Nielsen S, Christensen S, Jonassen TEN. Losartan decreases vasopressin-mediated cAMP accumulation in the thick ascending limb of the loop of Henle in rats with congestive heart failure. Acta Physiol (Oxf) 2007; 190:339-50. [PMID: 17635349 DOI: 10.1111/j.1748-1716.2007.01722.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Vasopressin (AVP) stimulates sodium reabsorption and Na,K,2Cl-cotransporter (NKCC2) protein level in the thick ascending limb (TAL) of Henle's loop in rats. Rats with congestive heart failure (CHF) have increased protein level of NKCC2, which can be normalized by angiotensin II receptor type-1 (AT(1)) blockade with losartan. AIM In this study, we investigated whether CHF rats displayed changes in AVP stimulated cAMP formation in the TAL and examined the role of AT(1) receptor blockade on this system. METHOD CHF was induced by ligation of the left anterior descending coronary artery (LAD). SHAM-operated rats were used as controls. Half of the rats were treated with losartan (10 mg kg day(-1) i.p.). RESULTS CHF rats were characterized by increased left ventricular end diastolic pressure. Measurement of cAMP in isolated outer medullary TAL showed that both basal and AVP (10(-6) m) stimulated cAMP levels were significantly increased in CHF rats (25.52 +/- 4.49 pmol cAMP microg(-1) protein, P < 0.05) compared to Sham rats (8.13 +/- 1.14 pmol cAMP microg(-1) protein), P < 0.05). Losartan significantly reduced the basal level of cAMP in CHF rats (CHF: 12.56 +/- 1.93 fmol microg(-1) protein vs. Los-CHF: 7.49 +/- 1.08, P < 0.05), but not in Sham rats (SHAM: 4.66 +/- 0.59 vs. Los-SHAM: 4.75 +/- 0.71). AVP-mediated cAMP accumulation was absent in both groups treated with losartan (Los-SHAM: 4.75 +/- 0.71 and Los-CHF: 7.49 +/- 1.08). CONCLUSION The results indicate that the increased NKCC2 protein level in the mTAL from CHF rats is associated with increased cAMP accumulation in this segment. Furthermore, the finding that AT(1) receptor blockade prevents AVP-mediated cAMP accumulation in both SHAM and CHF rats suggests an interaction between angiotensin II and AVP in regulation of mTAL Na reabsorption.
Collapse
Affiliation(s)
- M Torp
- Department of Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Pediconi D, Martarelli D, Fontanazza A, Pompei P. Effects of losartan and irbesartan administration on brain angiotensinogen mRNA levels. Eur J Pharmacol 2006; 528:79-87. [PMID: 16321381 DOI: 10.1016/j.ejphar.2005.10.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 10/25/2005] [Accepted: 10/28/2005] [Indexed: 11/18/2022]
Abstract
Losartan, 2-n-butyl-4-chloro-5-hydroxymethyl-1-[(2'(1H-tetrazol-5-yl)-biphenil-4-yl)methyl]imidazole, and Irbesartan, 2-n-butyl-3-[(2'-(1H-tetrazol-5-yl)-biphenyl-4-yl)methyl]-1,3-diaza-spiro[4,4]non-1-en-4-one, are two angiotensin AT1 receptor antagonists largely used in human health care as antihypertensive agents. Their ability to cross the blood-brain barrier and to influence the central renin-angiotensin system are widely investigated, but how this brain system responds to the subchronic and chronic block of the angiotensin AT1 receptor is still unknown. Normotensive rats were intragastrically implanted for 7- and 30-day administration, with a dose of 3 and 30 mg/kg body weight. Treatments were shown to influence, in a dose-, time- and brain-area-dependent manner, angiotensinogen mRNA levels in scanned areas. This study showed a general up-regulation of angiotensinogen mRNA expression after 7 days and a widespread down-regulation or basal level of expression after a 30-day administration of two angiotensin AT1 receptor antagonists.
Collapse
Affiliation(s)
- Dario Pediconi
- Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 3, 62032 Camerino (MC), Italy
| | | | | | | |
Collapse
|
6
|
Kwon TH, Nielsen J, Knepper MA, Frøkiaer J, Nielsen S. Angiotensin II AT1receptor blockade decreases vasopressin-induced water reabsorption and AQP2 levels in NaCl-restricted rats. Am J Physiol Renal Physiol 2005; 288:F673-84. [PMID: 15585668 DOI: 10.1152/ajprenal.00304.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vasopressin and ANG II, which are known to play a major role in renal water and sodium reabsorption, are mainly coupled to the cAMP/PKA and phosphoinositide pathways, respectively. There is evidence for cross talk between these intracellular signaling pathways. We therefore hypothesized that vasopressin-induced water reabsorption could be attenuated by ANG II AT1receptor blockade in rats. To address this, three protocols were used: 1) DDAVP treatment (20 ng/h sc for 7 days, n = 8); 2) DDAVP (20 ng/h sc for 7 days) and candesartan (1 mg·kg−1·day−1sc for 7 days) cotreatment ( n = 8); and 3) vehicle infusion as the control ( n = 8). All rats were maintained on a NaCl-deficient diet (0.1 meq Na+·200 g body wt−1·day−1) during the experiment. DDAVP treatment alone resulted in a significant decrease in urine output (3.1 ± 0.2 ml/day) compared with controls (11.5 ± 2.2 ml/day, P < 0.05), whereas the urine output was significantly increased in response to DDAVP and candesartan cotreatment (9.8 ± 1.0 ml/day, P < 0.05). Consistent with this, rats cotreated with DDAVP and candesartan demonstrated decreased urine osmolality (1,319 ± 172 mosmol/kgH2O) compared with rats treated with DDAVP alone (3,476 ± 182 mosmol/kgH2O, P < 0.05). Semiquantitative immunoblotting revealed significantly decreased expression of medullary aquaporin-2 (AQP2) and AQP2 phosphorylated in the PKA phosphorylation consensus site Ser-256 (p-AQP2) in response to DDAVP and candesartan cotreatment compared with DDAVP treatment alone. In addition, cortical and medullary AQP1 was also downregulated. Fractional sodium excretion (FENa) and plasma potassium levels were markedly increased, and the expressions of the cortical type 3 Na+/H+exchanger (NHE3), thiazide-sensitive Na-Cl cotransporter (NCC), and Na-K-ATPase were significantly decreased in response to DDAVP and candesartan cotreatment. Moreover, medullary type 1 bumetanide-sensitive Na-K-2Cl cotransporter expression showed a marked gel mobility shift from 160 to ∼180 kDa corresponding to enhanced glycosylation, whereas expression was unchanged. In conclusion, ANG II AT1receptor blockade in DDAVP-treated rats was associated with decreased urine concentration and decreased AQP2 and AQP1 expression. Moreover, FENawas increased in parallel with decreased expression of NHE3, NCC, and Na-K-ATPase. These results suggest that ANG II AT1receptor activation plays a significant role in regulating aquaporin and sodium transporter expression and modulating urine concentration in vivo.
Collapse
Affiliation(s)
- Tae-Hwan Kwon
- The Water and Salt Research Ctr, Bldg. 233/234, Univ. of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
7
|
Albrecht M, Domingues FS, Schreiber S, Lengauer T. Identification of mammalian orthologs associates PYPAF5 with distinct functional roles. FEBS Lett 2003; 538:173-7. [PMID: 12633874 DOI: 10.1016/s0014-5793(03)00161-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PYRIN- and CARD-containing proteins belong to a recently identified protein family involved in the regulation of apoptosis and inflammatory processes. Variations in the gene products of the family members PYPAF1 and NOD2/CARD15 have been associated with several autoinflammatory diseases. We could identify the mouse orthologs of PYPAF1, PYPAF5, NOD1, NOD2 and the rat ortholog of PYPAF5. Intriguingly, we found that PYPAF5 has been reported previously not only as regulator of NF-kappaB and caspase-1, but also as angiotensin II and vasopressin receptor. In particular, based on a comprehensive sequence analysis, we propose a structural model for this hormone receptor that is different from the model suggested previously.
Collapse
Affiliation(s)
- Mario Albrecht
- Max-Planck-Institute for Informatics, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany.
| | | | | | | |
Collapse
|
8
|
The Dual AngII/AVP Receptor Gene N119S/C163R Variant Exhibits Sodium-Induced Dysfunction and Cosegregates With Salt-Sensitive Hypertension in the Dahl Salt-Sensitive Hypertensive Rat Model. Mol Med 2002. [DOI: 10.1007/bf03402000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Herrera VLM, Ruiz-Opazo N. Identification of a Novel V1-type AVP Receptor Based on the Molecular Recognition Theory. Mol Med 2001. [DOI: 10.1007/bf03401855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
10
|
Kato A, Klein JD, Zhang C, Sands JM. Angiotensin II increases vasopressin-stimulated facilitated urea permeability in rat terminal IMCDs. Am J Physiol Renal Physiol 2000; 279:F835-40. [PMID: 11053043 DOI: 10.1152/ajprenal.2000.279.5.f835] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiotensin II receptors are present along the rat inner medullary collecting duct (IMCD), although their physiological role is unknown. Because urea is one of the major solutes transported across the terminal IMCD, we measured angiotensin II's effect on urea permeability. In the perfused rat terminal IMCD, angiotensin II had no effect on basal urea permeability but significantly increased vasopressin-stimulated urea permeability by 55%. Angiotensin II, both without and with vasopressin, also increased the amount of (32)P incorporated into urea transporter (UT)-A1 in inner medullary tissue exposed to these hormones ex vivo. Because angiotensin II activates protein kinase C, we tested the effect of staurosporine (SSP). In the absence of angiotensin II, SSP had no effect on vasopressin-stimulated urea permeability in the perfused terminal IMCD. However, SSP completely and reversibly blocked the angiotensin II-mediated increase in vasopressin-stimulated urea permeability. SSP and chelerythrine reduced the angiotensin II-stimulated (32)P incorporation into UT-A1 in inner medullary tissue exposed ex vivo. We conclude that angiotensin II increases vasopressin-stimulated facilitated urea permeability and (32)P incorporation into the 97- and 117-kDa UT-A1 proteins via a protein kinase C-mediated signaling pathway. These data suggest that angiotensin II augments vasopressin-stimulated facilitated urea transport in the rat terminal IMCD and may play a physiological role in the urinary concentrating mechanism by augmenting the maximal response to vasopressin.
Collapse
Affiliation(s)
- A Kato
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
11
|
Hurbin A, Orcel H, Ferraz C, Moos FC, Rabié A. Expression of the genes encoding the vasopressin-activated calcium-mobilizing receptor and the dual angiotensin II/vasopressin receptor in the rat central nervous system. J Neuroendocrinol 2000; 12:677-84. [PMID: 10849213 DOI: 10.1046/j.1365-2826.2000.00499.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The distributions of two newly discovered receptors, the vasopressin-activated calcium-mobilizing receptor (VACM-1) and the dual angiotensin II/vasopressin receptor (AII/AVP), in the central nervous system (CNS) of the rat were determined using reverse transcriptase-polymerase chain reaction and in situ hybridization. The sequence of the rat VACM-1 cDNA was determined and found very homologous to the rabbit and human sequences. Both VACM-1 and AII/AVP receptor genes were widely expressed in the brain, but differed according to the cell type studied. Glial cells were very faintly labelled. The epithelial cells of the choroid plexuses, the ependymal cells and the pia mater were all labelled. Both genes were most active in neurones throughout the CNS. VACM-1 and AII/AVP receptors were detected in neurones previously shown to possess V1a and V1b vasopressin receptors, and/or the AT1 and AT2 angiotensin II receptors in many brain areas. This was the case for the magnocellular neurones of the supraoptic and paraventricular nuclei of the hypothalamus. We suggest that the VACM-1 and AII/AVP receptors may account for the V2-like responses to vasopressin by these neurones which lack a genuine V2 vasopressin receptor.
Collapse
Affiliation(s)
- A Hurbin
- CNRS-UPR 9055, Biologie des Neurones Endocrines, CCIPE and CNRS-UPR 1142, Institut de Génétique Humaine, Montpellier, France
| | | | | | | | | |
Collapse
|
12
|
Dayanithi G, Sabatier N, Widmer H. Intracellular calcium signalling in magnocellular neurones of the rat supraoptic nucleus: understanding the autoregulatory mechanisms. Exp Physiol 2000; 85 Spec No:75S-84S. [PMID: 10795909 DOI: 10.1111/j.1469-445x.2000.tb00010.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxytocin and vasopressin, released at the soma and dendrites of neurones, bind to specific autoreceptors and induce an increase in [Ca2+]i. In oxytocin cells, the increase results from a mobilisation of Ca2+ from intracellular stores, whereas in vasopressin cells, it results mainly from an influx of Ca2+ through voltage-dependent channels. The response to vasopressin is coupled to phospholipase C and adenylyl-cyclase pathways which are activated by V1 (V1a and V1b)- and V2-type receptors respectively. Measurements of [Ca2+]i in response to V1a and V2 agonists and antagonists suggest the functional expression of these two types of receptors in vasopressin neurones. The intracellular mechanisms involved are similar to those observed for the action of the pituitary adenylyl-cyclase-activating peptide (PACAP). Isolated vasopressin neurones exhibit spontaneous [Ca2+]i oscillations and these are synchronised with phasic bursts of electrical activity. Vasopressin modulates these spontaneous [Ca2+]i oscillations in a manner that depends on the initial state of the neurone, and such varied effects of vasopressin may be related to those observed on the electrical activity of vasopressin neurones in vivo.
Collapse
Affiliation(s)
- G Dayanithi
- UPR 9055-CNRS, Biologie des Neurones Endocrines, Montpellier, France.
| | | | | |
Collapse
|