1
|
Das UN. Molecular biochemical aspects of salt (sodium chloride) in inflammation and immune response with reference to hypertension and type 2 diabetes mellitus. Lipids Health Dis 2021; 20:83. [PMID: 34334139 PMCID: PMC8327432 DOI: 10.1186/s12944-021-01507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus (T2DM) and hypertension (HTN) are common that are associated with low-grade systemic inflammation. Diet, genetic factors, inflammation, and immunocytes and their cytokines play a role in their pathobiology. But the exact role of sodium, potassium, magnesium and other minerals, trace elements and vitamins in the pathogenesis of HTN and T2DM is not known. Recent studies showed that sodium and potassium can modulate oxidative stress, inflammation, alter the autonomic nervous system and induce dysfunction of the innate and adaptive immune responses in addition to their action on renin-angiotensin-aldosterone system. These actions of sodium, potassium and magnesium and other minerals, trace elements and vitamins are likely to be secondary to their action on pro-inflammatory cytokines IL-6, TNF-α and IL-17 and metabolism of essential fatty acids that may account for their involvement in the pathobiology of insulin resistance, T2DM, HTN and autoimmune diseases.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA, 98604, USA.
| |
Collapse
|
2
|
Rajagopal M, Thomas SV, Kathpalia PP, Chen Y, Pao AC. Prostaglandin E2 induces chloride secretion through crosstalk between cAMP and calcium signaling in mouse inner medullary collecting duct cells. Am J Physiol Cell Physiol 2013; 306:C263-78. [PMID: 24284792 DOI: 10.1152/ajpcell.00381.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Under conditions of high dietary salt intake, prostaglandin E2 (PGE2) production is increased in the collecting duct and promotes urinary sodium chloride (NaCl) excretion; however, the molecular mechanisms by which PGE2 increases NaCl excretion in this context have not been clearly defined. We used the mouse inner medullary collecting duct (mIMCD)-K2 cell line to characterize mechanisms underlying PGE2-regulated NaCl transport. When epithelial Na(+) channels were inhibited, PGE2 exclusively stimulated basolateral EP4 receptors to increase short-circuit current (Isc(PGE2)). We found that Isc(PGE2) was sensitive to inhibition by H-89 and CFTR-172, indicating that EP4 receptors signal through protein kinase A to induce Cl(-) secretion via cystic fibrosis transmembrane conductance regulator (CFTR). Unexpectedly, we also found that Isc(PGE2) was sensitive to inhibition by BAPTA-AM (Ca(2+) chelator), 2-aminoethoxydiphenyl borate (2-APB) (inositol triphosphate receptor blocker), and flufenamic acid (FFA) [Ca(2+)-activated Cl(-) channel (CACC) inhibitor], suggesting that EP4 receptors also signal through Ca(2+) to induce Cl(-) secretion via CACC. Additionally, we observed that PGE2 stimulated an increase in Isc through crosstalk between cAMP and Ca(2+) signaling; BAPTA-AM or 2-APB inhibited a component of Isc(PGE2) that was sensitive to CFTR-172 inhibition; H-89 inhibited a component of Isc(PGE2) that was sensitive to FFA inhibition. Together, our findings indicate that PGE2 activates basolateral EP4 receptors and signals through both cAMP and Ca(2+) to stimulate Cl(-) secretion in IMCD-K2 cells. We propose that these signaling pathways, and the crosstalk between them, may provide a concerted mechanism for enhancing urinary NaCl excretion under conditions of high dietary NaCl intake.
Collapse
Affiliation(s)
- Madhumitha Rajagopal
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California; and
| | | | | | | | | |
Collapse
|
3
|
Flores D, Liu Y, Liu W, Satlin LM, Rohatgi R. Flow-induced prostaglandin E2 release regulates Na and K transport in the collecting duct. Am J Physiol Renal Physiol 2012; 303:F632-8. [PMID: 22696602 DOI: 10.1152/ajprenal.00169.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fluid shear stress (FSS) is a critical regulator of cation transport in the collecting duct (CD). High-dietary sodium (Na) consumption increases urine flow, Na excretion, and prostaglandin E(2) (PGE(2)) excretion. We hypothesize that increases in FSS elicited by increasing tubular flow rate induce the release of PGE(2) from renal epithelial cells into the extracellular compartment and regulate ion transport. Media retrieved from CD cells exposed to physiologic levels of FSS reveal several fold higher concentration of PGE(2) compared with static controls. Treatment of CD cells with either cyclooxygenase-1 (COX-1) or COX-2 inhibitors during exposure to FSS limited the increase in PGE(2) concentration to an equal extent, suggesting COX-1 and COX-2 contribute equally to FSS-induced PGE(2) release. Cytosolic phospholipase A2 (cPLA2), the principal enzyme that generates the COX substrate arachidonic acid, is regulated by mitogen-activated protein-kinase-dependent phosphorylation and intracellular Ca(2+) concentration ([Ca(2+)](i)), both signaling processes, of which, are activated by FSS. Inhibition of the ERK and p38 pathways reduced PGE(2) release by 53.3 ± 8.4 and 32.6 ± 11.3%, respectively, while antagonizing the JNK pathway had no effect. In addition, chelation of [Ca(2+)](i) limited the FSS-mediated increase in PGE(2) concentration by 47.5 ± 7.5% of that observed in untreated sheared cells. Sheared cells expressed greater phospho-cPLA2 protein abundance than static cells; however, COX-2 protein expression was unaffected (P = 0.064) by FSS. In microperfused CDs, COX inhibition enhanced flow-stimulated Na reabsorption and abolished flow-stimulated potassium (K) secretion, but did not affect ion transport at a slow flow rate, implicating that high tubular flow activates autocrine/paracrine PGE(2) release and, in turn, regulates flow-stimulated cation transport. In conclusion, FSS activates cPLA2 to generate PGE(2) that regulates flow-mediated Na and K transport in the native CD. We speculate that dietary sodium intake modulates tubular flow rate to regulate paracrine PGE(2) release and cation transport in the CD.
Collapse
Affiliation(s)
- Daniel Flores
- The Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
4
|
Abstract
Prostaglandin E (PGE)(2) is a major arachidonic acid metabolite in a wide variety of tissues and is implicated in the control of inflammatory as well as physiological responses. At least three major forms of PGE synthase (PGES) have recently been cloned and characterized: membrane-associated PGES (mPGES)-1, mPGES-2, and cytosolic PGES (cPGES). Among them, mPGES-1 is highly inducible by cytokine and is critically involved in pain and inflammatory responses. Emerging evidence suggests that mPGES-1 may also participate in blood pressure (BP) regulation through an impact on renal and vascular functions. Within the kidney, mPGES-1 predominates in the distal nephron where its expression is highly inducible by salt loading. Mice lacking mPGES-1 exhibit blunted natriuretic response paralleled with remarkably suppressed nitric oxide production, leading to salt-sensitive hypertension. These mice also exhibit an exaggerated hypertensive response to angiotensin II infusion. Together, these results suggest that mPGES-1 may be an important physiological regulator of BP.
Collapse
Affiliation(s)
- T Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah 84132, USA.
| |
Collapse
|
5
|
Yang T, Forrest SJ, Stine N, Endo Y, Pasumarthy A, Castrop H, Aller S, Forrest JN, Schnermann J, Briggs J. Cyclooxygenase cloning in dogfish shark, Squalus acanthias, and its role in rectal gland Cl secretion. Am J Physiol Regul Integr Comp Physiol 2002; 283:R631-7. [PMID: 12184997 DOI: 10.1152/ajpregu.00743.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present studies were carried out with the aims to determine the cDNA sequence for cyclooxygenase (COX) in an elasmobranch species and to study its role in regulation of chloride secretion in the perfused shark rectal gland (SRG). With the use of long primers (43 bp) derived from regions of homology between zebrafish and rainbow trout COX-2 genes, a 600-bp product was amplified from SRG and was found to be almost equally homologous to mammalian COX-1 and COX-2 (65%). The full-length cDNA sequence was obtained by 5'-RACE and by analyzing an EST clone generated by the EST Project of the Mt. Desert Island Biological Laboratory Marine DNA Sequencing Center. The longest open reading frame encodes a 593-amino acid protein that has 68 and 64% homology to mammalian COX-1 and COX-2, respectively. The gene and its protein product is designated as shark COX (sCOX). The key residues in the active site (Try(385), His(388), and Ser(530)) are conserved between the shark and mammalian COX. sCOX contains Val(523) that has been shown to be a key residue determining the sensitivity to COX-2-specific inhibitors including NS-398. The mRNA of sCOX, detected by RT-PCR, was found in all tissues tested, including rectal gland, kidney, spleen, gill, liver, brain, and heart, but not in fin. In the perfused SRG, vasoactive intestinal peptide (VIP) at 5 nM induced rapid and marked Cl(-) secretion (basal: <250 microeq x h(-1) x g(-1); peak response: 3,108 +/- 479 microeq x h(-1) x g(-1)). In the presence of 50 microM NS-398, both the peak response (2,131 +/- 307 microeq x h(-1) x g(-1)) and the sustained response to VIP were significantly reduced. When NS-398 was removed, there was a prompt recovery of chloride secretion to control values. In conclusion, we have cloned the first COX in an elasmobranch species (sCOX) and shown that sCOX inhibition suppresses VIP-stimulated chloride secretion in the perfused SRG.
Collapse
Affiliation(s)
- T Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Jensen BL, Mann B, Skøtt O, Kurtz A. Differential regulation of renal prostaglandin receptor mRNAs by dietary salt intake in the rat. Kidney Int 1999; 56:528-37. [PMID: 10432392 DOI: 10.1046/j.1523-1755.1999.00564.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In this study, we tested the hypothesis that prostaglandin (PG) receptor expression in the rat kidney is subject to physiological regulation by dietary salt intake. METHODS Rats were fed diets with 0.02 or 4% NaCl for two weeks. PG receptor expression was assayed in kidney regions and cells by ribonuclease protection assay and reverse transcription-polymerase chain reaction analysis. Functional correlates were studied by measurement of PGE2-induced cAMP formation and renin secretion in juxtaglomerular (JG) cells isolated from animals on various salt intakes. RESULTS EP1 and EP3 receptors were predominantly expressed, and the EP2 receptor was exclusively expressed in the rat kidney medulla. The EP4 receptor was strongly expressed in glomeruli and in renin-secreting JG granular cells. IP receptor transcripts were found mainly in cortex. Maintaining rats on a low- or high-NaCl diet did not affect the expression of EP1 or IP receptors, whereas EP4 transcripts in glomeruli were increased twofold by salt deprivation. Consistent with this, we found that PGE2-evoked cAMP production and renin secretion by JG cells from salt-deprived animals were significantly higher compared with cells obtained from salt-loaded animals. In the outer medulla, EP3 transcripts correlated directly with salt intake, and mRNA abundance was increased twofold by a high-NaCl diet. CONCLUSIONS Our results suggest that subtype-specific, regional changes in PG receptor expression are involved in the renal adaptation to changes in salt intake. The results are in accord with the general concept that renocortical PGE2 stimulates renin secretion and maintains renal blood flow during low-salt states, whereas medullary PGE2 promotes salt excretion in response to a high salt intake.
Collapse
MESH Headings
- Animals
- Antisense Elements (Genetics)
- Cells, Cultured
- Cloning, Molecular
- Cyclic AMP/analysis
- DNA, Complementary
- Dinoprostone/metabolism
- Gene Expression Regulation/drug effects
- Juxtaglomerular Apparatus/cytology
- Juxtaglomerular Apparatus/drug effects
- Juxtaglomerular Apparatus/physiology
- Kidney Glomerulus/chemistry
- Kidney Glomerulus/metabolism
- Kidney Medulla/chemistry
- Kidney Medulla/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptors, Epoprostenol
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP3 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Sodium Chloride/pharmacology
- Sodium, Dietary/pharmacology
Collapse
Affiliation(s)
- B L Jensen
- Institute of Physiology I, University of Regensburg, Germany.
| | | | | | | |
Collapse
|
7
|
Rudd MA, Trolliet M, Hope S, Scribner AW, Daumerie G, Toolan G, Cloutier T, Loscalzo J. Salt-induced hypertension in Dahl salt-resistant and salt-sensitive rats with NOS II inhibition. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H732-9. [PMID: 10444500 DOI: 10.1152/ajpheart.1999.277.2.h732] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although recent evidence suggests that reduced nitric oxide (NO) production may be involved in salt-induced hypertension, the specific NO synthase (NOS) responsible for the conveyance of salt sensitivity remains unknown. To determine the role of inducible NOS (NOS II) in salt-induced hypertension, we treated Dahl salt-resistant (DR) rats with the selective NOS II inhibitor 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT) for 12 days. Tail-cuff systolic blood pressures rose 29 +/- 6 and 42 +/- 8 mmHg in DR rats given 150 and 300 nmol AMT/h, respectively (P < 0.01, 2-way ANOVA) after 7 days of 8% NaCl diet. We observed similar results with two other potent selective NOS II inhibitors, S-ethylisourea (EIT) and N-[3-(aminomethyl)benzyl]acetamidine hydrochloride (1400W). Additionally, AMT effects were independent of alterations in endothelial function as assessed by diameter change of mesenteric arterioles in response to methacholine using videomicroscopy. We, therefore, conclude from these data that NOS II is important in salt-induced hypertension.
Collapse
Affiliation(s)
- M A Rudd
- Whitaker Cardiovascular Institute, Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Yang T, Singh I, Pham H, Sun D, Smart A, Schnermann JB, Briggs JP. Regulation of cyclooxygenase expression in the kidney by dietary salt intake. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F481-9. [PMID: 9530264 DOI: 10.1152/ajprenal.1998.274.3.f481] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present studies were undertaken to determine the effect of dietary salt intake on the renal expression of cyclooxygenase-1 (COX-1) and -2 COX-2). Protein levels were assessed by Western blotting, and mRNA expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR) on cDNA prepared from kidney regions, dissected nephron segments, and cultured renal cells. Both isoforms were expressed at high levels in inner medulla (IM), with low levels detected in outer medulla and cortex. COX-1 mRNA was present in the glomerulus and all along the collecting duct, whereas COX-2 mRNA was restricted to the macula densa-containing segment (MD), cortical thick ascending limb (CTAL), and, at significantly lower levels, in the inner medullary collecting duct. Both isoforms were highly expressed at high levels in cultured medullary interstitial cells and at lower levels in primary mesangial cells and collecting duct cell lines. Maintaining rats on a low- or high-NaCl diet for 1 wk did not affect expression of COX-1. In IM of rats treated with a high-salt diet, COX-2 mRNA increased 4.5-fold, and protein levels increased 9.5-fold. In contrast, cortical COX-2 mRNA levels decreased 2.9-fold in rats on a high-salt diet and increased 3.3-fold in rats on a low-salt diet. A low-salt diet increased COX-2 mRNA 7.7-fold in MD and 3.3-fold in CTAL. Divergent regulation of COX-2 in cortex and medulla by dietary salt suggests that prostaglandins in different kidney regions serve different functions, with medullary production playing a role in promoting the excretion of salt and water in volume overload, whereas cortical prostaglandins may protect glomerular circulation in volume depletion.
Collapse
Affiliation(s)
- T Yang
- Department of Physiology, University of Michigan, Ann Arbor 48104, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Deane DL, McWade M, Hindawi RK, Padfield PL. Reduced levels of PGE2 uptake by intact reno-medullary collecting tubule cells isolated from the spontaneously hypertensive rat and the identification of an intracellular PGE2 receptor/binding protein. Prostaglandins Leukot Essent Fatty Acids 1990; 39:177-87. [PMID: 2186409 DOI: 10.1016/0952-3278(90)90069-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostaglandin E2 (PGE2) is thought to be involved in the control of NaCl loading in the kidney. Since the ability to balance salt concentrations across the nephron appears to be impaired in the Spontaneously Hypertensive Rat (SHR), the uptakes of PGE by isolated medullary collecting tubule cells (MCT) from both SH and normotensive (NT) rats were compared. A rabbit antiserum directed against PGE2 revealed by flow cytometry the active internalisation of exogenous ligand by a high density fraction of intact MCT cells from NT tissue. Conversely, PGE2 uptake by the same fraction was markedly reduced. The monoclonal antibodies (MoAbs) W2.44 and SH6.6 raised against a 45,000 X g fraction of medullary tissue and which blocked binding of the anti-PGE2 serum, identified by Western blotting, an intracellular PGE2 receptor or binding protein (PGER) of 16 k daltons. No alteration in the structure or level of expression of this antigen could be detected in the MCT fractions isolated from the SHR. It is suggested that an impairment of PGE2 membrane transport in the renal medulla may be a contributory factor to the SH condition.
Collapse
Affiliation(s)
- D L Deane
- Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | | | | | | |
Collapse
|
10
|
Limas C, Limas CJ. Homologous regulation of prostaglandin E2 receptors in rat renal medulla. Arch Biochem Biophys 1987; 259:89-97. [PMID: 3479947 DOI: 10.1016/0003-9861(87)90473-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Prostaglandin (PG) receptors are present on enzymatically dissociated cells from the rat renal medulla and are subject to homologous regulation both in vivo and in vitro. One hour after injection of 100 micrograms of 16,16'-dimethyl-PGE2, the number of PGE2 binding sites on renal cells declines to 40% of controls. In vitro exposure of renal cells to PGE2 or dimethyl-PGE2 also results in a time- and concentration-dependent "down" regulation of prostaglandin receptors. In the absence of indomethacin in the incubation medium, endogenously synthesized prostaglandins mediate a similar time-dependent loss of cell-associated receptors. This loss is reversible since, after agonist removal and reincubation of the cells at 37 degrees C, there is a rapid (within 15 min) reappearance of PGE2 receptors (to 60-93% of controls). Reappearance occurs whether down regulation is induced in vitro by endogenously synthesized prostaglandins, added PGE2 or dimethyl-PGE2, or in vivo after injection of dimethyl-PGE2. Cycloheximide does not affect down regulation but significantly prevents subsequent recovery of the receptors. In contrast, neither colchicine nor chloroquine influences homologous regulation of renal prostaglandin receptors. These results document an agonist-induced reversible cycling of renal prostaglandin receptors which may determine the effectiveness of prostaglandin action in normal and pathologic states.
Collapse
Affiliation(s)
- C Limas
- Laboratory Service, Veterans Administration Medical Center, Minneapolis, Minnesota 55417
| | | |
Collapse
|
11
|
Kelly RA, Pfeffer JM, Mitch WE, Smith TW. Plasma nonesterified fatty acids in the Dahl rat. Response to salt loading. Hypertension 1987; 10:198-203. [PMID: 3610294 DOI: 10.1161/01.hyp.10.2.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The link between dietary salt intake and the development of hypertension in the salt-sensitive Dahl strain of rats remains elusive. There is evidence that Dahl salt-sensitive rats (DS) produce less vasodilator and natriuretic prostaglandins in response to salt loading than do control salt-resistant rats (DR), although the reason for this blunted response is unknown. We examined the effects of chronic dietary salt loading on the plasma levels of nonesterified fatty acids in DS and DR. Animals were fed the same chow containing either 0.4% or 4% NaCl (wt/wt). At 12 weeks, 75 microliters of tail capillary blood was obtained from restrained, conscious rats, and principal nonesterified fatty acids were measured by high performance liquid chromatography. Total nonesterified fatty acids rose in the 15 DR on high salt diets compared with values in 11 rats eating low salt (0.57 +/- 0.05 vs 0.35 +/- 0.01 mM; p less than 0.001). The greatest changes occurred in levels of arachidonic acid (+287%) and in the arachidonic precursors, linoleic (+89%) and linolenic (+107%) acids. In marked contrast, there was no change in levels of plasma nonesterified fatty acids in DS fed 4% NaCl compared with DS fed 0.4% NaCl. These observations suggest that defective production of natriuretic and vasodilator prostaglandins by DS may be due in part to an inability to produce or release eicosanoid precursors from phospholipid stores in response to dietary salt.
Collapse
|