1
|
Lin Y, Liu S, Sun Y, Chen C, Yang S, Pei G, Lin M, Yu J, Liu X, Wang H, Long J, Yan Q, Liang J, Yao J, Yi F, Meng L, Tan Y, Chen N, Yang Y, Ai Q. CCR5 and inflammatory storm. Ageing Res Rev 2024; 96:102286. [PMID: 38561044 DOI: 10.1016/j.arr.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Chemokines and their corresponding receptors play crucial roles in orchestrating inflammatory and immune responses, particularly in the context of pathological conditions disrupting the internal environment. Among these receptors, CCR5 has garnered considerable attention due to its significant involvement in the inflammatory cascade, serving as a pivotal mediator of neuroinflammation and other inflammatory pathways associated with various diseases. However, a notable gap persists in comprehending the intricate mechanisms governing the interplay between CCR5 and its ligands across diverse and intricate inflammatory pathologies. Further exploration is warranted, especially concerning the inflammatory cascade instigated by immune cell infiltration and the precise binding sites within signaling pathways. This study aims to illuminate the regulatory axes modulating signaling pathways in inflammatory cells by providing a comprehensive overview of the pathogenic processes associated with CCR5 and its ligands across various disorders. The primary focus lies on investigating the pathomechanisms associated with CCR5 in disorders related to neuroinflammation, alongside the potential impact of aging on these processes and therapeutic interventions. The discourse culminates in addressing current challenges and envisaging potential future applications, advocating for innovative research endeavors to advance our comprehension of this realm.
Collapse
Affiliation(s)
- Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Gang Pei
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
2
|
Zeng Z, Lan T, Wei Y, Wei X. CCL5/CCR5 axis in human diseases and related treatments. Genes Dis 2022; 9:12-27. [PMID: 34514075 PMCID: PMC8423937 DOI: 10.1016/j.gendis.2021.08.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
To defense harmful stimuli or maintain the immune homeostasis, the body produces and recruits a superfamily of cytokines such as interleukins, interferons, chemokines etc. Among them, chemokines act as crucial regulators in defense systems. CCL5/CCR5 combination is known for facilitating inflammatory responses, as well as inducing the adhesion and migration of different T cell subsets in immune responses. In addition, recent studies have shown that the interaction between CCL5 and CCR5 is involved in various pathological processes including inflammation, chronic diseases, cancers as well as the infection of COVID-19. This review focuses on how CCL5/CCR5 axis participates in the pathological processes of different diseases and their relevant signaling pathways for the regulation of the axis. Moreover, we highlighted the gene therapy and chemotherapy studies for treating CCR5-related diseases, including the ongoing clinical trials. The barriers and perspectives for future application and translational research were also summarized.
Collapse
Affiliation(s)
- Zhen Zeng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
3
|
Shukla T, de la Peña JB, Perish JM, Ploski JE, Stumpf CR, Webster KR, Thorn CA, Campbell ZT. A Highly Selective MNK Inhibitor Rescues Deficits Associated with Fragile X Syndrome in Mice. Neurotherapeutics 2021; 18:624-639. [PMID: 33006091 PMCID: PMC8116363 DOI: 10.1007/s13311-020-00932-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2020] [Indexed: 12/22/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited source of intellectual disability in humans. FXS is caused by mutations that trigger epigenetic silencing of the Fmr1 gene. Loss of Fmr1 results in increased activity of the mitogen-activated protein kinase (MAPK) pathway. An important downstream consequence is activation of the mitogen-activated protein kinase interacting protein kinase (MNK). MNK phosphorylates the mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E). Excessive phosphorylation of eIF4E has been directly implicated in the cognitive and behavioral deficits associated with FXS. Pharmacological reduction of eIF4E phosphorylation is one potential strategy for FXS treatment. We demonstrate that systemic dosing of a highly specific, orally available MNK inhibitor, eFT508, attenuates numerous deficits associated with loss of Fmr1 in mice. eFT508 resolves a range of phenotypic abnormalities associated with FXS including macroorchidism, aberrant spinogenesis, and alterations in synaptic plasticity. Key behavioral deficits related to anxiety, social interaction, obsessive and repetitive activities, and object recognition are ameliorated by eFT508. Collectively, this work establishes eFT508 as a potential means to reverse deficits associated with FXS.
Collapse
Affiliation(s)
- Tarjani Shukla
- Department of Biological Sciences, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - June Bryan de la Peña
- Department of Biological Sciences, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - John M Perish
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jonathan E Ploski
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | | | | | - Catherine A Thorn
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
4
|
Yang H, Chennamaneni LR, Ho MWT, Ang SH, Tan ESW, Jeyaraj DA, Yeap YS, Liu B, Ong EH, Joy JK, Wee JLK, Kwek P, Retna P, Dinie N, Nguyen TTH, Tai SJ, Manoharan V, Pendharkar V, Low CB, Chew YS, Vuddagiri S, Sangthongpitag K, Choong ML, Lee MA, Kannan S, Verma CS, Poulsen A, Lim S, Chuah C, Ong TS, Hill J, Matter A, Nacro K. Optimization of Selective Mitogen-Activated Protein Kinase Interacting Kinases 1 and 2 Inhibitors for the Treatment of Blast Crisis Leukemia. J Med Chem 2018; 61:4348-4369. [PMID: 29683667 DOI: 10.1021/acs.jmedchem.7b01714] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by bcr-abl1, a constitutively active tyrosine kinase fusion gene responsible for an abnormal proliferation of leukemic stem cells (LSCs). Inhibition of BCR-ABL1 kinase activity offers long-term relief to CML patients. However, for a proportion of them, BCR-ABL1 inhibition will become ineffective at treating the disease, and CML will progress to blast crisis (BC) CML with poor prognosis. BC-CML is often associated with excessive phosphorylated eukaryotic translation initiation factor 4E (eIF4E), which renders LSCs capable of proliferating via self-renewal, oblivious to BCR-ABL1 inhibition. In vivo, eIF4E is exclusively phosphorylated on Ser209 by MNK1/2. Consequently, a selective inhibitor of MNK1/2 should reduce the level of phosphorylated eIF4E and re-sensitize LSCs to BCR-ABL1 inhibition, thus hindering the proliferation of BC LSCs. We report herein the structure-activity relationships and pharmacokinetic properties of a selective MNK1/2 inhibitor clinical candidate, ETC-206, which in combination with dasatinib prevents BC-CML LSC self-renewal in vitro and enhances dasatinib antitumor activity in vivo.
Collapse
Affiliation(s)
- Haiyan Yang
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Lohitha Rao Chennamaneni
- Organic Chemistry, Institute of Chemical and Engineering Sciences (ICES), A*STAR , 8 Biomedical Grove, Neuros, #07-01 , 138665 Singapore
| | - Melvyn Wai Tuck Ho
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Shi Hua Ang
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Eldwin Sum Wai Tan
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | | | - Yoon Sheng Yeap
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Boping Liu
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Esther Hq Ong
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Joma Kanikadu Joy
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - John Liang Kuan Wee
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Perlyn Kwek
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Priya Retna
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Nurul Dinie
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Thuy Thi Hanh Nguyen
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Shi Jing Tai
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Vithya Manoharan
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Vishal Pendharkar
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Choon Bing Low
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Yun Shan Chew
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Susmitha Vuddagiri
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Kanda Sangthongpitag
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Meng Ling Choong
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - May Ann Lee
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | | | - Chandra S Verma
- Bioinformatics Institute (BII) , A*STAR , 30 Biopolis Street, #07-01 Matrix , 138671 Singapore.,School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , 637551 Singapore.,Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , 117543 Singapore
| | - Anders Poulsen
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Sharon Lim
- Duke-NUS Medical School , 8 College Road , 169857 Singapore
| | - Charles Chuah
- Duke-NUS Medical School , 8 College Road , 169857 Singapore
| | - Tiong Sin Ong
- Duke-NUS Medical School , 8 College Road , 169857 Singapore.,Department of Medicine , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Jeffrey Hill
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Alex Matter
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Kassoum Nacro
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| |
Collapse
|
5
|
Abstract
As obligate parasites, viruses strictly depend on host cell translation for the production of new progeny, yet infected cells also synthesize antiviral proteins to limit virus infection. Modulation of host cell translation therefore represents a frequent strategy by which viruses optimize their replication and spread. Here we sought to define how host cell translation is regulated during infection of human cells with dengue virus (DENV) and Zika virus (ZIKV), two positive-strand RNA flaviviruses. Polysome profiling and analysis of de novo protein synthesis revealed that flavivirus infection causes potent repression of host cell translation, while synthesis of viral proteins remains efficient. Selective repression of host cell translation was mediated by the DENV polyprotein at the level of translation initiation. In addition, DENV and ZIKV infection suppressed host cell stress responses such as the formation of stress granules and phosphorylation of the translation initiation factor eIF2α (α subunit of eukaryotic initiation factor 2). Mechanistic analyses revealed that translation repression was uncoupled from the disruption of stress granule formation and eIF2α signaling. Rather, DENV infection induced p38-Mnk1 signaling that resulted in the phosphorylation of the eukaryotic translation initiation factor eIF4E and was essential for the efficient production of virus particles. Together, these results identify the uncoupling of translation suppression from the cellular stress responses as a conserved strategy by which flaviviruses ensure efficient replication in human cells. For efficient production of new progeny, viruses need to balance their dependency on the host cell translation machinery with potentially adverse effects of antiviral proteins produced by the infected cell. To achieve this, many viruses evolved mechanisms to manipulate host cell translation. Here we find that infection of human cells with two major human pathogens, dengue virus (DENV) and Zika virus (ZIKV), leads to the potent repression of host cell translation initiation, while the synthesis of viral protein remains unaffected. Unlike other RNA viruses, these flaviviruses concomitantly suppress host cell stress responses, thereby uncoupling translation suppression from stress granule formation. We identified that the p38-Mnk1 cascade regulating phosphorylation of eIF4E is a target of DENV infection and plays an important role in virus production. Our results define several molecular interfaces by which flaviviruses hijack host cell translation and interfere with stress responses to optimize the production of new virus particles.
Collapse
|
6
|
Yuan Y, Yan L, Wu QQ, Zhou H, Jin YG, Bian ZY, Deng W, Yang Z, Shen DF, Zeng XF, Wang SS, Li H, Tang QZ. Mnk1 (Mitogen-Activated Protein Kinase-Interacting Kinase 1) Deficiency Aggravates Cardiac Remodeling in Mice. Hypertension 2016; 68:1393-1399. [PMID: 27698061 DOI: 10.1161/hypertensionaha.116.07906] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/03/2016] [Accepted: 09/12/2016] [Indexed: 01/19/2023]
Abstract
Identifying the key factor involved in cardiac remodeling is critically important for developing novel strategies to protect against heart failure. Here, the role of Mnk1 (mitogen-activated protein kinase-interacting kinase 1) in cardiac remodeling was clarified. Cardiac remodeling was induced by transverse aortic constriction in Mnk1-knockout mice and their wild-type control mice. After 4 weeks of transverse aortic constriction, Mnk1-knockout mice developed exaggerated cardiac hypertrophy, fibrosis, dysfunction, and cardiomyocyte apoptosis and showed increased ERK1/2 (extracellular signal-regulated kinase 1/2) activation along with reduced sprouty2 expression. In line with the in vivo studies, Mnk1 knockdown by Mnk1 siRNA transfection induced exaggerated angiotensin II-induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes (NRVMs). Moreover, adenovirus-mediated overexpression of Mnk1 in NRVMs protected cardiomyocytes from angiotensin II-induced hypertrophy. In addition, overexpression of sprouty2 rescued NRVMs with Mnk1 knockdown from angiotensin II-induced hypertrophy. In accordance with the in vivo studies, as compared with the control group, Mnk1 knockdown led to hyperphosphorylation of ERK1/2 and suppression of the sprouty2 expression in angiotensin II-treated NRVMs; furthermore, Mnk1 overexpression led to hypophosphorylation of ERK1/2 in angiotensin II-treated NRVMs. In addition, sprouty2 overexpression suppressed the activation of ERK1/2 in angiotensin II-treated NRVMs with Mnk1 knockdown. Impressively, MnK1-knockout mice with overexpression of sprouty2 exhibited signs of a blunted cardiac hypertrophic response. Mnk1 likely carries out a suppressive function in cardiac hypertrophy via regulating the sprouty2/ERK1/2 pathway. It implicates Mnk1 in the development of cardiac remodeling.
Collapse
Affiliation(s)
- Yuan Yuan
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Ling Yan
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Qing-Qing Wu
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Heng Zhou
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Ya-Ge Jin
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Zhou-Yan Bian
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Wei Deng
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Zheng Yang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Di-Fei Shen
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Xiao-Feng Zeng
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Sha-Sha Wang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Qi-Zhu Tang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.).
| |
Collapse
|
7
|
Doyon P, van Zuylen WJ, Servant MJ. Role of IκB kinase-β in the growth-promoting effects of angiotensin II in vitro and in vivo. Arterioscler Thromb Vasc Biol 2013; 33:2850-7. [PMID: 24135021 DOI: 10.1161/atvbaha.113.302487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Angiotensin II (Ang II) is implicated in processes underlying the development of arterial wall remodeling events, including cellular hypertrophy and inflammation. We previously documented the activation of IκB kinase-β (IKKβ) in Ang II-treated cells, a kinase involved in inflammatory reactions. In light of a study suggesting a role of IKKβ in angiogenesis through its effect on the tuberous sclerosis (TSC)1/2-mammalian target of rapamycin complex 1 pathway in cancer cells, we hypothesized that targeting IKKβ could reduce arterial remodeling events by affecting both the inflammatory and the growth-promoting response of Ang II. APPROACH AND RESULTS Treatment of aortic vascular smooth muscle cells with Ang II induced the rapid and sustained phosphorylation of TSC1 on Ser511, which paralleled the activation of effectors of the mammalian target of rapamycin complex 1 pathway. Furthermore, we show that Ser511 of TSC1 acted as a phosphoacceptor site for Ang II-activated IKKβ. Consistent with this, the use of different short hairpin RNA constructs targeting IKKβ reduced Ang II-induced TSC1, S6 kinase, and eukaryotic translation initiation factor 4E-binding protein 1 phosphorylation and the rate of protein synthesis. Overexpression of TSC1 lacking Ser511 in vascular smooth muscle cells also exerted detrimental effects on the hypertrophic effect of Ang II. Furthermore, the selective IKKβ inhibitor N-(6-chloro-7-methoxy-9H-β-carbolin-8-yl)-2 methylnicotinamide reduced the inflammatory response and dose-dependently diminished Ang II-induced TSC1 phosphorylation and effectors of the mammalian target of rapamycin complex 1 pathway, leading to inhibition of protein synthesis in vitro and in rat arteries in vivo. CONCLUSIONS Our findings provide new insights into the molecular understanding of the pathological role of Ang II and assist in identifying the beneficial effects of IKKβ inhibition for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Priscilla Doyon
- From the Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | | | | |
Collapse
|
8
|
Joshi S, Sharma B, Kaur S, Majchrzak B, Ueda T, Fukunaga R, Verma AK, Fish EN, Platanias LC. Essential role for Mnk kinases in type II interferon (IFNgamma) signaling and its suppressive effects on normal hematopoiesis. J Biol Chem 2011; 286:6017-26. [PMID: 21149447 PMCID: PMC3057839 DOI: 10.1074/jbc.m110.197921] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/10/2010] [Indexed: 12/22/2022] Open
Abstract
IFNγ exhibits potent antitumor effects and plays important roles in the innate immunity against cancer. However, the mechanisms accounting for the antiproliferative effects of IFNγ still remain to be elucidated. We examined the role of Mnk1 (MAPK-interacting protein kinase 1) in IFNγ signaling. Our data demonstrate that IFNγ treatment of sensitive cells results in engagement of Mnk1, activation of its kinase domain, and downstream phosphorylation of the cap-binding protein eIF4E on Ser-209. Such engagement of Mnk1 plays an important role in IFNγ-induced IRF-1 (IFN regulatory factor 1) gene mRNA translation/protein expression and is essential for generation of antiproliferative responses. In studies aimed to determine the role of Mnk1 in the induction of the suppressive effects of IFNs on primitive hematopoietic progenitors, we found that siRNA-mediated Mnk1/2 knockdown results in partial reversal of the suppressive effects of IFNγ on human CD34+-derived myeloid (CFU-GM) and erythroid (BFU-E) progenitors. These findings establish a key role for the Mnk/eIF4E pathway in the regulatory effects of IFNγ on normal hematopoiesis and identify Mnk kinases as important elements in the control of IFNγ-inducible ISG mRNA translation.
Collapse
Affiliation(s)
- Sonali Joshi
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| | - Bhumika Sharma
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| | - Surinder Kaur
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| | - Beata Majchrzak
- the Division of Cell and Molecular Biology, Toronto Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario M5G2M1, Canada
| | - Takeshi Ueda
- the Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 737-8553 Japan
| | - Rikiro Fukunaga
- the Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan, and
| | - Amit K. Verma
- the Division of Hematology-Oncology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Eleanor N. Fish
- the Division of Cell and Molecular Biology, Toronto Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario M5G2M1, Canada
| | - Leonidas C. Platanias
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| |
Collapse
|
9
|
Chan SHH, Sun EYH, Chang AYW. Extracellular signal-regulated kinase 1/2 plays a pro-life role in experimental brain stem death via MAPK signal-interacting kinase at rostral ventrolateral medulla. J Biomed Sci 2010; 17:17. [PMID: 20226096 PMCID: PMC2848001 DOI: 10.1186/1423-0127-17-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 03/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the origin of a life-and-death signal detected from systemic arterial pressure, which sequentially increases (pro-life) and decreases (pro-death) to reflect progressive dysfunction of central cardiovascular regulation during the advancement towards brain stem death in critically ill patients, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate for mechanistic delineation of this fatal phenomenon. The present study assessed the hypothesis that extracellular signal-regulated kinase 1/2 (ERK1/2), a member of the mitogen-activated protein kinases (MAPKs) that is important for cell survival and is activated specifically by MAPK kinase 1/2 (MEK1/2), plays a pro-life role in RVLM during brain stem death. We further delineated the participation of MAPK signal-interacting kinase (MNK), a novel substrate of ERK in this process. METHODS An experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos (Mev; 10 nmol) bilaterally into RVLM of Sprague-Dawley rats was used, in conjunction with cardiovascular, pharmacological and biochemical evaluations. RESULTS Results from ELISA showed that whereas the total ERK1/2 was not affected, augmented phosphorylation of ERK1/2 at Thr202 and Tyr204 in RVLM occurred preferentially during the pro-life phase of experimental brain stem death. Furthermore, pretreatment by microinjection into the bilateral RVLM of a specific ERK2 inhibitor, ERK activation inhibitor peptide II (1 nmol); a specific MEK1/2 inhibitor, U0126 (5 pmol); or a specific MNK1/2 inhibitor, CGP57380 (5 pmol) exacerbated the hypotension and blunted the augmented life-and-death signals exhibited during the pro-life phase. Those pretreatments also blocked the upregulated nitric oxide synthase I (NOS I)/protein kinase G (PKG) signaling, the pro-life cascade that sustains central cardiovascular regulatory functions during experimental brain stem death. CONCLUSIONS Our results demonstrated that activation of MEK1/2, ERK1/2 and MNK1/2 in RVLM plays a preferential pro-life role by sustaining the central cardiovascular regulatory machinery during brain stem death via upregulation of NOS I/PKG signaling cascade in RVLM.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung County 83301, Taiwan
| | | | | |
Collapse
|
10
|
Deng H, Hershenson MB, Lei J, Anyanwu AC, Pinsky DJ, Bentley JK. Pulmonary artery smooth muscle hypertrophy: roles of glycogen synthase kinase-3beta and p70 ribosomal S6 kinase. Am J Physiol Lung Cell Mol Physiol 2010; 298:L793-803. [PMID: 20190034 DOI: 10.1152/ajplung.00108.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Increased medial arterial thickness is a structural change in pulmonary arterial hypertension (PAH). The role of smooth muscle hypertrophy in this process has not been well studied. Bone morphogenetic proteins (BMPs), transforming growth factor (TGF)-beta1, serotonin (or 5-hydroxytryptamine; 5-HT), and endothelin (ET)-1 have been implicated in PAH pathogenesis. We examined the effect of these mediators on human pulmonary artery smooth muscle cell size, contractile protein expression, and contractile function, as well on the roles of glycogen synthase kinase (GSK)-3beta and p70 ribosomal S6 kinase (p70S6K), two proteins involved in translational control, in this process. Unlike epidermal growth factor, BMP-4, TGF-beta1, 5-HT, and ET-1 each increased smooth muscle cell size, contractile protein expression, fractional cell shortening, and GSK-3beta phosphorylation. GSK-3beta inhibition by lithium or SB-216763 increased cell size, protein synthesis, and contractile protein expression. Expression of a non-phosphorylatable GSK-3beta mutant blocked BMP-4-, TGF-beta1-, 5-HT-, and ET-1-induced cell size enlargement, suggesting that GSK-3beta phosphorylation is required and sufficient for cellular hypertrophy. However, BMP-4, TGF-beta1, 5-HT, and ET-1 stimulation was accompanied by an increase in serum response factor transcriptional activation but not eIF2 phosphorylation, suggesting that GSK-3beta-mediated hypertrophy occurs via transcriptional, not translational, control. Finally, BMP-4, TGF-beta1, 5-HT, and ET-1 treatment induced phosphorylation of p70S6K and ribosomal protein S6, and siRNAs against p70S6K and S6 blocked the hypertrophic response. We conclude that mediators implicated in the pathogenesis of PAH induce pulmonary arterial smooth muscle hypertrophy. Identification of the signaling pathways regulating vascular smooth muscle hypertrophy may define new therapeutic targets for PAH.
Collapse
Affiliation(s)
- Huan Deng
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109-5688, USA
| | | | | | | | | | | |
Collapse
|
11
|
Orr AW, Hastings NE, Blackman BR, Wamhoff BR. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res 2009; 47:168-80. [PMID: 19851078 DOI: 10.1159/000250095] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/26/2009] [Indexed: 12/22/2022] Open
Abstract
Vascular smooth muscle cell (SMC) phenotypic modulation plays a key role in atherosclerosis and is classically defined as a switch from a 'contractile' phenotype to a 'synthetic' phenotype, whereby genes that define the contractile SMC phenotype are suppressed and proliferation and/or migratory mechanisms are induced. There is also evidence that SMCs may take on a 'proinflammatory' phenotype, whereby SMCs secrete cytokines and express cell adhesion molecules, e.g. IL-8, IL-6, and VCAM-1, respectively, which may functionally regulate monocyte and macrophage adhesion and other processes during atherosclerosis. Factors that drive the inflammatory phenotype are not limited to cytokines but also include hemodynamic forces imposed on the blood vessel wall and intimate interaction of endothelial cells with SMCs, as well as changes in matrix composition in the vessel wall. However, it is critical to recognize that our understanding of the complex interaction of these multiple signal inputs has only recently begun to shed light on mechanisms that regulate the inflammatory SMC phenotype, primarily through models that attempt to recreate this environment ex vivo. The goal of this review is to summarize our current knowledge in this area and identify some of the key unresolved challenges and questions requiring further study.
Collapse
Affiliation(s)
- Anthony Wayne Orr
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, La., USA
| | | | | | | |
Collapse
|
12
|
Soe NN, Ishida T, Miho N, Ishida M, Sawano M, Abe K, Chayama K, Kihara Y, Yoshizumi M. Nifedipine Interferes with Migration of Vascular Smooth Muscle Cells via Inhibition of Pyk2-Src Axis. J Atheroscler Thromb 2009; 16:230-8. [DOI: 10.5551/jat.e422] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
DeWire SM, Kim J, Whalen EJ, Ahn S, Chen M, Lefkowitz RJ. Beta-arrestin-mediated signaling regulates protein synthesis. J Biol Chem 2008; 283:10611-20. [PMID: 18276584 DOI: 10.1074/jbc.m710515200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Seven transmembrane receptors (7TMRs) exert strong regulatory influences on virtually all physiological processes. Although it is historically assumed that heterotrimeric G proteins mediate these actions, there is a newer appreciation that beta-arrestins, originally thought only to desensitize G protein signaling, also serve as independent receptor signal transducers. Recently, we found that activation of ERK1/2 by the angiotensin receptor occurs via both of these distinct pathways. In this work, we explore the physiological consequences of beta-arrestin ERK1/2 signaling and delineate a pathway that regulates mRNA translation and protein synthesis via Mnk1, a protein that both physically interacts with and is activated by beta-arrestins. We show that beta-arrestin-dependent activation of ERK1/2, Mnk1, and eIF4E are responsible for increasing translation rates in both human embryonic kidney 293 and rat vascular smooth muscle cells. This novel demonstration that beta-arrestins regulate protein synthesis reveals that the spectrum of beta-arrestin-mediated signaling events is broader than previously imagined.
Collapse
Affiliation(s)
- Scott M DeWire
- Department of Medicine and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
14
|
Rowlett RM, Chrestensen CA, Nyce M, Harp MG, Pelo JW, Cominelli F, Ernst PB, Pizarro TT, Sturgill TW, Worthington MT. MNK kinases regulate multiple TLR pathways and innate proinflammatory cytokines in macrophages. Am J Physiol Gastrointest Liver Physiol 2008; 294:G452-9. [PMID: 18032482 DOI: 10.1152/ajpgi.00077.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The MNK kinases are downstream of both the p38 and ERK MAP kinase pathways and act to increase gene expression. MNK inhibition using the compound CGP57380 has recently been reported to inhibit tumor necrosis factor (TNF) production in macrophage cell lines stimulated with Escherichia coli lipopolysaccharide (LPS). However, the range of receptors that signal through the MNK kinases and the extent of the resultant cytokine response are not known. We found that TNF production was inhibited in RAW264.7 macrophage cells by CGP57380 in a dose-responsive manner with agonists for Toll-like receptor (TLR) 2 (HKLM), TLR4 (Salmonella LPS), TLR6/2 (FSL), TLR7 (imiquimod), and TLR9 (CpG DNA). CGP57380 also inhibited the peak of TNF mRNA production and increased the rate of TNF mRNA decay, effects not due to the destabilizing RNA binding protein tristetraprolin (TTP). Similar to its effects on TNF, CGP57380 caused dose-responsive inhibition of TTP production from stimulation with either LPS or CpG DNA. MNK inhibition also blocked IL-6 but permitted IL-10 production in response to LPS. Studies using bone marrow-derived macrophages (BMDM) isolated from a spontaneous mouse model of Crohn's disease-like ileitis (SAMP1/YitFc strain) revealed significant inhibition by CGP57380 of the proinflammatory cytokines TNF, IL-6, and monocyte chemoattractant protein-1 at 4 and 24 h after LPS stimulation. IL-10 production was higher in CGP53870-treated BMDM at 4 h but was similar to the controls by 24 h. Taken together, these data demonstrate that MNK kinases signal through a variety of TLR agonists and mediate a potent innate, proinflammatory cytokine response.
Collapse
Affiliation(s)
- Robert M Rowlett
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abe K, Nakashima H, Ishida M, Miho N, Sawano M, Soe NN, Kurabayashi M, Chayama K, Yoshizumi M, Ishida T. Angiotensin II-Induced Osteopontin Expression in Vascular Smooth Muscle Cells Involves Gq/11, Ras, ERK, Src and Ets-1. Hypertens Res 2008; 31:987-98. [PMID: 18712054 DOI: 10.1291/hypres.31.987] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Keiko Abe
- Department of Medicine and Molecular Science, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shenberger JS, Zhang L, Hughlock MK, Ueda T, Watanabe-Fukunaga R, Fukunaga R. Roles of mitogen-activated protein kinase signal-integrating kinases 1 and 2 in oxidant-mediated eIF4E phosphorylation. Int J Biochem Cell Biol 2007; 39:1828-42. [PMID: 17689282 PMCID: PMC2001257 DOI: 10.1016/j.biocel.2007.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 04/16/2007] [Accepted: 05/01/2007] [Indexed: 01/21/2023]
Abstract
Oxidative stress alters cellular metabolic processes including protein synthesis. The eukaryotic initiation factor, eIF4E, acts in the rate-limiting steps of initiation and promotes nuclear export. Phosphorylation of eIF4E by mitogen activated protein kinase signal-integrating kinases 1 and 2 (Mnk) influences the affinity of eIF4E for the 5'-mRNA cap and fosters nuclear export activity. Although phosphorylation of eIF4E on Ser209 is observed following oxidant exposure, the contribution of Mnk isoforms and the significance of phosphorylation remain elusive. Using a Mnk inhibitor and fibroblasts derived from Mnk knockout mice, we demonstrate that that H2O2 enhances eIF4E phosphorylation in cells containing Mnk1. In contrast, cells containing only Mnk2 show little change or a decrease in eIF4E phosphorylation in response to H2O2. H2O2 also shifted eIF4GI protein from the nucleus to the cytoplasm suggesting that the increases in eIF4E phosphorylation may reflect enhanced substrate availability to cytoplasmic Mnk1. In Mnk1(+/+) cells, H2O2 also enhanced eIF4E phosphorylation in the nucleus to a greater degree than in the cytoplasm, an effect not observed in cells containing Mnk2. In response to H2O2, all MEFs showed increased eIF4E:4E-BP1 and 4E-BP2:eIF4E binding and reduced eIF4E:eIF4GI binding. We also observed a dramatic increase in the amount of Mnk1 associated with eIF4E following affinity chromatography. These changes coincided with a smaller reduction in global protein synthesis in response to H2O2 in the DKO cells. These findings suggest that changes in eIF4GI distribution may enhance eIF4E phosphorylation and that the presence of either Mnk1 or 2 or any degree of eIF4E phosphorylation negatively regulates global protein synthesis in response to oxidant stress.
Collapse
Affiliation(s)
- Jeffrey S Shenberger
- Department of Pediatrics, The Pennsylvania State University College of Medicine, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Ohtsu H, Suzuki H, Nakashima H, Dhobale S, Frank GD, Motley ED, Eguchi S. Angiotensin II Signal Transduction Through Small GTP-Binding Proteins. Hypertension 2006; 48:534-40. [PMID: 16923993 DOI: 10.1161/01.hyp.0000237975.90870.eb] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Haruhiko Ohtsu
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ross G, Dyer JR, Castellucci VF, Sossin WS. Mnk is a negative regulator of cap-dependent translation in Aplysia neurons. J Neurochem 2006; 97:79-91. [PMID: 16515558 DOI: 10.1111/j.1471-4159.2006.03704.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the mechanisms underlying regulation of eukaryotic initiation factor 4E (eIF4E) phosphorylation in Aplysia neurons, we have cloned the Aplysia homolog of the vertebrate eIF4E kinases, Mnk1 and -2. Aplysia Mnk shares many conserved regions with vertebrate Mnk, including putative eukaryotic initiation factor 4G binding regions, activation loop phosphorylation sites, and a carboxy-terminal anchoring site for MAP kinases. As expected, purified Aplysia Mnk phosphorylated Aplysia eIF4E at a conserved carboxy-terminal serine and over-expression of Aplysia Mnk in sensory neurons led to increased phosphorylation of endogenous eIF4E. Over-expression of Aplysia Mnk led to strong decreases in cap-dependent translation, while generally sparing internal ribosomal entry site (IRES)-dependent translation. However, decreases in cap-dependent translation seen after expression of Aplysia Mnk could only be partly explained by increases in eIF4E phosphorylation. In Aplysia sensory neurons, phosphorylation of eIF4E is reduced during intermediate memory formation. However, we found that this physiological regulation of eIF4E phosphorylation was independent of changes in Aplysia Mnk phosphorylation. We propose that changes in eIF4E phosphorylation in Aplysia neurons are a consequence of changes in cap-dependent translation that are independent of regulation of Aplysia Mnk.
Collapse
Affiliation(s)
- Gabriel Ross
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
19
|
Abstract
Sepsis induces weight loss and the loss of skeletal muscle proteins, in part through an inhibition of protein synthesis secondary to an inhibition of the key steps controlling mRNA translation in skeletal muscle. We have previously shown that sepsis decreases the phosphorylation of eIF4E. The present study examines the phosphorylation of Erk 1/2 MAPK and p38 MAPK in skeletal muscle of rats with a chronic (5-day) intra-abdominal septic abscess. Mnk1 catalyzes the phosphorylation of eIF4E, and Mnk1 is activated by phosphorylation via Erk1/2 MAPK and p38 MAPK. Sepsis resulted in a significant decrease in the steady-state phosphorylation of Erk 1/2 and p38 MAPKs compared with sterile inflammation. To examine the mediators responsible for decreased phosphorylation of Erk 1/2 and p38 MAPKs, rats were treated with TNF binding protein (TNFbp) or infused for 24 h with TNF. Treatment of septic rats with TNFbp resulted in an increase in the phosphorylation of both Erk 1/2 and p38 MAPKs in skeletal muscle. This was associated with enhanced phosphorylation of eIF4E. In contrast, constant intravenous infusion of TNF-alpha for 24 h resulted in a complete inhibition of p38 MAPK phosphorylation while Erk 1/2 MAPK phosphorylation was increased. The net effect was a modest increase in eIF4E phosphorylation. The results suggest altered regulation of Erk 1/2 and p38 MAPK signal translation pathways by endogenously produced TNF, or some compound dependent on TNF may modulate, in part, the phosphorylation state of eIF4E in skeletal muscle during sepsis.
Collapse
Affiliation(s)
- Thomas C Vary
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
20
|
Zhou L, Goldsmith AM, Bentley JK, Jia Y, Rodriguez ML, Abe MK, Fingar DC, Hershenson MB. 4E-binding protein phosphorylation and eukaryotic initiation factor-4E release are required for airway smooth muscle hypertrophy. Am J Respir Cell Mol Biol 2005; 33:195-202. [PMID: 15901615 PMCID: PMC1578595 DOI: 10.1165/rcmb.2004-0411oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The molecular mechanisms of airway smooth muscle hypertrophy, a feature of severe asthma, are poorly understood. We previously established a conditionally immortalized human bronchial smooth muscle cell line with a temperature-sensitive SV40 large T antigen. Temperature shift and loss of large T cause G1-phase cell cycle arrest that is accompanied by increased airway smooth muscle cell size. In the present study, we hypothesized that phosphorylation of eukaryotic initiation factor-4E (eIF4E)-binding protein (4E-BP), which subsequently releases eIF4E and initiates cap-dependent mRNA translation, was required for airway smooth muscle hypertrophy. Treatment of cells with chemical inhibitors of PI 3-kinase and mammalian target of rapamycin blocked protein synthesis and cell growth while decreasing the phosphorylation of 4E-BP and increasing the binding of 4E-BP to eIF4E, consistent with the notion that 4E-BP1 phosphorylation and eIF4E function are required for hypertrophy. To test this directly, we infected cells with a retrovirus encoding a phosphorylation site mutant of 4E-BP1 (AA-4E-BP-1) that dominantly inhibits eIF4E. Upon temperature shift, cells infected with AA-4E-BP-1, but not empty vector, failed to undergo hypertrophic growth. We conclude that phosphorylation of 4E-BP, eIF4E release, and cap-dependent protein synthesis are required for hypertrophy of human airway smooth muscle cells.
Collapse
Affiliation(s)
- Limei Zhou
- Department of Pediatrics and Communicable Diseases, University of Michigan, 1150 W. Medical Center Dr., Room 3570, MSRBII, Box 0688, Ann Arbor, MI 48109-0688, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Colpoys WE, Cochran BH, Carducci TM, Thorpe CM. Shiga toxins activate translational regulation pathways in intestinal epithelial cells. Cell Signal 2004; 17:891-9. [PMID: 15763431 DOI: 10.1016/j.cellsig.2004.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 11/03/2004] [Accepted: 11/03/2004] [Indexed: 11/20/2022]
Abstract
Shiga toxins (Stxs) cause irreversible damage to eukaryotic ribosomes, yet cellular intoxication of intestinal epithelial cells (IECs) results in increased synthesis of selected proteins, notably cytokines. How mRNA translation is maintained in this circumstance is unclear. This study was designed to assess whether Stx-induced alterations in host signal transduction machinery permit translation despite protein synthesis inhibition. A key step of translation is recruitment of initiation machinery to the 5' mRNA cap. This event occurs in part via interaction of the 5' cap with the cap binding protein, eIF4E, whose activity is positively regulated by phosphorylation and negatively regulated by binding to the translational repressor 4E-BP1. Following Stx treatment of IECs, eIF4E phosphorylation was detected by Western blotting using phospho-specific antibodies. Treatment with the p38 inhibitor, SB202190, or either of the ERK1/2 inhibitors, PD98059 and U0126, partially blocked Stx1-induced eIF4E phosphorylation. The Mnk1 inhibitor, CGP57380, blocked both basal and Stx-induced eIF4E phosphorylation. Interestingly, pretreatment with CGP57380 did not alter basal protein synthesis, but diminished the ability of cells to maintain translation following Stx1 challenge. Stx1 also induced hyperphosphorylation of 4E-BP1 and phosphorylation of S6Kinase; both effects were blocked by rapamycin. These data are novel observations showing that Stxs regulate multiple signal transduction pathways controlling translation in host cells, and support a role for eIF4E phosphorylation in maintaining host cell translation despite ribosomal intoxication.
Collapse
Affiliation(s)
- W E Colpoys
- Division of Geographic Medicine and Infectious Diseases, 750 Washington Street Box 041, Boston, MA 02111, USA
| | | | | | | |
Collapse
|