1
|
Pharmacological investigations on mast cell stabilizer and histamine receptor antagonists in vincristine-induced neuropathic pain. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1087-1096. [PMID: 28916845 DOI: 10.1007/s00210-017-1426-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/08/2017] [Indexed: 01/10/2023]
Abstract
The present study was designed to investigate the role of mast cells and mast cell-derived histamine in vincristine-induced neuropathic pain. Neuropathic pain was induced by administration of vincristine (100 μg/kg, i.p.) over a period of 10 days, with a break of 2 days, and pain behavioural estimations including pin prick, hot plate and acetone spray tests were performed to assess mechanical and heat hyperalgesia and cold allodynia, respectively, on days 0, 14 and 28. Mast cell stabilizer, sodium cromoglycate, H1 receptor antagonist promethazine and H2 receptor antagonist ranitidine were administered over a period of 12 days. Administration of vincristine resulted in significant development of heat and mechanical hyperalgesia as well as cold allodynia. Furthermore, the pain observed was markedly elevated on the 28th day in comparison to the 14th day. Administration of sodium cromoglycate, promethazine and ranitidine significantly reduced mechanical and heat hyperalgesia and cold allodynia. However, the pain-attenuating effects of ranitidine were significantly less as compared to sodium cromoglycate and promethazine, which suggests that H1 receptors play a more important role than H2 receptors in vincristine-induced neuropathic pain. It may be concluded that vincristine may degranulate mast cells to release inflammatory mediators, particularly histamine which may act through H1 (primarily H1) and H2 receptors to induce neuropathic pain.
Collapse
|
2
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
3
|
Sandilands EA, Crowe J, Cuthbert H, Jenkins PJ, Johnston NR, Eddleston M, Bateman DN, Webb DJ. Histamine-induced vasodilatation in the human forearm vasculature. Br J Clin Pharmacol 2014; 76:699-707. [PMID: 23488545 DOI: 10.1111/bcp.12110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 02/22/2013] [Indexed: 01/17/2023] Open
Abstract
AIM To investigate the mechanism of action of intra-arterial histamine in the human forearm vasculature. METHODS Three studies were conducted to assess changes in forearm blood flow (FBF) using venous occlusion plethysmography in response to intra-brachial histamine. First, the dose-response was investigated by assessing FBF throughout a dose-escalating histamine infusion. Next, histamine was infused at a constant dose to assess acute tolerance. Finally, a four way, double-blind, randomized, placebo-controlled crossover study was conducted to assess FBF response to histamine in the presence of H1 - and H2 -receptor antagonists. Flare and itch were assessed in all studies. RESULTS Histamine caused a dose-dependent increase in FBF, greatest with the highest dose (30 nmol min(-1) ) infused [mean (SEM) infused arm vs. control: 26.8 (5.3) vs. 2.6 ml min(-1) 100 ml(-1) ; P < 0.0001]. Dose-dependent flare and itch were demonstrated. Acute tolerance was not observed, with an increased FBF persisting throughout the infusion period. H2 -receptor antagonism significantly reduced FBF (mean (95% CI) difference from placebo at 30 nmol min(-1) histamine: -11.9 ml min(-1) 100 ml(-1) (-4.0, -19.8), P < 0.0001) and flare (mean (95% CI) difference from placebo: -403.7 cm(2) (-231.4, 576.0), P < 0.0001). No reduction in FBF or flare was observed in response to the H1 -receptor antagonist. Itch was unaffected by the treatments. Histamine did not stimulate vascular release of tissue plasminogen activator or von Willebrand factor. CONCLUSION Histamine causes dose-dependent vasodilatation, flare and itch in the human forearm. H2 -receptors are important in this process. Our results support further exploration of combined H1 - and H2 -receptor antagonist therapy in acute allergic syndromes.
Collapse
Affiliation(s)
- Euan A Sandilands
- NPIS (Edinburgh), Scottish Poisons Information Bureau, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
4
|
|
5
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Exercise is the most important physiological stimulus for increased myocardial oxygen demand. The requirement of exercising muscle for increased blood flow necessitates an increase in cardiac output that results in increases in the three main determinants of myocardial oxygen demand: heart rate, myocardial contractility, and ventricular work. The approximately sixfold increase in oxygen demands of the left ventricle during heavy exercise is met principally by augmenting coronary blood flow (∼5-fold), as hemoglobin concentration and oxygen extraction (which is already 70–80% at rest) increase only modestly in most species. In contrast, in the right ventricle, oxygen extraction is lower at rest and increases substantially during exercise, similar to skeletal muscle, suggesting fundamental differences in blood flow regulation between these two cardiac chambers. The increase in heart rate also increases the relative time spent in systole, thereby increasing the net extravascular compressive forces acting on the microvasculature within the wall of the left ventricle, in particular in its subendocardial layers. Hence, appropriate adjustment of coronary vascular resistance is critical for the cardiac response to exercise. Coronary resistance vessel tone results from the culmination of myriad vasodilator and vasoconstrictors influences, including neurohormones and endothelial and myocardial factors. Unraveling of the integrative mechanisms controlling coronary vasodilation in response to exercise has been difficult, in part due to the redundancies in coronary vasomotor control and differences between animal species. Exercise training is associated with adaptations in the coronary microvasculature including increased arteriolar densities and/or diameters, which provide a morphometric basis for the observed increase in peak coronary blood flow rates in exercise-trained animals. In larger animals trained by treadmill exercise, the formation of new capillaries maintains capillary density at a level commensurate with the degree of exercise-induced physiological myocardial hypertrophy. Nevertheless, training alters the distribution of coronary vascular resistance so that more capillaries are recruited, resulting in an increase in the permeability-surface area product without a change in capillary numerical density. Maintenance of α- and ß-adrenergic tone in the presence of lower circulating catecholamine levels appears to be due to increased receptor responsiveness to adrenergic stimulation. Exercise training also alters local control of coronary resistance vessels. Thus arterioles exhibit increased myogenic tone, likely due to a calcium-dependent protein kinase C signaling-mediated alteration in voltage-gated calcium channel activity in response to stretch. Conversely, training augments endothelium-dependent vasodilation throughout the coronary microcirculation. This enhanced responsiveness appears to result principally from an increased expression of nitric oxide (NO) synthase. Finally, physical conditioning decreases extravascular compressive forces at rest and at comparable levels of exercise, mainly because of a decrease in heart rate. Impedance to coronary inflow due to an epicardial coronary artery stenosis results in marked redistribution of myocardial blood flow during exercise away from the subendocardium towards the subepicardium. However, in contrast to the traditional view that myocardial ischemia causes maximal microvascular dilation, more recent studies have shown that the coronary microvessels retain some degree of vasodilator reserve during exercise-induced ischemia and remain responsive to vasoconstrictor stimuli. These observations have required reassessment of the principal sites of resistance to blood flow in the microcirculation. A significant fraction of resistance is located in small arteries that are outside the metabolic control of the myocardium but are sensitive to shear and nitrovasodilators. The coronary collateral system embodies a dynamic network of interarterial vessels that can undergo both long- and short-term adjustments that can modulate blood flow to the dependent myocardium. Long-term adjustments including recruitment and growth of collateral vessels in response to arterial occlusion are time dependent and determine the maximum blood flow rates available to the collateral-dependent vascular bed during exercise. Rapid short-term adjustments result from active vasomotor activity of the collateral vessels. Mature coronary collateral vessels are responsive to vasodilators such as nitroglycerin and atrial natriuretic peptide, and to vasoconstrictors such as vasopressin, angiotensin II, and the platelet products serotonin and thromboxane A2. During exercise, ß-adrenergic activity and endothelium-derived NO and prostanoids exert vasodilator influences on coronary collateral vessels. Importantly, alterations in collateral vasomotor tone, e.g., by exogenous vasopressin, inhibition of endogenous NO or prostanoid production, or increasing local adenosine production can modify collateral conductance, thereby influencing the blood supply to the dependent myocardium. In addition, vasomotor activity in the resistance vessels of the collateral perfused vascular bed can influence the volume and distribution of blood flow within the collateral zone. Finally, there is evidence that vasomotor control of resistance vessels in the normally perfused regions of collateralized hearts is altered, indicating that the vascular adaptations in hearts with a flow-limiting coronary obstruction occur at a global as well as a regional level. Exercise training does not stimulate growth of coronary collateral vessels in the normal heart. However, if exercise produces ischemia, which would be absent or minimal under resting conditions, there is evidence that collateral growth can be enhanced. In addition to ischemia, the pressure gradient between vascular beds, which is a determinant of the flow rate and therefore the shear stress on the collateral vessel endothelium, may also be important in stimulating growth of collateral vessels.
Collapse
|
7
|
Stähli BE, Greutert H, Mei S, Graf P, Frischknecht K, Stalder M, Englberger L, Künzli A, Schärer L, Lüscher TF, Carrel TP, Tanner FC. Absence of histamine-induced nitric oxide release in the human radial artery: implications for vasospasm of coronary artery bypass vessels. Am J Physiol Heart Circ Physiol 2006; 290:H1182-9. [PMID: 16272205 DOI: 10.1152/ajpheart.00280.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Radial artery (RA) bypass grafts can develop severe vasospasm. As histamine is known to induce vasospasm, its effect on RA was assessed compared with the classic bypass vessels internal mammary artery (MA) and saphenous vein (SV). The vessels were examined in organ chambers for isometric tension recording. Histamine induced contractions on baseline; the sensitivity was higher in RA and SV than MA. After precontraction with norepinephrine, histamine did not evoke relaxations of RA but induced relaxations of MA and less of SV at lower concentrations; it induced contractions at higher concentrations, reaching similar levels in all three vessels. Indomethacin did not affect the response of MA and RA but potentiated relaxations and reduced contractions of SV. Endothelium removal, Nω-nitro-l-arginine methyl ester (l-NAME), or the H2-receptor blocker cimetidine did not affect the response of RA, but inhibited relaxations and enhanced contractions in MA and inhibited relaxations in SV; in the latter, only l-NAME enhanced contractions. Real-time PCR detected much lower expression of endothelial H2-receptor in RA than MA or SV. Western blots revealed similar endothelial nitric oxide (NO) synthase expression in all three vessels. Relaxations to acetylcholine were identical in RA and MA. Thus histamine releases NO by activating the endothelial H2-receptor, the expression of which is much lower in RA than MA or SV. H2-receptor activation also releases prostaglandins in SV, partially antagonizing NO. The lack of histamine-induced NO production represents a possible mechanism of RA vasospasm.
Collapse
Affiliation(s)
- Barbara E Stähli
- Cardiovascular Research, Physiology Institute and Center for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The involvement of histamine-receptor subtypes in histamine-induced release of nitric oxide (NO) from porcine aortic endothelial cells was studied. NO release was measured directly by using an NO electrode and by electron paramagnetic resonance (EPR) spin trapping. NO release induced by histamine (200 microM) was reduced in the presence of 2 microM cimetidine, an H2-receptor antagonist, but not altered by 2 microM pyrilamine, an H1-receptor antagonist. Histamine-induced NO release was significantly reduced by the addition of 20 microM of the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate (Rp-cAMPS), a membrane-permeable antagonist of cyclic adenosine monophosphate (cAMP). Application of 100 microM forskolin, an activator of adenylate cyclase, induced NO release from porcine aortic endothelial cells. Fura-2 acetoxymethylester (fura-2/AM) studies showed that addition of 100 microM histamine did not produce any significant increase in the use of free concentration of intracellular Ca2+. These results suggest that in porcine aortic endothelial cells, NO-mediated vasodilation might be caused by production of cAMP initiated through the histamine H2-receptor.
Collapse
Affiliation(s)
- F Kishi
- Second Department of Internal Medicine, University of Tokushima, Japan
| | | | | |
Collapse
|
9
|
Involvement of Nitric Oxide in Endothelium-Dependent, Phasic Relaxation Caused by Histamine in Monkey Cerebral Arteries. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0021-5198(19)32450-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Abstract
The endothelium modulates coronary vascular tone by the release of endothelium-derived relaxing or contracting substances. The endothelium-derived relaxing factor has been identified as nitric oxide synthesized in endothelial cells from L-arginine. The endothelium can release other relaxing substances such as prostacyclin and a hyperpolarizing factor. Endothelin-1 is a potent vasoconstrictor peptide formed by endothelial cells, and is likely to be the physiologic antagonist of endothelium-derived relaxing factor. Other putative contracting factors include superoxide anions and products of arachidonic acid metabolism. Endothelium-derived relaxing factor is released spontaneously and in response to flow, platelet-derived products (that is, serotonin, thrombin and adenosine diphosphate) and certain autacoids (that is, acetylcholine, bradykinin, histamine, substance P, vasopressin, alpha-adrenergic agonists). A considerable heterogeneity of responses exists among vessels of different size from different anatomic origin and different species. Hypercholesterolemia, atherosclerosis, hypertension and myocardial ischemia or reperfusion, or both, impair endothelium-dependent relaxation. Under normal conditions, endothelium-derived relaxing factor appears to dominate the control of vascular tone of large and small coronary vessels, whereas in disease states, endothelium-derived contracting factors are released. Impairments of endothelial function may be important in the development of various forms of cardiovascular disease.
Collapse
|