1
|
Stackhouse TL, Mishra A. Neurovascular Coupling in Development and Disease: Focus on Astrocytes. Front Cell Dev Biol 2021; 9:702832. [PMID: 34327206 PMCID: PMC8313501 DOI: 10.3389/fcell.2021.702832] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Neurovascular coupling is a crucial mechanism that matches the high energy demand of the brain with a supply of energy substrates from the blood. Signaling within the neurovascular unit is responsible for activity-dependent changes in cerebral blood flow. The strength and reliability of neurovascular coupling form the basis of non-invasive human neuroimaging techniques, including blood oxygen level dependent (BOLD) functional magnetic resonance imaging. Interestingly, BOLD signals are negative in infants, indicating a mismatch between metabolism and blood flow upon neural activation; this response is the opposite of that observed in healthy adults where activity evokes a large oversupply of blood flow. Negative neurovascular coupling has also been observed in rodents at early postnatal stages, further implying that this is a process that matures during development. This rationale is consistent with the morphological maturation of the neurovascular unit, which occurs over a similar time frame. While neurons differentiate before birth, astrocytes differentiate postnatally in rodents and the maturation of their complex morphology during the first few weeks of life links them with synapses and the vasculature. The vascular network is also incomplete in neonates and matures in parallel with astrocytes. Here, we review the timeline of the structural maturation of the neurovascular unit with special emphasis on astrocytes and the vascular tree and what it implies for functional maturation of neurovascular coupling. We also discuss similarities between immature astrocytes during development and reactive astrocytes in disease, which are relevant to neurovascular coupling. Finally, we close by pointing out current gaps in knowledge that must be addressed to fully elucidate the mechanisms underlying neurovascular coupling maturation, with the expectation that this may also clarify astrocyte-dependent mechanisms of cerebrovascular impairment in neurodegenerative conditions in which reduced or negative neurovascular coupling is noted, such as stroke and Alzheimer’s disease.
Collapse
Affiliation(s)
- Teresa L Stackhouse
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, United States
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, United States.,Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, OR, United States
| |
Collapse
|
2
|
Kim KJ, Diaz JR, Presa JL, Muller PR, Brands MW, Khan MB, Hess DC, Althammer F, Stern JE, Filosa JA. Decreased parenchymal arteriolar tone uncouples vessel-to-neuronal communication in a mouse model of vascular cognitive impairment. GeroScience 2021; 43:1405-1422. [PMID: 33410092 PMCID: PMC8190257 DOI: 10.1007/s11357-020-00305-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/22/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic hypoperfusion is a key contributor to cognitive decline and neurodegenerative conditions, but the cellular mechanisms remain ill-defined. Using a multidisciplinary approach, we sought to elucidate chronic hypoperfusion-evoked functional changes at the neurovascular unit. We used bilateral common carotid artery stenosis (BCAS), a well-established model of vascular cognitive impairment, combined with an ex vivo preparation that allows pressurization of parenchymal arterioles in a brain slice. Our results demonstrate that mild (~ 30%), chronic hypoperfusion significantly altered the functional integrity of the cortical neurovascular unit. Although pial cerebral perfusion recovered over time, parenchymal arterioles progressively lost tone, exhibiting significant reductions by day 28 post-surgery. We provide supportive evidence for reduced adenosine 1 receptor-mediated vasoconstriction as a potential mechanism in the adaptive response underlying the reduced baseline tone in parenchymal arterioles. In addition, we show that in response to the neuromodulator adenosine, the action potential frequency of cortical pyramidal neurons was significantly reduced in all groups. However, a significant decrease in adenosine-induced hyperpolarization was observed in BCAS 14 days. At the microvascular level, constriction-induced inhibition of pyramidal neurons was significantly compromised in BCAS mice. Collectively, these results suggest that BCAS uncouples vessel-to-neuron communication-vasculo-neuronal coupling-a potential early event in cognitive decline.
Collapse
Affiliation(s)
- Ki Jung Kim
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Juan Ramiro Diaz
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Jessica L Presa
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - P Robinson Muller
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Michael W Brands
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Mohammad B Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Javier E Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jessica A Filosa
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
3
|
Bothwell SW, Janigro D, Patabendige A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS 2019; 16:9. [PMID: 30967147 PMCID: PMC6456952 DOI: 10.1186/s12987-019-0129-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/19/2019] [Indexed: 01/09/2023] Open
Abstract
The fine balance between the secretion, composition, volume and turnover of cerebrospinal fluid (CSF) is strictly regulated. However, during certain neurological diseases, this balance can be disrupted. A significant disruption to the normal CSF circulation can be life threatening, leading to increased intracranial pressure (ICP), and is implicated in hydrocephalus, idiopathic intracranial hypertension, brain trauma, brain tumours and stroke. Yet, the exact cellular, molecular and physiological mechanisms that contribute to altered hydrodynamic pathways in these diseases are poorly defined or hotly debated. The traditional views and concepts of CSF secretion, flow and drainage have been challenged, also due to recent findings suggesting more complex mechanisms of brain fluid dynamics than previously proposed. This review evaluates and summarises current hypotheses of CSF dynamics and presents evidence for the role of impaired CSF dynamics in elevated ICP, alongside discussion of the proteins that are potentially involved in altered CSF physiology during neurological disease. Undoubtedly CSF secretion, absorption and drainage are important aspects of brain fluid homeostasis in maintaining a stable ICP. Traditionally, pharmacological interventions or CSF drainage have been used to reduce ICP elevation due to over production of CSF. However, these drugs are used only as a temporary solution due to their undesirable side effects. Emerging evidence suggests that pharmacological targeting of aquaporins, transient receptor potential vanilloid type 4 (TRPV4), and the Na+-K+-2Cl- cotransporter (NKCC1) merit further investigation as potential targets in neurological diseases involving impaired brain fluid dynamics and elevated ICP.
Collapse
Affiliation(s)
- Steven William Bothwell
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Medical Sciences Building, University Drive, Callaghan, NSW 2308 Australia
| | - Damir Janigro
- FloTBI Inc., Cleveland, OH USA
- Department of Physiology, Case Western Reserve University, Cleveland, OH USA
| | - Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Medical Sciences Building, University Drive, Callaghan, NSW 2308 Australia
- Hunter Medical Research Institute, Newcastle, NSW Australia
- The Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Huvanandana J, Thamrin C, Hinder M, McEwan A, Tracy MB. The effect of caffeine loading on cerebral autoregulation in preterm infants. Acta Paediatr 2019; 108:436-442. [PMID: 30403427 DOI: 10.1111/apa.14636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 11/30/2022]
Abstract
AIM To evaluate cerebral autoregulation changes in preterm infants receiving a loading dose of caffeine base. METHODS In a cohort of 30 preterm infants, we extracted measures of cerebral autoregulation using time and frequency domain techniques to determine the correlation between mean arterial pressure (MAP) and tissue oxygenation index (TOI) signals. These measures included the cerebral oximetry index (COx), cross-correlation and coherence measures, and were extracted prior to caffeine loading and in the 2 hours following administration of 10 mg/kg caffeine base. RESULTS We observed acute reductions in time domain correlation measures, including the cerebral oximetry index (linear mixed model coefficient -0.093, standard error 0.04; p = 0.028) and the detrended cross-correlation coefficient (ρ5 coefficient -0.13, standard error 0.055; p = 0.025). These reductions suggested an acute improvement in cerebral autoregulation. Features from detrended cross-correlation analysis also showed greater discriminative value than other methods in identifying changes prior to and following caffeine administration. CONCLUSION We observed a reduced correlation between MAP and TOI from near-infrared spectroscopy following caffeine administration. These findings suggest an acute enhanced capacity for cerebral autoregulation following a loading dose of caffeine in preterm infants, contributing to our understanding of the physiological impact of caffeine therapy.
Collapse
Affiliation(s)
- Jacqueline Huvanandana
- School of Electrical and Information Engineering University of Sydney Sydney NSW Australia
- Woolcock Institute of Medical Research University of Sydney Sydney NSW Australia
| | - Cindy Thamrin
- Woolcock Institute of Medical Research University of Sydney Sydney NSW Australia
| | - Murray Hinder
- School of Electrical and Information Engineering University of Sydney Sydney NSW Australia
- Westmead Hospital Sydney NSW Australia
| | - Alistair McEwan
- School of Electrical and Information Engineering University of Sydney Sydney NSW Australia
- Cerebral Palsy Alliance Sydney NSW Australia
| | - Mark B. Tracy
- Westmead Hospital Sydney NSW Australia
- School of Paediatrics and Child Health University of Sydney Sydney NSW Australia
| |
Collapse
|
5
|
Sasaki H, Hirasawa A, Washio T, Ogoh S. Acute effect of coffee drinking on dynamic cerebral autoregulation. Eur J Appl Physiol 2016; 116:879-84. [DOI: 10.1007/s00421-016-3345-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
|
6
|
Seo JW, Jones SM, Hostetter TA, Iliff JJ, West GA. Methamphetamine induces the release of endothelin. J Neurosci Res 2015; 94:170-8. [PMID: 26568405 DOI: 10.1002/jnr.23697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 11/09/2022]
Abstract
Methamphetamine is a potent psychostimulant drug of abuse that increases release and blocks reuptake of dopamine, producing intense euphoria, factors that may contribute to its widespread abuse. It also produces severe neurotoxicity resulting from oxidative stress, DNA damage, blood-brain barrier disruption, microgliosis, and mitochondrial dysfunction. Intracerebral hemorrhagic and ischemic stroke have been reported after intravenous and oral abuse of methamphetamine. Several studies have shown that methamphetamine causes vasoconstriction of vessels. This study investigates the effect of methamphetamine on endothelin-1 (ET-1) release in mouse brain endothelial cells by ELISA. ET-1 transcription as well as endothelial nitric oxide synthase (eNOS) activation and transcription were measured following methamphetamine treatment. We also examine the effect of methamphetamine on isolated cerebral arteriolar vessels from C57BL/6 mice. Penetrating middle cerebral arterioles were cannulated at both ends with a micropipette system. Methamphetamine was applied extraluminally, and the vascular response was investigated. Methamphetamine treatment of mouse brain endothelial cells resulted in ET-1 release and a transient increase in ET-1 message. The activity and transcription of eNOS were only slightly enhanced after 24 hr of treatment with methamphetamine. In addition, methamphetamine caused significant vasoconstriction of isolated mouse intracerebral arterioles. The vasoconstrictive effect of methamphetamine was attenuated by coapplication of the endothelin receptor antagonist PD145065. These findings suggest that vasoconstriction induced by methamphetamine is mediated through the endothelin receptor and may involve an endothelin-dependent pathway.
Collapse
Affiliation(s)
- Jeong-Woo Seo
- Neurotrauma Research, Swedish Medical Center, Englewood, Colorado
| | - Susan M Jones
- Neurotrauma Research, Swedish Medical Center, Englewood, Colorado
| | | | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
7
|
Functional and morphological characteristics of the retinal and choroidal vasculature. Prog Retin Eye Res 2014; 40:53-93. [DOI: 10.1016/j.preteyeres.2014.02.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/24/2022]
|
8
|
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 2013; 66:102-92. [PMID: 24335194 DOI: 10.1124/pr.113.008029] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
9
|
Iliff BW, Swoap SJ. Central adenosine receptor signaling is necessary for daily torpor in mice. Am J Physiol Regul Integr Comp Physiol 2012; 303:R477-84. [PMID: 22785425 DOI: 10.1152/ajpregu.00081.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When calorically restricted at cool ambient temperatures, mice conserve energy by entering torpor, during which metabolic rate (MR), body temperature (T(b)), heart rate (HR), and locomotor activity (LMA) decrease. Treatment with exogenous adenosine produces a similar hypometabolic state. In this study, we conducted a series of experiments using the nonspecific adenosine receptor antagonists aminophylline and 8-sulfophenyltheophylline (8-SPT) to test the hypothesis that adenosine signaling is necessary for torpor in fasted mice. In the first experiment, mice were subcutaneously infused with aminophylline while T(b), HR, and LMA were continuously monitored using implanted radiotelemeters. During a 23-h fast, saline-treated mice were torpid for 518 ± 43 min, whereas aminophylline-treated mice were torpid for significantly less time (54 ± 20 min). In a second experiment, aminophylline was infused subcutaneously into torpid mice to test the role of adenosine in the maintenance of torpor. Aminophylline reversed the hypometabolism, hypothermia, bradycardia, and hypoactivity of torpor, whereas saline did not. In the third and fourth experiments, the polar adenosine antagonist 8-SPT, which does not cross the blood-brain barrier, was infused either subcutaneously or intracerebroventricularly to test the hypothesis that both peripheral and central adenosine receptor signaling are necessary for the maintenance of torpor. Intracerebroventricular, but not subcutaneous, infusion of 8-SPT causes a return to euthermia. These findings support the hypothesis that adenosine is necessary for torpor in mice and further suggest that whereas peripheral adenosine signaling is not necessary for the maintenance of torpor, antagonism of central adenosine is sufficient to disrupt torpor.
Collapse
Affiliation(s)
- Benjamin W Iliff
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | | |
Collapse
|
10
|
Fieger SM, Wong BJ. No direct role for A1/A2 adenosine receptor activation to reflex cutaneous vasodilatation during whole-body heat stress in humans. Acta Physiol (Oxf) 2012; 205:403-10. [PMID: 22356216 DOI: 10.1111/j.1748-1716.2012.02426.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/26/2011] [Accepted: 02/09/2012] [Indexed: 11/29/2022]
Abstract
AIM The precise mechanisms underlying reflex cutaneous vasodilatation during hyperthermia remain unresolved. The purpose of this study was to investigate a potential contribution of adenosine A1/A2 receptor activation to reflex cutaneous vasodilatation. METHODS Eight subjects were equipped with four microdialysis fibres on the left forearm, and each fibre was randomly assigned one of four treatments: (1) lactated Ringer's (control); (2) 4 mm of the non-selective A1/A2 adenosine receptor antagonist theophylline; (3) 10 mm L-NAME to inhibit nitric oxide (NO) synthase; and (4) combined 4 mm theophylline and 10 mm L-NAME. Laser-Doppler flowmetry (LDF) was used as an index of skin blood flow, and blood pressure was measured beat-by-beat via photoplethysmography and verified via brachial auscultation. Whole-body heat stress to raise oral temperature 0.8 °C above baseline was induced via water-perused suits. Cutaneous vascular conductance (CVC) was calculated as LDF/mean arterial pressure and normalized to maximal (%CVC max) via infusion of 28 mm nitroprusside and local heating to 43 °C. RESULTS There was no difference between control (65 ± 5%CVC max) and theophylline (63 ± 5%CVC max) sites. L-NAME (44 ± 4%CVC max) and theophylline + L-NAME (32 ± 3%CVC max) sites were significantly attenuated compared to both control and theophylline only sites (P<0.05), and combined theophylline + L-NAME sites were significantly reduced compared to L-NAME only sites (P<0.05). CONCLUSION These data suggest A1/A2 adenosine receptor activation does not directly contribute to cutaneous active vasodilatation; however, a role for A1/A2 adenosine receptor activation is unmasked when NO synthase is inhibited.
Collapse
Affiliation(s)
- S. M. Fieger
- Department of Kinesiology; Kansas State University; Manhattan; KS; USA
| | - B. J. Wong
- Department of Kinesiology; Kansas State University; Manhattan; KS; USA
| |
Collapse
|
11
|
Vetri F, Xu H, Mao L, Paisansathan C, Pelligrino DA. ATP hydrolysis pathways and their contributions to pial arteriolar dilation in rats. Am J Physiol Heart Circ Physiol 2011; 301:H1369-77. [PMID: 21803949 DOI: 10.1152/ajpheart.00556.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ATP is thought to be released to the extracellular compartment by neurons and astrocytes during neural activation. We examined whether ATP exerts its effect of promoting pial arteriolar dilation (PAD) directly or upon conversion (via ecto-nucleotidase action) to AMP and adenosine. Blockade of extracellular direct ATP to AMP conversion, with ARL-67156, significantly reduced sciatic nerve stimulation-evoked PADs by 68%. We then monitored PADs during suffusions of ATP, ADP, AMP, and adenosine in the presence and absence of the following: 1) the ecto-5'-nucleotidase inhibitor α,β-methylene adenosine 5'-diphosphate (AOPCP), 2) the A(2) receptor blocker ZM 241385, 3) the ADP P2Y(1) receptor antagonist MRS 2179, and 4) ARL-67156. Vasodilations induced by 1 and 10 μM, but not 100 μM, ATP were markedly attenuated by ZM 241385, AOPCP, and ARL-67156. Substantial loss of reactivity to 100 μM ATP required coapplications of ZM 241385 and MRS 2179. Dilations induced by ADP were blocked by MRS 2179 but were not affected by either ZM 241385 or AOPCP. AMP-elicited dilation was partially inhibited by AOPCP and completely abolished by ZM 241385. Collectively, these and previous results indicate that extracellular ATP-derived adenosine and AMP, via A(2) receptors, play key roles in neural activation-evoked PAD. However, at high extracellular ATP levels, some conversion to ADP may occur and contribute to PAD through P2Y(1) activation.
Collapse
Affiliation(s)
- Francesco Vetri
- Neuroanesthesia Research, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
12
|
Kulik TB, Aronhime SN, Echeverry G, Beylin A, Winn HR. The relationship between oxygen and adenosine in astrocytic cultures. Glia 2011; 58:1335-44. [PMID: 20607719 DOI: 10.1002/glia.21011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Brain tissue oxygenation affects cerebral function and blood flow (CBF). Adenosine (Ado), a purine nucleoside, moderates neuronal activity, and arterial diameter. The cellular source of Ado in brain remains elusive; however, astrocytes are a logical site of production. Using astrocytic cultures, we tested the hypothesis that astrocytic derived Ado reflects cerebral oxygenation. We found that during alterations in pO(2), extracellular levels of Ado [Ado](e) changed rapidly. Graded reductions of oxygen tension revealed that[Ado](e) reached 10(-7) M to 10(-6) M with a pO(2) of 30-10mmHg, comparable with [Ado](e) and oxygen levels found in brain tissue during normoxemia. Higher O(2) levels were associated with a depression of [Ado](e). Under conditions of low pO(2) (pO(2) <or= 3 mmHg), inhibition of extracellular catabolism of adenosine monophosphate (AMP) prevented an increase of [Ado](e) and resulted in a rise in [AMP](e). The rise in [AMP](e) preceded the increase in [Ado](e). In the presence of nucleoside transporter inhibitors, accumulation of [Ado](e) persisted. On the basis of our studies in culture we conclude that astrocytes are a significant source of Ado and that during hypoxia, the changes in [Ado](e) are in a range to affect both neuronal activity as well as CBF.
Collapse
Affiliation(s)
- Tobias B Kulik
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, New York
| | | | | | | | | |
Collapse
|
13
|
Abstract
Adenosine is an important cerebral vasodilator, but mediating mechanisms are not understood. We investigated the expression of adenosine receptor subtypes in isolated cerebral arterial muscle cells (CAMCs), and their role in adenosine-induced superoxide (O(2)(-)) generation and reduction in cerebral arterial tone. Reverse transcriptase-PCR, western blotting, and immunofluorescence studies have shown that CAMCs express transcript and protein for A1, A(2A), A(2B), and A(3) adenosine receptors. Stimulation of CAMCs with adenosine or the A(2A) agonist CGS-21680 increased the generation of O(2)(-) that was attenuated by the inhibition of A(2A) and A(2B) adenosine receptor subtypes, or by the peptide inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase gp91ds-tat, or by the mitochondria uncoupler 2,4-dinitrophenol. Application of adenosine or CGS-21680 dilated pressure-constricted cerebral arterial segments that were prevented by the antioxidants superoxide dismutase (SOD) conjugated to polyethylene glycol (PEG) and PEG-catalase or by the A(2B) adenosine receptor antagonist MRS-1754, or by the mixed A(2A) and A(2B) antagonist ZM-241385. Antagonism of the A(2A) and A(2B) adenosine receptors had no effect on cerebral vasodilatation induced by nifedipine. These findings indicate that adenosine reduces pressure-induced cerebral arterial tone through stimulation of A(2A) and A(2B) adenosine receptors and generation of O(2)(-) from NADPH oxidase and mitochondrial sources. This signaling pathway could be one of the mediators of the cerebral vasodilatory actions of adenosine.
Collapse
|
14
|
Fieger SM, Wong BJ. Adenosine receptor inhibition with theophylline attenuates the skin blood flow response to local heating in humans. Exp Physiol 2010; 95:946-54. [PMID: 20562295 DOI: 10.1113/expphysiol.2010.053538] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mechanisms underlying the robust cutaneous vasodilatation in response to local heating of human skin remain unresolved. Adenosine receptor activation has been shown to induce vasodilatation via nitric oxide, and a substantial portion of the plateau phase to local heating of human skin has been shown to be dependent on nitric oxide. The purpose of this study was to investigate a potential role for adenosine receptor activation in cutaneous thermal hyperaemia in humans. Six subjects were equipped with four microdialysis fibres on the ventral forearm. Sites were randomly assigned to receive one of the following four treatments: (1) lactated Ringer solution to serve as a control; (2) 4 mM theophylline, a competitive, non-selective A(1)/A(2) adenosine receptor antagonist; (3) 10 mM Nomega(-)-nitro-L-arginine methyl ester (L-NAME) to inhibit NO synthase; or (4) combined 4 mm theophylline + 10 mM L-NAME. Following baseline measurements, each site was locally heated from a baseline temperature of 33 degrees C to 42 degrees C at a rate of 1 degrees C (10 s)(-1), and skin blood flow was monitored via laser-Doppler flowmetry (LDF). Cutaneous vascular conductance (CVC) was calculated as LDF divided by mean arterial pressure and normalized to maximal values (CVC(max)) via local heating to 43 degrees C and infusion of 28 mM sodium nitroprusside. The initial peak was significantly reduced in theophylline (68 +/- 2% CVC(max)) and L-NAME sites (54 +/- 5% CVC(max)) compared with control sites (81 +/- 2% CVC(max); P < 0.01 and P < 0.001, respectively). Combined theophylline + L-NAME (52 +/- 5% CVC(max)) reduced the initial peak compared with control and theophylline sites, but was not significantly different compared with L-NAME sites. The secondary plateau was attenuated in theophylline (77 +/- 2% CVC(max)), L-NAME (60 +/- 2% CVC(max)) and theophylline + L-NAME (53 +/- 1% CVC(max)) compared with control sites (94 +/- 2% CVC(max); P < 0.001 for all conditions). The secondary plateau was reduced in L-NAME compared with theophylline sites (P < 0.001), and combined theophylline + L-NAME further reduced the secondary plateau compared with theophylline- (P < 0.001) and L-NAME-only sites (P < 0.05). These data suggest that adenosine receptor activation directly contributes to cutaneous thermal hyperaemia, as evidenced by the reduced initial peak and secondary plateau in theophylline sites. These data further suggest that a portion of the NO response may be explained by adenosine receptor activation; however, a substantial portion of the NO response is independent of adenosine receptor activation.
Collapse
Affiliation(s)
- Sarah M Fieger
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
15
|
Park IS, Meno JR, Witt CE, Chowdhary A, Nguyen TS, Winn HR, Ngai AC, Britz GW. Impairment of intracerebral arteriole dilation responses after subarachnoid hemorrhage. Laboratory investigation. J Neurosurg 2009; 111:1008-13. [PMID: 19408973 DOI: 10.3171/2009.3.jns096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Cerebrovascular dysfunction after subarachnoid hemorrhage (SAH) may contribute to ischemia, but little is known about the contribution of intracerebral arterioles. In this study, the authors tested the hypothesis that SAH inhibits the vascular reactivity of intracerebral arterioles and documented the time course of this dysfunction. METHODS Subarachnoid hemorrhage was induced using an endovascular filament model in halothane-anesthetized male Sprague-Dawley rats. Penetrating intracerebral arterioles were harvested 2, 4, 7, or 14 days postinsult, cannulated using a micropipette system that allowed luminal perfusion and control of luminal pressure, and evaluated for reactivity to vasodilator agents. RESULTS Spontaneous tone developed in all pressurized (60 mm Hg) intracerebral arterioles harvested in this study (from 66 rats), with similar results in the sham and SAH groups. Subarachnoid hemorrhage did not affect dilation responses to acidic pH (6.8) but led to a persistent impairment of endothelium-dependent dilation responses to adenosine triphosphate (p < 0.01), as well as a transient attenuation (p < 0.05) of vascular smooth muscle-dependent dilation responses to adenosine, sodium nitroprusside, and 8-Br-cyclic guanosine monophosphate (cGMP). Impairment of NO-mediated dilation was more sustained than adenosine- and 8-Br-cGMP-induced responses (up to 7 days postinsult compared with 2 days). All smooth muscle-dependent responses returned to sham levels by 14 days after SAH. CONCLUSIONS Subarachnoid hemorrhage led to a persistent impairment of endothelium-dependent dilation and a transient attenuation of vascular smooth muscle-dependent dilation responses to adenosine. Impairment of NO-mediated dilation occurred when the response to cGMP was intact, suggesting a change in cGMP levels rather than an alteration in intracellular mechanisms downstream from cGMP.
Collapse
Affiliation(s)
- Ik-Seong Park
- Division of Neurosurgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Han ME, Kim HJ, Lee YS, Kim DH, Choi JT, Pan CS, Yoon S, Baek SY, Kim BS, Kim JB, Oh SO. Regulation of cerebrospinal fluid production by caffeine consumption. BMC Neurosci 2009; 10:110. [PMID: 19725982 PMCID: PMC2744679 DOI: 10.1186/1471-2202-10-110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 09/03/2009] [Indexed: 11/17/2022] Open
Abstract
Background Caffeine is the most commonly consumed psycho-stimulant in the world. The effects of caffeine on the body have been extensively studied; however, its effect on the structure of the brain has not been investigated to date. Results In the present study we found that the long-term consumption of caffeine can induce ventriculomegaly; this was observed in 40% of the study rats. In the caffeine-treated rats with ventriculomegaly, there was increased production of CSF, associated with the increased expression of Na+, K+-ATPase and increased cerebral blood flow (CBF). In contrast to the chronic effects, acute treatment with caffeine decreased the production of CSF, suggesting 'effect inversion' associated with caffeine, which was mediated by increased expression of the A1 adenosine receptor, in the choroid plexus of rats chronically treated with caffeine. The involvement of the A1 adenosine receptor in the effect inversion of caffeine was further supported by the induction of ventriculomegaly and Na+, K+-ATPase, in A1 agonist-treated rats. Conclusion The results of this study show that long-term consumption of caffeine can induce ventriculomegaly, which is mediated in part by increased production of CSF. Moreover, we also showed that adenosine receptor signaling can regulate the production of CSF by controlling the expression of Na+, K+-ATPase and CBF.
Collapse
Affiliation(s)
- Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Busan, South Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rosenblum WI, Nelson GH, Murata S. Endothelium Dependent Dilation by Purines of Mouse Brain Arteriolesin vivo. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329409100967] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Miekisiak G, Yoo K, Sandler AL, Kulik TB, Chen JF, Winn HR. The role of adenosine in hypercarbic hyperemia: in vivo and in vitro studies in adenosine 2(A) receptor knockout and wild-type mice. J Neurosurg 2009; 110:981-8. [PMID: 19199466 DOI: 10.3171/2008.8.jns08460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors tested the hypothesis that adenosine, acting through the A(2A) receptor, is not involved in hypercarbic hyperemia by assessing the effects of increased PaCO(2) on cerebral blood flow (CBF) in vivo in wild-type and A(2A) receptor knockout mice. In addition, they evaluated the effect of abluminal pH changes in vitro on the diameter of isolated perfused penetrating arterioles harvested from wild-type and A(2A) receptor knockout mice. METHODS The authors evaluated in a blinded fashion the CBF response during transient (60-second) hypercapnic (7% CO(2)) hypercarbia in anesthetized, ventilated C57Bl/6 wild-type and adenosine A(2A) receptor knockout mice. They also evaluated the hypercarbic response in the absence and presence of the nonselective and selective adenosine antagonists. RESULTS Cerebral blood flow was measured using laser Doppler flowmetry. There were no differences between the CBF responses to hypercarbia in the wild-type and the knockout mice. Moreover, the hypercarbic hyperemia response was not affected by the adenosine receptor antagonists. The authors also tested the response to alteration in abluminal pH in isolated perfused, pressurized, penetrating arterioles (average diameter 63.3 +/- 3.6 microm) harvested from wild-type (6 mice) and knockout (5 mice) animals. Arteriolar dilation in response to a decrease in abluminal pH, simulating the change in vivo during hypercarbia, was similar in wild-type (15.9 +/- 2.6%) and A(2A) receptor knockout (17.7 +/- 1.3%) mice. With abluminal application of CGS 21680 (10(-6) M), an A(2A) receptor agonist, wild-type arterioles dilated in an expected manner (9.8 +/- 0.7%), whereas A(2A) receptor knockout vessels had minimal response. CONCLUSIONS The results of the in vivo and in vitro studies in wild-type and A(2A) receptor knockout mice support the authors' hypothesis that hypercarbic vasodilation does not involve an adenosine A(2A) receptor-related mechanism.
Collapse
Affiliation(s)
- Grzegorz Miekisiak
- Department of Neurosurgery, Mount Sinai Medical School, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Haglund MM, Meno JR, Hochman DW, Ngai AC, Winn HR. Correlation of intrinsic optical signal, cerebral blood flow, and evoked potentials during activation of rat somatosensory cortex. J Neurosurg 2008; 109:654-63. [PMID: 18826352 DOI: 10.3171/jns/2008/109/10/0654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT This study was undertaken to test the hypothesis that cerebral blood flow (CBF) and the intrinsic optical signal could be dissociated by altering adenosine receptor activity and to uncover the origin of the optic signal using a cranial window in the anesthetized rat. METHODS In anesthetized, ventilated, and temperature-controlled rats with closed cranial windows, the authors evaluated simultaneously the alterations in pial arteriolar diameter, intrinsic optical signals (690 nm), and somatosensory evoked potentials during cortical activation evoked by contralateral sciatic nerve stimulation (SNS). To dissociate the vascular and intrinsic signal, they topically applied the adenosine receptors antagonists theophylline (5 microM), which affects A1 and A2A receptors, and 8-cyclopentyl-1,3-dipropylxanthine (CPX, 1 microM), which blocks the A(1) receptor. The former interacts primarily with the vasculature whereas the latter influences the parenchyma exclusively. RESULTS During 20 seconds of contralateral SNS, pial arterioles in the hindlimb somatosensory cortex dilated in a characteristic peak and shoulder pattern. As compared with mock cerebrospinal fluid alone, theophylline significantly (p<0.05) attenuated SNS-induced vasodilation (mean+/-standard deviation 8.1+/-2.5% vs 21.7+/-1.9%; 4 rats in each group). In contrast, CPX potentiated vasodilation significantly (p<0.05) during SNS (54.7+/-15.8% for the CPX group vs 20.1+/-1.9% for the controls; 5 rats in each group). The change in optical signal persisted after cessation of SNS in all the animals. Thus, the pattern of change of the optical signal was distinctly different from the pattern of changes in arteriolar diameter (which returned rapidly to baseline). Moreover, the optical signal during SNS was increased by 50% by theophylline and by almost 5-fold by CPX (p<0.05). The area of change of the intrinsic signal was also increased by the topical application of theophylline and CPX. The somatosensory evoked potential recordings revealed no significant changes after theophylline application, but CPX caused a small diminution of the N1 wave (p<0.01). CONCLUSIONS The noncongruent temporal profiles of the changes in pial arteriolar diameter and optical signal, imaged at 690 nm, indicate that the optical signal at 690 nm is not related to CBF. Alteration of adenosine receptor activity independently changed cortical activity, as measured by the optical signal, and CBF, as determined by pial arteriolar diameter. Manipulation of the adenosine receptor activity during increased cortical activity confirmed the temporal dissociation of optical signal and CBF and provided further evidence for the role of adenosine in regulating CBF.
Collapse
Affiliation(s)
- Michael M Haglund
- Department of Neurological Surgery, Duke University, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
21
|
Dietrich HH, Horiuchi T, Xiang C, Hongo K, Falck JR, Dacey RG. Mechanism of ATP-induced local and conducted vasomotor responses in isolated rat cerebral penetrating arterioles. J Vasc Res 2008; 46:253-64. [PMID: 18984964 DOI: 10.1159/000167273] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 05/29/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Adenosine triphosphate (ATP), a potent vascular regulator in the cerebral circulation, initiates conducted vasomotor responses which may be impaired after pathological insults. We analyzed the mechanism of ATP-induced local vasomotor responses and their effect on conducted vasomotor responses in rat cerebral penetrating arterioles. METHODS Arterioles were cannulated and their internal diameter monitored. Vasomotor responses to ATP were observed in the presence or absence of inhibitors, or after endothelial impairment. Smooth muscle membrane potentials were measured in some vessels. RESULTS Microapplication of ATP produced a biphasic response (constriction followed by dilation), which resulted in conducted dilation preceded by a membrane hyperpolarization. alpha,beta-methylene-ATP or pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) blunted the ATP-mediated constriction and enhanced local and conducted dilation. N(omega)-monomethyl-L-arginine, endothelial impairment and N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH) reduced the local dilation caused by ATP. The conducted dilation was attenuated by MS-PPOH and endothelial impairment, but not N(omega)-monomethyl-L-arginine or indomethacin. CONCLUSION ATP-induced conducted dilation is preceded by membrane hyperpolarization. Local ATP induces initial local constriction via smooth-muscle P(2X1) and subsequent dilation via endothelial P(2Y) receptors. Nitric oxide, cytochrome P450 metabolites, and intermediate and large conductance K(Ca) channels mediate dilation caused by ATP. ATP-induced conducted dilation is dependent upon both the endothelium and cytochrome P450 metabolites.
Collapse
Affiliation(s)
- Hans H Dietrich
- Department of Neurosurgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Miekisiak G, Kulik T, Kusano Y, Kung D, Chen JF, Winn HR. Cerebral blood flow response in adenosine 2a receptor knockout mice during transient hypoxic hypoxia. J Cereb Blood Flow Metab 2008; 28:1656-64. [PMID: 18545261 DOI: 10.1038/jcbfm.2008.57] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We evaluated cerebral blood flow by laser Doppler during 30 secs of hypoxia (0.10 FiO(2)) in anesthetized, ventilated adenosine 2a receptor knockout (A2aR KO) and wild-type (WT) mice to test the hypothesis that cerebral hypoxic hyperemia in KO mice would be attenuated. We also studied the effects of selective and nonselective A2aR antagonists. During 30 secs of hypoxia, P(a)O(2) decreased significantly (P<0.05) and to a similar degree in both types of mice, whereas P(a)CO(2) remained relatively stable. However, mean arterial blood pressure (MABP) decreased to a greater extent (P<0.05) during hypoxia in KO mice (58.6+/-1.5 mm Hg) than in WT animals (76.1+/-3.2 mm Hg). Consequently, in a separate group of mice, we stabilized and matched MABP during hypoxia. Hypoxic hyperemia was attenuated by 38% (P<0.05) in KO animals whose MABP was uncontrolled, and by 81% (P<0.05) in KO animals whose MABP changes were matched to the MABP in the hypoxic WT mice. In animals treated with adenosine antagonists, hypoxic hyperemia was decreased by 44% to 48% (P<0.05) in WT mice, but was without effect in KO mice. We conclude that adenosine via A2aR is responsible for a significant proportion of the hyperemia during hypoxia.
Collapse
Affiliation(s)
- Greg Miekisiak
- Department of Neurosurgery, Mount Sinai Medical School, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
23
|
Effects of binge alcohol exposure in the second trimester on intracerebral arteriolar function in third trimester fetal sheep. Brain Res 2008; 1226:111-5. [PMID: 18640664 DOI: 10.1016/j.brainres.2008.05.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/15/2008] [Accepted: 05/30/2008] [Indexed: 11/20/2022]
Abstract
Fetal alcohol syndrome is a leading cause of mental retardation, but mechanisms of alcohol-associated brain damage remain elusive. Chronic alcohol exposure attenuates fetal and neonatal hypoxic cerebral vasodilation in sheep. We therefore hypothesized that alcohol could alter development of cerebrovascular responses to adenosine, a putative mediator of hypoxic cerebral vasodilation. The objective of this study was to examine the effect of earlier fetal alcohol exposure on later reactivity to adenosine in fetal sheep cerebral arterioles. Penetrating intracerebral arterioles were harvested from the brains of third trimester fetal sheep previously exposed in the second trimester to maternal alcohol "binges" (1.5 g/kg IV over 90 min, 5 days/week for 4 weeks) or same-volume saline infusions. Arterioles were cannulated with a micropipette system and luminally pressurized. Fetal alcohol exposure did not affect spontaneous myogenic tone, but enhanced the dilator response of penetrating arterioles to extraluminal acidosis (pH 6.8). Alcohol exposure also resulted in an increase in maximal vessel response to CGS-21680, an adenosine A2A receptor agonist, but did not alter the concentration-dependent response curves to adenosine. Our results suggest that earlier alcohol exposure does not impair the subsequent responsiveness of fetal cerebral arterioles to vasodilator agents. Thus, alteration in cerebral vascular response to hypoxia in fetal sheep may not be attributed to changes in vascular reactivity to adenosine.
Collapse
|
24
|
Kulik T, Kusano Y, Aronhime S, Sandler AL, Winn HR. Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 2008; 55:281-8. [PMID: 18541276 DOI: 10.1016/j.neuropharm.2008.04.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 04/19/2008] [Accepted: 04/21/2008] [Indexed: 01/07/2023]
Abstract
We outline the mechanisms currently thought to be responsible for controlling cerebral blood flow (CBF) in the physiologic state and during ischemia, focusing on the arterial pial and penetrating microcirculation. Initially, we categorize the cerebral circulation and then review the vascular anatomy. We draw attention to a number of unique features of the cerebral vasculature, which are relevant to the microcirculatory response during ischemia: arterial histology, species differences, collateral flow, the venous drainage, the blood-brain barrier, astrocytes and vascular nerves. The physiology of the arterial microcirculation is then assessed. Lastly, we review the changes during ischemia which impact on the microcirculation. Further understanding of the normal cerebrovascular anatomy and physiology as well as the pathophysiology of ischemia will allow the rational development of a pharmacologic therapy for human stroke and brain injury.
Collapse
Affiliation(s)
- Tobias Kulik
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
25
|
Ohata H, Cao S, Koehler RC. Contribution of adenosine A2A and A2B receptors and heme oxygenase to AMPA-induced dilation of pial arterioles in rats. Am J Physiol Regul Integr Comp Physiol 2006; 291:R728-35. [PMID: 16601261 PMCID: PMC1764456 DOI: 10.1152/ajpregu.00757.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) has been implicated in mediation of cerebral vasodilation during neuronal activation and, specifically, in pharmacological activation of N-methyl-d-aspartate (NMDA) and kainate receptors. Possible mediators of cerebral vasodilation to alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) have not been well studied in mature brain, although heme oxygenase (HO) activity has been implicated in newborn pigs. In anesthetized rats, 5 min of topical superfusion of 30 and 100 microM AMPA on the cortical surface through a closed cranial window resulted in increases in pial arteriolar diameter. The dilatory response to AMPA was not inhibited by superfusion of an NO synthase inhibitor, a cyclooxygenase-2 inhibitor, or a cytochrome P-450 epoxygenase inhibitor, all of which have been shown to inhibit the cortical blood flow response to sensory activation. However, the 48 +/- 13% dilation to 100 microM AMPA was attenuated 56-71% by superfusion of the adenosine A(2A) receptor antagonist ZM-241385, the A(2B) receptor antagonist alloxazine, and the HO inhibitor chromium mesoporphyrin. Combination of the latter three inhibitors did not attenuate the dilator response more than the individual inhibitors, whereas an AMPA receptor antagonist fully blocked the vasodilation to AMPA. These results indicate that cortical pial arteriolar dilation to AMPA does not require activation of NO synthase, cyclooxygenase-2, or cytochrome P-450 epoxygenase but does depend on activation of adenosine A(2A) and A(2B) receptors. In addition, CO derived from HO appears to play a role in the vascular response to AMPA receptor activation in mature brain by a mechanism that is not additive with that of adenosine receptor activation.
Collapse
Affiliation(s)
- Hiroto Ohata
- Dept. of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287-4961, USA
| | | | | |
Collapse
|
26
|
Iliff JJ, Alkayed NJ, Gloshani KJ, Traystman RJ, West GA. Cocaine- and amphetamine-regulated transcript (CART) peptide: a vasoactive role in the cerebral circulation. J Cereb Blood Flow Metab 2005; 25:1376-85. [PMID: 15874973 DOI: 10.1038/sj.jcbfm.9600136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides are known to be involved in the stress response and have been implicated in the regulation of the cardiovascular system. We evaluated the direct vasoactive properties of CART in the cerebral circulation and its potential mechanisms of action. Penetrating cerebral arterioles, isolated from male Sprague-Dawley rats, were cannulated using a concentric micropipette setup, pressurized and perfused. The vascular response to intraluminal and extraluminal CART peptide was characterized. The endothelium dependence of this response was assessed by means of the endothelial light-dye injury model. The nonspecific endothelin receptor antagonist PD-145065, the ET(A)-specific antagonist BQ-123, the ET(B)-specific antagonist BQ-788, and the inhibitor of endothelin-converting enzyme phosphoramidon were used to characterize the involvement of the endothelin pathway in the vascular response to CART peptide. Extraluminal and intraluminal application of CART peptide (0.1 nm to 1 micromol/L) evoked a long-lasting dose-dependent constriction of isolated penetrating cerebral arterioles to approximately 80% of resting myogenic tone. Disruption of the endothelium by the endothelial light/dye injury model resulted in the abolition of this response (P<0.05). Extraluminal administration of PD-145065, BQ-123, and phosphoramidon blocked the constriction response to CART peptide (P<0.01). The ET(B) antagonist, BQ-788, did not alter the constriction response to CART peptide. Cocaine- and amphetamine-regulated transcript peptide is a potent vasoconstrictor in the cerebral circulation. Its direct vasoactive properties are endothelium-dependent and are mediated by ET(A), not ET(B), endothelin receptors.
Collapse
Affiliation(s)
- Jeffrey J Iliff
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
27
|
Birk S, Petersen KA, Kruuse C, Guieu R, Jonassen O, Eisert W, Olesen J. The effect of circulating adenosine on cerebral haemodynamics and headache generation in healthy subjects. Cephalalgia 2005; 25:369-77. [PMID: 15839852 DOI: 10.1111/j.1468-2982.2005.00867.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adenosine is an endogenous neurotransmitter that is released from the brain during hypoxia and relaxes isolated human cerebral arteries. Many cerebral artery dilators cause migraine attacks. However, the effect of intravenous adenosine on headache and cerebral artery diameter has not previously been investigated in man and reports regarding the effect of intravenous adenosine on cerebral blood flow are conflicting. Twelve healthy participants received adenosine 80, 120 microg kg(-1) min(-1) and placebo intravenously for 20 min, in a double-blind, three-way, crossover, randomized design. Headache was rated on a verbal scale (0-10). Regional cerebral blood flow (rCBF) with 133Xe inhalation and single-photon emission computed tomography (SPECT) and MCA flow velocity (V(MCA)) with transcranial Doppler, were measured in direct sequence. Six participants developed headache during 80 microg kg(-1) min(-1) and six during 120 microg kg(-1) min(-1) compared with none on placebo (P = 0.006). The headache was very mild and predominantly described as a pressing sensation. When correcting data for adenosine-induced hyperventilation, no significant changes in rCBF (P = 0.22) or V(MCA) (P = 0.16) were found between treatments. A significant dilation of the superficial temporal artery (STA) was seen (P < 0.001). These results show that circulating adenosine has no effect on rCBF or V(MCA), while it dilates the STA and causes very mild headache.
Collapse
Affiliation(s)
- S Birk
- Danish Headache Center, University of Copenhagen and Department of Neurology, Glostrup University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
28
|
Meno JR, Nguyen TSK, Jensen EM, Alexander West G, Groysman L, Kung DK, Ngai AC, Britz GW, Winn HR. Effect of caffeine on cerebral blood flow response to somatosensory stimulation. J Cereb Blood Flow Metab 2005; 25:775-84. [PMID: 15703695 DOI: 10.1038/sj.jcbfm.9600075] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite caffeine's wide consumption and well-documented psychoactive effects, little is known regarding the effects of caffeine on neurovascular coupling. In the present study, we evaluated the effects of caffeine, an adenosine receptor antagonist, on intracerebral arterioles in vitro and subsequently, on the pial circulation in vivo during cortical activation induced by contralateral sciatic nerve stimulation (SNS). In our in vitro studies, we utilized isolated intracerebral arterioles to determine the effects of caffeine (10 or 50 micromol/L) on adenosine-induced vasodilatation. At the lower concentration, caffeine was without effect, but at the higher concentration, caffeine produced significant attenuation. In our in vivo studies, we determined the cerebrospinal fluid (CSF) caffeine concentrations at 15, 30, and 60 mins after intravenous administration of 5, 10 and 40 mg/kg. At the latter two concentrations, CSF levels exceeded 10 micromol/L. We then evaluated the pial arteriolar response during cortical activation caused by contralateral SNS after administering caffeine intravenously (0, 5, 10, 20 30, and 40 mg/kg). The pial circulation was observed through a closed cranial window in chloralose-anesthetized Sprague-Dawley rats. The contralateral sciatic nerve was isolated, positioned on silver electrodes and stimulated for 20 secs (0.20 V, 0.5 ms, and 5 Hz). Arteriolar diameter was quantified using an automated video dimension analyzer. Contralateral SNS resulted in a 23.8% +/-3.9% increase in pial arteriolar diameter in the hindlimb sensory cortex under control conditions. Intravenous administration of caffeine at the lowest dose studied (5 mg/kg) had no effect on either resting arteriolar diameter or SNS-induced vasodilatation. However, at higher doses (10, 20, 30, and 40 mg/kg, intravenously), caffeine significantly (P < 0.05; n = 6) attenuated both resting diameter and cerebral blood flow (CBF) responses to somatosensory stimulation. Intravenous administration of theophylline (10, 20, and 40 mg/kg), another adenosine receptor antagonist, also significantly reduced SNS-induced vasodilatation in a dose-dependent manner. Hypercarbic vasodilatation was unaffected by either caffeine or theophylline. The results of the present study show that caffeine significantly reduces cerebrovascular responses to both adenosine and to somatosensory stimulation and supports a role of adenosine in the regulation of CBF during functional neuronal activity.
Collapse
Affiliation(s)
- Joseph R Meno
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Di Tullio MA, Tayebati SK, Amenta F. Identification of adenosine A1 and A3 receptor subtypes in rat pial and intracerebral arteries. Neurosci Lett 2004; 366:48-52. [PMID: 15265588 DOI: 10.1016/j.neulet.2004.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2004] [Revised: 05/06/2004] [Accepted: 05/07/2004] [Indexed: 11/24/2022]
Abstract
The expression and microanatomical localization of adenosine A1 and A3 receptor subtypes were investigated in rat pial and intracerebral arteries by immunoblotting, immunohistochemistry and in situ hybridization techniques. Pial artery membranes develop immune bands of approximately 79 and 52 kDa when exposed to anti-A1 and anti-A3 receptor protein antibodies respectively. Sympathectomy performed by bilateral superior cervical ganglionectomy did not change the pattern of adenosine A1 or A3 receptor immunochemistry. Sections of pial and intracerebral arteries processed for A1 or A3 receptor protein immunohistochemistry developed immune reaction in the tunica media, within arterial smooth muscle. A1 receptor immunoreactivity was more pronounced in large-sized compared to medium- and small-sized pial arteries and was stronger in small than in medium- or large-sized intracerebral arteries. A3 receptor immunoreactivity was more pronounced in smaller sized pial arteries compared to larger pial arteries, whereas no differences in the intensity of immune staining were noticeable between different sized intracerebral arteries. In situ hybridization histochemistry revealed a strong signal for A1 receptor and a moderate signal for A3 receptor in the tunica media of pial arteries, within smooth muscle. The present study indicates that rat pial and intracerebral arteries besides to the well characterized A2a and A2b receptors, express also A1 and A3 receptor subtypes. The identification of cerebrovascular A1 and A3 adenosine receptor subtypes may stimulate further research for detailing the mechanism(s) of regulation of cerebral circulation by adenosine.
Collapse
Affiliation(s)
- Maria Antonietta Di Tullio
- Sezione di Anatomia Umana, Dipartimento di Scienze Farmacologiche e Medicina Sperimentale, Università di Camerino, Via Scalzino, 3, 62032 Camerino, Italy
| | | | | |
Collapse
|
30
|
Iliff JJ, D'Ambrosio R, Ngai AC, Winn HR. Adenosine receptors mediate glutamate-evoked arteriolar dilation in the rat cerebral cortex. Am J Physiol Heart Circ Physiol 2003; 284:H1631-7. [PMID: 12543638 DOI: 10.1152/ajpheart.00909.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that adenosine (Ado) mediates glutamate-induced vasodilation in the cerebral cortex by monitoring pial arteriole diameter in chloralose-anesthetized rats equipped with closed cranial windows. Topical application of 100 microM glutamate and 100 microM N-methyl-d-aspartate (NMDA) dilated pial arterioles (baseline diameter 25 +/- 2 microm) by 17 +/- 1% and 18 +/- 4%, respectively. Coapplication of the nonselective Ado receptor antagonist theophylline (Theo; 10 microM) significantly reduced glutamate- and NMDA-induced vasodilation to 4 +/- 2% (P < 0.01) and 6 +/- 2% (P < 0.05), whereas the Ado A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.1 microM) had no effect. Moreover, application of the Ado A(2A) receptor-selective antagonist 4-(2-[7-amino-2-(2-furyl)(1,2,4)triazolo(2,3-a)(1,3,5)triazin-5-ylamino]ethyl)phenol (ZM-241385), either by superfusion (0.1 microM, 1 microM) or intravenously (1 mg/kg), significantly inhibited the pial arteriole dilation response to glutamate. Neither Theo nor ZM-241385 affected vascular reactivity to mild hypercapnia induced by 5% CO(2) inhalation. These results suggest that Ado contributes to the dilation of rat cerebral arterioles induced by exogenous glutamate, and that the Ado A(2A) receptor subtype may be involved in this dilation response.
Collapse
Affiliation(s)
- Jeffrey J Iliff
- Department of Neurological Surgery, University of Washington School of Medicine, Harborview Medical Center, 325 Ninth Avenue, Seattle, WA 98104, USA
| | | | | | | |
Collapse
|
31
|
West GA, Meno JR, Nguyen TSK, Ngai AC, Simard JM, Winn HR. cGMP-dependent and not cAMP-dependent kinase is required for adenosine-induced dilation of intracerebral arterioles. J Cardiovasc Pharmacol 2003; 41:444-51. [PMID: 12605023 DOI: 10.1097/00005344-200303000-00013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adenosine (ADO) is a potent cerebral vasodilator and has been proposed as a metabolic regulator of cerebral blood flow. However, the signal transduction pathway by which ADO causes vasodilation in cerebral microvessels is currently unknown. The current study was designed to investigate the role of cyclic nucleotides and cyclic nucleotide-dependent protein kinases in ADO-induced dilation of resistance-sized rat cerebral arterioles that develop spontaneous tone. Arterioles were cannulated and perfused intraluminally at constant flow (2 microl/min) and pressure (60 mm Hg). ADO (29.7 +/- 2.0%; 1 microM), CGS-21680 (16 +/- 4%, 1 microM), 8-bromo-cyclic guanosine monophosphate (8 Br-cGMP; 29.9 +/- 3.9%; 100 microM), sodium nitroprusside (SNP; 30.6 +/- 3.3%, 1 microM), cyclic guanine monophosphate-dependent protein kinase activator (Sp-8-pCPT-cGMPS, 25.9 +/- 4.2%; 10 microM), forskolin (30.5 +/- 5.9%; 0.1 microM), and pH 6.8 all produced large dilations. The selective cGMP-dependent protein kinase inhibitor, Rp-8-pCPT-cGMPS (10 microM), had no effect on resting diameter or reactivity to acidic pH, but significantly ( < 0.05) attenuated arteriolar dilations to ADO (59%, n = 8), CGS-21680 (60%, n = 4), SNP (62%, n = 3), 8 Br-cGMP (88%, n = 3), and Sp-8-pCPT-cGMPS (98%, n = 3). H8, the less-selective cyclic nucleotide-dependent protein kinase inhibitor, had similar effects as Rp-8-pCPT-cGMPS. Additionally, the inhibitor of the soluble guanylate cyclase, 1H-[1,24]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), blocked the response to SNP (70% inhibition) and significantly inhibited the ADO response (43% inhibition). In contrast, inhibition of the cyclic ADO monophosphate (cAMP)-dependent protein kinase Rp-8-CPT-cAMPS had no effect on the ADO, SNP, or pH responses, but significantly blocked forskolin-induced vasodilation (53%). It is concluded that ADO-induced vasodilation in cerebral microvessels, at least in part, involves cGMP and cGMP-dependent protein kinase, but not cAMP or cAMP-dependent kinase. Our data therefore provides a new insight into mechanisms by which ADO invokes vasodilation in cerebral microvascular arterioles.
Collapse
Affiliation(s)
- G Alexander West
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98104, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Grant GA, Meno JR, Nguyen TS, Stanness KA, Janigro D, Winn RH. Adenosine-induced modulation of excitatory amino acid transport across isolated brain arterioles. J Neurosurg 2003; 98:554-60. [PMID: 12650427 DOI: 10.3171/jns.2003.98.3.0554] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Excitatory amino acid (EAA) uptake by neurons and glia acts synergistically with stereoselective transport across the blood-brain barrier (BBB) to maintain EAA homeostasis in the brain. The endogenous neuroprotectant adenosine counteracts many aspects of excitotoxicity by increasing cerebral blood flow and by producing pre- and postsynaptic actions on neurons. In the present study, the authors explored the effect of adenosine on EAA transport across the BBB. METHODS The effects of adenosine on the permeability of the BBB and transport of aspartate and glutamate across the BBB were studied in a well-characterized isolated penetrating cerebral arteriole preparation suitable for simultaneous investigations of changes in diameter and permeability. At concentrations within the physiological to low pathophysiological range (10(-7)-10(-6) M), the net vectorial transport of [3H]L-glutamate or [3H]L-aspartate from blood to brain was significantly attenuated, whereas there was no effect of adenosine on paracellular BBB permeability to [14C]sucrose or [3H]D-aspartate. With higher concentrations of adenosine (10(-4) M and 10(-3) M) the net vectorial transport of [3H]L-glutamate and [3H]Laspartate returned toward baseline. At 10(-3) M, the permeability to [14C]sucrose was significantly altered, indicating a breakdown in the BBB. The effect of adenosine (10(-6) M) was blocked by theophylline, a blocker of the A1 and A2 receptors of adenosine. CONCLUSIONS Adenosine-mediated modulation of glutamate and aspartate transport across the BBB is a novel physiological finding.
Collapse
Affiliation(s)
- Gerald A Grant
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98104, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Coyne EF, Ngai AC, Meno JR, Winn HR. Methods for isolation and characterization of intracerebral arterioles in the C57/BL6 wild-type mouse. J Neurosci Methods 2002; 120:145-53. [PMID: 12385764 DOI: 10.1016/s0165-0270(02)00197-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vascular control mechanisms have been studied extensively in mice. However, an in vitro characterization of penetrating intracerebral arterioles has not been reported. We describe methods for isolation and cannulation for mouse intracerebral arterioles. This technique allows analysis of mouse cerebral arteriolar physiology and pharmacology without the confounding influences of the surrounding brain elements. Penetrating intracerebral arterioles from adult C57/BL6 wild-type (WT) mice were isolated at 4 degrees C, transferred to an inverted microscope and cannulated at both ends using a dual glass micropipette system, wherein intraluminal flow (0.2 microl/min) and pressure (60 mmHg) were maintained. The arterioles developed spontaneous tone when the chamber was warmed to 37 degrees C, with the resulting diameter reaching 68.4+/-0.9% of passive diameter (29.8+/-1.1 microm). After the development of spontaneous tone, incremental changes in luminal pressure from 20 to 140 mmHg induced myogenic responses. Acidosis (pH 6.8) and alkalosis (pH 7.6) caused dilation (20.0+/-1.4%) and constriction (17.2+/-1.4%), respectively. Extraluminal adenosine (ADO (10 microM); 24.3+/-3.6%) and sodium nitroprusside (SNP (10 microM); 28.6+/-4.1%) and intraluminal adenosine 5'-triphosphate (ATP (10 microM); 20.0+/-3.9%) resulted in vasodilation similar in magnitude to that observed in rat arterioles. This information provides a foundation for elucidating cerebral vascular control mechanisms in genetically engineered mice.
Collapse
Affiliation(s)
- Ellicia F Coyne
- Department of Neurological Surgery, University of Washington, 700 9th Avenue, Box 359766, Seattle, WA 98104, USA
| | | | | | | |
Collapse
|
34
|
Yu CY, Boyd NM, Cringle SJ, Su EN, Alder VA, Yu DY. An in vivo and in vitro comparison of the effects of vasoactive mediators on pulpal blood vessels in rat incisors. Arch Oral Biol 2002; 47:723-32. [PMID: 12356504 DOI: 10.1016/s0003-9969(02)00066-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of endogenous vasoactive substances were evaluated in anaesthetized rats using a laser Doppler flowmeter to monitor changes in pulpal blood flow, as well as directly in isolated pulpal arteriole preparations utilising a microperfusion and monitoring system to observe changes in vessel diameter. In anaesthetized rats, while systemic arterial blood pressure remained relatively stable, intra-arterial delivery of adrenaline (epinephrine) (A), noradrenaline (norepinephrine) (NA), phenylephrine (PHE), dopamine (DOPA), 5-hydroxytryptamine (5-HT), or endothelin-1 (ET-1) produced a dose-dependent reduction in pulpal blood flow (order of potency: ET-1>>A=NA>PHE=DOPA=5-HT); acetylcholine induced a dose-dependent increase in pulpal blood flow; histamine, isoproterenol and adenosine produced no significant changes. In isolated arteriole preparations, intraluminal delivery of A, NA, PHE, DOPA or 5-HT produced dose-dependent vasoconstriction (A=NA>PHE=DOPA=5-HT). Acetylcholine relaxed NA-precontracted vessels dose-dependently. Histamine and isoproterenol produced a small vasodilatation. Intraluminal ET-1 produced a small vasoconstriction at 10(-8)M, whereas extraluminal ET-1 produced a dose-dependent vasoconstriction from 10(-10)M and above. Intraluminal adenosine failed to dilate vessels precontracted with ET-1, whereas extraluminal adenosine caused a complete relaxation. These combined in vivo and in vitro data suggest that, in the rat incisor, the pulpal microcirculation is capable of functional regulation and that pulpal blood flow may be modulated by endothelium-related factors, metabolic (tissue-related) factors, as well as humoral (blood-borne) factors.
Collapse
Affiliation(s)
- C Y Yu
- School of Dentistry, The University of Western Australia, 17 Monash Avenue, WA 6009, Nedlands, Australia.
| | | | | | | | | | | |
Collapse
|
35
|
Blood AB, Hunter CJ, Power GG. The role of adenosine in regulation of cerebral blood flow during hypoxia in the near-term fetal sheep. J Physiol 2002; 543:1015-23. [PMID: 12231655 PMCID: PMC2290527 DOI: 10.1113/jphysiol.2002.023077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to determine in the near-term ovine fetus the role of adenosine in the basal regulation of cerebral blood flow and in the increases in cerebral blood flow in response to acute hypoxic insult. We measured cerebral blood flow in chronically instrumented fetal sheep (127-135 days gestation, term approximately 145 days) using laser Doppler flowmetry probes implanted in the parietal cortices. Hypoxia was administered for 30 min by lowering the ewe's inspired oxygen to 10-12 % during an infusion of either saline or theophylline, a non-specific adenosine receptor antagonist. The theophylline infusion was begun 30 min prior to and ended 30 min after the completion of the hypoxic insult. The administration of theophylline had no significant effect on cerebral blood flow during the baseline period. During control hypoxic periods, cerebral blood flow increased by approximately 45 %. During theophylline experiments, however, there was no significant increase in cerebral blood flow during hypoxia. In the control experiments, cerebral blood flow returned to baseline levels during the recovery period, while in the theophylline experiments cerebral blood flow fell below baseline levels. We conclude that, in the near-term ovine fetus, adenosine plays a minimal role in the regulation of basal cerebral blood flow. However, these data are strong evidence for the involvement of adenosine in increased fetal cerebral blood flow during an acute hypoxic insult. Finally, adenosine may also play an important role in the maintenance of fetal cerebral blood flow immediately following hypoxic insult.
Collapse
Affiliation(s)
- Arlin B Blood
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
36
|
Joshi S, Mangla S, Wang M, Sciacca RR, Young WL. Intra-arterial 133Xe measurements suggest a dose-dependent increase in cerebral blood flow during intracarotid infusion of adenosine in nonhuman primates. J Neurosurg Anesthesiol 2002; 14:108-13. [PMID: 11907390 DOI: 10.1097/00008506-200204000-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intra-arterial vasodilators, such as papaverine, have been used to treat cerebrovascular insufficiency. The short biologic half-life, and the vasodilating and neuroprotective properties of adenosine could be useful during the treatment of cerebral ischemia. However, in human subjects a proposed intracarotid dose of 1 mg/min adenosine was ineffective in augmenting cerebral blood flow (CBF). The object of this experiment was to determine the dose-CBF response characteristics of intracarotid adenosine in nonhuman primates. Studies were conducted on five male baboons under isoflurane anesthesia. After transfemoral internal carotid artery cannulation, changes in CBF (intra-arterial 133Xe technique) were determined after intracarotid infusion of saline and three increasing doses of adenosine (0.5, 1.0, and 1.5 mg/min). Each infusion lasted 5 minutes. Data (mean +/- standard deviation) were analyzed by repeated-measure analysis of variance and the post hoc Tukey test. Intracarotid adenosine (0.5, 1.0, and 1.5 mg/min) resulted in a dose-dependent increase in CBF from 22.6 +/- 4 mL/100 g/min at baseline to 50 +/- 15, 65 +/- 22, and 83 +/- 31 mL/100 g/min respectively (n = 5, P < .05 each). No adverse hemodynamic side effects were noted, and animals recovered promptly from anesthesia. The authors conclude that intracarotid adenosine in the range of 0.5 to 1.5 mg/min results in a robust increase in CBF. Based on body weight, intracarotid adenosine in a dose range of 2.5 to 7.5 mg/min may be required to augment CBF in human subjects.
Collapse
Affiliation(s)
- Shailendra Joshi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
37
|
Joshi S, Duong H, Mangla S, Wang M, Libow AD, Popilskis SJ, Ostapkovich ND, Wang TS, Young WL, Pile-Spellman J. In Nonhuman Primates Intracarotid Adenosine, but Not Sodium Nitroprusside, Increases Cerebral Blood Flow. Anesth Analg 2002. [DOI: 10.1213/00000539-200202000-00031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Joshi S, Duong H, Mangla S, Wang M, Libow AD, Popilskis SJ, Ostapkovich ND, Wang TS, Young WL, Pile-Spellman J. In nonhuman primates intracarotid adenosine, but not sodium nitroprusside, increases cerebral blood flow. Anesth Analg 2002; 94:393-9, table of contents. [PMID: 11812706 DOI: 10.1097/00000539-200202000-00031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Intracarotid infusion of short-acting vasodilators, such as adenosine and nitroprusside, in doses that lack significant systemic side effects, may permit controlled manipulation of cerebrovascular resistance. In this experiment we assessed changes in cerebral blood flow (CBF) after intracarotid infusion of nitroprusside and adenosine. The study was conducted on six adult baboons under isoflurane anesthesia and controlled ventilation. Intracarotid drug infusion protocol avoided hypotension during nitroprusside infusion and tested for autoregulatory vasoconstriction. CBF (intraarterial (133)Xe technique) was measured four times during infusions of 1) intracarotid saline, 2) IV phenylephrine (0.2 microg x kg(-1) x min(-1)) aimed to increase mean arterial pressure by 10-15 mm Hg, 3) IV phenylephrine and intracarotid nitroprusside (0.5 microg x kg(-1) x min(-1)), and 4) intracarotid adenosine (1 mg/min). IV phenylephrine increased mean arterial pressure (69 +/- 8 to 91 +/- 9 mm Hg, P < 0.0001, n = 6), and concurrent infusion of intracarotid nitroprusside reversed this effect. However, compared with baseline, CBF did not change with IV phenylephrine or with concurrent infusion of IV phenylephrine and intracarotid nitroprusside. Intracarotid adenosine profoundly increased CBF (from 29 +/- 8 to 75 +/- 32 mL x 100 g(-1) x min(-1); P < 0.0001). In nonhuman primates, intracarotid adenosine increases CBF in doses that lack significant systemic side effects, whereas intracarotid nitroprusside has no effect. Intracarotid adenosine may be useful for manipulating cerebrovascular resistance and augmenting CBF during cerebral ischemia. IMPLICATIONS Intraarterial (133)Xe cerebral blood flow (CBF) measurements suggest that intracarotid adenosine, in a dose that lacks significant systemic side effects, profoundly increases CBF, whereas nitroprusside has no effect.(5-12)
Collapse
Affiliation(s)
- Shailendra Joshi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Meno JR, Crum AV, Winn HR. Effect of adenosine receptor blockade on pial arteriolar dilation during sciatic nerve stimulation. Am J Physiol Heart Circ Physiol 2001; 281:H2018-27. [PMID: 11668063 DOI: 10.1152/ajpheart.2001.281.5.h2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we report the effects of adenosine receptor antagonists on pial vasodilatation during contralateral sciatic nerve stimulation (SNS). The pial circulation was observed through a closed cranial window in alpha-chloralose-anesthetized rats. In artificial cerebrospinal fluid (CSF), SNS resulted in a 30.5 +/- 13.2% increase in pial arteriolar diameter in the hindlimb somatosensory cortex. Systemic administration of the selective adenosine A2A receptor antagonist, 4-(2-[7-amino-2-[2-furyl][3,2,4]triazolol[2,3-a][1,3,5]triazin-5-yl-amino] ethyl)phenol (ZM-241385), significantly (P < 0.05, n = 6) attenuated the SNS-induced vasodilatation. Systemic administration of 8-(p-sulfophenyl)theophylline (8SPT), a nonselective antagonist that is blood-brain barrier (BBB) impermeable, had no effect on vasodilatation to SNS. In contrast, systemic theophylline, which readily penetrates the BBB, nearly abolished the SNS-induced vasodilatation (P < 0.01; n = 7). Topical superfusion of 8SPT significantly (P < 0.01; n = 6) attenuated vasodilatation during SNS. Topical superfusion of 8- cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist, significantly potentiated SNS-induced vasodilatation (P < 0.01; n > or = 5). Hypercarbic vasodilatation and somatosensory-evoked potentials were not affected by any of the compounds tested. Our findings suggest that luminal endothelial adenosine receptors are not involved in the arteriolar response to SNS, as demonstrated by a lack of effect with systemic 8SPT. Furthermore, the adenosine A2A receptor subtype appears to be involved in the dilator response to SNS. Finally, the neuromodulatory action of adenosine, via the A1 receptor subtype, significantly influences SNS-induced vasodilatation. Thus the present study provides further evidence for a role of adenosine in the regulation of CBF during somatosensory stimulation.
Collapse
Affiliation(s)
- J R Meno
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
40
|
Lindauer U, Kunz A, Schuh-Hofer S, Vogt J, Dreier JP, Dirnagl U. Nitric oxide from perivascular nerves modulates cerebral arterial pH reactivity. Am J Physiol Heart Circ Physiol 2001; 281:H1353-63. [PMID: 11514307 DOI: 10.1152/ajpheart.2001.281.3.h1353] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the isolated rat middle cerebral artery (MCA) we investigated the role of nitric oxide (NO)/cGMP in the vasodilatory response to extraluminal acidosis. Acidosis increased vessel diameter from 140 +/- 27 microm (pH 7.4) to 187 +/- 30 microm (pH 7.0, P < 0.01). NO synthase (NOS) inhibition by N(omega)-nitro-L-arginine (L-NNA, 10 microM) reduced baseline diameter (103 +/- 20 microm, P < 0.01) and attenuated response to acidosis (9 +/- 8 microm). Application of the NO-donors 3-morpholinosydnonimine (1 microM) or S-nitroso-N-acetylpenicillamine (1 microM), or of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 100 microM) reestablished pre-L-NNA diameter at pH 7.4 and reversed L-NNA-induced attenuation of the vessel response to acidosis. Restoration of pre-L-NNA diameter (pH 7.4) by papaverine (20 microM) or nimodipine (30 nM) had no effect on the attenuated response to acidosis. Guanylyl cyclase inhibition with 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one (5 microM) or NOS-inhibition with 7-nitroindazole (7-NI, 100 microM) reduced baseline vessel diameter (109 +/- 8 or 127 +/- 11 microm, respectively) and vasodilation to acidosis, and restoration of baseline diameter with 8-BrcGMP (30 microM) completely restored dilation to pH 7.0. Chronic denervation of NOS-containing perivascular nerves in vivo 14 days before artery isolation significantly reduced pH-dependent reactivity in vitro (diameter increase sham: 48 +/- 14 microm, denervated: 14 +/- 8 microm), and 8-BrcGMP (30 microM) restored dilation to pH 7.0 (denervated: 49 +/- 31 microm). Removal of the endothelium did not change vasodilation to acidosis. We conclude that NO, produced by neuronal NOS of perivascular nerves, is a modulator in the pH-dependent vasoreactivity.
Collapse
Affiliation(s)
- U Lindauer
- Department of Experimental Neurology, Humboldt University, Charité Hospital, 10098 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Adenosine is widely distributed in mammals. One of the primary roles of adenosine within the cardiovascular system is to directly control the functions of both cardiac and vascular tissues. Recently, there has been considerable interest in the subclassification of adenosine receptors. Characterization of a heterogeneous population of receptors for adenosine could provide an opportunity for the development of novel compounds of therapeutic value. Adenosine is released from cells as a result of metabolism, and its release can be increased dramatically from cells that are metabolically stressed. This implies that adenosine can be released from a variety of cells throughout the body, as a result of increased metabolic rates, in concentrations that can have a profound impact on blood vessel function and, consequently, blood flow. It is recognized that the actions of this nucleoside on the vasculature are most prominent when oxygen demand is high and there is a reduction in oxygen tension at the site in question. Therefore, it is not surprising that adenosine has been shown to be an important regulator of blood vessel tone under hypoxic conditions. Furthermore, the activation of adenosine receptors on blood vessels can result in relaxation and/or contractions. The nature of the response subsequent to the activation of adenosine receptors is primarily dependent on the type of blood vessel involved and basal tone. This review will focus on the characterization of subtypes of adenosine receptors in blood vessels, as well as the effect of the stimulation of adenosine receptors on the peripheral circulation.
Collapse
Affiliation(s)
- R Tabrizchi
- Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada, A1B 3V6.
| | | |
Collapse
|
42
|
Zanferrari C, Razumovsky AY, Lavados PM, Sen S, Oppenheimer SM. Effect of adenosine on cerebral blood flow velocity. J Neuroimaging 2001; 11:272-9. [PMID: 11462294 DOI: 10.1111/j.1552-6569.2001.tb00046.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Evidence suggests that adenosine (ADN) is a potent vasodilator of cerebral vessels. However, the feasibility of manipulating human cerebral vascular resistance with ADN has not been assessed by means of TCD. The purpose of this study was to quantitatively estimate the change in middle cerebral artery cerebral blood flow velocity (CBFV) in response to intravenous ADN infusion in humans. METHODS Eleven patients with subacute cerebrovascular events (ischemic stroke, transient ischemic attack, or hemorrhage) undergoing adenosine-thallium stress testing were studied before, during, and after ADN infusion to evaluate the effect of ADN on cerebral blood flow velocity. Continuous blood pressure (BP), heart rate (HR), respiration rate (RR), end-tidal CO2 (ET-CO2), and transcranial Doppler ultrasonography monitoring of CBFV and pulsatility index (PI) in both middle cerebral arteries were performed. RESULTS The mean CBFVs were 65.4 +/- 19.2 cm/s before, 55.4 +/- 18.1 cm/s during, and 64.1 +/- 22.5 cm/s after ADN infusion, which represents a statistically significant decrease during ADN test compared with both baseline (P = .007) and posttest levels (P = .017). The PI was increased during the test (0.91 +/- 0.2) when compared with baseline (0.71 +/- 0.1) (P = .007). During ADN injection, mean HR increased (P = .004) and mean ET-CO2 levels decreased significantly (P = .003). Mean BP and RR did not change significantly. CONCLUSIONS The authors hypothesize that any direct vasodilatory effect of ADN on the distal cerebral peripheral vasculature may be negated by an effect of ADN on depth of respiration resulting in hypocapnia and secondary distal vasoconstriction.
Collapse
Affiliation(s)
- C Zanferrari
- Institute of Neurology, University of Parma, Italy
| | | | | | | | | |
Collapse
|
43
|
Spada CS, Nieves AL, Burke JA, Wheeler LA, Woodward DF. Differential effects of alpha-adrenoceptor agonists on human retinal microvessel diameter. J Ocul Pharmacol Ther 2001; 17:255-77. [PMID: 11436946 DOI: 10.1089/108076801750295290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of locally administered brimonidine, clonidine, and p-aminoclonidine on microvessel caliber were compared in human retinal tissues grafted into the hamster cheek pouch. Clonidine and p-aminoclonidine, but not brimonidine, potently constricted human retinal microvessels over a broad concentration range. All three agonists elicited significant vasoconstriction in naive hamster cheek pouch microvasculature. The alpha2-adrenoceptor antagonist, rauwolscine, inhibited p-aminoclonidine-induced constriction in naive hamster cheek pouch microvessels, but not p-aminoclonidine-induced effects in retinal grafts. Selective alpha1-adrenoceptor agonists evoked vasoconstriction in retinal grafts only at relatively high concentrations. These differential effects on the retinal microvasculature could not be readily explained solely on the basis of alpha1- or alpha2-adrenoceptor involvement. Clonidine, p-aminoclonidine and brimonidine are also imidazoline derivatives that interact with putative non-adrenergic imidazoline-sensitive binding sites, the so-called I1-imidazoline binding site subtype implicated by some investigators in mediation of peripheral vasoconstriction. As with p-aminoclonidine, the potent vasoconstriction in human retinal microvasculature elicited by moxonidine, an alpha-adrenergic agonist that has also been reported to exhibit selectivity for putative I1-imidazoline binding sites, was not inhibited by the selective alpha-adrenoceptor antagonist, rauwolscine, nor by idazoxan, an antagonist characterized as having substantial activity at putative I2-imidazoline binding sites. These data suggest the possible involvement of an unconventional non-adrenergic imidazoline-sensitive pathway in regulation of microvascular responses in the inner retina, and that drug activity mediated via such an imidazoline-sensitive component could potentially evoke deleterious effects in the retinal microvasculature.
Collapse
Affiliation(s)
- C S Spada
- Department of Biological Sciences, Pharmaceutical Research & Development, Allergan, Inc., Irvine, California 92612-1599, USA.
| | | | | | | | | |
Collapse
|
44
|
Ngai AC, Coyne EF, Meno JR, West GA, Winn HR. Receptor subtypes mediating adenosine-induced dilation of cerebral arterioles. Am J Physiol Heart Circ Physiol 2001; 280:H2329-35. [PMID: 11299238 DOI: 10.1152/ajpheart.2001.280.5.h2329] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the receptor subtypes that mediate the dilation of rat intracerebral arterioles elicited by adenosine. Penetrating arterioles were isolated from the rat brain, cannulated with the use of a micropipette system, and luminally pressurized to 60 mmHg. Both adenosine and the A2A receptor-selective agonist CGS-21680 induced dose-dependent vasodilation (-logEC(50): 6.5 +/- 0.2 and 8.6 +/- 0.3, respectively). However, adenosine, which is capable of activating both A2A and A2B receptors, caused a greater maximal dilation than CGS-21680. The A2A receptor-selective antagonist ZM-241385 (0.1 microM) only partially inhibited the dilation induced by adenosine but almost completely blocked CGS-21680-induced dilation. Neither 8-cyclopentyl-1,3-dipropylxanthine (0.1 microM), an A1 receptor-selective antagonist, nor MRS-1191 (0.1 microM), an A3 receptor-selective antagonist, attenuated adenosine dose responses. Moreover, ZM-241385 had no effect on the dilation induced by ATP (10 microM) or acidic (pH 6.8) buffer. We concluded that the A2A receptor subtype mediates adenosine-induced dilation of intracerebral arterioles in the rat brain. Furthermore, our results suggest that A2B receptors may also participate in the dilation response to adenosine.
Collapse
Affiliation(s)
- A C Ngai
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98104, USA.
| | | | | | | | | |
Collapse
|
45
|
Nguyen TS, Winn HR, Janigro D. ATP-sensitive potassium channels may participate in the coupling of neuronal activity and cerebrovascular tone. Am J Physiol Heart Circ Physiol 2000; 278:H878-85. [PMID: 10710357 DOI: 10.1152/ajpheart.2000.278.3.h878] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K(+) dilate and constrict cerebral vessels in a dose-dependent fashion. Modest elevations of abluminal K(+) cause vasodilatation, whereas larger extracellular K(+) concentration ([K(+)](out)) changes decrease cerebral blood flow. These dilations are believed to be mediated by opening of inward-rectifier potassium channels sensitive to Ba(2+). Because BaCl(2) also blocks ATP-sensitive K(+) channels (K(ATP)), we challenged K(+) dilations in penetrating, resistance-size (<60 mmu) rat neocortical vessels with the K(ATP) channel blocker glibenclamide (1 microM). Glibenclamide reduced K(+) responses from 138 +/- 8 to 110 +/- 0.8%. K(+) constrictions were not affected by glibenclamide. The Na(+)-K(+)-pump inhibitor ouabain (200 microM) did not significantly change resting vessel diameter but decreased K(+) dilations (from 153 +/- 9 to 99 +/- 2%). BaCl(2) blocked K(+) dilations with a half-maximal dissociation constant of 2.9 microM and reduced dilations to the specific K(ATP) agonist pinacidil with equal potency. We conclude that, in resistance vessels, K(+) dilations are mediated by K(ATP); we hypothesize that [K(+)](out) causes activation of Na(+)-K(+) pumps, depletion of intracellular ATP concentration, and subsequent opening of K(ATP). This latter hypothesis is supported by the blocking effect of ouabain.
Collapse
Affiliation(s)
- T S Nguyen
- Departments of Neurological Surgery, Harborview Medical Center, University of Washington, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
46
|
Shin HK, Shin YW, Hong KW. Role of adenosine A(2B) receptors in vasodilation of rat pial artery and cerebral blood flow autoregulation. Am J Physiol Heart Circ Physiol 2000; 278:H339-44. [PMID: 10666062 DOI: 10.1152/ajpheart.2000.278.2.h339] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was aimed to investigate the underlying mechanism of vasodilation induced by the activation of A(2B) adenosine receptors in relation to cerebral blood flow (CBF) autoregulation. Changes in pial arterial diameters were observed directly through a closed cranial window. N(omega)-nitro-L-arginine methyl ester (L-NAME, nitric oxide synthase inhibitor) significantly suppressed the concentration-dependent vasodilations induced by adenosine and 5'-N-ethylcarboxamido-adenosine (NECA) but not the vasodilation by CGS-21680 (A(2A)-receptor agonist). Moreover, NECA-induced vasodilation was suppressed by alloxazine (1 micromol/l) but not by ZM-241385 (1 micromol/l, A(2A) antagonist), which suggests mediation by A(2B)- receptor activation. Otherwise, the level of nitrite/nitrate was concentration dependently increased in the artificial cerebrospinal fluid (CSF) when adenosine and NECA were suffused over the cortical surface. L-NAME and alloxazine, but not ZM-241385, largely inhibited their releases. The lower limit of CBF autoregulation was little affected following pretreatment with L-NAME or alloxazine. Thus it is suggested that adenosine-induced vasodilation via activation of A(2B)-adenosine receptors of the rat pial artery is coupled to the production of nitric oxide, which contributes little to CBF autoregulation.
Collapse
Affiliation(s)
- H K Shin
- Department of Pharmacology, College of Medicine, Pusan National University, Pusan 602-739, Korea
| | | | | |
Collapse
|
47
|
Hong KW, Shin HK, Kim HH, Choi JM, Rhim BY, Lee WS. Metabolism of cAMP to adenosine: role in vasodilation of rat pial artery in response to hypotension. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H376-82. [PMID: 9950836 DOI: 10.1152/ajpheart.1999.276.2.h376] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this experiment was to examine whether the cAMP-adenosine pathway is implicated in the autoregulatory vasodilation in response to hypotension. Suffusion with cAMP (1-100 micromol/l) or adenosine (0.01-10 micromol/l) caused a sustained vasodilation of the resting pial arteries in a concentration-dependent manner. In contrast, N6,2'-O-dibutyryl-cAMP and 8-bromo-cAMP exerted a weak dilation at high concentration (100 micromol/l). The vasodilation to cAMP (1-100 micromol/l), adenosine (0.01-10 micromol/l), and hypotension was significantly reduced by pretreatment with 3,7-dimethyl-1-propargylxanthine (1 micromol/l), an A2 receptor antagonist, as well as 3-isobutyl-1-methylxanthine (3 micromol/l), an inhibitor of endo- and ectophosphodiesterase, 1, 3-dipropyl-8-p-sulfophenylxanthine (100 micromol/l), an inhibitor of ecto-5'-phosphodiesterase, or alpha,beta-methylene-adenosine 5'-diphosphate (100 micromol/l), an inhibitor of ecto-5'-nucleotidase. However, 8-cyclopentyltheophylline (1 micromol/l), an A1 antagonist, did not elicit a similar response. The increased release of adenosine when the cortical surface was suffused with cAMP (100 micromol/l) was significantly reduced by 3-isobutyl-1-methylxanthine, 1,3-dipropyl-8-p-sulfophenylxanthine, and alpha,beta-methylene-adenosine 5'-diphosphate (each 100 micromol/l). These results indicate that the cAMP-adenosine pathway as a viable metabolic mechanism is implicated in the production of adenosine in the rat pial artery and contributes to the regulation of vasodilation in response to hypotension.
Collapse
Affiliation(s)
- K W Hong
- Department of Pharmacology, College of Medicine, Pusan National University, Pusan 602-739, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Joshi S, Young WL, Pile-Spellman J, Duong DH, Vang MC, Hacein-Bey L, Lee HT, Ostapkovich N. The feasibility of intracarotid adenosine for the manipulation of human cerebrovascular resistance. Anesth Analg 1998; 87:1291-8. [PMID: 9842815 DOI: 10.1097/00000539-199812000-00015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED To assess the feasibility of manipulating human cerebrovascular resistance with adenosine, we measured cerebral blood flow (CBF) by determining the initial slope (IS) of tracer washout 20-80 s after intracarotid 133Xe injection (standard IS) during sequential 3-min intracarotid infusions of (a) saline; (b) adenosine 1.2-mg bolus followed by an infusion of 1 mg/min (bolus + infusion); (c) saline; and (d) nicardipine (0.1 mg/min). During 133Xe washout, adenosine caused a rapidly clearing compartment. Therefore, tracer washout was also analyzed 5-25 s after injection (early IS). Nicardipine (n = 8) increased both standard IS (from 39+/-12 to 53+/-16 mL 100g.min(-1); P < 0.005) and early IS (from 40+/-9 to 55+/-20 arbitrary units; P < 0.02) to a similar degree. Adenosine bolus + infusion increased early IS (from 33+/-6 to 82+/-43 arbitrary units; P < 0.02) but did not increase standard IS (from 41+/-12 to 43 +/-16 mL 100g(-1) min(-1)). Standard and early IS values were then determined before and after adenosine delivered either by infusion alone (2 mg/min for 3 min, n = 5) or bolus alone (2 mg in 1 s, n = 3). Neither standard nor early IS changed after adenosine infusion alone. Early IS increased after adenosine bolus alone. Increase in early IS, but not standard IS, suggests a transient (<30 s) increase in CBF. IMPLICATIONS Intracarotid adenosine, in the 1- to 2-mg dose range, may cause a transient, but not a sustained, increase in cerebral blood flow. Intracarotid adenosine in such a dose range does not seem to be an appropriate drug for sustained manipulation of cerebrovascular resistance.
Collapse
Affiliation(s)
- S Joshi
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Joshi S, Young WL, Pile-Spellman J, Duong DH, Vang MC, Hacein-Bey L, Lee HT, Ostapkovich N. The Feasibility of Intracarotid Adenosine for the Manipulation of Human Cerebrovascular Resistance. Anesth Analg 1998. [DOI: 10.1213/00000539-199812000-00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Danialou G, Vicaut E, Aubier M, Boczkowski J. Theophylline dilates rat diaphragm arterioles via the prostaglandins pathway. Br J Pharmacol 1998; 124:1355-62. [PMID: 9723945 PMCID: PMC1565522 DOI: 10.1038/sj.bjp.0701962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We investigated by intravital microscopy in rats, the in vivo direct effects of theophylline on the diameters of second and third order diaphragm arterioles. 2. Theophylline (1-100 microM) dilated second and third order diaphragm arterioles significantly, and with an amplitude which was not statistically different from the one obtained with adenosine (1-100 microM). Enprofylline (1-100 microM), a theophylline analogue with poor adenosine-receptor antagonism but with similar or higher phosphodiesterases inhibition properties than theophylline, also dilated diaphragm arterioles, causing however, a significantly smaller dilatation than theophylline. 3. Neither the A1 adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (CPX, 50 nM), nor the A2 adenosine receptor antagonist 3,7-dimethyl-1-proparglyxanthine (DMPX, 10 microM) reduced significantly theophylline-induced arteriolar dilatation. 4. Theophylline (100 nM) abolished adenosine-induced arteriolar dilatation. 5. The dilatation induced by theophylline was unchanged by the nitric oxide (NO) synthase inhibitor N(omega)-nitro-L-arginine (NNA, 300 microM). 6. Theophylline-induced arteriolar dilatation was abolished by the prostaglandin synthesis inhibitors mefenamic acid or indomethacin (20 microM). 7. These findings show that theophylline induced a significant dilatation of diaphragm arterioles via the release of prostaglandins.
Collapse
Affiliation(s)
- G Danialou
- INSERM U408, Faculté Xavier Bichat, Paris, France
| | | | | | | |
Collapse
|