1
|
Missan S, Shuba LM, Zhabyeyev P, McDonald TF. Osmotic modulation of slowly activating IKs in guinea-pig ventricular myocytes. Cardiovasc Res 2011; 91:429-36. [DOI: 10.1093/cvr/cvr074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
2
|
Piron J, Choveau FS, Amarouch MY, Rodriguez N, Charpentier F, Mérot J, Baró I, Loussouarn G. KCNE1-KCNQ1 osmoregulation by interaction of phosphatidylinositol-4,5-bisphosphate with Mg2+ and polyamines. J Physiol 2010; 588:3471-83. [PMID: 20660559 DOI: 10.1113/jphysiol.2010.195313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
KCNQ1 osmosensitivity is of physiological and pathophysiological relevance in epithelial and cardiac cells, but the mechanism involved remains elusive. In COS-7 cells expressing the KCNE1-KCNQ1 fusion protein, extracellular hypoosmolarity and hyperosmolarity modify the channel biophysical parameters. These changes are consistent with hypoosmolarity increasing the level of membrane phosphatidylinositol-4,5-bisphosphate (PIP(2)), which in turn upregulates KCNE1-KCNQ1 channels. We showed that increasing PIP(2) levels with a water-soluble PIP(2) analogue prevented channel upregulation in hypoosmotic condition, suggesting a variation of the channel-PIP(2) interaction during channel osmoregulation. Furthermore, we showed that polyamines and Mg(2+), already known to tonically inhibit KCNQ channels by screening PIP(2) negative charges, are involved in the osmoregulatory process. Indeed, intracellular Mg(2+) removal and polyamines chelation inhibited the channel osmoregulation. Thus, the dilution of those cations during cell swelling might decrease channel inhibition and explain the channel upregulation by hypoosmolarity. To support this idea, we quantified the role of Mg(2+) in the osmodependent channel activity. Direct measurement of intracellular [Mg(2+)] variations during osmotic changes and characterization of the channel Mg(2+) sensitivity showed that Mg(2+) participates significantly to the osmoregulation. Using intracellular solutions that mimic the variation of Mg(2+) and polyamines, we were able to recapitulate the current amplitude variations in response to extracellular osmolarity changes. Altogether, these results support the idea of a modulation of the channel-PIP(2) interactions by Mg(2+) and polyamines during cell volume changes. It is likely that this mechanism applies to other channels that are sensitive to both osmolarity and PIP(2).
Collapse
Affiliation(s)
- Julien Piron
- INSERM U915, l'Institut du Thorax, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Angiotensin II type 1 receptor mediates partially hyposmotic-induced increase of I Ks current in guinea pig atrium. Pflugers Arch 2009; 458:837-49. [DOI: 10.1007/s00424-009-0669-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/27/2009] [Indexed: 01/29/2023]
|
4
|
Nicolas CS, Park KH, El Harchi A, Camonis J, Kass RS, Escande D, Mérot J, Loussouarn G, Le Bouffant F, Baró I. IKs response to protein kinase A-dependent KCNQ1 phosphorylation requires direct interaction with microtubules. Cardiovasc Res 2008; 79:427-35. [PMID: 18390900 DOI: 10.1093/cvr/cvn085] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS KCNQ1 (alias KvLQT1 or Kv7.1) and KCNE1 (alias IsK or minK) co-assemble to form the voltage-activated K(+) channel responsible for I(Ks)-a major repolarizing current in the human heart-and their dysfunction promotes cardiac arrhythmias. The channel is a component of larger macromolecular complexes containing known and undefined regulatory proteins. Thus, identification of proteins that modulate its biosynthesis, localization, activity, and/or degradation is of great interest from both a physiological and pathological point of view. METHODS AND RESULTS Using a yeast two-hybrid screening, we detected a direct interaction between beta-tubulin and the KCNQ1 N-terminus. The interaction was confirmed by co-immunoprecipitation of beta-tubulin and KCNQ1 in transfected COS-7 cells and in guinea pig cardiomyocytes. Using immunocytochemistry, we also found that they co-localized in cardiomyocytes. We tested the effects of microtubule-disrupting and -stabilizing agents (colchicine and taxol, respectively) on the KCNQ1-KCNE1 channel activity in COS-7 cells by means of the permeabilized-patch configuration of the patch-clamp technique. None of these agents altered I(Ks). In addition, colchicine did not modify the current response to osmotic challenge. On the other hand, the I(Ks) response to protein kinase A (PKA)-mediated stimulation depended on microtubule polymerization in COS-7 cells and in cardiomyocytes. Strikingly, KCNQ1 channel and Yotiao phosphorylation by PKA-detected by phospho-specific antibodies-was maintained, as was the association of the two partners. CONCLUSION We propose that the KCNQ1-KCNE1 channel directly interacts with microtubules and that this interaction plays a major role in coupling PKA-dependent phosphorylation of KCNQ1 with I(Ks) activation.
Collapse
|
5
|
Hirabayashi S, Inagaki M, Hisada T. Effects of wall stress on the dynamics of ventricular fibrillation: a simulation study using a dynamic mechanoelectric model of ventricular tissue. J Cardiovasc Electrophysiol 2008; 19:730-9. [PMID: 18284504 DOI: 10.1111/j.1540-8167.2008.01099.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION To investigate the mechanisms underlying the increased prevalence of ventricular fibrillation (VF) in the mechanically compromised heart, we developed a fully coupled electromechanical model of the human ventricular myocardium. METHODS AND RESULTS The model formulated the biophysics of specific ionic currents, excitation-contraction coupling, anisotropic nonlinear deformation of the myocardium, and mechanoelectric feedback (MEF) through stretch-activated channels. Our model suggests that sustained stretches shorten the action potential duration (APD) and flatten the electrical restitution curve, whereas stretches applied at the wavefront prolong the APD. Using this model, we examined the effects of mechanical stresses on the dynamics of spiral reentry. The strain distribution during spiral reentry was complex, and a high strain-gradient region was located in the core of the spiral wave. The wavefront around the core was highly stretched, even at lower pressures, resulting in prolongation of the APD and extension of the refractory area in the wavetail. As the left ventricular pressure increased, the stretched area became wider and the refractory area was further extended. The extended refractory area in the wavetail facilitated the wave breakup and meandering of tips through interactions between the wavefront and wavetail. CONCLUSIONS This simulation study indicates that mechanical loading promotes meandering and wave breaks of spiral reentry through MEF. Mechanical loading under pathological conditions may contribute to the maintenance of VF through these mechanisms.
Collapse
Affiliation(s)
- Satoko Hirabayashi
- Computational Biomechanics Laboratory, Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
6
|
Missan S, Linsdell P, McDonald TF. Involvement of tyrosine kinase in the hyposmotic stimulation of I Ks in guinea-pig ventricular myocytes. Pflugers Arch 2007; 456:489-500. [DOI: 10.1007/s00424-007-0424-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/24/2007] [Accepted: 12/06/2007] [Indexed: 11/30/2022]
|
7
|
Leem CH, Ha JM, Ansari MZ, Cho C. Intracellular osmotic gradient generation in rat ventricle myocyte by using a micro-perfusion system. ACTA ACUST UNITED AC 2007; 70:445-53. [PMID: 17207533 DOI: 10.1016/j.jbbm.2006.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 10/29/2006] [Accepted: 11/04/2006] [Indexed: 11/29/2022]
Abstract
This experimental study describes the fabrication and analysis of a micro-perfusion system that can be used in many bioengineering experiments to create rapid, large regional intracellular changes within single ventricular myocytes. The myocyte was a kind of osmometer since the cell volume was found to be strongly dependent on the perfusion solution osmolarity. This volume change was measured, indirectly, by measuring the cell width change using video-microscopy and image analysis software. Jacob's equation was used to model these results successfully. Some dual perfusion experiments to see the effects of the localized perfusion of different osmotic solutions to generate an osmotic gradient inside myocytes were also investigated. This device can be useful for studying the effects of localized pH or osmotic gradients inside myocytes, estimating intracellular ion diffusion rates, and inducing regional changes in other important intracellular ions.
Collapse
Affiliation(s)
- Chae-Hun Leem
- Department of Physiology, University of Ulsan College of Medicine, 388-1, Songpa-Ku, Poongnap-Dong, Seoul 138-736, Korea
| | | | | | | |
Collapse
|
8
|
Otway R, Vandenberg JI, Guo G, Varghese A, Castro ML, Liu J, Zhao J, Bursill JA, Wyse KR, Crotty H, Baddeley O, Walker B, Kuchar D, Thorburn C, Fatkin D. Stretch-Sensitive KCNQ1Mutation. J Am Coll Cardiol 2007; 49:578-86. [PMID: 17276182 DOI: 10.1016/j.jacc.2006.09.044] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/05/2006] [Accepted: 09/27/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study sought to evaluate mutations in genes encoding the slow component of the cardiac delayed rectifier K+ current (I(Ks)) channel in familial atrial fibrillation (AF). BACKGROUND Although AF can have a genetic etiology, links between inherited gene defects and acquired factors such as atrial stretch have not been explored. METHODS Mutation screening of the KCNQ1, KCNE1, KCNE2, and KCNE3 genes was performed in 50 families with AF. The effects of mutant protein on cardiac I(Ks) activation were evaluated using electrophysiological studies and human atrial action potential modeling. RESULTS One missense KCNQ1 mutation, R14C, was identified in 1 family with a high prevalence of hypertension. Atrial fibrillation was present only in older individuals who had developed atrial dilation and who were genotype positive. Patch-clamp studies of wild-type or R14C KCNQ1 expressed with KCNE1 in CHO cells showed no statistically significant differences between wild-type and mutant channel kinetics at baseline, or after activation of adenylate cyclase with forskolin. After exposure to hypotonic solution to elicit cell swelling/stretch, mutant channels showed a marked increase in current, a leftward shift in the voltage dependence of activation, altered channel kinetics, and shortening of the modeled atrial action potential duration. CONCLUSIONS These data suggest that the R14C KCNQ1 mutation alone is insufficient to cause AF. Rather, we suggest a model in which a "second hit", such as an environmental factor like hypertension, which promotes atrial stretch and thereby unmasks an inherited defect in ion channel kinetics (the "first hit"), is required for AF to be manifested. Such a model would also account for the age-related increase in AF development.
Collapse
Affiliation(s)
- Robyn Otway
- Sr. Bernice Research Program in Inherited Heart Diseases, Darlinghurst, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Missan S, Linsdell P, McDonald TF. Role of kinases and G-proteins in the hyposmotic stimulation of cardiac IKs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1641-52. [PMID: 16836976 DOI: 10.1016/j.bbamem.2006.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 05/19/2006] [Accepted: 05/30/2006] [Indexed: 12/16/2022]
Abstract
Exposure of cardiac myocytes to hyposmotic solution stimulates slowly-activating delayed-rectifying K(+) current (I(Ks)) via unknown mechanisms. In the present study, I(Ks) was measured in guinea-pig ventricular myocytes that were pretreated with modulators of cell signaling processes, and then exposed to hyposmotic solution. Pretreatment with compounds that (i) inhibit serine/threonine kinase activity (10-100 microM H89; 200 microM H8; 50 microM H7; 1 microM bisindolylmaleimide I; 10 microM LY294002; 50 microM PD98059), (ii) stimulate serine/threonine kinase activity (1-5 microM forskolin; 0.1 microM phorbol-12-myristate-13-acetate; 10 microM acetylcholine; 0.1 microM angiotensin II; 20 microM ATP), (iii) suppress G-protein activation (10 mM GDPbetaS), or (iv) disrupt the cytoskeleton (10 microM cytochalasin D), had little effect on the stimulation of I(Ks) by hyposmotic solution. In marked contrast, pretreatment with tyrosine kinase inhibitor tyrphostin A25 (20 microM) strongly attenuated both the hyposmotic stimulation of I(Ks) in myocytes and the hyposmotic stimulation of current in BHK cells co-expressing Ks channel subunits KCNQ1 and KCNE1. Since attenuation of hyposmotic stimulation was not observed in myocytes and cells pretreated with inactive tyrphostin A1, we conclude that TK has an important role in the response of cardiac Ks channels to hyposmotic solution.
Collapse
Affiliation(s)
- Sergey Missan
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
10
|
Ren Z, Baumgarten CM. Antagonistic regulation of swelling-activated Cl- current in rabbit ventricle by Src and EGFR protein tyrosine kinases. Am J Physiol Heart Circ Physiol 2005; 288:H2628-36. [PMID: 15681694 PMCID: PMC1305917 DOI: 10.1152/ajpheart.00992.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of swelling-activated Cl(-) current (I(Cl,swell)) is complex, and multiple signaling cascades are implicated. To determine whether protein tyrosine kinase (PTK) modulates I(Cl,swell) and to identify the PTK involved, we studied the effects of a broad-spectrum PTK inhibitor (genistein), selective inhibitors of Src (PP2, a pyrazolopyrimidine) and epidermal growth factor receptor (EGFR) kinase (PD-153035), and a protein tyrosine phosphatase (PTP) inhibitor (orthovanadate). I(Cl,swell) evoked by hyposmotic swelling was increased 181 +/- 17% by 100 microM genistein, and the genistein-induced current was blocked by the selective I(Cl,swell) blocker tamoxifen (10 microM). Block of Src with PP2 (10 microM) stimulated tamoxifen-sensitive I(Cl,swell) by 234 +/- 27%, mimicking genistein, whereas the inactive analog of PP2, PP3 (10 microM), had no effect. Moreover, block of PTP by orthovanadate (1 mM) inhibited I(Cl,swell) and prevented its stimulation by PP2. In contrast with block of Src, block of EGFR kinase with PD-153035 (20 nM) inhibited I(Cl,swell). Several lines of evidence argue that the PP2-stimulated current was I(Cl,swell): 1) the stimulation was volume dependent, 2) the current was blocked by tamoxifen, 3) the current outwardly rectified with both symmetrical and physiological Cl(-) gradients, and 4) the current reversed near the Cl(-) equilibrium potential. To rule out contributions of other currents, Cd(2+) (0.2 mM) and Ba(2+) (1 mM) were added to the bath. Surprisingly, Cd(2+) suppressed the decay of I(Cl,swell), and Cd(2+) plus Ba(2+) eliminated time-dependent currents between -100 and +100 mV. Nevertheless, these divalent ions did not eliminate I(Cl,swell) or prevent its stimulation by PP2. The results indicate that tyrosine phosphorylation controls I(Cl,swell), and regulation of I(Cl,swell) by the Src and EGFR kinase families of PTK is antagonistic.
Collapse
Affiliation(s)
- Zuojun Ren
- Department of Cardiology, China Medical University, Shenyang, Liaoning, People’s Republic of China; and Departments of
- Physiology and
| | - Clive M. Baumgarten
- Physiology and
- Internal Medicine (Cardiology) and Biomedical Engineering, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia
- Address for reprint requests and other correspondence: C. M. Baumgarten, Dept. of Physiology, Box 980551, Medical College of Virginia, Virginia Commonwealth Univ., 1101 E. Marshall St., Richmond, VA 23298 (E-mail:
)
| |
Collapse
|
11
|
Li XL, Zheng HF, Jin ZY, Yang M, Li ZL, Xu WX. Effect of actin microfilament on potassium current in guinea pig gastric myocytes. World J Gastroenterol 2004; 10:3303-7. [PMID: 15484305 PMCID: PMC4572300 DOI: 10.3748/wjg.v10.i22.3303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the effect of actin microfilament on potassium current and hyposmotic membrane stretch-induced increase of potassium current in gastric antral circular myocytes of guinea pig.
METHODS: Whole-cell patch clamp technique was used to record potassium current in isolated gastric myocyes.
RESULTS: When the membrane potential was clamped at -60 mV, an actin microfilament disruptor, cytochanlasin-B(Cyt-B, 20 μmol/L in pipette) increased calcium-activated potassium current (IK(Ca)) and delayed rectifier potassium current (IK(V)) to 138.4% ± 14.3% and 142.1% ± 13.1% respectively at +60 mV. In the same condition, an actin microfilament stabilizer phalloidin(20 μmol/L in pipette) inhibited IK(Ca) and IK(V) to 74.2% ± 7.1% and 75.4% ± 9.9% respectively. At the holding potential of -60 mV, hyposmotic membrane stretch increased IK(Ca) and IK(V) by 50.6% ± 9.7% and 24.9% ± 3.3% at +60 mV respectively. In the presence of cytochalasin-B and phalloidin (20 μmol/L, in the pipette) condition, hyposmotic membrane stretch also increased IK(Ca) by 44.5% ± 7.9% and 55.7% ± 9.8% at +60 mV respectively. In the same condition, cytochalasin-B and phalloidin also increased IK(V) by 23.0% ± 5.5% and 30.3% ± 4.5% respectively. However, Cyt-B and phalloidin did not affect the amplitude of hyposmotic membrane stretch-induced increase of IK(Ca) and IK(V).
CONCLUSION: Actin microfilaments regulate the activities of potassium channels, but they are not involved in the process of hyposmotic membrane stretch-induced increase of potassium currents in gastric antral circular myocytes of guinea pig.
Collapse
Affiliation(s)
- Xiang-Lan Li
- Department of Physiology, Yanbian University College of Medicine, Yanji, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
12
|
Orikabe M, Hirano Y, Isobe M, Hiraoka M. Block of recombinant KCNQ1/KCNE1 K+ channels (IKs) by intracellular Na+ and its implications on action potential repolarization. ACTA ACUST UNITED AC 2004; 53:417-25. [PMID: 15038840 DOI: 10.2170/jjphysiol.53.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
I(Ks), the slow component of delayed rectifier K+ current, plays an important role for the repolarization of ventricular action potential. We investigated the block of I(Ks) by intracellular Na+ ([Na+](i)), using a heterologous expression system (KCNQ1/KCNE1 expressed in COS7 cells), since this well-known blocking action on various K+ channels has not been fully or quantitatively characterized in I(Ks) current. The Na+ block of I(Ks) was concentration- and voltage-dependent and was described by a conventional binding-site model (Woodhull AM: J Gen Physiol 61: 687-708, 1973). In physiological ionic conditions, the blocking action was operating noticeably with Delta ("electrical" distance of the block site) approximately 0.6 and K(d)(0) (apparent dissociation constant at 0 mV) approximately 300 mM. Because K(d)(0) was a function of intra- and extracellular K+ concentrations, changes in ionic environments not only of [Na+](i), but also of [K+](o), affected the amplitude of I(Ks) through the modulation of the Na+ block. Based on these experimental data, we analyzed the effects of Na+ block on action potentials by a computer simulation study, using the Luo-Rudy model. In a physiological ionic environment, the Na+ block of I(Ks) contributed little to modifying action potentials. However, when action potential duration (APD) was marginally prolonged because of decreased I(Ks), as observed in M cells under the conditions of bradycardia and low [K+](o), the Na+ block of I(Ks) may contribute to arrhythmogenesis through the facilitation of early afterdepolarizations (EADs).
Collapse
Affiliation(s)
- Minako Orikabe
- Department of Cardiovascular Medicine, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | | | | | | |
Collapse
|
13
|
Ogura T, Matsuda H, Shibamoto T, Imanishi S. Osmosensitive properties of rapid and slow delayed rectifier K+ currents in guinea-pig heart cells. Clin Exp Pharmacol Physiol 2003; 30:616-22. [PMID: 12940877 DOI: 10.1046/j.1440-1681.2003.03869.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Changes in cell volume affect a variety of sarcolemmal transport processes in the heart. To study whether osmotically induced cell volume shrinkage has functional consequences for K+ channel activity, guinea-pig cardiac preparations were superfused with hyperosmotic Tyrode's solution (1.2-2-fold normal osmolality). Membrane currents and cell surface dimensions were measured from whole-cell patch-clamped ventricular myocytes and membrane potentials were recorded from isolated ventricular muscles and non-patched myocytes. 2. Hyperosmotic treatment of myocytes quickly (< 3 min to steady state) shrank cell volume (approximately 20% reduction in 1.5-fold hyperosmotic solution) and depressed the delayed rectifier K+ current (IK). Analysis using different activation protocols and a selective inhibitor (5 micro mol/L E4031) indicated that the IK inhibition was due to osmolality and cell volume-dependent changes in the two subtypes of the classical cardiac IK (rapidly activating IKr and slowly activating IKs); 1.5-fold hyperosmotic treatment depressed the amplitudes of IKr and IKs by approximately 30 and 50%, respectively. 3. Superfusion of muscles and myocytes with 1.5-fold hyperosmotic solution lengthened the action potentials by 14-17%. Hyperosmotic treatment also caused 6-7 mV hyperpolarization that is most likely due to a concentrating of intracellular K+. 4. The inhibition of IK helps explain the lengthening of action potentials observed in osmotically stressed heart cells. These results, together with the reported IK stimulation by hyposmotic cell swelling, provide further support for cell volume-sensitive properties of cardiac electrical activity.
Collapse
Affiliation(s)
- Toshitsugu Ogura
- Second Department of Physiology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku-gun, Ishikawa-ken 920-0293, Japan.
| | | | | | | |
Collapse
|
14
|
Janse MJ, Coronel R, Wilms-Schopman FJG, de Groot JR. Mechanical effects on arrhythmogenesis: from pipette to patient. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 82:187-95. [PMID: 12732278 DOI: 10.1016/s0079-6107(03)00015-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mechanical stimuli delivered to the precordium can, if strong enough and timed at the beginning of the T-wave, induce ventricular premature beats or runs of ventricular tachycardia and even fibrillation. On the other hand, there are reports that a properly timed "chest thump" can terminate ventricular tachycardia, or can act as pacemaker stimuli during an episode of asystole. It is likely that in these cases mechanical energy is translated to an electrical stimulus. There are more subtle ways in which mechanical stimuli, mediated by stretch, can exert electrophysiological effects, and the most common name to describe these effects is mechanoelectrical feedback. Most studies have concentrated on acute stretch or dilatation, while the effects of chronic stretch, which may clinically be more important, are difficult to evaluate since they are accompanied by other factors, such as hypertrophy, heart failure, fibrosis, neurohumeral disturbances, and electrolyte abnormalities, all of which have arrhythmogenic effects. There are a number of ion channels that are activated following stretch. Stretch during diastole usually leads to a depolarization, resembling a delayed afterdepolarization, which may reach threshold and initiate a ventricular premature beat. Stretch during systole usually shortens the action potential, but action potential prolongation, resulting in early afterdepolarizations has been described as well. The arrhythmias during acute myocardial ischaemia occur in two phases: the 1A phase between 2 and 10 min following coronary artery occlusion, and the 1B phase between 18 and 30 min. Experiments will be described, indicating that the ventricular premature beats of the 1B phase, which may induce ventricular fibrillation, are caused by stretch of the border between ischaemic and normal myocardium. Briefly, 1B arrhythmias are much less frequent in the isolated perfused heart than in the heart in situ, but in working, ejecting isolated hearts, the number of 1B arrhythmias is similar to those in the in situ heart. The ventricular premature beats have a focal origin at the border, and they occur more often after a pause-induced potentiated contraction.
Collapse
Affiliation(s)
- Michiel J Janse
- Academic Meidcal Center, Cardiovascular Research and Experimental and Molecular Cardiology Group, Cardiovascular Research Institute, Room J 1-27 Meibergdreef 9, 1105, Amsterdam, Netherlands.
| | | | | | | |
Collapse
|
15
|
Matsuoka S, Sarai N, Kuratomi S, Ono K, Noma A. Role of individual ionic current systems in ventricular cells hypothesized by a model study. THE JAPANESE JOURNAL OF PHYSIOLOGY 2003; 53:105-23. [PMID: 12877767 DOI: 10.2170/jjphysiol.53.105] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Individual ion channels or exchangers are described with a common set of equations for both the sinoatrial node pacemaker and ventricular cells. New experimental data are included, such as the new kinetics of the inward rectifier K+ channel, delayed rectifier K+ channel, and sustained inward current. The gating model of Shirokov et al. (J Gen Physiol 102: 1005-1030, 1993) is used for both the fast Na+ and L-type Ca2+ channels. When combined with a contraction model (Negroni and Lascano: J Mol Cell Cardiol 28: 915-929, 1996), the experimental staircase phenomenon of contraction is reconstructed. The modulation of the action potential by varying the external Ca2+ and K+ concentrations is well simulated. The conductance of I(CaL) dominates membrane conductance during the action potential so that an artificial increase of I(to), I(Kr), I(Ks), or I(KATP) magnifies I(CaL) amplitude. Repolarizing current is provided sequentially by I(Ks), I(Kr), and I(K1). Depression of ATP production results in the shortening of action potential through the activation of I(KATP). The ratio of Ca2+ released from SR over Ca2+ entering via I(CaL) (Ca2+ gain = approximately 15) in excitation-contraction coupling well agrees with the experimental data. The model serves as a predictive tool in generating testable hypotheses.
Collapse
Affiliation(s)
- Satoshi Matsuoka
- Department of Physiology and Biophysics, Kyoto University Graduate School of Medicine, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
16
|
Kubota T, Horie M, Takano M, Yoshida H, Otani H, Sasayama S. Role of KCNQ1 in the cell swelling-induced enhancement of the slowly activating delayed rectifier K(+) current. THE JAPANESE JOURNAL OF PHYSIOLOGY 2002; 52:31-9. [PMID: 12047800 DOI: 10.2170/jjphysiol.52.31] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cell swelling enhances a slowly activating delayed rectifier K(+) current (I(Ks)) in cardiac cells. This investigation was undertaken to determine which of the two structural units reconstituting the I(Ks) channel, KCNQ1 (KvLQT1) and KCNE1 (minK/IsK), plays a key role in the cell swelling-induced I(Ks) enhancement and to dissect a possible involvement of tyrosine phosphorylation therein. KCNQ1 was transiently expressed alone or together with KCNE1 in a heterologous mammalian cell line. Two distinct whole-cell membrane currents were separately observed during the exposure of transfected cells to various degrees of hyposmotic solutions. A hyposmotic challenge (0.7 times control osmolarity) resulted in about a twofold increase not only in the heteromeric KCNQ1/KCNE1, but also in the homomeric KCNQ1 channel currents. There was no significant difference in the incremental ratio of current amplitude in response to hyposmotic stress between the two KCNQ1-related currents, and the cells expressing the heteromeric channels swelled less than those with the homomeric channels or without the exogenous ones. The cell swelling-induced I(Ks) enhancement was not affected by a protein tyrosine kinase (PTK) inhibitor, by genistein (50 microM), or by an inhibitor of phosphotyrosine phosphatase (PTP), orthovanadate (500 microM), or a nonhydrolyzable ATP analogue, AMP-PNP (5 mM). Taken together, it is very likely that KCNQ1 might primarily participate in the I(Ks) enhancement by osmotic cell swelling. The obligatory dependence of the I(Ks) augmentation on PTK activity remained to be demonstrated, at least, in this expression system.
Collapse
Affiliation(s)
- Tomoyuki Kubota
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8057 Japan
| | | | | | | | | | | |
Collapse
|
17
|
Han C, Tavi P, Weckström M. Role of the sarcoplasmic reticulum in the modulation of rat cardiac action potential by stretch. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 167:111-7. [PMID: 10571546 DOI: 10.1046/j.1365-201x.1999.00598.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the role of sarcoplasmic reticulum (SR) in the modulation on rat action potentials by stretch. The action potentials were recorded intracellularly from rat atrial myocytes in an isolated atrial preparation with small, physiological stretch produced by pressure (1-3 mmHg) inside the atria. The SR function was inhibited by pharmacological interventions, either with ryanodine (100 nmol L-1), thapsigargin (10 nmol L-1) or caffeine (1 mmol L-1). The duration of action potentials was increased by stretch from 1 to 3 mmHg. The repolarization indices APD30% (P < 0.05), APD60% (P < 0.01), and APD90% (P < 0.01) were all increased significantly (n=10). Ryanodine, thapsigargin, and caffeine inhibited this prolongation, or even reversed the effect with repolarization indices APD30% (P < 0.05) and APD60% (P < 0.05) which decreased in stretch with thapsigargin treatment. As a conclusion, we suggest that the SR and the intracellular calcium balance play an important role in the modulation of the shape of the rat atrial action potential during stretch.
Collapse
Affiliation(s)
- C Han
- Department of Physiology, Division of Biophysics, University of Oulu, Oulu, Finland
| | | | | |
Collapse
|
18
|
Cazorla O, Pascarel C, Brette F, Le Guennec JY. Modulation of ions channels and membrane receptors activities by mechanical interventions in cardiomyocytes: possible mechanisms for mechanosensitivity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:29-58. [PMID: 10070211 DOI: 10.1016/s0079-6107(98)00036-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- O Cazorla
- Laboratoire de Physiologie des Cellules Cardiaques et Vasculaires, CNRS UMR 6542, Faculté des Sciences, Tours, France
| | | | | | | |
Collapse
|
19
|
Wright AR, Rees SA. Cardiac cell volume: crystal clear or murky waters? A comparison with other cell types. Pharmacol Ther 1998; 80:89-121. [PMID: 9804055 DOI: 10.1016/s0163-7258(98)00025-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The osmolarity of bodily fluids is strictly controlled so that most cells do not experience changes in osmotic pressure under normal conditions, but osmotic changes can occur in pathological states such as ischemia, septic shock, and diabetic coma. The primary effect of a change in osmolarity is to acutely alter cell volume. If the osmolarity around a cell is decreased, the cell swells, and if increased, it shrinks. In order to tolerate changes in osmolarity, cells have evolved volume regulatory mechanisms activated by osmotic challenge to normalise cell volume and maintain normal function. In the heart, osmotic stress is encountered during a period of myocardial ischemia when metabolites such as lactate accumulate intracellularly and to a certain degree extracellularly, and cause cell swelling. This swelling may be exacerbated further on reperfusion when the hyperosmotic extracellular milieu is replaced by normosmotic blood. In this review, we describe the theory and mechanisms of volume regulation, and draw on findings in extracardiac tissues, such as kidney, whose responses to osmotic change are well characterised. We then describe cell volume regulation in the heart, with particular emphasis on the effect of myocardial ischemia. Finally, we describe the consequences of osmotic cell swelling for the cell and for the heart, and discuss the implications for antiarrhythmic drug efficacy. Using computer modelling, we have summated the changes induced by cell swelling, and predict that swelling will shorten the action potential. This finding indicates that cell swelling is an important component of the response to ischemia, a component modulating the excitability of the heart.
Collapse
Affiliation(s)
- A R Wright
- University Laboratory of Physiology, University of Oxford, UK
| | | |
Collapse
|
20
|
Gillis AM, Mathison HJ, Kulisz E, Lester WM. Dispersion of ventricular repolarization in left ventricular hypertrophy: influence of afterload and dofetilide. J Cardiovasc Electrophysiol 1998; 9:988-97. [PMID: 9786080 DOI: 10.1111/j.1540-8167.1998.tb00140.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Increased dispersion of ventricular repolarization is observed in cardiac hypertrophy and is associated with sudden cardiac death. At present, there is little information about the effects of cardiac hemodynamics and antiarrhythmic drugs on dispersion of repolarization in disease states. We compared the effects of increasing afterload and the Class III antiarrhythmic drug, dofetilide, on dispersion of ventricular repolarization in hypertrophied rabbit hearts to normal rabbit hearts. METHODS AND RESULTS Cardiac hypertrophy was induced in rabbits by abdominal aortic banding. Isolated hearts were studied 49+/-4 days postsurgery in the working heart mode using a blood-buffer perfusate. The action potential duration (APD) was measured from eight sites on the epicardium of the heart at low (50+/-7 mmHg) afterload and high afterload (97+/-12 mmHg) at baseline and during dofetilide perfusion. APD dispersion, determined as the difference between the maximal and minimal APD, was greater in hypertrophied hearts (42+/-8 msec) compared with control hearts (26+/-8 msec, P < 0.05) at baseline and low afterload. Increasing afterload caused a decrease in APD dispersion in hypertrophied hearts (P < 0.05) but not in control hearts, and APD dispersion was similar in hypertrophied hearts (31+/-9 msec) compared with control hearts (30+/-9 msec, P = NS). During dofetilide perfusion, APD dispersion remained greater in hypertrophied hearts (60+/-39 msec) compared with control hearts (30+/-13 msec, P < 0.05) at low afterload but not high afterload. Increasing afterload caused shortening of the APD in most regions of the control hearts, whereas APD did not shorten significantly in hypertrophied hearts at baseline and tended to increase during dofetilide perfusion. During dofetilide perfusion, the maximal change in APD recorded from the posterior wall of the left ventricle following an increase in afterload was -18+/-21 msec in control hearts and 7+/-21 ms in hypertrophied hearts (P < 0.05). CONCLUSION Epicardial APD dispersion decreases in hypertrophied hearts following an increase in afterload, and this response is mediated in part by the absence of afterload-induced shortening of the APD. This effect may be due in part to altered responses of the delayed rectifying current to cardiac loading conditions in the setting of cardiac hypertrophy.
Collapse
Affiliation(s)
- A M Gillis
- Department of Medicine, The University of Calgary, Alberta, Canada.
| | | | | | | |
Collapse
|
21
|
Riemer TL, Sobie EA, Tung L. Stretch-induced changes in arrhythmogenesis and excitability in experimentally based heart cell models. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H431-42. [PMID: 9683430 DOI: 10.1152/ajpheart.1998.275.2.h431] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanoelectric coupling in the heart is well documented and has been suggested as a cause of arrhythmia. One hypothesized mechanism for the stretch sensitivity of cardiac muscle is the presence of stretch-activated channels (SACs). This study uses modeling to explore the influence of SACs on cardiac resting potential, excitation threshold, and action potential in the context of arrhythmia. We added a putative SAC, modeled as a linear, time-independent conductance with reversal potential of -20 or -50 mV, to guinea pig and frog ventricular membrane models. Increased stretch conductance led to resting potential depolarization, a decreased excitation threshold, altered action potential duration, and, under certain conditions, early afterdepolarizations. We conclude that stretch increases cellular excitability, making the heart prone to ectopic activity. Regional effects of stretch on action potential duration can vary and are influenced by factors such as the SAC reversal potential, ionic conditions, and baseline currents, all of which may lead to an increased dispersion of refractoriness throughout the heart and therefore an increased risk of arrhythmia.
Collapse
Affiliation(s)
- T L Riemer
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
22
|
Bowles DK, Laughlin MH, Sturek M. Exercise training increases K+-channel contribution to regulation of coronary arterial tone. J Appl Physiol (1985) 1998; 84:1225-33. [PMID: 9516188 DOI: 10.1152/jappl.1998.84.4.1225] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study examined whether regulation of coronary tone in conduit arteries (>1.0 mm ID) is altered by exercise training. Yucatan miniature swine were treadmill trained for 16-20 wk (Ex) and compared with sedentary counterparts (Sed). Endothelium-denuded arterial rings were stretched to optimal length and allowed to equilibrate for 60 min. Inhibition of either Ca2+-activated channels [1 mM tetraethylammonium (TEA) or 10 nM iberiotoxin (IBTX)] or voltage-dependent K+ channels [1 mM 4-aminopyridine (4-AP)] significantly increased resting tension in both groups; however, the effect of all K+-channel blockers was greater in Ex. Addition of 1 mM sodium nitroprusside reduced resting tension in both groups, confirming the presence of active basal tone; however, sodium nitroprusside-sensitive tone was increased approximately twofold in Ex compared with Sed group. Perforated patch-clamp experiments on isolated smooth muscle cells demonstrated no effect of exercise training on whole cell TEA-sensitive, 4-AP-sensitive, or basal K+ current. Similarly, whereas TEA, 4-AP, and IBTX all decreased resting membrane potential, there was no difference in depolarization between groups. The greater effect of TEA on resting tension in Ex could be mimicked in Sed by addition of the Ca2+-channel agonist BAY K 8644. In conclusion, the greater response to K+-channel blockers after exercise training is consistent with an increased contribution of K+ channels to regulation of basal tone in conduit coronary arteries. The lack of an effect of training on K+ current characteristics or membrane potential responses in isolated cells suggests that a requisite factor for enhanced K+-channel activation in arteries from Ex, possibly stretch, is absent in isolated cells.
Collapse
Affiliation(s)
- D K Bowles
- Vascular Biology Laboratory, Dalton Cardiovascular Research Center, and Departments of Physiology and Veterinary Biomedical Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
23
|
Clemo HF, Baumgarten CM. Swelling-activated Gd3+-sensitive cation current and cell volume regulation in rabbit ventricular myocytes. J Gen Physiol 1997; 110:297-312. [PMID: 9276755 PMCID: PMC2229368 DOI: 10.1085/jgp.110.3.297] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/1997] [Accepted: 06/20/1997] [Indexed: 02/05/2023] Open
Abstract
The role of swelling-activated currents in cell volume regulation is unclear. Currents elicited by swelling rabbit ventricular myocytes in solutions with 0.6-0.9x normal osmolarity were studied using amphotericin perforated patch clamp techniques, and cell volume was examined concurrently by digital video microscopy. Graded swelling caused graded activation of an inwardly rectifying, time-independent cation current (ICir,swell) that was reversibly blocked by Gd3+, but ICir,swell was not detected in isotonic or hypertonic media. This current was not related to IK1 because it was insensitive to Ba2+. The PK/PNa ratio for ICir,swell was 5.9 +/- 0.3, implying that inward current is largely Na+ under physiological conditions. Increasing bath K+ increased gCir,swell but decreased rectification. Gd3+ block was fitted with a K0.5 of 1.7 +/- 0.3 microM and Hill coefficient, n, of 1.7 +/- 0.4. Exposure to Gd3+ also reduced hypotonic swelling by up to approximately 30%, and block of current preceded the volume change by approximately 1 min. Gd3+-induced cell shrinkage was proportional to ICir,swell when ICir,swell was varied by graded swelling or Gd3+ concentration and was voltage dependent, reflecting the voltage dependence of ICir,swell. Integrating the blocked ion flux and calculating the resulting change in osmolarity suggested that ICir,swell was sufficient to explain the majority of the volume change at -80 mV. In addition, swelling activated an outwardly rectifying Cl- current, ICl,swell. This current was absent after Cl- replacement, reversed at ECl, and was blocked by 1 mM 9-anthracene carboxylic acid. Block of ICl,swell provoked a 28% increase in swelling in hypotonic media. Thus, both cation and anion swelling-activated currents modulated the volume of ventricular myocytes. Besides its effects on cell volume, ICir,swell is expected to cause diastolic depolarization. Activation of ICir, swell also is likely to affect contraction and other physiological processes in myocytes.
Collapse
Affiliation(s)
- H F Clemo
- Department of Internal Medicine (Cardiology), Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | |
Collapse
|
24
|
Abstract
Myocardial ischaemia can precipitate fatal arrhythmia, the leading cause of mortality in the western world. During ischaemia, cardiac myocytes swell rapidly. Such changes in cell volume radically alter the electrophysiology of these cells. Ischaemia also alters the potency of antiarrhythmic drugs, with the effectiveness of some antiarrhythmics being diminished. Conversely, the ideal antiarrhythmic would be 'switched on' by ischaemia. As well as making the drug more potent, this would minimize unwanted side-effects by targeting diseased tissue alone. In this article, Anthony Wright and Siân Rees discuss possible strategies for developing 'ischaemia-selective' antiarrhythmics. To date, research has focused on potentiation of antiarrhythmic action by membrane depolarization, as occurs during ischaemia. The authors suggest that cell swelling alters drug efficacy and propose that this could represent a new way of targeting ischaemia.
Collapse
Affiliation(s)
- A R Wright
- University Laboratory of Physiology, Oxford, UK
| | | |
Collapse
|
25
|
Wright AR, Rees SA. Targeting ischaemia - cell swelling and drug efficacy. Trends Pharmacol Sci 1997. [DOI: 10.1016/s0165-6147(97)90627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Wang Z, Mitsuiye T, Rees SA, Noma A. Regulatory volume decrease of cardiac myocytes induced by beta-adrenergic activation of the Cl- channel in guinea pig. J Gen Physiol 1997; 110:73-82. [PMID: 9234172 PMCID: PMC2229356 DOI: 10.1085/jgp.110.1.73] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/1996] [Accepted: 04/30/1997] [Indexed: 02/04/2023] Open
Abstract
A new method was developed to automatically measure the thickness of a single ventricular myocyte of guinea-pig heart. A fine marker was attached on the cell's upper surface and changes in its vertical position were measured by focusing it under the microscope. When the osmolarity of the bath solution was varied, the cell thickness reached a new steady level without any obvious regulatory volume change within the period of observation up to 15 min. The cell thickness was 7.8 +/- 0.2 microns (n = 94) in the control Tyrode solution and was varied to 130.4 +/- 3.1% (n = 10), 119.1 +/- 1.1% (n = 50), 87.2 +/- 1.9% (n = 9), and 75.6 +/- 3.2% (n = 5) of control at 50, 70, 130, and 200% osmolarity, respectively. The application of a Cl- channel blocker, 500 microM anthracene-9-carboxylic acid (9AC) did not modify these osmotic volume changes. We discovered that the application of isoprenaline induced a regulatory volume decrease (RVD) in cells inflated by hypotonic solutions. This isoprenaline-induced RVD was inhibited by antagonizing beta-adrenergic stimulation with acetylcholine. The isoprenaline-induced RVD was mimicked by the external application of 8-bromoadenosine 3':5'-cyclic monophosphate. The RVD was inhibited by blocking the cAMP-dependent Cl- channel (ICl, rAMP) with 9AC but was insensitive to 4,4'-diisothiocyanostilbene-2,2'-dissulphonate (DIDS). Taken together these data suggest an involvement of ICl, cAMP activation in the RVD. Whole cell voltage clamp experiments revealed activation of ICl, cAMP by isoprenaline under the comparable conditions. The cardiac cell volume may be regulated by the autonomic nervous activity.
Collapse
Affiliation(s)
- Z Wang
- Department of Physiology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
27
|
Takagi S, Kihara Y, Mitsuiye T, Wang Z, Sasayama S. Effects of tilisolol, a nonselective beta-adrenergic blocker, on the membrane currents of isolated guinea pig ventricular myocytes. J Cardiovasc Pharmacol 1997; 29:593-8. [PMID: 9213200 DOI: 10.1097/00005344-199705000-00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of tilisolol, a nonselective beta-adrenoceptor blocker, on transmembrane ionic currents were studied in single guinea pig ventricular myocytes by using the whole-cell voltage clamp technique. In the absence of beta-adrenergic stimulation, 10 microM tilisolol, a concentration higher than that used in the clinical therapeutic regimen, did not affect the L-type Ca2+ current (ICa), the inwardly rectifying K+ current (IK1), or the delayed rectifying K+ current (IK). In addition, it did not induce currents through the adenosine triphosphate (ATP)-sensitive K+ channels. However, under the nonselective beta-adrenergic stimulation with 1 microM isoproterenol, 1 microM tilisolol almost completely reversed the agonist-induced increase of IK. The increase of ICa by isoproterenol was blocked only by approximately 30% with tilisolol. We concluded that, at therapeutic concentrations (0.01-0.15 microM), tilisolol is a pure beta-adrenoceptor antagonist that has no direct effects on the transmembrane ionic currents of mammalian ventricular myocytes, such as ICa, IK1, or IK. Comparison of the dose-dependent effects of tilisolol on ICa and IK suggested that tilisolol may selectively inhibit catecholamine-induced increase of IK at the therapeutic concentrations. The virtually selective inhibition of IK, leaving ICa intact, may be favorable to prevent the catecholamine-induced arrhythmia without inhibiting contraction.
Collapse
Affiliation(s)
- S Takagi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | |
Collapse
|