1
|
Naumov VD, Sinitsyna AP, Semidetnov IS, Bakumenko SS, Berezhnoy AK, Sergeeva TO, Slotvitsky MM, Tsvelaya VA, Agladze KI. Self-organization of conducting pathways explains complex wave trajectories in procedurally interpolated fibrotic cardiac tissue: A virtual replica study. CHAOS (WOODBURY, N.Y.) 2025; 35:033143. [PMID: 40106338 DOI: 10.1063/5.0240140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
In precision cardiology, virtual replicas (VRs) hold promise for predicting arrhythmias by leveraging patient-specific data and biophysics knowledge. A crucial first step is creating VRs of cardiac tissue based on retrospective patient data. However, VRs aim to replicate biopotential conduction directly, whereas only non-invasive methods are feasible for clinical use on real organs and tissues. This discrepancy challenges our understanding of VR applicability limits. This study aims to enhance the mathematical template of VR by developing an in vitro validation complement. We performed a frame-by-frame comparison of in vitro optical mapping of biopotential conduction with VR predictions. Patient-specific self-organized tissue samples from human induced pluripotent stem cell-derived cardiomyocytes (CMs) with diffuse fibrosis were utilized as VR prototypes. High-resolution optical mapping recordings (Δx = 117 ± 4 μm, Δt = 7.69 ms) and immunostaining were used to reproduce fibrotic samples of linear size 7.5 mm. We applied data-driven Bayesian optimization of the Cellular Potts model (CPM) to study wave propagation at the subcellular level. The modified CPM accurately reflected the "perinatal window" until the 20th day of differentiation, affecting CMs' self-organization. The percolation threshold of virtual conductive pathways reached 0.26 (0.27 ± 0.03 of CMs in vitro), yielding a spatial correlation of amplitude maps with Pearson's coefficients of 0.83 ± 0.02. As a proof-of-concept, we demonstrated that CPM-enhanced VR could predict wavefront trajectories in optical mapping recordings, showing that approximating fibrosis distribution is crucial for improving VR prediction accuracy.
Collapse
Affiliation(s)
- V D Naumov
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - A P Sinitsyna
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - I S Semidetnov
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - S S Bakumenko
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - A K Berezhnoy
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - T O Sergeeva
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - M M Slotvitsky
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
- M.F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow 129110, Russia
- Department of Research and Development, ITMO University, 197101 St. Petersburg, Russia
| | - V A Tsvelaya
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
- M.F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow 129110, Russia
- Department of Research and Development, ITMO University, 197101 St. Petersburg, Russia
| | - K I Agladze
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
- M.F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow 129110, Russia
| |
Collapse
|
2
|
Crispino A, Loppini A, Uzelac I, Iravanian S, Bhatia NK, Burke M, Filippi S, Fenton FH, Gizzi A. A cross species thermoelectric and spatiotemporal analysis of alternans in live explanted hearts using dual voltage-calcium fluorescence optical mapping. Physiol Meas 2024; 45:065001. [PMID: 38772394 DOI: 10.1088/1361-6579/ad4e8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Objective.Temperature plays a crucial role in influencing the spatiotemporal dynamics of the heart. Electrical instabilities due to specific thermal conditions typically lead to early period-doubling bifurcations and beat-to-beat alternans. These pro-arrhythmic phenomena manifest in voltage and calcium traces, resulting in compromised contractile behaviors. In such intricate scenario, dual optical mapping technique was used to uncover unexplored multi-scale and nonlinear couplings, essential for early detection and understanding of cardiac arrhythmia.Approach.We propose a methodological analysis of synchronized voltage-calcium signals for detecting alternans, restitution curves, and spatiotemporal alternans patterns under different thermal conditions, based on integral features calculation. To validate our approach, we conducted a cross-species investigation involving rabbit and guinea pig epicardial ventricular surfaces and human endocardial tissue under pacing-down protocols.Main results.We show that the proposed integral feature, as the area under the curve, could be an easily applicable indicator that may enhance the predictability of the onset and progression of cardiac alternans. Insights into spatiotemporal correlation analysis of characteristic spatial lengths across different heart species were further provided.Significance.Exploring cross-species thermoelectric features contributes to understanding temperature-dependent proarrhythmic regimes and their implications on coupled spatiotemporal voltage-calcium dynamics. The findings provide preliminary insights and potential strategies for enhancing arrhythmia detection and treatment.
Collapse
Affiliation(s)
- Anna Crispino
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Loppini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Ilija Uzelac
- Virginia Commonwealth University, Richmond, VA, United States of America
| | - Shahriar Iravanian
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Neal K Bhatia
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Michael Burke
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Simonetta Filippi
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Alessio Gizzi
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
3
|
Chin SH, Allen E, Brack KE, Ng GA. Autonomic neuro-cardiac profile of electrical, structural and neuronal remodeling in myocardial infarction-induced heart failure. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 5:100044. [PMID: 37745157 PMCID: PMC10512199 DOI: 10.1016/j.jmccpl.2023.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
Aims Heart failure is a clinical syndrome typified by abnormal autonomic tone, impaired ventricular function, and increased arrhythmic vulnerability. This study aims to examine electrophysiological, structural and neuronal remodeling following myocardial infarction in a rabbit heart failure model to establish its neuro-cardiac profile. Methods and results Weight-matched adult male New Zealand White rabbits (3.2 ± 0.1 kg, n = 25) were randomized to have coronary ligation surgeries (HF group, n = 13) or sham procedures (SHM group, n = 12). Transthoracic echocardiography was performed six weeks post-operatively. On week 8, dual-innervated Langendorff-perfused heart preparations were set up for terminal experiments. Seventeen hearts (HF group, n = 10) underwent ex-vivo cardiac MRI. Twenty-two hearts (HF group, n = 7) were examined histologically. Electrical remodeling and abnormal autonomic profile were evident in HF rabbits with exaggerated sympathetic and attenuated vagal effect on ventricular fibrillation threshold, ventricular refractoriness and restitution curves, in addition to increased spatial restitution dispersion. Histologically, there was significant neuronal enlargement at the heart hila and conus arteriosus in HF. Structural remodeling was characterized by quantifiable myocardial scarring, enlarged left ventricles, altered ventricular geometry and impaired contractility. Conclusion In an infarct-induced rabbit heart failure model, extensive structural, neuronal and electrophysiological remodeling in conjunction with abnormal autonomic profile provide substrates for ventricular arrhythmias.
Collapse
Affiliation(s)
- Shui Hao Chin
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Emily Allen
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
| | - Kieran E. Brack
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
| | - G. André Ng
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, UK
| |
Collapse
|
4
|
Abstract
Cardiac alternans arises from dynamical instabilities in the electrical and calcium cycling systems of the heart, and often precedes ventricular arrhythmias and sudden cardiac death. In this review, we integrate clinical observations with theory and experiment to paint a holistic portrait of cardiac alternans: the underlying mechanisms, arrhythmic manifestations and electrocardiographic signatures. We first summarize the cellular and tissue mechanisms of alternans that have been demonstrated both theoretically and experimentally, including 3 voltage-driven and 2 calcium-driven alternans mechanisms. Based on experimental and simulation results, we describe their relevance to mechanisms of arrhythmogenesis under different disease conditions, and their link to electrocardiographic characteristics of alternans observed in patients. Our major conclusion is that alternans is not only a predictor, but also a causal mechanism of potentially lethal ventricular and atrial arrhythmias across the full spectrum of arrhythmia mechanisms that culminate in functional reentry, although less important for anatomic reentry and focal arrhythmias.
Collapse
Affiliation(s)
- Zhilin Qu
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - James N. Weiss
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
5
|
Huang C, Song Z, Qu Z. Synchronization of spatially discordant voltage and calcium alternans in cardiac tissue. Phys Rev E 2022; 106:024406. [PMID: 36109882 PMCID: PMC11316446 DOI: 10.1103/physreve.106.024406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/18/2022] [Indexed: 06/01/2023]
Abstract
The heart is an excitable medium which is excited by membrane potential depolarization and propagation. Membrane potential depolarization brings in calcium (Ca) through the Ca channels to trigger intracellular Ca release for contraction of the heart. Ca also affects voltage via Ca-dependent ionic currents, and thus, voltage and Ca are bidirectionally coupled. It has been shown that the voltage subsystem or the Ca subsystem can generate its own dynamical instabilities which are affected by their bidirectional couplings, leading to complex dynamics of action potential and Ca cycling. Moreover, the dynamics become spatiotemporal in tissue in which cells are diffusively coupled through voltage. A widely investigated spatiotemporal dynamics is spatially discordant alternans (SDA) in which action potential duration (APD) or Ca amplitude exhibits temporally period-2 and spatially out-of-phase patterns, i.e., APD-SDA and Ca-SDA patterns, respectively. However, the mechanisms of formation, stability, and synchronization of APD-SDA and Ca-SDA patterns remain incompletely understood. In this paper, we use cardiac tissue models described by an amplitude equation, coupled iterated maps, and reaction-diffusion equations with detailed physiology (the ionic model) to perform analytical and computational investigations. We show that, when the Ca subsystem is stable, the Ca-SDA pattern always follows the APD-SDA pattern, and thus, they are always synchronized. When the Ca subsystem is unstable, synchronization of APD-SDA and Ca-SDA patterns depends on the stabilities of both subsystems, their coupling strengths, and the spatial scales of the initial Ca-SDA patterns. Spontaneous (initial condition-independent) synchronization is promoted by enhancing APD instability and reducing Ca instability as well as stronger Ca-to-APD and APD-to-Ca coupling, a pattern formation caused by dynamical instabilities. When Ca is more unstable and APD is less unstable or APD-to-Ca coupling is weak, synchronization of APD-SDA and Ca-SDA patterns is promoted by larger initially synchronized Ca-SDA clusters, i.e., initial condition-dependent synchronization. The synchronized APD-SDA and Ca-SDA patterns can be locked in-phase, antiphase, or quasiperiodic depending on the coupling relationship between APD and Ca. These theoretical and simulation results provide mechanistic insights into the APD-SDA and Ca-SDA dynamics observed in experimental studies.
Collapse
Affiliation(s)
- Chunli Huang
- School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou 510420, China
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zhen Song
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
An Automata-Based Cardiac Electrophysiology Simulator to Assess Arrhythmia Inducibility. MATHEMATICS 2022. [DOI: 10.3390/math10081293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Personalized cardiac electrophysiology simulations have demonstrated great potential to study cardiac arrhythmias and help in therapy planning of radio-frequency ablation. Its application to analyze vulnerability to ventricular tachycardia and sudden cardiac death in infarcted patients has been recently explored. However, the detailed multi-scale biophysical simulations used in these studies are very demanding in terms of memory and computational resources, which prevents their clinical translation. In this work, we present a fast phenomenological system based on cellular automata (CA) to simulate personalized cardiac electrophysiology. The system is trained on biophysical simulations to reproduce cellular and tissue dynamics in healthy and pathological conditions, including action potential restitution, conduction velocity restitution and cell safety factor. We show that a full ventricular simulation can be performed in the order of seconds, emulate the results of a biophysical simulation and reproduce a patient’s ventricular tachycardia in a model that includes a heterogeneous scar region. The system could be used to study the risk of arrhythmia in infarcted patients for a large number of scenarios.
Collapse
|
7
|
Leong KMW, Ng FS, Shun-Shin MJ, Koa-Wing M, Qureshi N, Whinnett ZI, Linton NF, Lefroy D, Francis DP, Harding SE, Davies DW, Peter NS, Lim PB, Behr E, Lambiase PD, Varnava A, Kanagaratnam P. Non-invasive detection of exercise-induced cardiac conduction abnormalities in sudden cardiac death survivors in the inherited cardiac conditions. Europace 2021; 23:305-312. [PMID: 33083839 DOI: 10.1093/europace/euaa248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/18/2020] [Indexed: 11/12/2022] Open
Abstract
AIMS Rate adaptation of the action potential ensures spatial heterogeneities in conduction across the myocardium are minimized at different heart rates providing a protective mechanism against ventricular fibrillation (VF) and sudden cardiac death (SCD), which can be quantified by the ventricular conduction stability (V-CoS) test previously described. We tested the hypothesis that patients with a history of aborted SCD due to an underlying channelopathy or cardiomyopathy have a reduced capacity to maintain uniform activation following exercise. METHODS AND RESULTS Sixty individuals, with (n = 28) and without (n = 32) previous aborted-SCD event underwent electro-cardiographic imaging recordings following exercise treadmill test. These included 25 Brugada syndrome, 13 hypertrophic cardiomyopathy, 12 idiopathic VF, and 10 healthy controls. Data were inputted into the V-CoS programme to calculate a V-CoS score that indicate the percentage of ventricle that showed no significant change in ventricular activation, with a lower score indicating the development of greater conduction heterogeneity. The SCD group, compared to those without, had a lower median (interquartile range) V-CoS score at peak exertion [92.8% (89.8-96.3%) vs. 97.3% (94.9-99.1%); P < 0.01] and 2 min into recovery [95.2% (91.1-97.2%) vs. 98.9% (96.9-99.5%); P < 0.01]. No significant difference was observable later into recovery at 5 or 10 min. Using the lowest median V-CoS scores obtained during the entire recovery period post-exertion, SCD survivors had a significantly lower score than those without for each of the different underlying aetiologies. CONCLUSION Data from this pilot study demonstrate the potential use of this technique in risk stratification for the inherited cardiac conditions.
Collapse
Affiliation(s)
- Kevin Ming Wei Leong
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Fu Siong Ng
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Matthew J Shun-Shin
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Michael Koa-Wing
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Norman Qureshi
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Zachary I Whinnett
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Nick F Linton
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - David Lefroy
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Darrel P Francis
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Sian E Harding
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - D Wyn Davies
- Imperial College Healthcare NHS Trust, London, UK
| | - Nicholas S Peter
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Phang Boon Lim
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Elijah Behr
- St George's University Hospitals NHS Trust, London, UK
| | | | - Amanda Varnava
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Prapa Kanagaratnam
- Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
8
|
You T, Luo C, Zhang K, Zhang H. Electrophysiological Mechanisms Underlying T-Wave Alternans and Their Role in Arrhythmogenesis. Front Physiol 2021; 12:614946. [PMID: 33746768 PMCID: PMC7969788 DOI: 10.3389/fphys.2021.614946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
T-wave alternans (TWA) reflects every-other-beat alterations in the morphology of the electrocardiogram ST segment or T wave in the setting of a constant heart rate, hence, in the absence of heart rate variability. It is believed to be associated with the dispersion of repolarization and has been used as a non-invasive marker for predicting the risk of malignant cardiac arrhythmias and sudden cardiac death as numerous studies have shown. This review aims to provide up-to-date review on both experimental and simulation studies in elucidating possible mechanisms underlying the genesis of TWA at the cellular level, as well as the genesis of spatially concordant/discordant alternans at the tissue level, and their transition to cardiac arrhythmia. Recent progress and future perspectives in antiarrhythmic therapies associated with TWA are also discussed.
Collapse
Affiliation(s)
- Tingting You
- Key Lab of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Cunjin Luo
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Kevin Zhang
- School of Medicine, Imperial College of London, London, United Kingdom
| | - Henggui Zhang
- Key Lab of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Muñoz LM, Ampofo MO, Cherry EM. Controllability of voltage- and calcium-driven cardiac alternans in a map model. CHAOS (WOODBURY, N.Y.) 2021; 31:023139. [PMID: 33653066 DOI: 10.1063/5.0040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Certain cardiac arrhythmias are preceded by electrical alternans, a state characterized by beat-to-beat alternation in cellular action potential duration. Cardiac alternans may arise from different mechanisms including instabilities in voltage or intracellular calcium cycling. Although a number of techniques have been proposed to suppress alternans, these methods have mainly been tested using models that do not support calcium-driven alternans. Therefore, it is important to understand how control methods may perform when alternans is driven by instabilities in calcium cycling. In this study, we applied controllability analysis to a discrete map of alternans dynamics in a cardiac cell. We compared two different controllability measures to determine to what extent different control strategies could suppress alternans and tested these predictions using three feedback controllers. We found a modal controllability measure, unlike the minimum singular value of the controllability matrix, consistently indicated the control strategies requiring the least control effort and yielding the smallest closed-loop eigenvalue. In addition, action potential duration was identified as the most effective variable through which control can be applied, regardless of alternans mechanism, although sarcoplasmic reticulum calcium load was also useful for the calcium-driven alternans cases.
Collapse
Affiliation(s)
- Laura M Muñoz
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623-5602, USA
| | - Mark O Ampofo
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623-5602, USA
| | - Elizabeth M Cherry
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-4017, USA
| |
Collapse
|
10
|
Nicolson WB, Smith MI, Vali Z, Samani NJ, Ng GA. Application of two novel electrical restitution-based ECG markers of ventricular arrhythmia to patients with nonischemic cardiomyopathy. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:284-292. [PMID: 33336815 DOI: 10.1111/pace.14143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Sudden cardiac death (SCD) risk assessment is limited, particularly in patients with nonischemic cardiomyopathies. This is the first application, in patients with cardiomyopathies, of two novel risk markers, regional restitution instability index (R2I2) and peak electrocardiogram restitution slope (PERS), which have been shown to be predictive of ventricular arrhythmias (VA) or death in ischemic heart disease patients. METHODS Blinded retrospective study of 50 patients: 33 dilated cardiomyopathy and 17 other; undergoing electrophysiological study (EPS) for SCD risk stratification, and 29 controls with structurally normal hearts undergoing EPS. R2I2 was calculated from an EPS using electrocardiogram surrogates for action potential duration and diastolic interval. Cut-offs for high and low R2I2/PERS were predefined. RESULTS R2I2 was significantly higher in study than control patients (0.99 ± 0.05 vs. 0.63 ± 0.04, p < .001). PERS showed a trend to higher values in the study group (1.18[0.63] vs. 1.09[0.54], p = .07). During median follow up of 5.6 years [interquartile range 1.9 years], nine study patients reached the endpoint of VA/death. Patients who experienced VA/death showed trends to higher mean R2I2 (1.14 ± 0.07 vs.0.95 ± 0.05, p = .12) and PERS (1.46[0.49] vs. 1.13[0.62], p = .22). A Cox proportional hazards model using grouped markers: R2I2 < 1.03 + PERS < 1.21/either R2I2 ≥ 1.03 or PERS ≥ 1.21/R2I2 ≥ 1.03 + PERS ≥ 1.21; significantly predicted VA/death (p = .02) with a hazard ratio per positive component of 3.2 (95% confidence interval 1.2-8.8). CONCLUSION R2I2≥ 1.03 + PERS ≥ 1.21 may predict VA/death in patients with cardiomyopathies. R2I2 ≥ 1.03 + PERS ≥ 1.21 have the potential to play an important role in SCD risk stratification in cardiomyopathies but their validity should be confirmed in a larger study.
Collapse
Affiliation(s)
- William B Nicolson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.,University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Matthew I Smith
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Zakariyya Vali
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.,University Hospitals of Leicester NHS Trust, Leicester, UK
| | - G André Ng
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.,University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
11
|
Huang C, Song Z, Di Z, Qu Z. Stability of spatially discordant repolarization alternans in cardiac tissue. CHAOS (WOODBURY, N.Y.) 2020; 30:123141. [PMID: 33380024 PMCID: PMC7928074 DOI: 10.1063/5.0029209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/18/2020] [Indexed: 06/02/2023]
Abstract
Cardiac alternans, a period-2 behavior of excitation and contraction of the heart, is a precursor of ventricular arrhythmias and sudden cardiac death. One form of alternans is repolarization or action potential duration alternans. In cardiac tissue, repolarization alternans can be spatially in-phase, called spatially concordant alternans, or spatially out-of-phase, called spatially discordant alternans (SDA). In SDA, the border between two out-of-phase regions is called a node in a one-dimensional cable or a nodal line in a two-dimensional tissue. In this study, we investigate the stability and dynamics of the nodes and nodal lines of repolarization alternans driven by voltage instabilities. We use amplitude equation and coupled map lattice models to derive theoretical results, which are compared with simulation results from the ionic model. Both conduction velocity restitution induced SDA and non-conduction velocity restitution induced SDA are investigated. We show that the stability and dynamics of the SDA nodes or nodal lines are determined by the balance of the tensions generated by conduction velocity restitution, convection due to action potential propagation, curvature of the nodal lines, and repolarization and coupling heterogeneities. Our study provides mechanistic insights into the different SDA behaviors observed in experiments.
Collapse
Affiliation(s)
| | - Zhen Song
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zengru Di
- Department of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Zhilin Qu
- Author to whom correspondence should be addressed:
| |
Collapse
|
12
|
Zasadny FM, Dyavanapalli J, Dowling NM, Mendelowitz D, Kay MW. Cholinergic stimulation improves electrophysiological rate adaptation during pressure overload-induced heart failure in rats. Am J Physiol Heart Circ Physiol 2020; 319:H1358-H1368. [PMID: 33006920 PMCID: PMC7792708 DOI: 10.1152/ajpheart.00293.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Left ventricular (LV) electrical maladaptation to increased heart rate in failing myocardium contributes to morbidity and mortality. Recently, cardiac cholinergic neuron activation reduced loss of contractile function resulting from chronic trans-aortic constriction (TAC) in rats. We hypothesized that chronic activation of cardiac cholinergic neurons would also reduce TAC-induced derangement of cardiac electrical activity. METHODS We investigated electrophysiological rate adaptation in TAC rat hearts with and without daily chemogenetic activation of hypothalamic oxytocin neurons for downstream cardiac cholinergic neuron stimulation. Sprague Dawley rat hearts were excised, perfused, and optically mapped under dynamic pacing after 16 weeks of TAC with or without 12 weeks of daily chemogenetic treatment. Action potential duration (APD60) and conduction velocity (CV) maps were analyzed for regional rate adaptation to dynamic pacing. RESULTS At lower pacing rates, untreated TAC induced elevated LV epicardial APD60. Fitted APD60 steady state (APDss) was reduced in treated TAC hearts. At higher pacing rates, treatment heterogeneously reduced APD60 compared to untreated TAC hearts. Variance of conduction loss was reduced in treated hearts compared to untreated hearts during fast pacing. However, CV was markedly reduced in both treated and untreated TAC hearts throughout dynamic pacing. At 150msec pacing cycle length, APD60 v. diastolic interval (DI) dispersion was reduced in treated hearts compared to untreated hearts. CONCLUSIONS Chronic activation of cardiac cholinergic neurons improved electrophysiological adaptation to increases in pacing rate during development of TAC-induced heart failure. This provides insight into the electrophysiological benefits of cholinergic stimulation as a treatment for heart failure patients.
Collapse
Affiliation(s)
| | | | | | - David Mendelowitz
- Pharmacology and Physiology, George Washington University, United States
| | - Matthew W Kay
- Biomedical Engineering, George Washington University, United States
| |
Collapse
|
13
|
Nayyar S, Downar E, Bhaskaran AP, Massé S, Nanthakumar K. Signature signal strategy: Electrogram-based ventricular tachycardia mapping. Heart Rhythm 2020; 17:2000-2009. [PMID: 32590152 DOI: 10.1016/j.hrthm.2020.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
Abstract
Multiple decades of work have recognized complexities of substrates responsible for ventricular tachycardia (VT). There is sufficient evidence that 3 critical components of a re-entrant VT circuit, namely, region of slow conduction, zone of unidirectional block, and exit site, are located in spatial vicinity to each other in the ventricular scar. Each of these components expresses characteristic electrograms in sinus rhythm, at initiation of VT, and during VT, respectively. Despite this, abnormal electrograms are widely targeted without appreciation of these signature electrograms during contemporary VT ablation. Our aim is to stimulate physiology-based VT mapping and a targeted ablation of VT. In this article, we focus on these 3 underappreciated aspects of the physiology of ischemic scar-related VT circuits that have practical applications during a VT ablation procedure. We explore the anatomic and functional elements underlying these distinctive bipolar electrograms, specifically the contribution of tissue branching, conduction restitution, and wave curvature to the substrate, as they pertain to initiation and maintenance of VT. We propose a VT ablation approach based on these 3 electrogram features that can be a potential practical means to recognize critical elements of a VT circuit and target ablation.
Collapse
Affiliation(s)
- Sachin Nayyar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada; Division of Cardiology, Townsville University Hospital, Townsville, Queensland, Australia; Department of Medicine, James Cook University, Townsville, Queensland, Australia.
| | - Eugene Downar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Abhishek P Bhaskaran
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Hsieh YC, Hsieh WH, Li CH, Liao YC, Lin JC, Weng CJ, Lo MT, Tuan TC, Lin SF, Yeh HI, Huang JL, Haugan K, Larsen BD, Lin YJ, Lin WW, Wu TJ, Chen SA. Ventricular divergence correlates with epicardial wavebreaks and predicts ventricular arrhythmia in isolated rabbit hearts during therapeutic hypothermia. PLoS One 2020; 15:e0228818. [PMID: 32084145 PMCID: PMC7034916 DOI: 10.1371/journal.pone.0228818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/23/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION High beat-to-beat morphological variation (divergence) on the ventricular electrogram during programmed ventricular stimulation (PVS) is associated with increased risk of ventricular fibrillation (VF), with unclear mechanisms. We hypothesized that ventricular divergence is associated with epicardial wavebreaks during PVS, and that it predicts VF occurrence. METHOD AND RESULTS Langendorff-perfused rabbit hearts (n = 10) underwent 30-min therapeutic hypothermia (TH, 30°C), followed by a 20-min treatment with rotigaptide (300 nM), a gap junction modifier. VF inducibility was tested using burst ventricular pacing at the shortest pacing cycle length achieving 1:1 ventricular capture. Pseudo-ECG (p-ECG) and epicardial activation maps were simultaneously recorded for divergence and wavebreaks analysis, respectively. A total of 112 optical and p-ECG recordings (62 at TH, 50 at TH treated with rotigaptide) were analyzed. Adding rotigaptide reduced ventricular divergence, from 0.13±0.10 at TH to 0.09±0.07 (p = 0.018). Similarly, rotigaptide reduced the number of epicardial wavebreaks, from 0.59±0.73 at TH to 0.30±0.49 (p = 0.036). VF inducibility decreased, from 48±31% at TH to 22±32% after rotigaptide infusion (p = 0.032). Linear regression models showed that ventricular divergence correlated with epicardial wavebreaks during TH (p<0.001). CONCLUSION Ventricular divergence correlated with, and might be predictive of epicardial wavebreaks during PVS at TH. Rotigaptide decreased both the ventricular divergence and epicardial wavebreaks, and reduced the probability of pacing-induced VF during TH.
Collapse
Affiliation(s)
- Yu-Cheng Hsieh
- Cardiovascular Center, Taichung Veterans General Hospital and Chiayi Branch, Taichung and Chiayi, Taiwan
- Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Data Science and Big Data Analytics and Department of Financial Engineering, Providence University, Taichung, Taiwan
- * E-mail:
| | - Wan-Hsin Hsieh
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Cheng-Hung Li
- Cardiovascular Center, Taichung Veterans General Hospital and Chiayi Branch, Taichung and Chiayi, Taiwan
- Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Data Science and Big Data Analytics and Department of Financial Engineering, Providence University, Taichung, Taiwan
| | - Ying-Chieh Liao
- Cardiovascular Center, Taichung Veterans General Hospital and Chiayi Branch, Taichung and Chiayi, Taiwan
- Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Data Science and Big Data Analytics and Department of Financial Engineering, Providence University, Taichung, Taiwan
| | - Jiunn-Cherng Lin
- Cardiovascular Center, Taichung Veterans General Hospital and Chiayi Branch, Taichung and Chiayi, Taiwan
- Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Data Science and Big Data Analytics and Department of Financial Engineering, Providence University, Taichung, Taiwan
| | - Chi-Jen Weng
- Cardiovascular Center, Taichung Veterans General Hospital and Chiayi Branch, Taichung and Chiayi, Taiwan
- Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Data Science and Big Data Analytics and Department of Financial Engineering, Providence University, Taichung, Taiwan
| | - Men-Tzung Lo
- Research Center for Adaptive Data Analysis, National Central University, Jhongli City, Taiwan
| | - Ta-Chuan Tuan
- Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shien-Fong Lin
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Institute of Biomedical Engineering, National Chiao-Tung University, Hsinchu, Taiwan
| | - Hung-I Yeh
- Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Mackay Medical College, New Taipei City, Taiwan
| | - Jin-Long Huang
- Cardiovascular Center, Taichung Veterans General Hospital and Chiayi Branch, Taichung and Chiayi, Taiwan
- Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Ketil Haugan
- Department of Cardiology, Zealand University Hospital, Roskilde, Denmark
| | | | - Yenn-Jiang Lin
- Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Wen Lin
- Cardiovascular Center, Taichung Veterans General Hospital and Chiayi Branch, Taichung and Chiayi, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Tsu-Juey Wu
- Cardiovascular Center, Taichung Veterans General Hospital and Chiayi Branch, Taichung and Chiayi, Taiwan
- Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shih-Ann Chen
- Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Huang C, Song Z, Landaw J, Qu Z. Spatially Discordant Repolarization Alternans in the Absence of Conduction Velocity Restitution. Biophys J 2020; 118:2574-2587. [PMID: 32101718 DOI: 10.1016/j.bpj.2020.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 01/20/2023] Open
Abstract
Spatially discordant alternans (SDA) of action potential duration (APD) has been widely observed in cardiac tissue and is linked to cardiac arrhythmogenesis. Theoretical studies have shown that conduction velocity restitution (CVR) is required for the formation of SDA. However, this theory is not completely supported by experiments, indicating that other mechanisms may exist. In this study, we carried out computer simulations using mathematical models of action potentials to investigate the mechanisms of SDA in cardiac tissue. We show that when CVR is present and engaged, such as fast pacing from one side of the tissue, the spatial pattern of APD in the tissue undergoes either spatially concordant alternans or SDA, independent of initial conditions or tissue heterogeneities. When CVR is not engaged, such as simultaneous pacing of the whole tissue or under normal/slow heart rates, the spatial pattern of APD in the tissue can have multiple solutions, including spatially concordant alternans and different SDA patterns, depending on heterogeneous initial conditions or pre-existing repolarization heterogeneities. In homogeneous tissue, curved nodal lines are not stable, which either evolve into straight lines or disappear. However, in heterogeneous itssue, curved nodal lines can be stable, depending on their initial locations and shapes relative to the structure of the heterogeneity. Therefore, CVR-induced SDA and non-CVR-induced SDA exhibit different dynamical properties, which may be responsible for the different SDA properties observed in experimental studies and arrhythmogenesis in different clinical settings.
Collapse
Affiliation(s)
- Chunli Huang
- Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Systems Science, Beijing Normal University, Beijing, China
| | - Zhen Song
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Julian Landaw
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
16
|
Chin SH, Allen E, Brack KE, Ng GA. Effects of sympatho-vagal interaction on ventricular electrophysiology and their modulation during beta-blockade. J Mol Cell Cardiol 2020; 139:201-212. [PMID: 32004506 DOI: 10.1016/j.yjmcc.2020.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 11/16/2022]
Abstract
AIMS The effects of sympatho-vagal interaction on heart rate (HR) changes are characterized by vagal dominance resulting in accentuated antagonism. Complex autonomic modulation of ventricular electrophysiology may exert prognostic arrhythmic impact. We examined the effects of concurrent sympathetic (SNS) and vagus (VNS) nerve stimulation on ventricular fibrillation threshold (VFT) and standard restitution (RT) in an isolated rabbit heart preparation with intact dual autonomic innervation, with and without beta-blockade. METHODS AND RESULTS Monophasic action potentials were recorded from left ventricular epicardial surface of dual-innervated isolated heart preparations from New Zealand white rabbits (n = 18). HR, VFT and RT were measured during different stimulation protocols (Protocol 1: VNS-SNS; Protocol 2: SNS-VNS) involving low- and high-frequency stimulations. A sub-study of Protocol 2 was performed in the presence of metoprolol tartrate. In both protocols, HR changes were characterized by vagal-dominant bradycardic component, affirming accentuated antagonism. During concurrent high-frequency VNS (HV), SNS prevails in lowering VFT in a frequency-sensitive manner during low (LS) or high (HS)-frequency stimulations (HV-LS: -2.8 ± 0.8 mA; HV-HS: -4.0 ± 0.9 mA, p < .05 vs. HV), with accompanying steepening of relative RT slope gradients (HV-LS: 223.54 ± 37.41%; HV-HS: 295.20 ± 60.86%, p < .05 vs. HV). In protocol 2, low (LV) and high (HV) vagal stimulations during concurrent HS raised VFT (HS-LV: 1.0 ± 0.4 mA; HS-HV: 3.0 ± 0.6 mA, p < .05 vs HS) with associated flattening of RT slopes (HS-LV: 32.40 ± 4.97%;HS-HV: 38.07 ± 6.37%; p < .05 vs HS). Metoprolol abolished accentuated antagonism in HR changes, reduced VFT and flattened RT globally during SNS-VNS. CONCLUSIONS Accentuated antagonism is absent in ventricular electrophysiological changes during sympatho-vagal interaction with sympathetic effect prevailing, suggesting a different mechanism at the ventricular level from heart rate effects. Metoprolol nullified accentuated antagonism with additional anti-fibrillatory effect beyond adrenergic blockade during sympatho-vagal stimulations.
Collapse
Affiliation(s)
- Shui Hao Chin
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK; University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Emily Allen
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
| | - Kieran E Brack
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
| | - G André Ng
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK; University Hospitals of Leicester NHS Trust, Leicester, UK; NIHR Leicester Biomedical Research Centre, Leicester, UK.
| |
Collapse
|
17
|
Neuber JU, Varghese F, Pakhomov AG, Zemlin CW. Using Nanosecond Shocks for Cardiac Defibrillation. Bioelectricity 2019; 1:240-246. [PMID: 32685917 DOI: 10.1089/bioe.2019.0030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The purpose of this review article is to summarize our current understanding of the efficacy and safety of cardiac defibrillation with nanosecond shocks. Experiments in isolated hearts, using optical mapping of the electrical activity, have demonstrated that nanosecond shocks can defibrillate with lower energies than conventional millisecond shocks. Single defibrillation strength nanosecond shocks do not cause obvious damage, but repeated stimulation leads to deterioration of the hearts. In isolated myocytes, nanosecond pulses can also stimulate at lower energies than at longer pulses and cause less electroporation (propidium uptake). The mechanism is likely electroporation of the plasma membrane. Repeated stimulation leads to distorted calcium gradients.
Collapse
Affiliation(s)
- Johanna U Neuber
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia
| | - Frency Varghese
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Christian W Zemlin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
18
|
Shun-Shin MJ, Leong KMW, Ng FS, Linton NWF, Whinnett ZI, Koa-Wing M, Qureshi N, Lefroy DC, Harding SE, Lim PB, Peters NS, Francis DP, Varnava AM, Kanagaratnam P. Ventricular conduction stability test: a method to identify and quantify changes in whole heart activation patterns during physiological stress. Europace 2019; 21:1422-1431. [PMID: 30820561 DOI: 10.1093/europace/euz015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/02/2019] [Indexed: 11/14/2022] Open
Abstract
AIMS Abnormal rate adaptation of the action potential is proarrhythmic but is difficult to measure with current electro-anatomical mapping techniques. We developed a method to rapidly quantify spatial discordance in whole heart activation in response to rate cycle length changes. We test the hypothesis that patients with underlying channelopathies or history of aborted sudden cardiac death (SCD) have a reduced capacity to maintain uniform activation following exercise. METHODS AND RESULTS Electrocardiographical imaging (ECGI) reconstructs >1200 electrograms (EGMs) over the ventricles from a single beat, providing epicardial whole heart activation maps. Thirty-one individuals [11 SCD survivors; 10 Brugada syndrome (BrS) without SCD; and 10 controls] with structurally normal hearts underwent ECGI vest recordings following exercise treadmill. For each patient, we calculated the relative change in EGM local activation times (LATs) between a baseline and post-exertion phase using custom written software. A ventricular conduction stability (V-CoS) score calculated to indicate the percentage of ventricle that showed no significant change in relative LAT (<10 ms). A lower score reflected greater conduction heterogeneity. Mean variability (standard deviation) of V-CoS score over 10 consecutive beats was small (0.9 ± 0.5%), with good inter-operator reproducibility of V-CoS scores. Sudden cardiac death survivors, compared to BrS and controls, had the lowest V-CoS scores post-exertion (P = 0.011) but were no different at baseline (P = 0.50). CONCLUSION We present a method to rapidly quantify changes in global activation which provides a measure of conduction heterogeneity and proof of concept by demonstrating SCD survivors have a reduced capacity to maintain uniform activation following exercise.
Collapse
Affiliation(s)
- Matthew J Shun-Shin
- National Heart & Lung Institute, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, Du Cane Road, London, UK
| | - Kevin M W Leong
- National Heart & Lung Institute, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, Du Cane Road, London, UK
| | - Fu Siong Ng
- National Heart & Lung Institute, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, Du Cane Road, London, UK
| | - Nicholas W F Linton
- National Heart & Lung Institute, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, Du Cane Road, London, UK
| | - Zachary I Whinnett
- National Heart & Lung Institute, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, Du Cane Road, London, UK
| | - Michael Koa-Wing
- National Heart & Lung Institute, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, Du Cane Road, London, UK
| | - Norman Qureshi
- National Heart & Lung Institute, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, Du Cane Road, London, UK
| | - David C Lefroy
- Imperial College Healthcare NHS Trust, Du Cane Road, London, UK
| | - Sian E Harding
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Phang Boon Lim
- National Heart & Lung Institute, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, Du Cane Road, London, UK
| | - Nicholas S Peters
- National Heart & Lung Institute, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, Du Cane Road, London, UK
| | - Darrel P Francis
- National Heart & Lung Institute, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, Du Cane Road, London, UK
| | - Amanda M Varnava
- National Heart & Lung Institute, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, Du Cane Road, London, UK
| | - Prapa Kanagaratnam
- National Heart & Lung Institute, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, Du Cane Road, London, UK
| |
Collapse
|
19
|
Hernández-Romero I, Guillem MS, Figuera C, Atienza F, Fernández-Avilés F, M. Climent A. Optical imaging of voltage and calcium in isolated hearts: Linking spatiotemporal heterogeneities and ventricular fibrillation initiation. PLoS One 2019; 14:e0215951. [PMID: 31086382 PMCID: PMC6516663 DOI: 10.1371/journal.pone.0215951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 04/11/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alternans have been associated with the development of ventricular fibrillation and its control has been proposed as antiarrhythmic strategy. However, cardiac arrhythmias are a spatiotemporal phenomenon in which multiple factors are involved (e.g. calcium and voltage spatial alternans or heterogeneous conduction velocity) and how an antiarrhythmic drug modifies these factors is poorly understood. OBJECTIVE The objective of the present study is to evaluate the relation between spatial electrophysiological properties (i.e. spatial discordant alternans and conduction velocity) and the induction of ventricular fibrillation (VF) when a calcium blocker is applied. METHODS The mechanisms of initiation of VF were studied by simultaneous epicardial voltage and calcium optical mapping in isolated rabbit hearts using an incremental fast pacing protocol. The additional value of analyzing spatial phenomena in the generation of unidirectional blocks and reentries as precursors of VF was depicted. Specifically, the role of action potential duration (APD), calcium transients (CaT), spatial alternans and conduction velocity in the initiation of VF was evaluated during basal conditions and after the administration of verapamil. RESULTS Our results enhance the relation between (1) calcium spatial alternans and (2) slow conduction velocities with the dynamic creation of unidirectional blocks that allowed the induction of VF. In fact, the administration of verapamil demonstrated that calcium and not voltage spatial alternans were the main responsible for VF induction. CONCLUSIONS VF induction at high activation rates was linked with the concurrence of a low conduction velocity and high magnitude of calcium alternans, but not necessarily related with increases of APD. Verapamil can postpone the development of cardiac alternans and the apparition of ventricular arrhythmias.
Collapse
Affiliation(s)
- Ismael Hernández-Romero
- Department of Signal Theory and Communications, Universidad Rey Juan Carlos, Madrid, Spain
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | | | - Carlos Figuera
- Department of Signal Theory and Communications, Universidad Rey Juan Carlos, Madrid, Spain
| | - Felipe Atienza
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Francisco Fernández-Avilés
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Andreu M. Climent
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- * E-mail:
| |
Collapse
|
20
|
Balaban G, Halliday BP, Mendonca Costa C, Bai W, Porter B, Rinaldi CA, Plank G, Rueckert D, Prasad SK, Bishop MJ. Fibrosis Microstructure Modulates Reentry in Non-ischemic Dilated Cardiomyopathy: Insights From Imaged Guided 2D Computational Modeling. Front Physiol 2018; 9:1832. [PMID: 30618838 PMCID: PMC6305754 DOI: 10.3389/fphys.2018.01832] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023] Open
Abstract
Aims: Patients who present with non-ischemic dilated cardiomyopathy (NIDCM) and enhancement on late gadolinium magnetic resonance imaging (LGE-CMR), are at high risk of sudden cardiac death (SCD). Further risk stratification of these patients based on LGE-CMR may be improved through better understanding of fibrosis microstructure. Our aim is to examine variations in fibrosis microstructure based on LGE imaging, and quantify the effect on reentry inducibility and mechanism. Furthermore, we examine the relationship between transmural activation time differences and reentry. Methods and Results: 2D Computational models were created from a single short axis LGE-CMR image, with 401 variations in fibrosis type (interstitial, replacement) and density, as well as presence or absence of reduced conductivity (RC). Transmural activation times (TAT) were measured, as well as reentry incidence and mechanism. Reentries were inducible above specific density thresholds (0.8, 0.6 for interstitial, replacement fibrosis). RC reduced these thresholds (0.3, 0.4 for interstitial, replacement fibrosis) and increased reentry incidence (48 no RC vs. 133 with RC). Reentries were classified as rotor, micro-reentry, or macro-reentry and depended on fibrosis micro-structure. Differences in TAT at coupling intervals 210 and 500ms predicted reentry in the models (sensitivity 89%, specificity 93%). A sensitivity analysis of TAT and reentry incidence showed that these quantities were robust to small changes in the pacing location. Conclusion: Computational models of fibrosis micro-structure underlying areas of LGE in NIDCM provide insight into the mechanisms and inducibility of reentry, and their dependence upon the type and density of fibrosis. Transmural activation times, measured at the central extent of the scar, can potentially differentiate microstructures which support reentry.
Collapse
Affiliation(s)
- Gabriel Balaban
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Brian P. Halliday
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Caroline Mendonca Costa
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Wenjia Bai
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Bradley Porter
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guy's and St. Thomas Hospital Trust, London, United Kingdom
| | | | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Sanjay K. Prasad
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Cardiovascular Research Centre and Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom
| | - Martin J. Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
21
|
Wang W, Zhang S, Ni H, Garratt CJ, Boyett MR, Hancox JC, Zhang H. Mechanistic insight into spontaneous transition from cellular alternans to arrhythmia-A simulation study. PLoS Comput Biol 2018; 14:e1006594. [PMID: 30500818 PMCID: PMC6291170 DOI: 10.1371/journal.pcbi.1006594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/12/2018] [Accepted: 10/23/2018] [Indexed: 02/01/2023] Open
Abstract
Cardiac electrical alternans (CEA), manifested as T-wave alternans in ECG, is a clinical biomarker for predicting cardiac arrhythmias and sudden death. However, the mechanism underlying the spontaneous transition from CEA to arrhythmias remains incompletely elucidated. In this study, multiscale rabbit ventricular models were used to study the transition and a potential role of INa in perpetuating such a transition. It was shown CEA evolved into either concordant or discordant action potential (AP) conduction alternans in a homogeneous one-dimensional tissue model, depending on tissue AP duration and conduction velocity (CV) restitution properties. Discordant alternans was able to cause conduction failure in the model, which was promoted by impaired sodium channel with either a reduced or increased channel current. In a two-dimensional homogeneous tissue model, a combined effect of rate- and curvature-dependent CV broke-up alternating wavefronts at localised points, facilitating a spontaneous transition from CEA to re-entry. Tissue inhomogeneity or anisotropy further promoted break-up of re-entry, leading to multiple wavelets. Similar observations have also been seen in human atrial cellular and tissue models. In conclusion, our results identify a mechanism by which CEA spontaneously evolves into re-entry without a requirement for premature ventricular complexes or pre-existing tissue heterogeneities, and demonstrated the important pro-arrhythmic role of impaired sodium channel activity. These findings are model-independent and have potential human relevance.
Collapse
Affiliation(s)
- Wei Wang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Shanzhuo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haibo Ni
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Clifford J. Garratt
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Mark R. Boyett
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Space Institute of Southern China, Shenzhen, China
| |
Collapse
|
22
|
Muñoz LM, Gelzer ARM, Fenton FH, Qian W, Lin W, Gilmour RF, Otani NF. Discordant Alternans as a Mechanism for Initiation of Ventricular Fibrillation In Vitro. J Am Heart Assoc 2018; 7:e007898. [PMID: 30371176 PMCID: PMC6201417 DOI: 10.1161/jaha.117.007898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022]
Abstract
Background Ventricular tachyarrhythmias are often preceded by short sequences of premature ventricular complexes. In a previous study, a restitution-based computational model predicted which sequences of stimulated premature complexes were most likely to induce ventricular fibrillation in canines in vivo. However, the underlying mechanism, based on discordant-alternans dynamics, could not be verified in that study. The current study seeks to elucidate the mechanism by determining whether the spatiotemporal evolution of action potentials and initiation of ventricular fibrillation in in vitro experiments are consistent with model predictions. Methods and Results Optical mapping voltage signals from canine right-ventricular tissue (n=9) were obtained simultaneously from the entire epicardium and endocardium during and after premature stimulus sequences. Model predictions of action potential propagation along a 1-dimensional cable were developed using action potential duration versus diastolic interval data. The model predicted sign-change patterns in action potential duration and diastolic interval spatial gradients with posterior probabilities of 91.1%, and 82.1%, respectively. The model predicted conduction block with 64% sensitivity and 100% specificity. A generalized estimating equation logistic-regression approach showed that model-prediction effects were significant for both conduction block ( P<1×10-15, coefficient 44.36) and sustained ventricular fibrillation ( P=0.0046, coefficient, 1.63) events. Conclusions The observed sign-change patterns favored discordant alternans, and the model successfully identified sequences of premature stimuli that induced conduction block. This suggests that the relatively simple discordant-alternans-based process that led to block in the model may often be responsible for ventricular fibrillation onset when preceded by premature beats. These observations may aid in developing improved methods for anticipating block and ventricular fibrillation.
Collapse
Affiliation(s)
- Laura M. Muñoz
- School of Mathematical SciencesRochester Institute of TechnologyRochesterNY
| | | | | | | | | | - Robert F. Gilmour
- University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | - Niels F. Otani
- School of Mathematical SciencesRochester Institute of TechnologyRochesterNY
| |
Collapse
|
23
|
Larkin JW, Zhai X, Kikuchi K, Redford SE, Prindle A, Liu J, Greenfield S, Walczak AM, Garcia-Ojalvo J, Mugler A, Süel GM. Signal Percolation within a Bacterial Community. Cell Syst 2018; 7:137-145.e3. [PMID: 30056004 DOI: 10.1016/j.cels.2018.06.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/08/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
Signal transmission among cells enables long-range coordination in biological systems. However, the scarcity of quantitative measurements hinders the development of theories that relate signal propagation to cellular heterogeneity and spatial organization. We address this problem in a bacterial community that employs electrochemical cell-to-cell communication. We developed a model based on percolation theory, which describes how signals propagate through a heterogeneous medium. Our model predicts that signal transmission becomes possible when the community is organized near a critical phase transition between a disconnected and a fully connected conduit of signaling cells. By measuring population-level signal transmission with single-cell resolution in wild-type and genetically modified communities, we confirm that the spatial distribution of signaling cells is organized at the predicted phase transition. Our findings suggest that at this critical point, the population-level benefit of signal transmission outweighs the single-cell level cost. The bacterial community thus appears to be organized according to a theoretically predicted spatial heterogeneity that promotes efficient signal transmission.
Collapse
Affiliation(s)
- Joseph W Larkin
- Division of Biological Sciences, University of California San Diego, Pacific Hall Room 2225B, Mail Code 0347, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Xiaoling Zhai
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Kaito Kikuchi
- Division of Biological Sciences, University of California San Diego, Pacific Hall Room 2225B, Mail Code 0347, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Samuel E Redford
- Division of Biological Sciences, University of California San Diego, Pacific Hall Room 2225B, Mail Code 0347, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Jintao Liu
- Center for Infectious Diseases Research and Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, 100084 Beijing, China
| | - Sacha Greenfield
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA; Department of Physics and Astronomy, Carleton College, Northfield, MN 55057, USA
| | - Aleksandra M Walczak
- Laboratoire de Physique Théorique, CNRS, PSL, Université Pierre et Marie Curie and École Normale Supérieure, Paris 75231, France
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Gürol M Süel
- Division of Biological Sciences, University of California San Diego, Pacific Hall Room 2225B, Mail Code 0347, 9500 Gilman Drive, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Takahashi M, Yokoshiki H, Mitsuyama H, Tenma T, Watanabe M, Kamada R, Sasaki R, Chiba Y, Maeno M, Anzai T. Evaluation of the pulmonary artery potential using a 20-polar circumferential catheter and three-dimensional integrated intracardiac echocardiography. Heart Vessels 2018; 34:74-83. [DOI: 10.1007/s00380-018-1209-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022]
|
25
|
Quantifying the determinants of decremental response in critical ventricular tachycardia substrate. Comput Biol Med 2018; 102:260-266. [PMID: 29871758 DOI: 10.1016/j.compbiomed.2018.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/26/2018] [Accepted: 05/26/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Decremental response evoked with extrastimulation (DEEP) is a useful tool for determining diastolic return path of ventricular tachycardia (VT). Though a targeted VT ablation is feasible with this approach, determinants of DEEP response have not been studied OBJECTIVES: To elucidate the effects of clinically relevant factors, specifically, the proximity of the stimulation site to the arrhythmogenic scar, stimulation wave direction, number of channels open in the scar, size of the scar and number of extra stimuli on decrement and entropy of DEEP potentials. METHODS In a 3-dimensional bi-domain simulation of human ventricular tissue (TNNP cell model), an irregular subendocardial myopathic region was generated. An irregular channel of healthy tissue with five potential entry branches was shaped into the myopathic region. A bipolar electrogram was derived from two electrodes positioned in the centre of the myopathic region. Evoked delays between far-field and local Electrogram (EGM) following an extrastimulus (S1-S2, 500-350 ms) were measured as the stimulation site, channel branches, and inexcitable tissue size were altered. RESULTS Stimulation adjacent to the inexcitable tissue from the side opposite to the point-of-entry produces longest DEEP delay. The DEEP delay shortens when the stimulation point is farther away from the scar, and it decreases maximally when stimulation is done from a site beside a conduction barrier. Entropy increases with S2 when stimulation site is from farther away. An unprotected channel structure with multiple side-branch openings had shorter DEEP delay compared to a protected channel structure with a paucity of additional side-branch openings and a point-of-entry on the side opposite to the pacing source. Addition of a second shorter extrastimulus did not universally lead to higher DEEP delay CONCLUSIONS: Location and direction of the wavefront in relation to scar entry and size of scar determine the degree of evoked response while the number of extrastimuli has a small additional decremental effect.
Collapse
|
26
|
Liu W, Kim TY, Huang X, Liu MB, Koren G, Choi BR, Qu Z. Mechanisms linking T-wave alternans to spontaneous initiation of ventricular arrhythmias in rabbit models of long QT syndrome. J Physiol 2018; 596:1341-1355. [PMID: 29377142 DOI: 10.1113/jp275492] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/23/2018] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS T-wave alternans (TWA) and T-wave lability (TWL) are precursors of ventricular arrhythmias in long QT syndrome; however, the mechanistic link remains to be clarified. Computer simulations show that action potential duration (APD) prolongation and slowed heart rates promote APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos can exacerbate pre-existing or induce de novo APD dispersion, which combines with enhanced ICa,L to result in premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs can directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or further exacerbate the APD dispersion to cause spontaneous initiation of ventricular arrhythmias. Experiments conducted in transgenic long QT rabbits show that PVC alternans occurs at slow heart rates, preceding spontaneous intuition of ventricular arrhythmias. ABSTRACT T-wave alternans (TWA) and irregular beat-to-beat T-wave variability or T-wave lability (TWL), the ECG manifestations of action potential duration (APD) alternans and variability, are precursors of ventricular arrhythmias in long QT syndromes. TWA and TWL in patients tend to occur at normal heart rates and are usually potentiated by bradycardia. Whether or how TWA and TWL at normal or slow heart rates are causally linked to arrhythmogenesis remains unknown. In the present study, we used computer simulations and experiments of a transgenic rabbit model of long QT syndrome to investigate the underlying mechanisms. Computer simulations showed that APD prolongation and slowed heart rates caused early afterdepolarization-mediated APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos exacerbated pre-existing APD dispersion and, in addition, APD chaos could also induce APD dispersion de novo via chaos desynchronization. Increased APD dispersion, combined with substantially enhanced ICa,L , resulted in a tissue-scale dynamical instability that gave rise to the spontaneous occurrence of unidirectionally propagating premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs could directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or could block the following sinus beat to result in a longer RR interval, which further exacerbated the APD dispersion giving rise to the spontaneous occurrence of ventricular arrhythmias. Slow heart rate-induced PVC alternans was observed in experiments of transgenic LQT2 rabbits under isoproterenol, which was associated with increased APD dispersion and spontaneous occurrence of ventricular arrhythmias, in agreement with the theoretical predictions.
Collapse
Affiliation(s)
- Weiqing Liu
- Department of Medicine, University of California, Los Angeles, California, USA.,School of Science, Jiangxi University of Science and Technology, Ganzhou, China
| | - Tae Yun Kim
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Xiaodong Huang
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Physics, South China University of Technology, Guangzhou, China
| | - Michael B Liu
- Department of Medicine, University of California, Los Angeles, California, USA
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Biomathematics, University of California, Los Angeles, California, USA
| |
Collapse
|
27
|
Mechano-electrical feedback in the clinical setting: Current perspectives. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:365-375. [DOI: 10.1016/j.pbiomolbio.2017.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
|
28
|
Orini M, Pueyo E, Laguna P, Bailon R. A Time-Varying Nonparametric Methodology for Assessing Changes in QT Variability Unrelated to Heart Rate Variability. IEEE Trans Biomed Eng 2017; 65:1443-1451. [PMID: 28991727 DOI: 10.1109/tbme.2017.2758925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To propose and test a novel methodology to measure changes in QT interval variability (QTV) unrelated to RR interval variability (RRV) in nonstationary conditions. METHODS Time-frequency coherent and residual spectra representing QTV related (QTVrRRV) and unrelated (QTVuRRV) to RRV, respectively, are estimated using time-frequency Cohen's class distributions. The proposed approach decomposes the nonstationary output spectrum of any two-input one-output model with uncorrelated inputs into two spectra representing the information related and unrelated to one of the two inputs, respectively. An algorithm to correct for the bias of the time-frequency coherence function between QTV and RRV is proposed to provide accurate estimates of both QTVuRRV and QTVrRRV. Two simulation studies were conducted to assess the methodology in challenging nonstationary conditions and data recorded during head-up tilt in 16 healthy volunteers were analyzed. RESULTS In the simulation studies, QTVuRRV changes were tracked with only a minor delay due to the filtering necessary to estimate the nonstationary spectra. The correlation coefficient between theoretical and estimated patterns was even for extremely noisy recordings (signal to noise ratio (SNR) in QTV dB). During head-up tilt, QTVrRRV explained the largest proportion of QTV, whereas QTVuRRV showed higher relative increase than QTV or QTVrRRV in all spectral bands ( for most pairwise comparisons). CONCLUSION The proposed approach accurately tracks changes in QTVuRRV. Head-up tilt induced a slightly greater increase in QTVuRRV than in QTVrRRV. SIGNIFICANCE The proposed index QTVuRRV may represent an indirect measure of intrinsic ventricular repolarization variability, a marker of cardiac instability associated with sympathetic ventricular modulation and sudden cardiac death.
Collapse
|
29
|
McPheeters MT, Wang YT, Werdich AA, Jenkins MW, Laurita KR. An infrared optical pacing system for screening cardiac electrophysiology in human cardiomyocytes. PLoS One 2017; 12:e0183761. [PMID: 28837652 PMCID: PMC5570338 DOI: 10.1371/journal.pone.0183761] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/10/2017] [Indexed: 01/05/2023] Open
Abstract
Human cardiac myocytes derived from pluripotent stem cells (hCM) have invigorated interest in genetic disease mechanisms and cardiac safety testing; however, the technology to fully assess electrophysiological function in an assay that is amenable to high throughput screening has lagged. We describe a fully contactless system using optical pacing with an infrared (IR) laser and multi-site high fidelity fluorescence imaging to assess multiple electrophysiological parameters from hCM monolayers in a standard 96-well plate. Simultaneous multi-site action potentials (FluoVolt) or Ca2+ transients (Fluo4-AM) were measured, from which high resolution maps of conduction velocity and action potential duration (APD) were obtained in a single well. Energy thresholds for optical pacing were determined for cell plating density, laser spot size, pulse width, and wavelength and found to be within ranges reported previously for reliable pacing. Action potentials measured using FluoVolt and a microelectrode exhibited the same morphology and rate of depolarization. Importantly, we show that this can be achieved accurately with minimal damage to hCM due to optical pacing or fluorescence excitation. Finally, using this assay we demonstrate that hCM exhibit reproducible changes in repolarization and impulse conduction velocity for Flecainide and Quinidine, two well described reference compounds. In conclusion, we demonstrate a high fidelity electrophysiological screening assay that incorporates optical pacing with IR light to control beating rate of hCM monolayers.
Collapse
Affiliation(s)
- Matthew T. McPheeters
- Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yves T. Wang
- Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Andreas A. Werdich
- Brigham and Women's Hospital/Harvard Medical School, Cardiovascular Division, Boston, Massachusetts, United States of America
| | - Michael W. Jenkins
- Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kenneth R. Laurita
- Brigham and Women's Hospital/Harvard Medical School, Cardiovascular Division, Boston, Massachusetts, United States of America
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
- Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
Ho G, Villongco CT, Yousefian O, Bradshaw A, Nguyen A, Faiwiszewski Y, Hayase J, Rappel WJ, McCulloch AD, Krummen DE. Rotors exhibit greater surface ECG variation during ventricular fibrillation than focal sources due to wavebreak, secondary rotors, and meander. J Cardiovasc Electrophysiol 2017; 28:1158-1166. [PMID: 28670858 DOI: 10.1111/jce.13283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Ventricular fibrillation is a common life-threatening arrhythmia. The ECG of VF appears chaotic but may allow identification of sustaining mechanisms to guide therapy. HYPOTHESIS We hypothesized that rotors and focal sources manifest distinct features on the ECG, and computational modeling may identify mechanisms of such features. METHODS VF induction was attempted in 31 patients referred for ventricular arrhythmia ablation. Simultaneous surface ECG and intracardiac electrograms were recorded using biventricular basket catheters. Endocardial phase maps were used to mechanistically classify each VF cycle as rotor or focally driven. ECGs were analyzed from patients demonstrating both mechanisms in the primary analysis and from all patients with induced VF in the secondary analysis. The ECG voltage variation during each mechanism was compared. Biventricular computer simulations of VF driven by focal sources or rotors were created and resulting ECGs of each VF mechanism were compared. RESULTS Rotor-based VF exhibited greater voltage variation than focal source-based VF in both the primary analysis (n = 8, 110 ± 24% vs. 55 ± 32%, P = 0.02) and the secondary analysis (n = 18, 103 ± 30% vs. 67 ± 34%, P = 0.009). Computational VF simulations also revealed greater voltage variation in rotors compared to focal sources (110 ± 19% vs. 33 ± 16%, P = 0.001), and demonstrated that this variation was due to wavebreak, secondary rotor initiation, and rotor meander. CONCLUSION Clinical and computational studies reveal that quantitative criteria of ECG voltage variation differ significantly between VF-sustaining rotors and focal sources, and provide insight into the mechanisms of such variation. Future studies should prospectively evaluate if these criteria can separate clinical VF mechanisms and guide therapy.
Collapse
Affiliation(s)
- Gordon Ho
- Department of Medicine, University of California, San Diego, CA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | | | - Omid Yousefian
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Andrew Nguyen
- Department of Medicine, University of California, San Diego, CA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Yonatan Faiwiszewski
- Department of Medicine, University of California, San Diego, CA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Justin Hayase
- Department of Medicine, University of California, San Diego, CA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | | | - Andrew D McCulloch
- Department of Medicine, University of California, San Diego, CA, USA.,Department of Bioengineering, University of California, San Diego, CA, USA
| | - David E Krummen
- Department of Medicine, University of California, San Diego, CA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
31
|
Effect of Thoracic Epidural Anesthesia on Ventricular Excitability in a Porcine Model. Anesthesiology 2017; 126:1096-1106. [PMID: 28358748 DOI: 10.1097/aln.0000000000001613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Imbalances in the autonomic nervous system, namely, excessive sympathoexcitation, contribute to ventricular tachyarrhythmias. While thoracic epidural anesthesia clinically suppresses ventricular tachyarrhythmias, its effects on global and regional ventricular electrophysiology and electrical wave stability have not been fully characterized. The authors hypothesized that thoracic epidural anesthesia attenuates myocardial excitability and the proarrhythmic effects of sympathetic hyperactivity. METHODS Yorkshire pigs (n = 15) had an epidural catheter inserted (T1 to T4) and a 56-electrode sock placed on the heart. Myocardial excitability was measured by activation recovery interval, dispersion of repolarization, and action potential duration restitution at baseline and during programed ventricular extrastimulation or left stellate ganglion stimulation, before and 30 min after thoracic epidural anesthesia (0.25% bupivacaine). RESULTS After thoracic epidural anesthesia infusion, there was no change in baseline activation recovery interval or dispersion of repolarization. During programmed ventricular extrastimulation, thoracic epidural anesthesia decreased the maximum slope of ventricular electrical restitution (0.70 ± 0.24 vs. 0.89 ± 0.24; P = 0.021) reflecting improved electrical wave stability. Thoracic epidural anesthesia also reduced myocardial excitability during left stellate ganglion stimulation-induced sympathoexcitation through attenuated shortening of activation recovery interval (-7 ± 4% vs. -4 ± 3%; P = 0.001), suppression of the increase in dispersion of repolarization (313 ± 293% vs. 185 ± 234%; P = 0.029), and reduction in sympathovagal imbalance as measured by heart rate variability. CONCLUSIONS Our study describes the electrophysiologic mechanisms underlying antiarrhythmic effects of thoracic epidural anesthesia during sympathetic hyperactivity. Thoracic epidural anesthesia attenuates ventricular myocardial excitability and induces electrical wave stability through its effects on activation recovery interval, dispersion of repolarization, and the action potential duration restitution slope.
Collapse
|
32
|
Tse G, Chan YWF, Keung W, Yan BP. Electrophysiological mechanisms of long and short QT syndromes. IJC HEART & VASCULATURE 2017; 14:8-13. [PMID: 28382321 PMCID: PMC5368285 DOI: 10.1016/j.ijcha.2016.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/19/2016] [Indexed: 12/21/2022]
Abstract
The QT interval on the human electrocardiogram is normally in the order of 450 ms, and reflects the summated durations of action potential (AP) depolarization and repolarization of ventricular myocytes. Both prolongation and shortening in the QT interval have been associated with ventricular tachy-arrhythmias, which predispose affected individuals to sudden cardiac death. In this article, the molecular determinants of the AP duration and the causes of long and short QT syndromes (LQTS and SQTS) are explored. This is followed by a review of the recent advances on their arrhythmogenic mechanisms involving reentry and/or triggered activity based on experiments conducted in mouse models. Established and novel clinical risk markers based on the QT interval for the prediction of arrhythmic risk and cardiovascular mortality are presented here. It is concluded by a discussion on strategies for the future rational design of anti-arrhythmic agents.
Collapse
Affiliation(s)
- Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Yin Wah Fiona Chan
- Department of Psychology, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Wendy Keung
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, PR China
| | - Bryan P Yan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, PR China
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Tse G, Wong ST, Tse V, Lee YT, Lin HY, Yeo JM. Cardiac dynamics: Alternans and arrhythmogenesis. J Arrhythm 2016; 32:411-417. [PMID: 27761166 PMCID: PMC5063258 DOI: 10.1016/j.joa.2016.02.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/28/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022] Open
Abstract
Pre-existing heterogeneities present in cardiac tissue are essential for maintaining the normal electrical and mechanical functions of the heart. Exacerbation of such heterogeneities or the emergence of dynamic factors can produce repolarization alternans, which are beat-to-beat alternations in the action potential time course. Traditionally, this was explained by restitution, but additional factors, such as cardiac memory, calcium handling dynamics, refractory period restitution, and mechano-electric feedback, are increasingly recognized as the underlying causes. The aim of this article is to review the mechanisms that generate cardiac repolarization alternans and convert spatially concordant alternans to the more arrhythmogenic spatially discordant alternans. This is followed by a discussion on how alternans generate arrhythmias in a number of clinical scenarios, and concluded by an outline of future therapeutic targets for anti-arrhythmic therapy.
Collapse
Affiliation(s)
- Gary Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Sheung Ting Wong
- Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| | - Vivian Tse
- Department of Physiology, McGill University, Canada
| | - Yee Ting Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Hiu Yu Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Jie Ming Yeo
- Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| |
Collapse
|
34
|
Orini M, Taggart P, Srinivasan N, Hayward M, Lambiase PD. Interactions between Activation and Repolarization Restitution Properties in the Intact Human Heart: In-Vivo Whole-Heart Data and Mathematical Description. PLoS One 2016; 11:e0161765. [PMID: 27588688 PMCID: PMC5010207 DOI: 10.1371/journal.pone.0161765] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/11/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The restitution of the action potential duration (APDR) and conduction velocity (CVR) are mechanisms whereby cardiac excitation and repolarization adapt to changes in heart rate. They modulate the vulnerability to dangerous arrhythmia, but the mechanistic link between restitution and arrhythmogenesis remains only partially understood. METHODS This paper provides an experimental and theoretical study of repolarization and excitation restitution properties and their interactions in the intact human epicardium. The interdependence between excitation and repolarization dynamic is studied in 8 patients (14 restitution protocols, 1722 restitution curves) undergoing global epicardial mapping with multi-electrode socks before open heart surgery. A mathematical description of the contribution of both repolarization and conduction dynamics to the steepness of the APDR slope is proposed. RESULTS This study demonstrates that the APDR slope is a function of both activation and repolarization dynamics. At short cycle length, conduction delay significantly increases the APDR slope by interacting with the diastolic interval. As predicted by the proposed mathematical formulation, the APDR slope was more sensitive to activation time prolongation than to the simultaneous shortening of repolarization time. A steep APDR slope was frequently identified, with 61% of all cardiac sites exhibiting an APDR slope > 1, suggesting that a slope > 1 may not necessarily promote electrical instability in the human epicardium. APDR slope did not change for different activation or repolarization times, and it was not a function of local baseline APD. However, it was affected by the spatial organization of electrical excitation, suggesting that in tissue APDR is not a unique function of local electrophysiological properties. Spatial heterogeneity in both activation and repolarization restitution contributed to the increase in the modulated dispersion of repolarization, which for short cycle length was as high as 250 ms. Heterogeneity in conduction velocity restitution can translate into both activation and repolarization dispersion and increase cardiac instability. The proposed mathematical formulation shows an excellent agreement with the experimental data (correlation coefficient r = 0.94) and provides a useful tool for the understanding of the complex interactions between activation and repolarization restitution properties as well as between their measurements.
Collapse
Affiliation(s)
- Michele Orini
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Barts Heart Centre, St Bartholomews Hospital, London, United Kingdom
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Neil Srinivasan
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Barts Heart Centre, St Bartholomews Hospital, London, United Kingdom
| | - Martin Hayward
- The Heart Hospital, University College London Hospitals, London, United Kingdom
| | - Pier D. Lambiase
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Barts Heart Centre, St Bartholomews Hospital, London, United Kingdom
| |
Collapse
|
35
|
Mayourian J, Savizky RM, Sobie EA, Costa KD. Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes. PLoS Comput Biol 2016; 12:e1005014. [PMID: 27454812 PMCID: PMC4959759 DOI: 10.1371/journal.pcbi.1005014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/08/2016] [Indexed: 01/16/2023] Open
Abstract
Human mesenchymal stem cell (hMSC) delivery has demonstrated promise in preclinical and clinical trials for myocardial infarction therapy; however, broad acceptance is hindered by limited understanding of hMSC-human cardiomyocyte (hCM) interactions. To better understand the electrophysiological consequences of direct heterocellular connections between hMSCs and hCMs, three original mathematical models were developed, representing an experimentally verified triad of hMSC families with distinct functional ion channel currents. The arrhythmogenic risk of such direct electrical interactions in the setting of healthy adult myocardium was predicted by coupling and fusing these hMSC models to the published ten Tusscher midcardial hCM model. Substantial variations in action potential waveform—such as decreased action potential duration (APD) and plateau height—were found when hCMs were coupled to the two hMSC models expressing functional delayed rectifier-like human ether à-go-go K+ channel 1 (hEAG1); the effects were exacerbated for fused hMSC-hCM hybrid cells. The third family of hMSCs (Type C), absent of hEAG1 activity, led to smaller single-cell action potential alterations during coupling and fusion, translating to longer tissue-level mean action potential wavelength. In a simulated 2-D monolayer of cardiac tissue, re-entry vulnerability with low (5%) hMSC insertion was approximately eight-fold lower with Type C hMSCs compared to hEAG1-functional hMSCs. A 20% decrease in APD dispersion by Type C hMSCs compared to hEAG1-active hMSCs supports the claim of reduced arrhythmogenic potential of this cell type with low hMSC insertion. However, at moderate (15%) and high (25%) hMSC insertion, the vulnerable window increased independent of hMSC type. In summary, this study provides novel electrophysiological models of hMSCs, predicts possible arrhythmogenic effects of hMSCs when directly coupled to healthy hCMs, and proposes that isolating a subset of hMSCs absent of hEAG1 activity may offer increased safety as a cell delivery cardiotherapy at low levels of hMSC-hCM coupling. Myocardial infarction—better known as a heart attack—strikes on average every 43 seconds in America. An emerging approach to treat myocardial infarction patients involves the delivery of human mesenchymal stem cells (hMSCs) to the damaged heart. While clinical trials of this therapeutic approach have yet to report adverse effects on heart electrical rhythm, such consequences have been implicated in simpler experimental systems and thus remain a concern. In this study, we utilized mathematical modeling to simulate electrical interactions arising from direct coupling between hMSCs and human heart cells to develop insight into the possible adverse effects of this therapeutic approach on human heart electrical activity, and to assess a novel strategy for reducing some potential risks of this therapy. We developed the first mathematical models of electrical activity of three families of hMSCs based on published experimental data, and integrated these with previously established mathematical models of human heart cell electrical activity. Our computer simulations demonstrated that one particular family of hMSCs minimized the disturbances in cardiac electrical activity both at the single-cell and tissue levels, suggesting that isolating this specific sub-population of hMSCs for myocardial delivery could potentially increase the safety of future hMSC-based heart therapies.
Collapse
Affiliation(s)
- Joshua Mayourian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ruben M. Savizky
- Department of Chemistry, The Cooper Union, New York, New York, United States of America
| | - Eric A. Sobie
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kevin D. Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Electrophysiology of Heart Failure Using a Rabbit Model: From the Failing Myocyte to Ventricular Fibrillation. PLoS Comput Biol 2016; 12:e1004968. [PMID: 27336310 PMCID: PMC4919062 DOI: 10.1371/journal.pcbi.1004968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Heart failure is a leading cause of death, yet its underlying electrophysiological (EP) mechanisms are not well understood. In this study, we use a multiscale approach to analyze a model of heart failure and connect its results to features of the electrocardiogram (ECG). The heart failure model is derived by modifying a previously validated electrophysiology model for a healthy rabbit heart. Specifically, in accordance with the heart failure literature, we modified the cell EP by changing both membrane currents and calcium handling. At the tissue level, we modeled the increased gap junction lateralization and lower conduction velocity due to downregulation of Connexin 43. At the biventricular level, we reduced the apex-to-base and transmural gradients of action potential duration (APD). The failing cell model was first validated by reproducing the longer action potential, slower and lower calcium transient, and earlier alternans characteristic of heart failure EP. Subsequently, we compared the electrical wave propagation in one dimensional cables of healthy and failing cells. The validated cell model was then used to simulate the EP of heart failure in an anatomically accurate biventricular rabbit model. As pacing cycle length decreases, both the normal and failing heart develop T-wave alternans, but only the failing heart shows QRS alternans (although moderate) at rapid pacing. Moreover, T-wave alternans is significantly more pronounced in the failing heart. At rapid pacing, APD maps show areas of conduction block in the failing heart. Finally, accelerated pacing initiated wave reentry and breakup in the failing heart. Further, the onset of VF was not observed with an upregulation of SERCA, a potential drug therapy, using the same protocol. The changes introduced at the cell and tissue level have increased the failing heart’s susceptibility to dynamic instabilities and arrhythmias under rapid pacing. However, the observed increase in arrhythmogenic potential is not due to a steepening of the restitution curve (not present in our model), but rather to a novel blocking mechanism. Ventricular fibrillation (VF) is one of the leading causes of sudden death. During VF, the electrical wave of activation in the heart breaks up chaotically. Consequently, the heart is unable to contract synchronously and pump blood to the rest of the body. In our work we formulate and validate a model of heart failure (HF) that allows us to evaluate the arrhythmogenic potential of individual and combined electrophysiological changes. In diagnostic cardiology, the electrocardiogram (ECG) is one of the most commonly used tools for detecting abnormalities in the heart electrophysiology. One of our goals is to use our numerical model to link changes at the cellular and tissue level in a failing heart to a numerically computed ECG. This allows us to characterize the precursor to and the risk of VF. In order to understand the mechanisms underlying VF in HF, we design a test that simulates a HF patient performing physical exercise. We show that under fast heart rates with changes in pacing, HF patients are more prone to VF due to a new conduction blocking mechanism. In the long term, our mathematical model is suitable for investigating the effect of drug therapies in HF.
Collapse
|
37
|
Weinberg SH. Impaired Sarcoplasmic Reticulum Calcium Uptake and Release Promote Electromechanically and Spatially Discordant Alternans: A Computational Study. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:1-15. [PMID: 27385917 PMCID: PMC4920205 DOI: 10.4137/cmc.s39709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 02/01/2023]
Abstract
Cardiac electrical dynamics are governed by cellular-level properties, such as action potential duration (APD) restitution and intracellular calcium (Ca) handling, and tissue-level properties, including conduction velocity restitution and cell-cell coupling. Irregular dynamics at the cellular level can lead to instabilities in cardiac tissue, including alternans, a beat-to-beat alternation in the action potential and/or the intracellular Ca transient. In this study, we incorporate a detailed single cell coupled map model of Ca cycling and bidirectional APD-Ca coupling into a spatially extended tissue model to investigate the influence of sarcoplasmic reticulum (SR) Ca uptake and release properties on alternans and conduction block. We find that an intermediate SR Ca uptake rate and larger SR Ca release resulted in the widest range of stimulus periods that promoted alternans. However, both reduced SR Ca uptake and release promote arrhythmogenic spatially and electromechanically discordant alternans, suggesting a complex interaction between SR Ca handling and alternans characteristics at the cellular and tissue level.
Collapse
Affiliation(s)
- Seth H Weinberg
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
38
|
Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:236-48. [PMID: 26850675 PMCID: PMC4821233 DOI: 10.1016/j.pbiomolbio.2016.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 11/24/2022]
Abstract
AIMS Acute ischemia is a major cause of sudden arrhythmic death, further promoted by potassium current blockers. Macro-reentry around the ischemic region and early afterdepolarizations (EADs) caused by electrotonic current have been suggested as potential mechanisms in animal and isolated cell studies. However, ventricular and human-specific arrhythmia mechanisms and their modulation by repolarization reserve remain unclear. The goal of this paper is to unravel multiscale mechanisms underlying the modulation of arrhythmic risk by potassium current (IKr) block in human ventricles with acute regional ischemia. METHODS AND RESULTS A human ventricular biophysically-detailed model, with acute regional ischemia is constructed by integrating experimental knowledge on the electrophysiological ionic alterations caused by coronary occlusion. Arrhythmic risk is evaluated by determining the vulnerable window (VW) for reentry following ectopy at the ischemic border zone. Macro-reentry around the ischemic region is the main reentrant mechanism in the ischemic human ventricle with increased repolarization reserve due to the ATP-sensitive potassium current (IK(ATP)) activation. Prolongation of refractoriness by 4% caused by 30% IKr reduction counteracts the establishment of macro-reentry and reduces the VW for reentry (by 23.5%). However, a further decrease in repolarization reserve (50% IKr reduction) is less anti-arrhythmic despite further prolongation of refractoriness. This is due to the establishment of transmural reentry enabled by electrotonically-triggered EADs in the ischemic border zone. EADs are produced by L-type calcium current (ICaL) reactivation due to prolonged low amplitude electrotonic current injected during the repolarization phase. CONCLUSIONS Electrotonically-triggered EADs are identified as a potential mechanism facilitating intramural reentry in a regionally-ischemic human ventricles model with reduced repolarization reserve.
Collapse
|
39
|
Zhao D, Liu B, Wei Y, Tang K, Yu X, Xu Y. The roles of pacing interval and pacing strength in ventricular fibrillation induced by rapid pacing with 1 : 1 capture. Arch Med Sci 2015; 11:1111-8. [PMID: 26528357 PMCID: PMC4624755 DOI: 10.5114/aoms.2015.54868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/21/2013] [Accepted: 11/22/2013] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The roles of pacing interval (PI) and pacing strength (PS) in ventricular fibrillation (VF) induced by rapid pacing with 1 : 1 capture remain unclear. MATERIAL AND METHODS Epicardial unipolar electrograms (UEs) were simultaneously recorded using contact mapping in 11 swine. Activation-recovery interval (ARI) restitution was constructed at 4 sites, i.e. the apex and base of the left and right ventricles, respectively. A steady state pacing (SSP) protocol was performed to induce VF. The longest PI and the lowest PS for inducing VF were recorded. Statistical correlation analysis was performed to determine the relationship between local ARI restitution properties and PI and PS for VF induction. RESULTS Forty restitution curves were constructed from 11 SSP procedures. The maximal slope (Smax) of the ARI restitution curve of the right ventricular apex was positively correlated with the PI for VF induction (r = 0.761, p < 0.05). Spatial dispersions of ARI and Smax were negatively correlated with the PS for VF induction (r = -0.626 and r = -0.722, respectively, both p < 0.05). CONCLUSIONS Ventricular fibrillation can be induced by rapid ventricular pacing with 1 : 1 capture. The PI for VF induction was related to the Smax of the ARI restitution curve of the right ventricular apex, while PS for VF induction was associated with the spatial dispersions of ARI and its restitution property.
Collapse
Affiliation(s)
- Dongdong Zhao
- Department of Cardiology, the Tenth People's Hospital of Tongji University, Shanghai, China
| | - Ban Liu
- Department of Cardiology, the Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yidong Wei
- Department of Cardiology, the Tenth People's Hospital of Tongji University, Shanghai, China
| | - Kai Tang
- Department of Cardiology, the Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xuejing Yu
- Department of Cardiology, the Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, the Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
40
|
Krummen DE, Hayase J, Vampola SP, Ho G, Schricker AA, Lalani GG, Baykaner T, Coe TM, Clopton P, Rappel WJ, Omens JH, Narayan SM. Modifying Ventricular Fibrillation by Targeted Rotor Substrate Ablation: Proof-of-Concept from Experimental Studies to Clinical VF. J Cardiovasc Electrophysiol 2015; 26:1117-26. [PMID: 26179310 PMCID: PMC4826737 DOI: 10.1111/jce.12753] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/30/2015] [Accepted: 06/19/2015] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Recent work has suggested a role for organized sources in sustaining ventricular fibrillation (VF). We assessed whether ablation of rotor substrate could modulate VF inducibility in canines, and used this proof-of-concept as a foundation to suppress antiarrhythmic drug-refractory clinical VF in a patient with structural heart disease. METHODS AND RESULTS In 9 dogs, we introduced 64-electrode basket catheters into one or both ventricles, used rapid pacing at a recorded induction threshold to initiate VF, and then defibrillated after 18±8 seconds. Endocardial rotor sites were identified from basket recordings using phase mapping, and ablation was performed at nonrotor (sham) locations (7 ± 2 minutes) and then at rotor sites (8 ± 2 minutes, P = 0.10 vs. sham); the induction threshold was remeasured after each. Sham ablation did not alter canine VF induction threshold (preablation 150 ± 16 milliseconds, postablation 144 ± 16 milliseconds, P = 0.54). However, rotor site ablation rendered VF noninducible in 6/9 animals (P = 0.041), and increased VF induction threshold in the remaining 3. Clinical proof-of-concept was performed in a patient with repetitive ICD shocks due to VF refractory to antiarrhythmic drugs. Following biventricular basket insertion, VF was induced and then defibrillated. Mapping identified 4 rotors localized at borderzone tissue, and rotor site ablation (6.3 ± 1.5 minutes/site) rendered VF noninducible. The VF burden fell from 7 ICD shocks in 8 months preablation to zero ICD therapies at 1 year, without antiarrhythmic medications. CONCLUSIONS Targeted rotor substrate ablation suppressed VF in an experimental model and a patient with refractory VF. Further studies are warranted on the efficacy of VF source modulation.
Collapse
Affiliation(s)
- David E Krummen
- Department of Medicine, University of California, San Diego, California, USA
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Justin Hayase
- Department of Medicine, University of California, San Diego, California, USA
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Stephen P Vampola
- Department of Medicine, University of California, San Diego, California, USA
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Gordon Ho
- Department of Medicine, University of California, San Diego, California, USA
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Amir A Schricker
- Department of Medicine, University of California, San Diego, California, USA
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Gautam G Lalani
- Department of Medicine, University of California, San Diego, California, USA
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Tina Baykaner
- Department of Medicine, University of California, San Diego, California, USA
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Taylor M Coe
- Department of Bioengineering, University of California, San Diego, California, USA
| | - Paul Clopton
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, California, USA
| | - Jeffrey H Omens
- Department of Bioengineering, University of California, San Diego, California, USA
| | | |
Collapse
|
41
|
Weinberg SH. Spatial discordance and phase reversals during alternate pacing in discrete-time kinematic and cardiomyocyte ionic models. CHAOS (WOODBURY, N.Y.) 2015; 25:103119. [PMID: 26520085 DOI: 10.1063/1.4932961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Alternans, a beat-to-beat alternation in the cardiac action potential duration (APD), is a dynamical instability linked with the initiation of arrhythmias and sudden cardiac death, and arises via a period-doubling bifurcation when myocytes are stimulated at fast rates. In this study, we analyze the stability of a propagating electrical wave in a one-dimensional cardiac myocyte model in response to an arrhythmogenic rhythm known as alternate pacing. Using a discrete-time kinematic model and complex frequency (Z) domain analysis, we derive analytical expressions to predict phase reversals and spatial discordance in the interbeat interval (IBI) and APD, which, importantly, cannot be predicted with a model that neglects the influence of cell coupling on repolarization. We identify key dimensionless parameters that determine the transition from spatial concordance to discordance. Finally, we show that the theoretical predictions agree closely with numerical simulations of an ionic myocyte model, over a wide range of parameters, including variable IBI, altered ionic current gating, and reduced cell coupling. We demonstrate a novel approach to predict instability in cardiac tissue during alternate pacing and further illustrate how this approach can be generalized to more detail models of myocyte dynamics.
Collapse
Affiliation(s)
- Seth H Weinberg
- Virginia Modeling, Analysis and Simulation Center, Old Dominion University, Suffolk, Virginia 23435, USA
| |
Collapse
|
42
|
Abstract
Despite improvements in the therapy of underlying heart disease, sudden cardiac death is a major cause of death worldwide. Disturbed Na and Ca handling is known to be a major predisposing factor for life-threatening tachyarrhythmias. In cardiomyocytes, many ion channels and transporters, including voltage-gated Na and Ca channels, cardiac ryanodine receptors, Na/Ca-exchanger, and SR Ca-ATPase are involved in this regulation. We have learned a lot about the pathophysiological relevance of disturbed ion channel function from monogenetic disorders. Changes in the gating of a single ion channel and the activity of an ion pump suffice to dramatically increase the propensity for arrhythmias even in structurally normal hearts. Nevertheless, patients with heart failure with acquired dysfunction in many ion channels and transporters exhibit profound dysregulation of Na and Ca handling and Ca/calmodulin-dependent protein kinase and are especially prone to arrhythmias. A deeper understanding of the underlying arrhythmic principles is mandatory if we are to improve their outcome. This review addresses basic tachyarrhythmic mechanisms, the underlying ionic mechanisms and the consequences for ion homeostasis, and the situation in complex diseases like heart failure.
Collapse
Affiliation(s)
- Stefan Wagner
- From the Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.W., L.S.M.); and Department of Pharmacology, University of California, Davis, CA (D.M.B.)
| | - Lars S Maier
- From the Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.W., L.S.M.); and Department of Pharmacology, University of California, Davis, CA (D.M.B.).
| | - Donald M Bers
- From the Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.W., L.S.M.); and Department of Pharmacology, University of California, Davis, CA (D.M.B.)
| |
Collapse
|
43
|
Perspective: a dynamics-based classification of ventricular arrhythmias. J Mol Cell Cardiol 2015; 82:136-52. [PMID: 25769672 DOI: 10.1016/j.yjmcc.2015.02.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/05/2015] [Accepted: 02/20/2015] [Indexed: 02/04/2023]
Abstract
Despite key advances in the clinical management of life-threatening ventricular arrhythmias, culminating with the development of implantable cardioverter-defibrillators and catheter ablation techniques, pharmacologic/biologic therapeutics have lagged behind. The fundamental issue is that biological targets are molecular factors. Diseases, however, represent emergent properties at the scale of the organism that result from dynamic interactions between multiple constantly changing molecular factors. For a pharmacologic/biologic therapy to be effective, it must target the dynamic processes that underlie the disease. Here we propose a classification of ventricular arrhythmias that is based on our current understanding of the dynamics occurring at the subcellular, cellular, tissue and organism scales, which cause arrhythmias by simultaneously generating arrhythmia triggers and exacerbating tissue vulnerability. The goal is to create a framework that systematically links these key dynamic factors together with fixed factors (structural and electrophysiological heterogeneity) synergistically promoting electrical dispersion and increased arrhythmia risk to molecular factors that can serve as biological targets. We classify ventricular arrhythmias into three primary dynamic categories related generally to unstable Ca cycling, reduced repolarization, and excess repolarization, respectively. The clinical syndromes, arrhythmia mechanisms, dynamic factors and what is known about their molecular counterparts are discussed. Based on this framework, we propose a computational-experimental strategy for exploring the links between molecular factors, fixed factors and dynamic factors that underlie life-threatening ventricular arrhythmias. The ultimate objective is to facilitate drug development by creating an in silico platform to evaluate and predict comprehensively how molecular interventions affect not only a single targeted arrhythmia, but all primary arrhythmia dynamics categories as well as normal cardiac excitation-contraction coupling.
Collapse
|
44
|
Abstract
"Heart failure is an increasingly prevalent disease with high mortality and public health burden. It is associated with autonomic imbalance characterized by sympathetic hyperactivity and parasympathetic hypoactivity. Evolving novel interventional and device-based therapies have sought to restore autonomic balance by neuromodulation. Results of preclinical animal studies and early clinical trials have demonstrated the safety and efficacy of these therapies in heart failure. This article discusses specific neuromodulatory treatment modalities individually-spinal cord stimulation, vagus nerve stimulation, baroreceptor activation therapy, and renal sympathetic nerve denervation."
Collapse
|
45
|
Liu T, Shi SB, Qin M, Huang CX. Effects of Dantrolene Treatment on Ventricular Electrophysiology and Arrhythmogenesis in Rats With Chronic β-Adrenergic Receptor Activation. J Cardiovasc Pharmacol Ther 2015; 20:414-27. [PMID: 25613464 DOI: 10.1177/1074248414568194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/05/2014] [Indexed: 11/16/2022]
Abstract
Dantrolene, which is primarily used to treat malignant hyperthermia, has recently been suggested for the prevention of arrhythmogenesis in various animal models. In this study, the effects of dantrolene treatment on electrophysiological properties and ventricular arrhythmias (VAs) in rats with chronic β-adrenergic receptor (β-AR) activation were investigated. Rats were randomized to treatment with saline (control group), isoproterenol (ISO; ISO group), or ISO + dantrolene (ID group) for 2 weeks. An electrophysiological study was performed to assess action potential duration restitution (APDR) and induce action potential duration (APD) alternans or VA in vitro. The protein levels of Cav1.2, sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), and ryanodine receptor 2 (RyR2) were detected by Western blot. Compared with the control group, chronic administration of ISO significantly increased APD, the maximum slope (Smax) of APDR curve, and the spatial dispersions of Smax and APD (all P < .01), and all effects were attenuated by dantrolene treatment (all P < .05). Additionally, chronic ISO administration significantly reduced the protein levels of SERCA2 and RyR2, but increased the Cav1.2 protein expression (all P < .05). However, compared with the ISO group, dantrolene treatment preserved SERCA2a and RyR2 protein levels and decreased Cav1.2 protein levels in the ID group (all P < .05). The intracellular Ca2+ ([Ca2+]i) levels measured by incubating isolated cardiomyocytes with Fluo-3/alveolar macrophages were significantly increased in the ISO group compared with the control group ( P < .01). Dantrolene treatment markedly reduced the rise of [Ca2+]i levels caused by chronic administration of ISO ( P < .05). Dantrolene treatment also prevented the reductions in the APD alternans and VA thresholds induced by chronic ISO stimulation (all P < .05). These data suggest that dantrolene stabilizes ventricular electrophysiological characteristics and increases the expression of key sarcoplasmic reticulum calcium cycling proteins to reduce vulnerability to VA in rats with chronic β-AR activation.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Shao-bo Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Mu Qin
- Department of Cardiology, The First Clinical Medical College of Three Gorges University, Yichang, China
| | - Cong-xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Park SA, Gray RA. Optical Mapping of Ventricular Fibrillation Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:313-42. [PMID: 26238059 DOI: 10.1007/978-3-319-17641-3_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There is very limited information regarding the dynamic patterns of the electrical activity during ventricular fibrillation (VF) in humans. Most of the data used to generate and test hypotheses regarding the mechanisms of VF come from animal models and computer simulations and the quantification of VF patterns is non-trivial. Many of the experimental recordings of the dynamic spatial patterns of VF have been obtained from mammals using "optical mapping" or "video imaging" technology in which "phase maps" are derived from high-resolution transmembrane recordings from the heart surface. The surface manifestation of the unstable reentrant waves sustaining VF can be identified as "phase singularities" and their number and location provide one measure of VF complexity. After providing a brief history of optical mapping of VF, we compare and contrast a quantitative analysis of VF patterns from the heart surface for four different animal models, hence providing physiological insight into the variety of VF dynamics among species. We found that in all four animal models the action potential duration restitution slope was actually negative during VF and that the spatial dispersion of electrophysiological parameters were not different during the first second of VF compared to pacing immediately before VF initiation. Surprisingly, our results suggest that APD restitution and spatial dispersion may not be essential causes of VF dynamics. Analyses of electrophysiological quantities in the four animal models are consistent with the idea that VF is essentially a two-dimensional phenomenon in small rabbit hearts whose size are near the boundary of the "critical mass" required to sustain VF, while VF in large pig hearts is three-dimensional and exhibits the maximal theoretical phase singularity density, and thus will not terminate spontaneously.
Collapse
Affiliation(s)
- Sarah A Park
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | |
Collapse
|
47
|
Huang J, Qian J, Yao W, Wang N, Zhang Z, Cao C, Song B, Zhang Z. Vagus nerve stimulation reverses ventricular electrophysiological changes induced by hypersympathetic nerve activity. Exp Physiol 2014; 100:239-48. [PMID: 25720663 DOI: 10.1113/expphysiol.2014.082842] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/24/2014] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Previous studies have shown that hypersympathetic nerve activity results in ventricular electrophysiological changes and facilitates the occurrence of ventricular arrhythmias. Vagus nerve stimulation has shown therapeutic potential for myocardial infarction-induced ventricular arrhythmias. However, the actions of vagus nerve stimulation on hypersympathetic nerve activity-induced ventricular electrophysiological changes are still unknown. What is the main finding and its importance? We show that vagus nerve stimulation is able to reverse hypersympathetic nerve activity-induced ventricular electrophysiological changes and suppress the occurrence of ventricular fibrillation. These findings further suggest that vagus nerve stimulation may be an effective treatment option for ventricular arrhythmias, especially in patients with myocardial infarction or heart failure. Vagus nerve stimulation (VNS) has shown therapeutic potential for myocardial infarction-induced ventricular arrhythmias. This study aimed to investigate the effects of VNS on ventricular electrophysiological changes induced by hypersympathetic nerve activity. Seventeen open-chest dogs were subjected to left stellate ganglion stimulation (LSGS) for 4 h to simulate hypersympathetic tone. All animals were randomly assigned to the VNS group (n = 9) or the control group (n = 8). In the VNS group, VNS was performed at the voltage causing a 10% decrease in heart rate for hours 3-4 during 4 h of LSGS. During the first 2 h of LSGS, the ventricular effective refractory period (ERP) and action potential duration (APD) were both progressively and significantly decreased; the spatial dispersion of ERP, maximal slope of the restitution curve and pacing cycle length of APD alternans were all increased. With LSGS + VNS during the next 2 h, there was a significant return of all the altered electrophysiological parameters towards baseline levels. In the eight control dogs that received 4 h of LSGS without VNS, all the parameters changed progressively, but without any reversals. The ventricular fibrillation threshold was higher in the VNS group than in the control group (17.3 ± 3.4 versus 11.3 ± 3.8 V, P < 0.05). The present study demonstrated that VNS was able to reverse LSGS-induced ventricular electrophysiological changes and suppress the occurrence of ventricular fibrillation.
Collapse
Affiliation(s)
- Jie Huang
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou City, Hubei Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Carotid Baroreceptor Stimulation Prevents Arrhythmias Induced by Acute Myocardial Infarction Through Autonomic Modulation. J Cardiovasc Pharmacol 2014; 64:431-7. [DOI: 10.1097/fjc.0000000000000135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Abstract
In a normal human life span, the heart beats about 2 to 3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Correspondence to: Zhilin Qu, PhD, Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, A2-237 CHS, 650 Charles E. Young Drive South, Los Angeles, CA 90095, Tel: 310-794-6050, Fax: 310-206-9133,
| | - Gang Hu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Alan Garfinkel
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
| | - James N. Weiss
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
50
|
Nicolson WB, McCann GP, Smith MI, Sandilands AJ, Stafford PJ, Schlindwein FS, Samani NJ, Ng GA. Prospective evaluation of two novel ECG-based restitution biomarkers for prediction of sudden cardiac death risk in ischaemic cardiomyopathy. Heart 2014; 100:1878-85. [DOI: 10.1136/heartjnl-2014-305672] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|