1
|
Wang Y, Li H, Zhang Z, Wu F, Liu J, Zhu Z, Xiang H. The association between vitamin E intake and remnant cholesterol, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol in US adults: a cross-sectional study. Lipids Health Dis 2024; 23:325. [PMID: 39354564 PMCID: PMC11443817 DOI: 10.1186/s12944-024-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Blood lipid profiles are associated with various nutritional elements and dietary factors. This study aimed to explore the association between total dietary vitamin E intake and remnant cholesterol (RC), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) using data from the National Health and Nutrition Examination Survey (NHANES). METHODS A cross-sectional analysis was conducted using NHANES 2007-2018 data. A total of 8,639 eligible participants (45.58% men and 54.42% women) with an average age of 46.12 ± 16.65 years were included in this study. Weighted multivariate linear regression and subgroup analyses were used to examine the association between vitamin E intake and RC, TC, HDL-C, and LDL-C. Smooth curve fitting was used to explore potential non-linear associations. RESULTS After adjusting for other covariates, multivariate linear regression analysis showed that higher vitamin E intake was negatively associated with plasma RC (β = -0.22, 95% CI: -0.27, -0.16), TC (β = -0.33, 95% CI: -0.51, -0.16), LDL-C (β = -0.25, 95% [confidence interval] CI: -0.40, -0.10) and positively associated with HDL-C (β = 0.13, 95% CI: 0.07, 0.20) in US adults. Subgroup analysis indicated that age may influence the association between vitamin E intake and RC. At the same time, gender may also affect the association between vitamin E intake and HDL-C. CONCLUSION Higher vitamin E intake was negatively associated with plasma RC, TC, LDL-C and positively associated with HDL-C.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
- Clinical Medicine Department, College of Basic Medicine, Qingdao University, Qingdao, Shandong, 266000, China
| | - Hao Li
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Zhihao Zhang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Futong Wu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Jiarui Liu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Zhongze Zhu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Hongfei Xiang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
2
|
Kishimoto S, Crooks DR, Yasunori O, Kota Y, Yamamoto K, Linehan WM, Levine M, Krishna MC, Brender JR. Pharmacologic ascorbate induces transient hypoxia sensitizing pancreatic ductal adenocarcinoma to a hypoxia activated prodrug. Free Radic Biol Med 2024; 222:579-587. [PMID: 38992394 DOI: 10.1016/j.freeradbiomed.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Hypoxic tumor microenvironments pose a significant challenge in cancer treatment. Hypoxia-activated prodrugs like evofosfamide aim to specifically target and eliminate these resistant cells. However, their effectiveness is often limited by reoxygenation after cell death. We hypothesized that ascorbate's pro-oxidant properties could be harnessed to induce transient hypoxia, enhancing the efficacy of evofosfamide by overcoming reoxygenation. To test this hypothesis, we investigated the sensitivity of MIA Paca-2 and A549 cancer cells to ascorbate in vitro and in vivo. Ascorbate induced a cytotoxic effect at 5 mM that could be alleviated by endogenous administration of catalase, suggesting a role for hydrogen peroxide in its cytotoxic mechanism. In vitro, Seahorse experiments indicated that the generation of hydrogen peroxide consumes oxygen, which is offset at later time points by a reduction in oxygen consumption due to hydrogen peroxide's cytotoxic effect. In vivo, photoacoustic imaging showed pharmacologic ascorbate treatment at sublethal levels triggered a complex, multi-phasic response in tumor oxygenation across both cell lines. Initially, ascorbate generated transient hypoxia within minutes through hydrogen peroxide production, via reactions that consume oxygen. This initial hypoxic phase peaked at around 150 s and then gradually subsided. However, at longer time scales (approximately 300 s) a vasodilation effect triggered by ascorbate resulted in increased blood flow and subsequent reoxygenation. Combining sublethal levels of i. p. Ascorbate with evofosfamide significantly prolonged tumor doubling time in MIA Paca-2 and A549 xenografts compared to either treatment alone. This improvement, however, was only observed in a subpopulation of tumors, highlighting the complexity of the oxygenation response.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Clinical Cancer Metabolism Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Otowa Yasunori
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yamashita Kota
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Clinical Cancer Metabolism Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jeffrey R Brender
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Zheng J, Lee J, Byun J, Yu D, Ha JH. Partial replacement of high-fat diet with n-3 PUFAs enhanced beef tallow attenuates dyslipidemia and endoplasmic reticulum stress in tunicamycin-injected rats. Front Nutr 2023; 10:1155436. [PMID: 37006935 PMCID: PMC10060633 DOI: 10.3389/fnut.2023.1155436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Metabolic syndrome (MetS) is considered as a complex, intertwined multiple risk factors that directly increase the risk of various metabolic diseases, especially cardiovascular atherosclerotic diseases and diabetes mellitus type 2. While lifestyle changes, including dietary intervention are effective in mitigating or preventing MetS, there are no specific therapies against MetS. Typical western diets comprise of high saturated fatty acid, cholesterol, and simple sugar; consequently their consumption may increase the potential pathological developmental risk of MetS. Partial replacement of dietary fatty acids with polyunsaturated fatty acids (PUFAs) is widely recommended measure to manage MetS-related disorders. Methods In the present study, we used rat model to investigate the role of n-3 PUFA enriched beef tallows (BT) on MetS and tunicamycin (TM)-induced endoplasmic reticulum (ER) stress, by partially replacing dietary fat (lard) with equal amounts of two different BTs; regular BT or n-3 PUFA-enriched BT. The experimental rats were randomly assigned to three different dietary groups (n = 16 per group): (1) high-fat and high-cholesterol diet (HFCD); (2) HFCD partially replaced with regular BT (HFCD + BT1); (3) HFCD partially replaced with n-3 enhanced BT (w/w) (HFCD + BT2). After 10 weeks of dietary intervention, each experimental rodent was intraperitoneally injected with either phosphate-buffered saline or 1 mg/kg body weight of TM. Results HFCD + BT2 showed improved dyslipidemia before TM injection, and increased serum high-density lipoprotein cholesterol (HDL-C) levels after TM injection. BT replacement groups had significantly reduced hepatic triglyceride (TG) levels, and decreased total cholesterol (TC) and TG levels in epididymal adipose tissue (EAT). Furthermore, BT replacement remarkably attenuated TM-induced unfolded protein responses (UPRs) in liver, showing reduced ER stress, with BT2 being more effective in the EAT. Discussion Therefore, our findings suggest that partially replacing dietary fats with n-3 PUFA to lower the ratio of n-6/n-3 PUFAs is beneficial in preventing pathological features of MetS by alleviating HFCD- and/or TM-induced dyslipidemia and ER stress.
Collapse
Affiliation(s)
- Jiaxiang Zheng
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Jisu Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Jaemin Byun
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Daeung Yu
- Department of Food and Nutrition, Changwon National University, Changwon, Republic of Korea
- Interdisciplinary Program in Senior Human-Ecology, Major in Food and Nutrition, Changwon National University, Changwon, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Republic of Korea
| |
Collapse
|
4
|
Mciteka LP. A Synthesis Review of Vitamins Involved in the Fight against Covid‐19. CHEMBIOENG REVIEWS 2023. [DOI: 10.1002/cben.202200032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Lulama P. Mciteka
- University of the Western Cape Department of Chemistry Private Bag X17, Bellville 7535 Cape Town South Africa
| |
Collapse
|
5
|
Miazek K, Beton K, Śliwińska A, Brożek-Płuska B. The Effect of β-Carotene, Tocopherols and Ascorbic Acid as Anti-Oxidant Molecules on Human and Animal In Vitro/In Vivo Studies: A Review of Research Design and Analytical Techniques Used. Biomolecules 2022; 12:biom12081087. [PMID: 36008981 PMCID: PMC9406122 DOI: 10.3390/biom12081087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Prolonged elevated oxidative stress (OS) possesses negative effect on cell structure and functioning, and is associated with the development of numerous disorders. Naturally occurred anti-oxidant compounds reduce the oxidative stress in living organisms. In this review, antioxidant properties of β-carotene, tocopherols and ascorbic acid are presented based on in vitro, in vivo and populational studies. Firstly, environmental factors contributing to the OS occurrence and intracellular sources of Reactive Oxygen Species (ROS) generation, as well as ROS-mediated cellular structure degradation, are introduced. Secondly, enzymatic and non-enzymatic mechanism of anti-oxidant defence against OS development, is presented. Furthermore, ROS-preventing mechanisms and effectiveness of β-carotene, tocopherols and ascorbic acid as anti-oxidants are summarized, based on studies where different ROS-generating (oxidizing) agents are used. Oxidative stress biomarkers, as indicators on OS level and prevention by anti-oxidant supplementation, are presented with a focus on the methods (spectrophotometric, fluorometric, chromatographic, immuno-enzymatic) of their detection. Finally, the application of Raman spectroscopy and imaging as a tool for monitoring the effect of anti-oxidant (β-carotene, ascorbic acid) on cell structure and metabolism, is proposed. Literature data gathered suggest that β-carotene, tocopherols and ascorbic acid possess potential to mitigate oxidative stress in various biological systems. Moreover, Raman spectroscopy and imaging can be a valuable technique to study the effect of oxidative stress and anti-oxidant molecules in cell studies.
Collapse
Affiliation(s)
- Krystian Miazek
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
- Correspondence:
| | - Karolina Beton
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Beata Brożek-Płuska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
6
|
Tang X, Liu H, Xiao Y, Wu L, Shu P. Vitamin C Intake and Ischemic Stroke. Front Nutr 2022; 9:935991. [PMID: 35911106 PMCID: PMC9330473 DOI: 10.3389/fnut.2022.935991] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Vitamin C is an essential micronutrient with important antioxidant properties. Ischemic stroke is a major public health problem worldwide. Extensive evidence demonstrates that vitamin C has protective effects against cardiovascular disease, and there is a close relationship between vitamin C intake and ischemic stroke risk. Based on the evidence, we conducted this umbrella review to clarify the relationship between vitamin C intake and ischemic stroke risk from four perspectives: cellular mechanisms, animal experiments, clinical trials, and cohort studies.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Internal Neurology, Beilun District People's Hospital, Ningbo, China
| | - Hanguang Liu
- Department of Internal Neurology, Beilun District People's Hospital, Ningbo, China
| | - Yuan Xiao
- Department of Internal Neurology, Beilun District People's Hospital, Ningbo, China
| | - Lei Wu
- Department of Painology, The No. 1 People's Hospital of Ningbo, Ningbo, China
- Lei Wu
| | - Peng Shu
- Department of Molecular Laboratory, Beilun District People's Hospital, Ningbo, China
- *Correspondence: Peng Shu
| |
Collapse
|
7
|
Hsueh YJ, Chen YN, Tsao YT, Cheng CM, Wu WC, Chen HC. The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. Int J Mol Sci 2022; 23:ijms23031255. [PMID: 35163178 PMCID: PMC8835903 DOI: 10.3390/ijms23031255] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is an important pathomechanism found in numerous ocular degenerative diseases. To provide a better understanding of the mechanism and treatment of oxidant/antioxidant imbalance-induced ocular diseases, this article summarizes and provides updates on the relevant research. We review the oxidative damage (e.g., lipid peroxidation, DNA lesions, autophagy, and apoptosis) that occurs in different areas of the eye (e.g., cornea, anterior chamber, lens, retina, and optic nerve). We then introduce the antioxidant mechanisms present in the eye, as well as the ocular diseases that occur as a result of antioxidant imbalances (e.g., keratoconus, cataracts, age-related macular degeneration, and glaucoma), the relevant antioxidant biomarkers, and the potential of predictive diagnostics. Finally, we discuss natural antioxidant therapies for oxidative stress-related ocular diseases.
Collapse
Affiliation(s)
- Yi-Jen Hsueh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan
| | - Yen-Ning Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Yu-Ting Tsao
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30012, Taiwan;
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Hung-Chi Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 7855); Fax: +886-3-328-7798
| |
Collapse
|
8
|
Welty S, Thathiah A, Levine AS. DNA Damage Increases Secreted Aβ40 and Aβ42 in Neuronal Progenitor Cells: Relevance to Alzheimer's Disease. J Alzheimers Dis 2022; 88:177-190. [PMID: 35570488 PMCID: PMC9277680 DOI: 10.3233/jad-220030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Recent studies suggest a strong association between neuronal DNA damage, elevated levels of amyloid-β (Aβ), and regions of the brain that degenerate in Alzheimer's disease (AD). OBJECTIVE To investigate the nature of this association, we tested the hypothesis that extensive DNA damage leads to an increase in Aβ40 and Aβ42 generation. METHODS We utilized an immortalized human neuronal progenitor cell line (NPCs), ReN VM GA2. NPCs or 20 day differentiated neurons were treated with hydrogen peroxide or etoposide and allowed to recover for designated times. Sandwich ELISA was used to assess secreted Aβ40 and Aβ42. Western blotting, immunostaining, and neutral comet assay were used to evaluate the DNA damage response and processes indicative of AD pathology. RESULTS We determined that global hydrogen peroxide damage results in increased cellular Aβ40 and Aβ42 secretion 24 h after treatment in ReN GA2 NPCs. Similarly, DNA double strand break (DSB)-specific etoposide damage leads to increased Aβ40 and Aβ42 secretion 2 h and 4 h after treatment in ReN GA2 NPCs. In contrast, etoposide damage does not increase Aβ40 and Aβ42 secretion in post-mitotic ReN GA2 neurons. CONCLUSION These findings provide evidence that in our model, DNA damage is associated with an increase in Aβ secretion in neuronal progenitors, which may contribute to the early stages of neuronal pathology in AD.
Collapse
Affiliation(s)
- Starr Welty
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arthur Samuel Levine
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Parenteral Nutrition and Oxidant Load in Neonates. Nutrients 2021; 13:nu13082631. [PMID: 34444799 PMCID: PMC8401055 DOI: 10.3390/nu13082631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
Neonates with preterm, gastrointestinal dysfunction and very low birth weights are often intolerant to oral feeding. In such infants, the provision of nutrients via parenteral nutrition (PN) becomes necessary for short-term survival, as well as long-term health. However, the elemental nutrients in PN can be a major source of oxidants due to interactions between nutrients, imbalances of anti- and pro-oxidants, and environmental conditions. Moreover, neonates fed PN are at greater risk of oxidative stress, not only from dietary sources, but also because of immature antioxidant defences. Various interventions can lower the oxidant load in PN, including the supplementation of PN with antioxidant vitamins, glutathione, additional arginine and additional cysteine; reduced levels of pro-oxidant nutrients such as iron; protection from light and oxygen; and proper storage temperature. This narrative review of published data provides insight to oxidant molecules generated in PN, nutrient sources of oxidants, and measures to minimize oxidant levels.
Collapse
|
10
|
Tsao Y, Wu W, Chen K, Yeh L, Hwang Y, Hsueh Y, Chen H, Cheng C. Analysis of aqueous humor total antioxidant capacity and its correlation with corneal endothelial health. Bioeng Transl Med 2021; 6:e10199. [PMID: 34027088 PMCID: PMC8126826 DOI: 10.1002/btm2.10199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/11/2020] [Accepted: 10/29/2020] [Indexed: 02/04/2023] Open
Abstract
Corneal endothelial decompensation is a serious condition that frequently requires treatment via corneal transplantation which contributes to a global shortage in donor corneas. Therefore, the purpose of this study was to analyze the influence of aqueous humor total antioxidant capacity (TAC) on corneal endothelial health. There is an urgent need for discovering protective factors to combat corneal endothelial cell (CEC) loss. For methods, we developed a cupric ion-based TAC (CuTAC) assay to analyze TAC level in a small volume of aqueous humor, that is, 10 μL per test, and examined the influences of ascorbic acid (AA) and antioxidant proteins on aqueous humor TAC. To broaden the investigation, we conducted a case-control study with patients classified into two groups, an insufficient endothelial cell density (ECD < 2100 cells/mm2) group, and a control group. These groups were formed based on baseline ECD values and were used to evaluate the influence of aqueous humor TAC and AA on overall corneal endothelial health. A CuTAC assay was used to accurately measure aqueous humor TAC without the need for sample dilution. After analyzing a total of 164 human aqueous humor samples, we found that AA was the major contributor to aqueous humor TAC (73.2%). In addition, TAC and AA levels in the IECD and control groups were both found to be significantly different (1.168 vs. 1.592 mM, p = 0.009 and 0.856 vs. 1.178 mM, p = 0.016). TAC and AA were considered independent protective factors against IECD with adjusted odds ratios of 0.02 (p = 0.017) and 0.023 (p = 0.033), respectively. In conclusion, aqueous humor TAC and AA contribute to the maintenance of sufficient corneal ECD, and our CuTAC assay can be a useful tool for analyzing TAC using only a small aqueous humor sample volume.
Collapse
Affiliation(s)
- Yu‐Ting Tsao
- Institute of Biomedical Engineering, National Tsing Hua UniversityHsinchuTaiwan
- Department of EducationChang Gung Memorial HospitalLinkouTaiwan
| | - Wei‐Chi Wu
- Department of OphthalmologyChang Gung Memorial HospitalLinkouTaiwan
- Department of MedicineChang Gung University College of MedicineTaoyuanTaiwan
| | - Kuan‐Jen Chen
- Department of OphthalmologyChang Gung Memorial HospitalLinkouTaiwan
- Department of MedicineChang Gung University College of MedicineTaoyuanTaiwan
| | - Lung‐Kun Yeh
- Department of OphthalmologyChang Gung Memorial HospitalLinkouTaiwan
- Department of MedicineChang Gung University College of MedicineTaoyuanTaiwan
| | - Yih‐Shiou Hwang
- Department of OphthalmologyChang Gung Memorial HospitalLinkouTaiwan
- Department of MedicineChang Gung University College of MedicineTaoyuanTaiwan
| | - Yi‐Jen Hsueh
- Department of OphthalmologyChang Gung Memorial HospitalLinkouTaiwan
- Center for Tissue EngineeringChang Gung Memorial HospitalLinkouTaiwan
| | - Hung‐Chi Chen
- Department of OphthalmologyChang Gung Memorial HospitalLinkouTaiwan
- Department of MedicineChang Gung University College of MedicineTaoyuanTaiwan
- Center for Tissue EngineeringChang Gung Memorial HospitalLinkouTaiwan
| | - Chao‐Min Cheng
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
11
|
Femi-Oloye OP, Owoloye A, Olatunji-Ojo AM, Abiodun AC, Adewumi B, Ibitoye BO, Oloye FF, Izegaegbe JI, Adebayo TM, Adedoja AJ, Oginni OP, Gbore FA, Akinwumi FO. Effects of commonly used food additives on haematological parameters of Wistar rats. Heliyon 2020; 6:e05221. [PMID: 33102847 PMCID: PMC7569304 DOI: 10.1016/j.heliyon.2020.e05221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 05/16/2020] [Accepted: 10/08/2020] [Indexed: 11/05/2022] Open
Abstract
This study was done to investigate the effects of common food additives such as sodium benzoate (SB) and ascorbic acid (AA) on haematological parameters of male Wistar rats. Forty-eight (48) male albino rats with an average weight of 105 g were grouped into twelve (n = 4) of Basal Control and other 11 groups orally administered 1 mg of SB, 10 mg of SB, 10 mg of AA, 0.2 mg of AA + 0.5 mg of SB, 0.2 mg of AA + 1 mg of SB, 0.2 mg of AA + 10 mg of SB, 0.2 mg of SB + 0.1 mg of AA, 0.2 mg of SB + 0.5 mg of AA, carbonated soft drinks (CSD)+ 0.1 mg of AA, CSD + 1 mg of AA and CSD + 10 mg of AA, respectively for 21 non-consecutive days. At the end of the experiment, blood samples were collected in EDTA anticoagulant tubes, haematological parameters were evaluated, and data were analyzed. There was a dose-dependent increase (p < 0.05) in White Blood Cell counts of SB treated rats compared with the control group. The lymphocyte exhibited significant reduction (p < 0.05) in the groups treated with 1mg SB and 10mg SB/kg bodyweight of 67 ± 2.96 and 58 ± 4.18%, respectively. The mean corpuscular haemoglobin showed no significant difference at 95% confidence interval. However, mean corpuscular haemoglobin concentration, haematocrit and platelet were affected by an increase in the concentrations of SB. High SB concentrations increased the destruction of erythrocytes, which directly increased the catabolism of haemoglobin. However, AA administration mitigated the adverse effects of SB on the haematological parameters of the animal.
Collapse
Affiliation(s)
| | - Afolabi Owoloye
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | | | - Adetoye Clement Abiodun
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Bamidele Adewumi
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | | | - Femi Francis Oloye
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | | | - Tobi Musa Adebayo
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Ademola Joseph Adedoja
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | | | | | - Felix Olusegun Akinwumi
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
12
|
Signorelli SS, Marino E, Scuto S, Di Raimondo D. Pathophysiology of Peripheral Arterial Disease (PAD): A Review on Oxidative Disorders. Int J Mol Sci 2020; 21:ijms21124393. [PMID: 32575692 PMCID: PMC7352779 DOI: 10.3390/ijms21124393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Peripheral arterial disease (PAD) is an atherosclerotic disease that affects a wide range of the world’s population, reaching up to 200 million individuals worldwide. PAD particularly affects elderly individuals (>65 years old). PAD is often underdiagnosed or underestimated, although specificity in diagnosis is shown by an ankle/brachial approach, and the high cardiovascular event risk that affected the PAD patients. A number of pathophysiologic pathways operate in chronic arterial ischemia of lower limbs, giving the possibility to improve therapeutic strategies and the outcome of patients. This review aims to provide a well detailed description of such fundamental issues as physical exercise, biochemistry of physical exercise, skeletal muscle in PAD, heme oxygenase 1 (HO-1) in PAD, and antioxidants in PAD. These issues are closely related to the oxidative stress in PAD. We want to draw attention to the pathophysiologic pathways that are considered to be beneficial in order to achieve more effective options to treat PAD patients.
Collapse
Affiliation(s)
- Salvatore Santo Signorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (E.M.); (S.S.)
- Correspondence: ; Tel.: +39-09-5378-2545
| | - Elisa Marino
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (E.M.); (S.S.)
| | - Salvatore Scuto
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (E.M.); (S.S.)
| | - Domenico Di Raimondo
- Division of Internal Medicine and Stroke Care, Department of Promoting Health, Maternal-Infant. Excellence and Internal and Specialized Medicine (Promise) G. D’Alessandro, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
13
|
Zhou J, Chen C, Chen X, Fei Y, Jiang L, Wang G. Vitamin C Promotes Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:976. [PMID: 32587830 PMCID: PMC7298137 DOI: 10.3389/fonc.2020.00976] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is currently ranked as the eighth most prevalent type of cancer. Despite recent advances in cancer research, the 8-year survival rate for oral squamous cell carcinoma remains only 50–60%. Therefore, markers for early detection, identification of efficient chemotherapeutic agents, and post-therapeutic monitoring are the immediate needs. With this background, this study was designed to investigate the anticancer effects of vitamin C (VC) in oral squamous cell carcinoma. Our results showed that VC had an anticancer effect on the oral squamous cell lines used in this study. VC also showed an inhibitory effect on xenograft tumors in nude mice in vitro and had a synergistic effect with cisplatin to induce cell apoptosis. Mechanistically, VC caused a significant increase in the levels of reactive oxygen species (ROS), which led to induced genotoxic (DNA damage) and metabolic (ATP depletion) stresses, inhibited Bcl-2 expression, and promoted Bax expression and caspase-3 cleavage. VC also caused cell cycle arrest at the G0/G1 phase in OSCC cells, which is related to the activation of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21. In conclusion, VC bears considerable therapeutic potential for the treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Jianjun Zhou
- Department of Stomatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chen Chen
- Department of Stomatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoqing Chen
- Department of Stomatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yifan Fei
- Department of Stomatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Jiang
- Department of Stomatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guodong Wang
- Department of Stomatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Perini I, Ambrosi M, Tanini D, Ninham BW, Capperucci A, Nostro PL. Ascorbyl‐6‐O‐oleate: A Bioconjugate Antioxidant Lipid. ChemistrySelect 2020. [DOI: 10.1002/slct.201903528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ilaria Perini
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| | - Moira Ambrosi
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| | - Damiano Tanini
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| | - Barry W. Ninham
- Department of Applied Mathematics, Research School of Physics Australian National University Canberra Australia 0200
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| |
Collapse
|
15
|
El-Baz FK, Salama A, Salama RAA. Dunaliella salina Attenuates Diabetic Neuropathy Induced by STZ in Rats: Involvement of Thioredoxin. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1295492. [PMID: 31998774 PMCID: PMC6970482 DOI: 10.1155/2020/1295492] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023]
Abstract
Diabetic neuropathy (DN) is a widespread disabling disorder including peripheral nerves' damage. The aim of the current study was to estimate the potential ameliorative effect of Dunaliella salina (D. salina) on DN and the involvement of the thioredoxin. Diabetes was induced by streptozotocin (STZ; 50 mg/kg; i.p). Glimepiride (0.5 mg/kg) or D. salina powder (100 or 200 mg/kg) were given orally, after 2 days of STZ injection for 4 weeks. Glucose, total antioxidant capacity (TAC), superoxide dismutase (SOD), and catalase (CAT) serum levels as well as brain contents of thioredoxin (Trx), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) were measured with the histopathological study. STZ-induced DN resulted in a significant (P < 0.05) rise in glucose blood level and brain contents of TNF-α and IL-6 and produced a reduction in serum TAC, SOD, CAT, and brain Trx levels with irregular islets of Langerhans cells and loss of brain Purkinje cells. Treatment with glimepiride or both doses of D. salina alleviated these biochemical and histological parameters as compared to the STZ group. D. salina has a neurotherapeutic effect against DN via its inhibitory effect on inflammatory mediators and oxidative stress molecules with its upregulation of Trx activity.
Collapse
Affiliation(s)
- Farouk K. El-Baz
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Bohouth St. (Former El-Tahrir St.), 12622 Dokki, Giza, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre (NRC), 33 El Bohouth St. (Former El-Tahrir St.), 12622 Dokki, Giza, Egypt
| | - Rania A. A. Salama
- Toxicology and Narcotics Department, National Research Centre (NRC), 33 El Bohouth St. (Former El-Tahrir St.), 12622 Dokki, Giza, Egypt
| |
Collapse
|
16
|
Wang W, Xu L, Zou Y, Pang D, Shi W, Mu L, Li E, Lan D, Wang Y, Liao S. Comprehensive Identification of Principal Lipid Classes and Tocochromanols in Silkworm (Antheraea pernyiandBombyx mori) Pupae Oils. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weifei Wang
- Sericultural and Agri‐Food Research InstituteGuangdong Academy of Agricultural Sciences Guangzhou 510610 China
| | - Long Xu
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Yuxiao Zou
- Sericultural and Agri‐Food Research InstituteGuangdong Academy of Agricultural Sciences Guangzhou 510610 China
| | - Daorui Pang
- Sericultural and Agri‐Food Research InstituteGuangdong Academy of Agricultural Sciences Guangzhou 510610 China
| | - Wei Shi
- Sericultural and Agri‐Food Research InstituteGuangdong Academy of Agricultural Sciences Guangzhou 510610 China
| | - Lixia Mu
- Sericultural and Agri‐Food Research InstituteGuangdong Academy of Agricultural Sciences Guangzhou 510610 China
| | - Erna Li
- Sericultural and Agri‐Food Research InstituteGuangdong Academy of Agricultural Sciences Guangzhou 510610 China
| | - Dongming Lan
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Yonghua Wang
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Sentai Liao
- Sericultural and Agri‐Food Research InstituteGuangdong Academy of Agricultural Sciences Guangzhou 510610 China
| |
Collapse
|
17
|
Fuentes E, Moore-Carrasco R, de Andrade Paes AM, Trostchansky A. Role of Platelet Activation and Oxidative Stress in the Evolution of Myocardial Infarction. J Cardiovasc Pharmacol Ther 2019; 24:509-520. [DOI: 10.1177/1074248419861437] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myocardial infarction, commonly known as heart attack, evolves from the rupture of unstable atherosclerotic plaques to coronary thrombosis and myocardial ischemia–reperfusion injury. A body of evidence supports a close relationship between the alterations following an ischemia–reperfusion injury-induced oxidative stress and platelet activity. Through their critical role in thrombogenesis and inflammatory responses, platelets are fully (totally) implicated from atherothrombotic plaque formation to myocardial infarction onset and expansion. However, mere platelet aggregation prevention does not offer full protection, suggesting that other antiplatelet therapy mechanisms may also be involved. Thus, the present review discusses the integrative role of platelets, oxidative stress, and antiplatelet therapy in triggering myocardial infarction pathophysiology.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca, Chile
| | - Rodrigo Moore-Carrasco
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Health Sciences Graduate Program and Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Andres Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
18
|
Liu J, Li S, Sun D. Calcium Dobesilate and Micro-vascular diseases. Life Sci 2019; 221:348-353. [PMID: 30769115 DOI: 10.1016/j.lfs.2019.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/02/2019] [Accepted: 02/10/2019] [Indexed: 12/26/2022]
Abstract
Micro-vascular diseases and its associated complications continue to be a significant health problem worldwide. Vascular lesions from microvascular involvement lead to impaired blood flow and contribute to damage and dysfunction of one or more target organs, that is, the heart, kidneys, eyes, and nervous system. Calcium Dobesilate Drug (CAD) is an established vasoactive and angioprotective drug that has shown a unique, multitarget mode of action in several experimental studies and in different animal models of diabetic microvascular complications. CAD has been widely used as an antioxidant and a vascular protective agent. At present, the application of Calcium Dobesilate is mainly related to Micro-vascular damage-related diseases, such as diabetic retinopathy (DR) and diabetic nephropathy (DN), and it is found to significantly improve the related symptoms. Its beneficial effects make it an attractive therapeutic compound especially in the early stages of these diseases. Scholars at home and abroad have studied the effectiveness, safety, and mechanisms of the related diseases, furthermore, the subjects involved patients and animal models, they have found some new clinical effects of this medicine. This paper makes a brief summary of a research progress of clinical application about Vascular injury related diseases and other aspects.
Collapse
Affiliation(s)
- Jie Liu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Department of Nephrology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
19
|
Kiokias S, Proestos C, Oreopoulou V. Effect of Natural Food Antioxidants against LDL and DNA Oxidative Changes. Antioxidants (Basel) 2018; 7:antiox7100133. [PMID: 30282925 PMCID: PMC6211048 DOI: 10.3390/antiox7100133] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
Radical oxygen species formed in human tissue cells by many endogenous and exogenous pathways cause extensive oxidative damage which has been linked to various human diseases. This review paper provides an overview of lipid peroxidation and focuses on the free radicals-initiated processes of low-density lipoprotein (LDL) oxidative modification and DNA oxidative damage, which are widely associated with the initiation and development of atherosclerosis and carcinogenesis, respectively. The article subsequently provides an overview of the recent human trials or even in vitro investigations on the potential of natural antioxidant compounds (such as carotenoids; vitamins C and E) to monitor LDL and DNA oxidative changes.
Collapse
Affiliation(s)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece.
| | - Vassilki Oreopoulou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Iron Politechniou 9, 15780 Athens, Greece.
| |
Collapse
|
20
|
Appropriate Handling, Processing and Analysis of Blood Samples Is Essential to Avoid Oxidation of Vitamin C to Dehydroascorbic Acid. Antioxidants (Basel) 2018; 7:antiox7020029. [PMID: 29439480 PMCID: PMC5836019 DOI: 10.3390/antiox7020029] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Vitamin C (ascorbate) is the major water-soluble antioxidant in plasma and its oxidation to dehydroascorbic acid (DHA) has been proposed as a marker of oxidative stress in vivo. However, controversy exists in the literature around the amount of DHA detected in blood samples collected from various patient cohorts. In this study, we report on DHA concentrations in a selection of different clinical cohorts (diabetes, pneumonia, cancer, and critically ill). All clinical samples were collected into EDTA anticoagulant tubes and processed at 4 °C prior to storage at −80 °C for subsequent analysis by HPLC with electrochemical detection. We also investigated the effects of different handling and processing conditions on short-term and long-term ascorbate and DHA stability in vitro and in whole blood and plasma samples. These conditions included metal chelation, anticoagulants (EDTA and heparin), and processing temperatures (ice, 4 °C and room temperature). Analysis of our clinical cohorts indicated very low to negligible DHA concentrations. Samples exhibiting haemolysis contained significantly higher concentrations of DHA. Metal chelation inhibited oxidation of vitamin C in vitro, confirming the involvement of contaminating metal ions. Although EDTA is an effective metal chelator, complexes with transition metal ions are still redox active, thus its use as an anticoagulant can facilitate metal ion-dependent oxidation of vitamin C in whole blood and plasma. Handling and processing blood samples on ice (or at 4 °C) delayed oxidation of vitamin C by a number of hours. A review of the literature regarding DHA concentrations in clinical cohorts highlighted the fact that studies using colourimetric or fluorometric assays reported significantly higher concentrations of DHA compared to those using HPLC with electrochemical detection. In conclusion, careful handling and processing of samples, combined with appropriate analysis, is crucial for accurate determination of ascorbate and DHA in clinical samples.
Collapse
|
21
|
Mohiti-Asli M, Ghanaatparast-Rashti M. Feeding antioxidant vitamin and vegetable oils to broilers: vitamin E reduced negative effect of soybean oil on immune response and meat lipid oxidation. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study investigated the effect of feeding vitamin E, vitamin C, and two sources of vegetable oil on immune response and meat quality of broilers. A total of 320 one-day-old chicks were used in a completely randomised design with eight treatments arranged as a 2 × 2 × 2 factorial with two levels of vitamin E (0 and 200 mg/kg), two levels of vitamin C (0 and 1000 mg/kg), and two sources of vegetable oil (soybean and canola). Dietary supplementation of either vitamin E or C increased (P < 0.05) secondary humoral response, whereas oil sources had no significant effect. Broilers fed soybean oil had lower cellular response to the phytohemagglutinin skin test than those fed canola oil in diet, and supplementation of vitamin E increased cellular immune response. However, fat, cholesterol and pH of meat were not affected by source of oil or antioxidants, lipid oxidation was higher (P < 0.05) in thigh and breast meat of broilers fed soybean oil than canola oil. Dietary supplementation of vitamin E decreased (P < 0.05) lipid oxidation in thigh and breast of broilers fed diet containing soybean oil, without any effect on meat oxidation of those fed canola oil. Dietary supplementation of vitamin C increased lipid oxidation in thigh meat of broilers (P < 0.05). It can be concluded that inclusion of soybean oil to the diet, compared with canola oil, increased need for antioxidant. Vitamin E had beneficial effects on immune response and reduced meat lipid oxidation; nonetheless future studies should explore the antioxidant effect of vitamin C in stored meat.
Collapse
|
22
|
Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol 2017; 175:1279-1292. [PMID: 28430357 DOI: 10.1111/bph.13828] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022] Open
Abstract
ROS are a group of small reactive molecules that play critical roles in the regulation of various cell functions and biological processes. In the vascular system, physiological levels of ROS are essential for normal vascular functions including endothelial homeostasis and smooth muscle cell contraction. In contrast, uncontrolled overproduction of ROS resulting from an imbalance of ROS generation and elimination leads to the development of vascular diseases. Excessive ROS cause vascular cell damage, the recruitment of inflammatory cells, lipid peroxidation, activation of metalloproteinases and deposition of extracellular matrix, collectively leading to vascular remodelling. Evidence from a large number of studies has revealed that ROS and oxidative stress are involved in the initiation and progression of numerous vascular diseases including hypertension, atherosclerosis, restenosis and abdominal aortic aneurysm. Furthermore, considerable research has been implemented to explore antioxidants that can reduce ROS production and oxidative stress in order to ameliorate vascular diseases. In this review, we will discuss the nature and sources of ROS, their roles in vascular homeostasis and specific vascular diseases and various antioxidants as well as some of the pharmacological agents that are capable of reducing ROS and oxidative stress. The aim of this review is to provide information for developing promising clinical strategies targeting ROS to decrease cardiovascular risks. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Zhu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Clemmer JS, Xiang L, Lu S, Mittwede PN, Hester RL. Hyperglycemia-Mediated Oxidative Stress Increases Pulmonary Vascular Permeability. Microcirculation 2016; 23:221-9. [PMID: 26749564 DOI: 10.1111/micc.12267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Hyperglycemia in diabetes mellitus is associated with endothelial dysfunction as evidenced by increased oxidative stress and vascular permeability. Whether impaired glucose control in metabolic syndrome impacts pulmonary vascular permeability is unknown. We hypothesized that in metabolic syndrome, hyperglycemia increases lung vascular permeability through superoxide. METHODS Lung capillary Kf and vascular superoxide were measured in the isolated lungs of LZ and OZ rats. OZ were subjected to 4 weeks of metformin treatment (300 mg/kg/day orally) to improve insulin sensitivity. In a separate experiment, lung vascular permeability and vascular superoxide were measured in LZ exposed to acute hyperglycemia (30 mM). RESULTS As compared to LZ, OZ had impaired glucose and insulin tolerance and elevated vascular superoxide which was associated with an elevated lung Kf. Chronic metformin treatment in OZ improved glucose control and insulin sensitivity which was associated with decreased vascular oxidative stress and lung Kf. Acute hyperglycemia in isolated lungs from LZ increased lung Kf, which was blocked with the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, apocynin (3 mM). Apocynin also decreased baseline Kf in OZ. CONCLUSIONS These data suggest that hyperglycemia in metabolic syndrome exacerbates lung vascular permeability through increases in vascular superoxide, possibly through NADPH oxidase.
Collapse
Affiliation(s)
- John S Clemmer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lusha Xiang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Silu Lu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Peter N Mittwede
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Robert L Hester
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
24
|
Ivanova D, Zhelev Z, Aoki I, Bakalova R, Higashi T. Overproduction of reactive oxygen species - obligatory or not for induction of apoptosis by anticancer drugs. Chin J Cancer Res 2016; 28:383-96. [PMID: 27647966 PMCID: PMC5018533 DOI: 10.21147/j.issn.1000-9604.2016.04.01] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Many studies demonstrate that conventional anticancer drugs elevate intracellular level of reactive oxygen species (ROS) and alter redox-homeostasis of cancer cells. It is widely accepted that anticancer effect of these chemotherapeutics is due to induction of oxidative stress and ROS-mediated apoptosis in cancer. On the other hand, the harmful side effects of conventional anticancer chemotherapy are also due to increased production of ROS and disruption of redox-homeostasis of normal cells and tissues. This article describes the mechanisms for triggering and modulation of apoptosis through ROS-dependent and ROS-independent pathways. We try to answer the question: "Is it possible to induce highly specific apoptosis only in cancer cells, without overproduction of ROS, as well as without harmful effects on normal cells and tissues?" The review also suggests a new therapeutic strategy for selective killing of cancer cells, without significant impact on viability of normal cells and tissues, by combining anticancer drugs with redox-modulators, affecting specific signaling pathways and avoiding oxidative stress.
Collapse
Affiliation(s)
- Donika Ivanova
- Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria
| | - Zhivko Zhelev
- Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria; Institute of Biophysics & Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Rumiana Bakalova
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Medical Faculty, Sofia University, Sofia 1407, Bulgaria
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
25
|
Hannan PA, Khan JA, Ullah I, Ullah S. Synergistic combinatorial antihyperlipidemic study of selected natural antioxidants; modulatory effects on lipid profile and endogenous antioxidants. Lipids Health Dis 2016; 15:151. [PMID: 27613388 PMCID: PMC5016891 DOI: 10.1186/s12944-016-0323-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/02/2016] [Indexed: 11/15/2022] Open
Abstract
Background Hyperlipidemia, a major pathological condition associated with disrupted lipid levels and physiological redox homeostasis. The excessive release of reactive oxygen species (ROS) leads to enhanced lipid peroxidation, aggravated atherosclerosis and oxidative stress. Integration of natural antioxidant blends in alone or with conventional treatments can alleviate these issues synergistically contributing least side effects. Published literature reported the efficacy of natural antioxidants as individual and in combinations in various conditions but less data is available on their evaluation in low dose ratio blends particularly in hypercholesterolemic diet. Methods Antihyperlipidemic effects of selected natural antioxidants; the phenolic oligomeric proanthocyanidins (OPC) and pterostilbene (PT) with niacin (NA) were investigated in current study. Their effects on lipid profile, lipid peroxidation and their aptitude to establish redox state between oxidants and antioxidants in body were evaluated in high cholesterol diet fed animal model. Male albino rabbits (n = 6) weighing 1.2–1.6 kg, supplemented with high cholesterol diet (400 mg/kg) for 12 weeks were used in the experiment. Antioxidants were administered individual high (100 mg/kg) and in low dose combinations (total dose = 100 mg/kg). Student’s t test and one way analysis of variance (ANOVA) followed by Dunnet’s test were used as statistical tools for evaluation. Results The results showed synergistic effects of low dose antioxidant blends. Therapies retarded elevation in blood lipid levels, lipid peroxidation and blood antioxidant depletion and consequently contributed in reestablishing redox homeostasis. The LDL/HDL ratio and atherogenic index were suppressed significantly in blend therapies with maximum effects of 59.3 and 25 % (p >0.001) observed in 50:30:20 ratios of OPC, NA and PT, compared to individual therapies 37 and 18 % max respectively. Moreover the results were also in close proximity with the statin therapy (52.66, 26.28 %). Conclusion This study provides an evidence for natural antioxidants blends superiority over individual therapy in chronic diseases like hyperlipidemia. Such therapies in human equivalent doses can help in mitigating chronic illnesses in general populations.
Collapse
Affiliation(s)
- Peer Abdul Hannan
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Jamshaid Ali Khan
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan.
| | - Irfan Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Safi Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
26
|
Riccioni G, D'Orazio N, Menna V, De Lorenzo A. Fat Soluble Vitamins and Immune System: An Overview. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x0300100202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The immune system guards against invasion by foreign microrganisms and molecules. In this way, it protects from fatal illnesses and communicable diseases. Its proper functioning is fundamental for survival. Research has demonstrated that proper nutrition plays a crucial role in the prevention of chronic disease. Protein-energy malnutrition is associated with a significant impairment of cell-mediated immunity, phagocyte function, the complement system, secretory immunoglobulin A antibody concentrations, and cytokine production. Deficiency of single nutrients also results in altered immune responses; this is observed even when the deficiency state is relatively mild. Of the micronutrients, zinc, selenium, iron, copper, vitamins A,C,E and B, and folic acid have important influences on the immune response. It is now apparent that vitamin E and β-carotene have more subtle roles and that deficient dietary intake of these vitamins increases susceptibility to certain cancers and cardiovascular disease. This reflects, in part, the antioxidant properties of the vitamins and their ability to reduce free radical-mediated damage to DNA, proteins and lipid membranes. These findings have considerable practical and public health significance. The aim of this review is to give an up-to date account of the roles of selected fat-soluble vitamins in health and disease.
Collapse
Affiliation(s)
| | | | | | - A. De Lorenzo
- Human Nutrition, University “Tor Vergata”, Rome, Italy
| |
Collapse
|
27
|
Pre- or post-ischemic bilirubin ditaurate treatment reduces oxidative tissue damage and improves cardiac function. Int J Cardiol 2016; 202:27-33. [DOI: 10.1016/j.ijcard.2015.08.192] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/21/2015] [Indexed: 11/20/2022]
|
28
|
Abstract
Atherosclerotic lesions initiate in regions characterized by low shear stress and reduced activity of endothelial atheroprotective molecules such as nitric oxide, which is the key molecule managing vascular homeostasis. The generation of reactive oxygen species from the vascular endothelium is strongly related to various enzymes, such as xanthine oxidase, endothelial nitric oxide synthase and nicotinamide-adenine dinucleotide phosphate oxidase. Several pharmaceutical agents, including angiotensin converting enzyme inhibitors, angiotensin receptors blockers and statins, along with a variety of other agents, have demonstrated additional antioxidant properties beyond their principal role. Reports regarding the antioxidant role of vitamins present controversial results, especially those based on large scale studies. In addition, there is growing interest on the role of dietary flavonoids and their potential to improve endothelial function by modifying the oxidative stress status. However, the vascular-protective role of flavonoids and especially their antioxidant properties are still under investigation. Indeed, further research is required to establish the impact of the proposed new therapeutic strategies in atherosclerosis.
Collapse
|
29
|
Santilli F, D'Ardes D, Davì G. Oxidative stress in chronic vascular disease: From prediction to prevention. Vascul Pharmacol 2015; 74:23-37. [DOI: 10.1016/j.vph.2015.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/14/2022]
|
30
|
|
31
|
Talikoti P, Bobby Z, Hamide A. Effect of supplementation of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives. Clin Exp Hypertens 2015; 37:15-8. [PMID: 25588130 DOI: 10.3109/10641963.2013.827695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The objective of the study was to evaluate the effect of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives. Sixty prehypertensives were recruited and randomized into 2 groups of 30 each. One group received water-soluble vitamins and the other placebo for 4 months. Further increase in blood pressure was not observed in the vitamin group which increased significantly in the placebo group at the end of 4 months. Malonedialdehyde and protein carbonylation were reduced during the course of treatment with vitamins whereas in the placebo group there was an increase in the level of malondialdehyde. In conclusion, supplementation of water-soluble vitamins in prehypertension reduces oxidative stress and its progression to hypertension.
Collapse
Affiliation(s)
- Prashanth Talikoti
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER) , Puducherry , India and
| | | | | |
Collapse
|
32
|
Elalfy MS, Saber MM, Adly AAM, Ismail EA, Tarif M, Ibrahim F, Elalfy OM. Role of vitamin C as an adjuvant therapy to different iron chelators in young β-thalassemia major patients: efficacy and safety in relation to tissue iron overload. Eur J Haematol 2015; 96:318-26. [PMID: 26018112 DOI: 10.1111/ejh.12594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Vitamin C, as antioxidant, increases the efficacy of deferoxamine (DFO). AIM To investigate the effects of vitamin C as an adjuvant therapy to the three used iron chelators in moderately iron-overloaded young vitamin C-deficient patients with β-thalassemia major (β-TM) in relation to tissue iron overload. METHODS This randomized prospective trial that included 180 β-TM vitamin C-deficient patients were equally divided into three groups (n = 60) and received DFO, deferiprone (DFP), and deferasirox (DFX). Patients in each group were further randomized either to receive vitamin C supplementation (100 mg daily) or not (n = 30). All patients received vitamin C (group A) or no vitamin C (group B) were followed up for 1 yr with assessment of transfusion index, hemoglobin, iron profile, liver iron concentration (LIC) and cardiac magnetic resonance imaging (MRI) T2*. RESULTS Baseline vitamin C was negatively correlated with transfusion index, serum ferritin (SF), and LIC. After vitamin C therapy, transfusion index, serum iron, SF, transferrin saturation (Tsat), and LIC were significantly decreased in group A patients, while hemoglobin and cardiac MRI T2* were elevated compared with baseline levels or those in group B without vitamin C. The same improvement was found among DFO-treated patients post-vitamin C compared with baseline data. DFO-treated patients had the highest hemoglobin with the lowest iron, SF, and Tsat compared with DFP or DFX subgroups. CONCLUSIONS Vitamin C as an adjuvant therapy possibly potentiates the efficacy of DFO more than DFP and DFX in reducing iron burden in the moderately iron-overloaded vitamin C-deficient patients with β-TM, with no adverse events.
Collapse
Affiliation(s)
- Mohsen S Elalfy
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha M Saber
- Child Health in Complementary Medicine, National Research Center, Cairo, Egypt
| | | | - Eman A Ismail
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Tarif
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Fatma Ibrahim
- Child Health in Complementary Medicine, National Research Center, Cairo, Egypt
| | - Omar M Elalfy
- Child Health in Complementary Medicine, National Research Center, Cairo, Egypt
| |
Collapse
|
33
|
Thosar SS, Bielko SL, Wiggins CS, Klaunig JE, Mather KJ, Wallace JP. Antioxidant vitamin C prevents decline in endothelial function during sitting. Med Sci Monit 2015; 21:1015-21. [PMID: 25848890 PMCID: PMC4401065 DOI: 10.12659/msm.893192] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/20/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study was designed to test the hypothesis that antioxidant Vitamin C prevents the impairment of endothelial function during prolonged sitting. MATERIAL AND METHODS Eleven men (24.2 ± 4.4 yrs) participated in 2 randomized 3-h sitting trials. In the sitting without vitamin C (SIT) and the sitting with vitamin C (VIT) trial, participants were seated for 3 h without moving their legs. Additionally, in the VIT trial, participants ingested 2 vitamin C tablets (1 g and 500 mg) at 30 min and 1 h 30 min, respectively. Superficial femoral artery (SFA) flow-mediated dilation (FMD) was measured hourly for 3 h. RESULTS By a 1-way ANOVA, there was a significant decline in FMD during 3 h of SIT (p<0.001). Simultaneously, there was a significant decline in antegrade (p=0.04) and mean (0.037) shear rates. For the SIT and VIT trials by a 2-way (trial x time) repeated measures ANOVA, there was a significant interaction (p=0.001). Pairwise testing revealed significant between-SFA FMD in the SIT and VIT trial at each hour after baseline, showing that VIT prevented the decline in FMD 1 h (p=0.009), 2 h (p=0.016), and 3 h (p=0.004). There was no difference in the shear rates between SIT and VIT trials (p>0.05). CONCLUSIONS Three hours of sitting resulted in impaired SFA FMD. Antioxidant Vitamin C prevented the decline in SFA FMD, suggesting that oxidative stress may contribute to the impairment in endothelial function during sitting.
Collapse
Affiliation(s)
- Saurabh S. Thosar
- Department of Kinesiology, Indiana University School of Public Health, Indiana University, Bloomington, IN, U.S.A
| | - Sylvanna L. Bielko
- Department of Kinesiology, Indiana University School of Public Health, Indiana University, Bloomington, IN, U.S.A
| | - Chad S. Wiggins
- Department of Kinesiology, Indiana University School of Public Health, Indiana University, Bloomington, IN, U.S.A
| | - James E. Klaunig
- Department of Environmental Health, Indiana University School of Public Health, Indiana University, Bloomington, IN, U.S.A
| | - Kieren J. Mather
- Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, IN, U.S.A
| | - Janet P. Wallace
- Department of Kinesiology, Indiana University School of Public Health, Indiana University, Bloomington, IN, U.S.A
| |
Collapse
|
34
|
Rashid Khan M, Ahsan H, Siddiqui S, Siddiqui WA. Tocotrienols have a nephroprotective action against lipid-induced chronic renal dysfunction in rats. Ren Fail 2014; 37:136-43. [DOI: 10.3109/0886022x.2014.959433] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Buzadzic B, Vucetic M, Jankovic A, Stancic A, Korac A, Korac B, Otasevic V. New insights into male (in)fertility: the importance of NO. Br J Pharmacol 2014; 172:1455-67. [PMID: 24601995 DOI: 10.1111/bph.12675] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/31/2014] [Accepted: 03/03/2014] [Indexed: 01/19/2023] Open
Abstract
Infertility is a global problem that is on the rise, especially during the last decade. Currently, infertility affects approximately 10-15% of the population worldwide. The frequency and origin of different forms of infertility varies. It has been shown that reactive oxygen and nitrogen species (ROS and RNS) are involved in the aetiology of infertility, especially male infertility. Various strategies have been designed to remove or decrease the production of ROS and RNS in spermatozoa, in particular during in vitro fertilization. However, in recent years it has been shown that spermatozoa naturally produce a variety of ROS/RNS, including superoxide anion radical (O2 (⋅-)), hydrogen peroxide and NO. These reactive species, in particular NO, are essential in regulating sperm capacitation and the acrosome reaction, two processes that need to be acquired by sperm in order to achieve fertilization potential. In addition, it has recently been shown that mitochondrial function is positively correlated with human sperm fertilization potential and quality and that NO and NO precursors increase sperm motility by increasing energy production in mitochondria. We will review the new link between sperm NO-driven redox regulation and infertility herein. A special emphasis will be placed on the potential implementation of new redox-active substances that modulate the content of NO in spermatozoa to increase fertility and promote conception.
Collapse
Affiliation(s)
- B Buzadzic
- Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
36
|
Endothelial dysfunction in conduit arteries and in microcirculation. Novel therapeutic approaches. Pharmacol Ther 2014; 144:253-67. [PMID: 24928320 DOI: 10.1016/j.pharmthera.2014.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022]
Abstract
The vascular endothelium not only is a single monolayer of cells between the vessel lumen and the intimal wall, but also plays an important role by controlling vascular function and structure mainly via the production of nitric oxide (NO). The so called "cardiovascular risk factors" are associated with endothelial dysfunction, that reduces NO bioavailability, increases oxidative stress, and promotes inflammation contributing therefore to the development of atherosclerosis. The significant role of endothelial dysfunction in the development of atherosclerosis emphasizes the need for efficient therapeutic interventions. During the last years statins, angiotensin-converting enzyme inhibitors, angiotensin-receptor antagonists, antioxidants, beta-blockers and insulin sensitizers have been evaluated for their ability to restore endothelial function (Briasoulis et al., 2012). As there is not a straightforward relationship between therapeutic interventions and improvement of endothelial function but rather a complicated interrelationship between multiple cellular and sub-cellular targets, research has been focused on the understanding of the underlying mechanisms. Moreover, the development of novel diagnostic invasive and non-invasive methods has allowed the early detection of endothelial dysfunction expanding the role of therapeutic interventions and our knowledge. In the current review we present the available data concerning the contribution of endothelial dysfunction to atherogenesis and review the methods that assess endothelial function with a view to understand the multiple targets of therapeutic interventions. Finally we focus on the classic and novel therapeutic approaches aiming to improve endothelial dysfunction and the underlying mechanisms.
Collapse
|
37
|
Yang X, Luo YH, Zeng QF, Zhang KY, Ding XM, Bai SP, Wang JP. Effects of low ambient temperatures and dietary vitamin C supplement on growth performance, blood parameters, and antioxidant capacity of 21-day-old broilers. Poult Sci 2014; 93:898-905. [PMID: 24706967 DOI: 10.3382/ps.2013-03438] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study was conducted to determine the effects of low ambient temperature (LAT) and a vitamin C (VC) dietary supplement on the growth performance, blood parameters, and antioxidant capacity of 21-d-old broilers. A total of 400 one-day-old male Cobb broilers were assigned to 1 of 4 treatments as follows: 1) LAT and a basal diet; 2) LAT and a basal diet supplemented with 1,000 mg of VC/kg (LAT + VC); 3) normal ambient temperature (NAT) and a basal diet; 4) NAT and a basal diet supplemented with 1,000 mg of VC/kg (NAT + VC). All birds were fed to 21 d of age. Broilers in groups 1 and 2 were raised at 24 to 26°C during 1 to 7 d, and at 9 to 11°C during 8 to 21 d, whereas groups 3 and 4 were raised at 29 to 31°C during 1 to 7 d and at 24 to 26°C during 8 to 21 d. The LAT increased the feed conversion ratio during the whole experimental period (P < 0.01), whereas it increased heart index at 21 d (P < 0.05) and hematocrit and hemoglobin level at 14 d (P < 0.05). Supplementing the diet with VC increased hematocrit, hemoglobin, and red blood cell count at 21 d (P < 0.05). At 21 d, LAT conditions decreased total antioxidant capacity in the serum, liver, and lungs (P < 0.05), and it also increased the levels of VC in the serum and liver, the amount of protein carbonylation in liver and lungs, and the malondialdehyde level in the lungs (P < 0.05). The addition of VC tended to increase the total antioxidant capacity level in serum (P < 0.1). Low ambient temperature resulted in oxidative stress for broilers that were fed from 1 to 21 d of age, whereas no significant effect was found on the antioxidant activity by dietary VC supplementation.
Collapse
Affiliation(s)
- X Yang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Sichuan Agricultural University, Sichuan, Ya'an 625014, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Bonini MG, Consolaro MEL, Hart PC, Mao M, de Abreu ALP, Master AM. Redox control of enzymatic functions: The electronics of life's circuitry. IUBMB Life 2014; 66:167-181. [PMID: 24668617 DOI: 10.1002/iub.1258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/06/2014] [Indexed: 12/22/2022]
Abstract
The field of redox biology has changed tremendously over the past 20 years. Formerly regarded as bi-products of the aerobic metabolism exclusively involved in tissue damage, reactive oxygen species (ROS) are now recognized as active participants of cell signaling events in health and in disease. In this sense, ROS and the more recently defined reactive nitrogen species (RNS) are, just like hormones and second messengers, acting as fundamental orchestrators of cell signaling pathways. The chemical modification of enzymes by ROS and RNS (that result in functional enzymatic alterations) accounts for a considerable fraction of the transient and persistent perturbations imposed by variations in oxidant levels. Upregulation of ROS and RNS in response to stress is a common cellular response that foments adaptation to a variety of physiologic alterations (hypoxia, hyperoxia, starvation, and cytokine production). Frequently, these are beneficial and increase the organisms' resistance against subsequent acute stress (preconditioning). Differently, the sustained ROS/RNS-dependent rerouting of signaling produces irreversible alterations in cellular functioning, often leading to pathogenic events. Thus, the duration and reversibility of protein oxidations define whether complex organisms remain "electronically" healthy. Among the 20 essential amino acids, four are particularly susceptible to oxidation: cysteine, methionine, tyrosine, and tryptophan. Here, we will critically review the mechanisms, implications, and repair systems involved in the redox modifications of these residues in proteins while analyzing well-characterized prototypic examples. Occasionally, we will discuss potential consequences of amino acid oxidation and speculate on the biologic necessity for such events in the context of adaptative redox signaling. © 2014 IUBMB Life, 66(3):167-181, 2014.
Collapse
Affiliation(s)
- Marcelo G Bonini
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Marcia E L Consolaro
- Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Peter C Hart
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mao Mao
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Andre Luelsdorf Pimenta de Abreu
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Alyssa M Master
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
39
|
Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review. Ageing Res Rev 2014; 14:81-101. [PMID: 24418256 DOI: 10.1016/j.arr.2014.01.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 02/07/2023]
Abstract
Aging is a complex biological phenomenon in which the deficiency of the nutritional state combined with the presence of chronic inflammation and oxidative stress contribute to the development of many age-related diseases. Under this profile, the free radicals produced by the oxidative stress lead to a damage of DNA, lipids and proteins with subsequent altered cellular homeostasis and integrity. In young-adult age, the cell has a complex efficient system to maintain a proper balance between the levels of free radicals and antioxidants ensuring the integrity of cellular components. In contrast, in old age this balance is poorly efficient compromising cellular homeostasis. Supplementation with Vitamin E can restore the balance and protect against the deteriorating effects of oxidative stress, progression of degenerative diseases, and aging. Experiments in cell cultures and in animals have clearly shown that Vitamin E has a pivotal role as antioxidant agent against the lipid peroxidation on cell membranes preserving the tissue cells from the oxidative damage. Such a role has been well documented in immune, endothelial, and brain cells from old animals describing how the Vitamin E works both at cytoplasmatic and nuclear levels with an influence on many genes related to the inflammatory/immune response. All these findings have supported a lot of clinical trials in old humans and in inflammatory age-related diseases with however contradictory and inconsistent results and even indicating a dangerous role of Vitamin E able to affect mortality. Various factors can contribute to all the discrepancies. Among them, the doses and the various isoforms of Vitamin E family (α,β,γ,δ tocopherols and the corresponding tocotrienols) used in different trials. However, the more plausible gap is the poor consideration of the Vitamin E-gene interactions that may open new roadmaps for a correct and personalized Vitamin E supplementation in aging and age-related diseases with satisfactory results in order to reach healthy aging and longevity. In this review, this peculiar nutrigenomic and/or nutrigenetic aspect is reported and discussed at the light of specific polymorphisms affecting the Vitamin E bioactivity.
Collapse
|
40
|
Effects of regular consumption of vitamin C-rich or polyphenol-rich apple juice on cardiometabolic markers in healthy adults: a randomized crossover trial. Eur J Nutr 2014; 53:1645-57. [DOI: 10.1007/s00394-014-0670-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
|
41
|
Cervellati F, Cervellati C, Romani A, Cremonini E, Sticozzi C, Belmonte G, Pessina F, Valacchi G. Hypoxia induces cell damage via oxidative stress in retinal epithelial cells. Free Radic Res 2014; 48:303-12. [PMID: 24286355 DOI: 10.3109/10715762.2013.867484] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Retinal diseases (RD), including diabetic retinopathy, are among the most important eye diseases in industrialized countries. RD is characterized by abnormal angiogenesis associated with an increase in cell proliferation and apoptosis. Hypoxia could be one of the triggers of the pathogenic mechanism of this disease. A key regulatory component of the cell's hypoxia response system is hypoxia-inducible factor 1 alpha (HIF-1α). It has been demonstrated that the induction of HIF-1α expression can be also achieved in vitro by exposure with cobalt chloride (CoCl2), leading to an intracellular hypoxia-like state. In this study we have investigated the effects of CoCl2 on human retinal epithelium cells (hRPE), which are an integral part of the blood-retinal barrier, with the aim to determine the possible role of oxidative stress in chemical hypoxia-induced damage in retinal epithelial cells. Our data showed that CoCl2 treatment is able to induce HIF-1α expression, that parallels with the formation of reactive oxygen species (ROS) and the increase of lipid 8-isoprostanes and 4-hydroxynonenal (4-HNE) protein adducts levels. In addition we observed the activation of the redox-sensitive transcription factor nuclear factor-kappaB (NFkB) by CoCl2 which can explain the increased levels of vascular endothelial growth factor (VEGF). The increased number of dead cells seems to be related to an apoptotic process. Taken together these evidences suggest that oxidative stress induced by hypoxia might be involved in RD development through the stimulation of two key-events of RD such as neo-angiogenesis and apoptosis.
Collapse
Affiliation(s)
- F Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara , Ferrara , Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Oxidative stress is a condition in which oxidant metabolites exert their toxic effect because of an increased production or an altered cellular mechanism of protection; oxidative stress is rapidly gaining recognition as a key phenomenon in chronic diseases. Antioxidants terminate these chain reactions by removing free radical intermediates, and inhibit other oxidation reactions by being oxidized themselves. Endogenous defence mechanisms are inadequate for the complete prevention of oxidative damage, and different sources of dietary antioxidants may be especially important. This article calls attention to the dietary antioxidants, such as vitamins A, C, and E and polyphenols. Compelling evidence has led to the conclusion that diet is a key environmental factor and a potential tool for the control of chronic diseases. More specifically, fruits and vegetables have been shown to exert a protective effect. The high content of minerals and natural antioxidant as vitamins A, C, and E and polyphenols in fruits and vegetables may be a main factor responsible for these effects.
Collapse
Affiliation(s)
- J M Landete
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-IATA, Consejo Superior de Investigaciones Científicas-CSIC, Avda. Agustín Escardino 7, 46980 Paterna-Valencia, España.
| |
Collapse
|
43
|
Abdala-Valencia H, Berdnikovs S, Cook-Mills JM. Vitamin E isoforms as modulators of lung inflammation. Nutrients 2013; 5:4347-63. [PMID: 24184873 PMCID: PMC3847734 DOI: 10.3390/nu5114347] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/12/2013] [Accepted: 10/18/2013] [Indexed: 01/19/2023] Open
Abstract
Asthma and allergic diseases are complex conditions caused by a combination of genetic and environmental factors. Clinical studies suggest a number of protective dietary factors for asthma, including vitamin E. However, studies of vitamin E in allergy commonly result in seemingly conflicting outcomes. Recent work indicates that allergic inflammation is inhibited by supplementation with the purified natural vitamin E isoform α-tocopherol but elevated by the isoform γ-tocopherol when administered at physiological tissue concentrations. In this review, we discuss opposing regulatory effects of α-tocopherol and γ-tocopherol on allergic lung inflammation in clinical trials and in animal studies. A better understanding of the differential regulation of inflammation by isoforms of vitamin E provides a basis towards the design of clinical studies and diets that would effectively modulate inflammatory pathways in lung disease.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Allergy-Immunology Division, Feinberg School of Medicine, Northwestern University, McGaw-M304, 240 E. Huron, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
44
|
Bakır T, Sönmezoğlu I, Imer F, Apak R. Antioxidant/prooxidant effects of α-tocopherol, quercetin and isorhamnetin on linoleic acid peroxidation induced by Cu(II) and H2O2. Int J Food Sci Nutr 2013; 65:226-34. [PMID: 24152374 DOI: 10.3109/09637486.2013.845654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The peroxidation of linoleic acid (LA) in the presence of copper(II) (Cu(II)) ions alone and with α-tocopherol (α-TocH) was investigated in aerated and incubated emulsions at 37 °C and pH 7. Additionally, the effects of quercetin (QR) and its O-methylated derivative, isorhamnetin (IR), as potential antioxidant protectors were studied in the (Cu(II) + TocH)-induced LA peroxidation system. Cu(II)-induced LA peroxidation followed pseudo-first-order kinetics with respect to primary (hydroperoxides) and secondary (aldehydes- and ketones-like) oxidation products, which were determined by ferric thiocyanate and thiobarbituric acid-reactive substances methods, respectively. As opposed to the concentration-dependent (at 0.6 and 10.0 µM) prooxidative action of α-TocH in the absence of QR and IR, the latter two compounds showed antioxidant effect over TocH. The peroxidation of LA in the presence of Cu(II)-H(2)O(2) combination alone and with TocH, QR and IR were also investigated in aerated and incubated emulsions, where the latter three compounds exhibited antioxidant effects.
Collapse
Affiliation(s)
- Temelkan Bakır
- Chemistry Department, Science and Arts Faculty, Yildiz Technical University , Esenler, Istanbul , Turkey and
| | | | | | | |
Collapse
|
45
|
De Natale C, Minerva V, Patti L, Mazzarella R, Ciano O, Maione S, Luongo D, Naviglio D, Marotta G, Turco S, Ciati R, Melegari C, Rivellese AA, Riccardi G. Effects of baked products enriched with n-3 fatty acids, folates, β-glucans, and tocopherol in patients with mild mixed hyperlipidemia. J Am Coll Nutr 2013; 31:311-9. [PMID: 23529988 DOI: 10.1080/07315724.2012.10720427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To assess whether a diet containing foods enriched with β-glucans (3.6 g/d), folic acid (1600 μg/d), long-chain (800 mg/d) and short-chain (400 mg/d) n-3 fatty acids, and tocopherols (120 mg/d) is able to modulate positively the cardiovascular risk profile in people at slightly increased cardiovascular risk. METHODS Sixteen subjects with mild plasma lipid abnormalities were studied according to a randomized crossover design. After a 2-week run-in period, they followed a diet containing baked products enriched with active nutrients (active diet) or a diet containing the same products but without active nutrients (control diet) for 1 month and then crossed over to the other diet. At the end of each period, a test meal of the same composition as the corresponding diet was administered, and plasma samples were obtained before and for 6 hours after the meal. Hunger and satiety were evaluated by the visual analog scale at fasting and after the meal. RESULTS Fasting plasma triglycerides were significantly lower after the active versus the control diet (1.56 ± 0.18 vs 1.74 ± 0.16 mmol/l, p < 0.05), as was the postprandial level of chylomicron triglycerides and the insulin peak (p < 0.05). The active diet also reduced fasting homocysteine (8 ± 0.6 vs 10 ± 0.8 μmol/l, p < 0.05) and the feeling of hunger at the fifth and sixth hour (p < 0.05). CONCLUSIONS Baked functional products enriched with n-3 fatty acids, folates, β-glucans, and tocopherols within the context of a balanced diet lower fasting and postprandial plasma triglycerides, fasting homocysteinemia, and the postprandial insulin peak. They induce a greater feeling of satiety with possible beneficial implications on energy intake.
Collapse
Affiliation(s)
- Claudia De Natale
- Department of Clinical and Experimental Medicine, Federico II University Medical School, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Vardi M, Levy NS, Levy AP. Vitamin E in the prevention of cardiovascular disease: the importance of proper patient selection. J Lipid Res 2013; 54:2307-14. [PMID: 23505320 PMCID: PMC3735930 DOI: 10.1194/jlr.r026641] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 03/12/2013] [Indexed: 12/13/2022] Open
Abstract
Vitamin E is a naturally occurring fat-soluble antioxidant which has been proposed as a treatment for both primary and secondary protection against cardiovascular (CV) events. Promising data from observational epidemiological studies associating higher vitamin E dietary intake with lower risk of CV events have not been validated in randomized controlled clinical trials assessing the effect of vitamin E on CV outcomes. While the pendulum of medical opinion has swung to suggest that high dose vitamin E supplements have no place in the treatment and prevention of CV disease, new data is emerging that allows identification of a specific target population for this treatment, namely patients with diabetes mellitus and the haptoglobin genotype 2-2. This review details the scientific basis and clinical evidence related to the effect of vitamin E on CV outcomes, and the importance of proper patient selection in gaining therapeutic benefit from this intervention.
Collapse
Affiliation(s)
- Moshe Vardi
- Harvard Clinical Research Institute, Boston, MA
- Division of Internal Medicine, Carmel Medical Center, Haifa, Israel; and
| | - Nina S. Levy
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Andrew P. Levy
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
47
|
Niu Y, Herrera EA, Evans RD, Giussani DA. Antioxidant treatment improves neonatal survival and prevents impaired cardiac function at adulthood following neonatal glucocorticoid therapy. J Physiol 2013; 591:5083-93. [PMID: 23940378 DOI: 10.1113/jphysiol.2013.258210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glucocorticoids are widely used to treat chronic lung disease in premature infants but their longer-term adverse effects on the cardiovascular system raise concerns. We reported that neonatal dexamethasone treatment in rats induced in the short term molecular indices of cardiac oxidative stress and cardiovascular tissue remodelling at weaning, and that neonatal combined antioxidant and dexamethasone treatment was protective at this time. In this study, we investigated whether such effects of neonatal dexamethasone have adverse consequences for NO bioavailability and cardiovascular function at adulthood, and whether neonatal combined antioxidant and dexamethasone treatment is protective in the adult. Newborn rat pups received daily i.p. injections of a human-relevant tapering dose of dexamethasone (D; n = 8; 0.5, 0.3, 0.1 μg g(-1)) or D with vitamins C and E (DCE; n = 8; 200 and 100 mg kg(-1), respectively) on postnatal days 1-3 (P1-3); vitamins were continued from P4 to P6. Controls received equal volumes of vehicle from P1 to P6 (C; n = 8). A fourth group received vitamins alone (CCE; n = 8). At P100, plasma NO metabolites (NOx) was measured and isolated hearts were assessed under both Working and Langendorff preparations. Relative to controls, neonatal dexamethasone therapy increased mortality by 18% (P < 0.05). Surviving D pups at adulthood had lower plasma NOx concentrations (10.6 ± 0.8 vs. 28.0 ± 1.5 μM), an increased relative left ventricular (LV) mass (70 ± 2 vs. 63 ± 1%), enhanced LV end-diastolic pressure (14 ± 2 vs. 8 ± 1 mmHg) and these hearts failed to adapt output with increased preload (cardiac output: 2.9 ± 2.0 vs. 10.6 ± 1.2 ml min(-1)) or afterload (cardiac output: -5.3 ± 2.0 vs.1.4 ± 1.2 ml min(-1)); all P < 0.05. Combined neonatal dexamethasone with antioxidant vitamins improved postnatal survival, restored plasma NOx and protected against cardiac dysfunction at adulthood. In conclusion, neonatal dexamethasone therapy promotes cardiac dysfunction at adulthood. Combined neonatal treatment with antioxidant vitamins is an effective intervention.
Collapse
Affiliation(s)
- Youguo Niu
- D. A. Giussani: Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | | | |
Collapse
|
48
|
Al-Shmgani HS, Moate RM, Macnaughton PD, Sneyd JR, Moody AJ. Effects of hyperoxia on the permeability of 16HBE14o- cell monolayers--the protective role of antioxidant vitamins E and C. FEBS J 2013; 280:4512-21. [PMID: 23809212 DOI: 10.1111/febs.12413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 12/29/2022]
Abstract
The use of hyperoxia for critically ill patients is associated with adverse impacts resulting in lung injury accompanied by inflammation. The aim of this study was to evaluate aspects of mechanisms that contribute to hyperoxia-induced disruption of the epithelial permeability barrier, and also the protective effects of the antioxidants α-tocopherol and ascorbate. 16HBE14o- cells were cultured as monolayers at an air-liquid interface for 6 days, after which transepithelial electrical resistance reached 251.2 ± 4.1 Ω.cm(2) (mean ± standard error of the mean). They were then exposed for 24 h to normoxia (21% O2, 5% CO2), hyperoxia (95% O2, 5% CO2), hyperoxia with 10(-7) M α-tocopherol, hyperoxia with 10(-7) M ascorbate, hyperoxia with 10(-6) M ascorbate, and hyperoxia with a combination of α-tocopherol and ascorbate (10(-7) M and 10(-6) M, respectively). Significant reductions (P < 0.05) in transepithelial electrical resistance seen after hyperoxia (with or without antioxidants) were associated with reductions in the levels of zona occludens-1 (ZO-1) observed by immunohistochemistry, and downregulation of ZO-1 expression (P < 0.01) as compared with normoxia. In contrast, the expression levels of interleukin (IL)-8, IL-6 and tumour necrosis factor-α (TNF-α) were increased after hyperoxia (P < 0.01), and marked increases in the levels of these cytokines (ELISA) were seen in the medium (P < 0.001) as compared with normoxia. The antioxidant vitamins E and C had a partial protective effect against the hyperoxia-induced reduction in ZO-1 levels and the increase in levels of the proinflammatory cytokines IL-8, IL-6, and TNF-α. In conclusion, hyperoxia-induced epithelial disruption is associated with tight junction weakening, and induction of a proinflammatory environment.
Collapse
|
49
|
Choi JH, Yoo JY, Kim SO, Yoo SE, Oh GT. KR-31543 reduces the production of proinflammatory molecules in human endothelial cells and monocytes and attenuates atherosclerosis in mouse model. Exp Mol Med 2013; 44:733-9. [PMID: 23143639 PMCID: PMC3538980 DOI: 10.3858/emm.2012.44.12.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
KR-31543, (2S, 3R, 4S)-6-amino-4-[N-(4-chlorophenyl)- N-(2-methyl-2H-tetrazol-5-ylmethyl) amino]-3,4-dihydro- 2-dimethyoxymethyl-3-hydroxy-2-methyl-2H-1-benz opyran is a new neuroprotective agent for ischemiareperfusion damage. It has also been reported that KR-31543 has protective effects on lipid peroxidation and H₂O₂-induced reactive oxygen species production. In this study, we investigated the anti-inflammatory and anti-atherogenic properties of KR-31543. We observed that KR-31543 treatment reduced the production of MCP-1, IL-8, and VCAM-1 in HUVECs, and of MCP-1 and IL-6 in THP-1 human monocytes. We also examined the effect of KR-31543 on monocytes migration in vitro. KR-31543 treatment effectively reduced the migration of THP-1 human monocytes to the HUVEC monolayer in a dose-dependent manner. We next examined the effects of this compound on atherogenesis in LDL receptor deficient (Ldlr ⁻/⁻) mice. After 10 weeks of western diet, the formation of atherosclerotic lesion in aorta was reduced in the KR-31543-treated group compared to the control group. The accumulation of macrophages in lesion was also reduced in KR-31543 treated group. However, the plasma levels of total cholesterol, HDL, LDL, and triglyceride were not affected by KR-31543 treatment. Taken together, these results show that KR-31543 has anti-inflammatory properties on human monocytes and endothelial cells, and inhibits fatty streak lesion formation in mouse model of atherosclerosis, suggesting the potential of KR-31543 for the treatment for atherosclerosis.
Collapse
Affiliation(s)
- Jae-Hoon Choi
- Laboratory of Molecular Physiology, Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Kore
| | | | | | | | | |
Collapse
|
50
|
Rodrigo R, Miranda-Merchak A, Valenzuela Grau R, Bachler JP, Vergara L. Modulation of (Na,K)-ATPase activity by membrane fatty acid composition: therapeutic implications in human hypertension. Clin Exp Hypertens 2013; 36:17-26. [DOI: 10.3109/10641963.2013.783048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|