1
|
Qu Z, Lu X, Qu Y, Tao T, Liu X, Li X. Attenuation of the upregulation of NF‑κB and AP‑1 DNA‑binding activities induced by tunicamycin or hypoxia/reoxygenation in neonatal rat cardiomyocytes by SERCA2a overexpression. Int J Mol Med 2021; 47:113. [PMID: 33907834 PMCID: PMC8075284 DOI: 10.3892/ijmm.2021.4946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the effects of the overexpression of sarco/endoplasmic reticulum Ca2+‑ATPase (SERCA2a) on endoplasmic reticulum (ER) stress (ERS)‑associated inflammation in neonatal rat cardiomyocytes (NRCMs) induced by tunicamycin (TM) or hypoxia/reoxygenation (H/R). The optimal multiplicity of infection (MOI) was 2 pfu/cell. Neonatal Sprague‑Dawley rat cardiomyocytes cultured in vitro were infected with adenoviral vectors carrying SERCA2a or enhanced green fluorescent protein genes, the latter used as a control. At 48 h following gene transfer, the NRCMs were treated with TM (10 µg/ml) or subjected to H/R to induce ERS. The results of electrophoretic mobility shift assay (EMSA) revealed that overexpression of SERCA2a attenuated the upregulation of nuclear factor (NF)‑κB and activator protein‑1 (AP‑1) DNA‑binding activities induced by TM or H/R. Western blot analysis and semi‑quantitative RT‑PCR revealed that the overexpression of SERCA2a attenuated the activation of the inositol‑requiring 1α (IRE1α) signaling pathway and ERS‑associated apoptosis induced by TM. The overexpression of SERCA2a also decreased the level of phospho‑p65 (Ser536) in the nucleus, as assessed by western blot analysis. However, the overexpression of SERCA2a induced the further nuclear translocation of NF‑κB p65 and higher levels of tumor necrosis factor (TNF)‑α transcripts in the NRCMs, indicating the occurrence of the ER overload response (EOR). Therefore, the overexpression of SERCA2a has a 'double‑edged sword' effect on ERS‑associated inflammation. On the one hand, it attenuates ERS and the activation of the IRE1α signaling pathway induced by TM, resulting in the attenuation of the upregulation of NF‑κB and AP‑1 DNA‑binding activities in the nucleus, and on the other hand, it induces EOR, leading to the further nuclear translocation of NF‑κB and the transcription of TNF‑α. The preceding EOR may precondition the NRCMs against subsequent ERS induced by TM. Further studies using adult rat cardiomyocytes are required to prevent the interference of EOR. The findings of the present study may enhance the current understanding of the role of SERCA2a in cardiomyocytes.
Collapse
Affiliation(s)
- Zhigang Qu
- Medical School of Chinese PLA, Beijing 100853, P.R. China
- Department of General Practice, The 900th Hospital of The Joint Logistic Support Force, Fuzhou, Fujian 350025, P.R. China
| | - Xiaochun Lu
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yan Qu
- Department of Functional Examination, Penglai Traditional Chinese Medicine Hospital, Penglai, Shandong 265600, P.R. China
| | - Tianqi Tao
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiuhua Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoying Li
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
2
|
Li S, Chopra A, Keung W, Chan CWY, Costa KD, Kong CW, Hajjar RJ, Chen CS, Li RA. Sarco/endoplasmic reticulum Ca2+-ATPase is a more effective calcium remover than sodium-calcium exchanger in human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 2019; 317:H1105-H1115. [DOI: 10.1152/ajpheart.00540.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human pluripotent stem cell (hPSCs)-derived ventricular (V) cardiomyocytes (CMs) display immature Ca2+–handing properties with smaller transient amplitudes and slower kinetics due to such differences in crucial Ca2+-handling proteins as the poor sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump but robust Na+-Ca2+ exchanger (NCX) activities in human embryonic stem cell (ESC)-derived VCMs compared with adult. Despite their fundamental importance in excitation-contraction coupling, the relative contribution of SERCA and NCX to Ca2+-handling of hPSC-VCMs remains unexplored. We systematically altered the activities of SERCA and NCX in human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs) and their engineered microtissues, followed by examining the resultant phenotypic consequences. SERCA overexpression in hESC-VCMs shortened the decay of Ca2+ transient at low frequencies (0.5 Hz) without affecting the amplitude, SR Ca2+ content and Ca2+ baseline. Interestingly, short hairpin RNA-based NCX suppression did not prolong the transient decay, indicating a compensatory response for Ca2+ removal. Although hESC-VCMs and their derived microtissues exhibited negative frequency-transient/force responses, SERCA overexpression rendered them less negative at high frequencies (>2 Hz) by accelerating Ca2+ sequestration. We conclude that for hESC-VCMs and their microtissues, SERCA, rather than NCX, is the main Ca2+ remover during diastole; poor SERCA expression is the leading cause for immature negative-frequency/force responses, which can be partially reverted by forced expression. Combinatorial approach to mature calcium handling in hESC-VCMs may help shed further mechanistic insights. NEW & NOTEWORTHY In this study of human pluripotent stem cell-derived cardiomyocytes, we studied the role of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and Na+-Ca2+ exchanger (NCX) in Ca2+ handling. Our data support the notion that SERCA is more effective in cytosolic calcium removal than the NCX.
Collapse
Affiliation(s)
- Sen Li
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Anant Chopra
- Department of Bioengineering, Boston University, Boston, Massachusetts
- Harvard Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts
| | - Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Camie W. Y. Chan
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Kevin D. Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, Manhattan, New York
| | - Chi-Wing Kong
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Roger J. Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, Manhattan, New York
| | - Christopher S. Chen
- Department of Bioengineering, Boston University, Boston, Massachusetts
- Harvard Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts
| | - Ronald A. Li
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
- Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong
| |
Collapse
|
3
|
NFATc3 controls tumour growth by regulating proliferation and migration of human astroglioma cells. Sci Rep 2019; 9:9361. [PMID: 31249342 PMCID: PMC6597574 DOI: 10.1038/s41598-019-45731-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/12/2019] [Indexed: 12/29/2022] Open
Abstract
Calcium/Calcineurin/Nuclear Factor of Activated T cells (Ca/CN/NFAT) signalling pathway is the main calcium (Ca2+) dependent signalling pathway involved in the homeostasis of brain tissue. Here, we study the presence of NFATc members in human glioma by using U251 cells and a collection of primary human glioblastoma (hGB) cell lines. We show that NFATc3 member is the predominant member. Furthermore, by using constitutive active NFATc3 mutant and shRNA lentiviral vectors to achieve specific silencing of this NFATc member, we describe cytokines and molecules regulated by this pathway which are required for the normal biology of cancer cells. Implanting U251 in an orthotopic intracranial assay, we show that specific NFATc3 silencing has a role in tumour growth. In addition NFATc3 knock-down affects both the proliferation and migration capacities of glioma cells in vitro. Our data open the possibility of NFATc3 as a target for the treatment of glioma.
Collapse
|
4
|
Endothelin-1-induced remodelling of murine adult ventricular myocytes. Cell Calcium 2016; 59:41-53. [DOI: 10.1016/j.ceca.2015.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
|
5
|
Implication of Substance P in myocardial contractile function during ischemia in rats. ACTA ACUST UNITED AC 2011; 167:185-91. [PMID: 21256875 DOI: 10.1016/j.regpep.2011.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/03/2010] [Accepted: 01/14/2011] [Indexed: 11/23/2022]
Abstract
Evidence suggests that substance P (SP) participates in the pathology of acute myocardial ischemia and infarction but the profiles of the peptide in regulation of cardiac functions are still elusive. The aim of this study was to investigate the role of substance P in regulation of cardiac functions and its association with adrenergic mechanism in acute myocardial ischemia and infarction with rodent models. The experiments were carried out in Sprague-Dawley rats. SP and norepinephrine were significantly up-regulated in myocardium at 15min, 30min and 60min of coronary artery occlusion. Pretreatment of the rats with a specific antagonist of neurokinin-1 receptor, D-SP, significant increased+dp/dt and decreased -dp/dt, compared with the controls, pretreated with 0.9% saline. Pretreatment of the isolated CAO hearts with substance P (10(-7)mol/L) significantly increased left ventricular end diastolic pressure. SP producing no effects on cardiac functions when given alone to isolated (non-CAO) heart caused significant attenuation of the changes in the contractility and diastolic functions induced by norepinephrine, when given with norepinephrine. SP attenuated the increase in the activity of PKA provoked by norepinephrine in cultured myocytes. In conclusion, the findings may indicate SP regulates cardiac functions via modulation of adrenergic activity, through suppression of over-activation of PKA.
Collapse
|
6
|
O'Donnell JM, Fields A, Xu X, Chowdhury SAK, Geenen DL, Bi J. Limited functional and metabolic improvements in hypertrophic and healthy rat heart overexpressing the skeletal muscle isoform of SERCA1 by adenoviral gene transfer in vivo. Am J Physiol Heart Circ Physiol 2008; 295:H2483-94. [PMID: 18952713 DOI: 10.1152/ajpheart.01023.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenoviral gene transfer of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a to the hypertrophic heart in vivo has been consistently reported to lead to enhanced myocardial contractility. It is unknown if the faster skeletal muscle isoform, SERCA1, expressed in the whole heart in early failure, leads to similar improvements and whether metabolic requirements are maintained during an adrenergic challenge. In this study, Ad.cmv.SERCA1 was delivered in vivo to aortic banded and sham-operated Sprague-Dawley rat hearts. The total SERCA content increased 34%. At 48-72 h posttransfer, echocardiograms were acquired, hearts were excised and retrograded perfused, and hemodynamics were measured parallel to NMR measures of the phosphocreatine (PCr)-to-ATP ratio (PCr/ATP) and energy substrate selection at basal and high workloads (isoproterenol). In the Langendorff mode, the rate-pressure product was enhanced 27% with SERCA1 in hypertrophic hearts and 10% in shams. The adrenergic response to isoproterenol was significantly potentiated in both groups with SERCA1. 31P NMR analysis of PCr/ATP revealed that the ratio remained low in the hypertrophic group with SERCA1 overexpression and was not further compromised with adrenergic challenge. 13C NMR analysis revealed fat and carbohydrate oxidation were unaffected at basal with SERCA1 expression; however, there was a shift from fats to carbohydrates at higher workloads with SERCA1 in both groups. Transport of NADH-reducing equivalents into the mitochondria via the alpha-ketoglutamate-malate transporter was not affected by either SERCA1 overexpression or adrenergic challenge in both groups. Echocardiograms revealed an important distinction between in vivo versus ex vivo data. In contrast to previous SERCA2a studies, the echocardiogram data revealed that SERCA1 expression compromised function (fractional shortening) in the hypertrophic group. Shams were unaffected. While our ex vivo findings support much of the earlier cardiomyocyte and transgenic data, the in vivo data challenge previous reports of improved cardiac function in heart failure models after SERCA intervention.
Collapse
Affiliation(s)
- J Michael O'Donnell
- Department of Physiology and Biophysics M/C 901 College of Medicine, University of Illinois, 835 S. Wolcott Ave., Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
7
|
The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. ACTA ACUST UNITED AC 2008; 5:554-65. [PMID: 18665137 DOI: 10.1038/ncpcardio1301] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/29/2008] [Indexed: 11/09/2022]
Abstract
The cardiac isoform of the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2a) is a calcium ion (Ca(2+)) pump powered by ATP hydrolysis. SERCA2a transfers Ca(2+) from the cytosol of the cardiomyocyte to the lumen of the sarcoplasmic reticulum during muscle relaxation. As such, this transporter has a key role in cardiomyocyte Ca(2+) regulation. In both experimental models and human heart failure, SERCA2a expression is significantly decreased, which leads to abnormal Ca(2+) handling and a deficient contractile state. Following a long line of investigations in isolated cardiac myocytes and small and large animal models, a clinical trial is underway that is restoring SERCA2a expression in patients with heart failure by use of adeno-associated virus type 1. Beyond its role in contractile abnormalities in heart failure, SERCA2a overexpression has beneficial effects in a host of other cardiovascular diseases. Here we describe the mechanism of Ca(2+) regulation by SERCA2a, examine the beneficial effects as well as the failures, risks and complexities associated with SERCA2a overexpression, and discuss the potential of SERCA2a as a target for the treatment of cardiovascular disease.
Collapse
|
8
|
Prasad AM, Ma H, Sumbilla C, Lee DI, Klein MG, Inesi G. Phenylephrine hypertrophy, Ca2+-ATPase (SERCA2), and Ca2+ signaling in neonatal rat cardiac myocytes. Am J Physiol Cell Physiol 2007; 292:C2269-75. [PMID: 17287366 DOI: 10.1152/ajpcell.00441.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We endeavored to use a basic and well-controlled experimental system to characterize the extent and time sequence of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) involvement in the development of cardiac hypertrophy, including transcription, protein expression, Ca(2+) transport, and cytoplasmic Ca(2+) signaling. To this end, hypertrophy of neonatal rat cardiac myocytes in culture was obtained after adrenergic activation with phenylephrine (PE). Micrographic assessment of myocyte size, rise of [(14)C]phenylalanine incorporation and total protein expression, and increased transcription of atrial natriuretic factor demonstrated unambiguously the occurrence of hypertrophy. An early and prominent feature of hypertrophy was a reduction of the SERCA2 transcript, as determined by RT-PCR with reference to a stable marker such as glyceraldehyde-3-phosphate dehydrogenase. Reduction of Ca(2+)-ATPase protein levels and Ca(2+) transport activity to approximately 50% of control values followed with some delay, evidently as a consequence of a primary effect on transcription. Cytosolic Ca(2+) signaling kinetics, measured with a Ca(2+)-sensitive dye after electrical stimuli, were significantly altered in hypertrophic myocytes. However, the effect of PE hypertrophy on cytosolic Ca(2+) signaling kinetics was less prominent than observed in myocytes subjected to drastic SERCA2 downregulation with small interfering RNA or inhibition with thapsigargin (10 nM). We conclude that SERCA2 undergoes significant downregulation after hypertrophic stimuli, possibly due to lack of SERCA gene involvement by the hypertrophy transcriptional program. The consequence of SERCA2 downregulation on Ca(2+) signaling is partially compensated by alternate Ca(2+) transport mechanisms. These alterations may contribute to a gradual onset of functional failure in long-term hypertrophy.
Collapse
Affiliation(s)
- A M Prasad
- California Pacific Medical Center Research Institute, 475 Brannan St., San Francisco, CA 94107, USA
| | | | | | | | | | | |
Collapse
|
9
|
Gianni D, Chan J, Gwathmey JK, del Monte F, Hajjar RJ. SERCA2a in heart failure: role and therapeutic prospects. J Bioenerg Biomembr 2006; 37:375-80. [PMID: 16691468 DOI: 10.1007/s10863-005-9474-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ca(2+) is a key molecule controlling several cellular processes, from fertilization to cell death, in all cell types. In excitable and contracting cells, such as cardiac myocytes, Ca(2+) controls muscle contractility. The spatial and temporal segregation of Ca(2+) concentrations are central to maintain its concentration gradients across the cells and the cellular compartments for proper function. SERCA2a is a cornerstone molecule for maintaining a balanced concentration of Ca(2+) during the cardiac cycle, since it controls the transport of Ca(2+) to the sarcoplasmic reticulum (SR) during relaxation. Alterations of the activity of this pump have been widely investigated, emphasizing its central role in the control of Ca(2+) homeostasis and consequently in the pathogenesis of the contractile defect seen with heart failure. This review focuses on the molecular characteristics of the pump, its role during the cardiac cycle and the prospects derived from the manipulation of SERCA2a for heart failure treatment.
Collapse
Affiliation(s)
- Davide Gianni
- Cardiovascular Research Centre, Heart Failure Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Congestive heart failure (CHF) remains a leading cause of morbidity and mortality in the United States and in many other countries. Current heart failure therapies, including multidrug treatment regimens, biventricular pacing, and mechanical support such as left ventricular assist devices, are often hindered by limited benefits or significant associated procedural complications or side effects. Therefore, new forms of treatment, which could ideally target the underlying biological processes affecting the ailing cardiomyocyte, would be of significant potential benefit to the population of individuals with CHF. Gene transfer strategies, including modification of cellular contractile signaling and regulatory pathways, represent a promising new form of such biologic therapy for heart disease.
Collapse
Affiliation(s)
- Lina Nayak
- Evanston Northwestern Healthcare, Evanston, IL, USA
| | | |
Collapse
|
11
|
Rubio M, Bodi I, Fuller-Bicer GA, Hahn HS, Periasamy M, Schwartz A. Sarcoplasmic reticulum adenosine triphosphatase overexpression in the L-type Ca2+ channel mouse results in cardiomyopathy and Ca2+ -induced arrhythmogenesis. J Cardiovasc Pharmacol Ther 2006; 10:235-49. [PMID: 16382260 DOI: 10.1177/107424840501000404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Overexpression of the L-type voltage-dependent calcium channel alpha(1C)-subunit (L-VDCC OE) in transgenic mice results in adaptive hypertrophy followed by a maladaptive phase associated with a decrease in sarcoplasmic reticulum adenosine triphosphatase (SERCA)2a expression at 8 to 10 months of age. Overexpressing SERCA to manipulate calcium (Ca(2+)) cycling and prevent pathologic phenotypes in some models of heart failure has been proven to be a promising genetic strategy. OBJECTIVE In this study we investigated whether genetic manipulation that increases Ca(2+) uptake into the sarcoplasmic reticulum by overexpressing SERCA1a (skeletal muscle specific) into the L-VDCC OE background could restore or further deteriorate Ca(2+) cycling, contractile dysfunction, and electrical remodeling in the heart failure phenotype. RESULTS We found that the survival rate of L-VDCC OE/SERCA1a OE double transgenic mice decreased by 50%. L-VDCC OE/SERCA1a OE mice displayed an accelerated phenotype of severe dilation of both ventricles associated with deteriorated left ventricular function. Voltage clamp experiments revealed enhanced increased inward Ca(2+) current density and decreased the transient outward potassium current. Action potential duration in double transgenic ventricular myocytes was prolonged, and isoproterenol induced early after depolarization. These mice demonstrated a high incidence of spontaneous left ventricular arrhythmia. Expression of the proarrhythmic signaling protein Ca(2+)/calmodulin-dependent kinase II (CaMKII) was increased while connexin43 expression was decreased, defining an important putative mechanism in the electrophysiologic disturbances and mortality. CONCLUSIONS Despite previous reports of improved cardiac function in heart failure models after SERCA intervention, our results advocate the need to elucidate the involvement of augmented Ca(2+) cycling in arrhythmogenesis.
Collapse
Affiliation(s)
- Marta Rubio
- Institute of Molecular Pharmacology and Biophysics, University of Cincinnati Medical Center, Cincinnati, OH 45267-0828, USA
| | | | | | | | | | | |
Collapse
|
12
|
O'Donnell JM, Lewandowski ED. Efficient, cardiac-specific adenoviral gene transfer in rat heart by isolated retrograde perfusion in vivo. Gene Ther 2005; 12:958-64. [PMID: 15789062 DOI: 10.1038/sj.gt.3302477] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While a number of virus-based delivery schemes have been developed for myocardial gene transfer, no technique has proven capable of modifying a majority of cardiac myocytes rapidly and homogeneously in the in vivo rat model, and most schemes result in significant infection of the liver and other organs. However, adenoviral delivery to the excised heart during retrograde perfusion can produce 67-92% efficient gene transfer. In this study, we adapt this isolation/perfusion scheme to the heart in vivo. We isolated the heart in vivo by simultaneously clamping all vessels to/from the heart. The heart was then continuously retrograde perfused through a catheter positioned in the aortic root. A second catheter in the right ventricle provided a path for efflux. After perfusing the heart for 7.5 min with calcium-free Tyrode solution followed by 90 s no-flow viral exposure (AdV.cmv.LacZ; 10(12) viral particles/ml), gene transfer efficiency was 60% compared to 5% by a conventional cross-clamp technique. Infection of peripheral organs was dramatically reduced. Given the prevalence of the rat in so many models of heart disease, this enhancement of infection represents an advancement in viral-based delivery of exogenous genes to heart for the study of gene therapy in vivo.
Collapse
Affiliation(s)
- J Michael O'Donnell
- Program in Integrative Cardiac Metabolism, Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, 60612, USA
| | | |
Collapse
|
13
|
Hoshijima M. Gene therapy targeted at calcium handling as an approach to the treatment of heart failure. Pharmacol Ther 2005; 105:211-28. [PMID: 15737405 DOI: 10.1016/j.pharmthera.2004.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 10/08/2004] [Indexed: 01/08/2023]
Abstract
Chronic congestive heart failure primarily of ischemic origin remains a leading cause of morbidity and mortality in the United States and other leading countries. The current main stream of therapy is, however, palliative and uses a complex regimen of drugs, the actions of which are not understood completely. On the other hand, unfavorable remodeling after cardiac injuries of multiple causes has been thought to lead to cardiac contractile dysfunction in heart failure, and a body of scientific evidence points to a central role of intrinsic defects in intracellular calcium handling in cardiomyocytes that arise from the distorted functions of several key regulatory molecules on plasma membrane or sarcoplasmic reticulum (SR), a muscle-specific intracellular membrane complex that stores calcium at high concentration. Accordingly, the initial appetite to use gene transfer strategies to modulate calcium regulatory proteins was to validate molecular targets for the development of new pharmaceuticals; however, remarkable therapeutic efficacies found in an initial series of studies using various heart failure animal models immediately promoted us to seek ways to directly apply gene transfer to cure clinical heart failure. The first part of this article reviews our up-to-date knowledge of various functional components to regulate calcium handling in cardiomyocytes, including beta-adrenergic receptor, L-type calcium channel, ryanodine receptor (RyR) and its associated proteins, sarco-endoplasmic reticulum calcium ATPase (SERCA), and phospholamban (PLN), and their abnormalities in failing hearts. A series of new somatic gene transfer attempts targeting calcium handling in cardiomyocytes are discussed thereafter.
Collapse
Affiliation(s)
- Masahiko Hoshijima
- University of California San Diego, Institute of Molecular Medicine, Department of Medicine, UCSD School of Medicine, UCSD0641, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Weisser-Thomas J, Dieterich E, Janssen PML, Schmidt-Schweda S, Maier LS, Sumbilla C, Pieske B. Method-related effects of adenovirus-mediated LacZ and SERCA1 gene transfer on contractile behavior of cultured failing human cardiomyocytes. J Pharmacol Toxicol Methods 2004; 51:91-103. [PMID: 15767202 DOI: 10.1016/j.vascn.2004.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2004] [Accepted: 10/14/2004] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Adenovirus-mediated gene transfer into cardiomyocytes has emerged as an interesting tool to study functional effects of single proteins. However, the functional consequences of cell isolation, cell culture per se and adenovirus-mediated transfer of the LacZ or SERCA1 gene in failing human cardiomyocytes warrant further investigation. METHODS Primary cell culture was performed without or after adenovirus-mediated gene transfer of LacZ or SERCA1. Functional behavior of myocytes was assessed under basal conditions (field stimulation, 0.5 Hz, 37 degrees C), and during inotropic stimulation with isoproterenol (ISO; 10(-9)-10(-5) M), [Ca(2+)](o) (1.5-15 mM) or increasing stimulation rates (0.25-2.5 Hz). Results were compared to trabeculae from the same hearts. RESULTS Freshly isolated myocytes showed full inotropic competence as compared to multicellular preparations. The response to stimulation with ISO and [Ca(2+)](o), as well as changes in stimulation rate resulted in a maximal increase in fractional cell shortening (FS) to 215+/-24% and 291+/-34%, and a frequency-dependent decline in FS to 46+/-5% of the basal value, respectively. After 48 h of cell culture, basal FS did not change significantly compared to fresh cells but both time to peak shortening and time to 50% relengthening were prolonged. After culture, the concentration-response curve for ISO was significantly shifted to the left (EC(50) 5.16 x 10(-8) vs. 1.12 x 10(-8) M, p<0.05). LacZ gene transfer caused efficient beta-Gal expression without affecting the inotropic responses to ISO or stimulation rate but impaired the contractile amplitude. SERCA1 gene transfer increased FS by 68% vs. LacZ and accelerated relengthening kinetics (+dL/dt 93+/-13 vs. 61+/-8 mum/s, p<0.05 vs. LacZ). DISCUSSION Contractile responses of isolated human myocytes are comparable to multicellular preparations. The use of primary cell culture and adenovirus infection with CMV-promoter-mediated LacZ expression per se modulates contractile behavior in failing human myocytes. SERCA1 expression markedly improves contractile function. The method-related changes in contractile behavior observed here need to be taken into account in further studies.
Collapse
Affiliation(s)
- J Weisser-Thomas
- Georg-August-Universität Göttingen, Abteilung Kardiologie und Pneumologie, Zentrum Innere Medizin, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ma H, Sumbilla CM, Farrance IKG, Klein MG, Inesi G. Cell-specific expression of SERCA, the exogenous Ca2+transport ATPase, in cardiac myocytes. Am J Physiol Cell Physiol 2004; 286:C556-64. [PMID: 14592812 DOI: 10.1152/ajpcell.00328.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated various constructs to obtain cell-specific expression of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) gene in cardiac myocytes after cDNA transfer by means of transfections or infections with adenovirus vectors. Expression of exogenous enhanced green fluorescent protein (EGFP) and SERCA genes was studied in cultured chicken embryo and neonatal rat cardiac myocytes, skeletal and smooth muscle cells, fibroblasts, and hepatocytes. Whereas the cytomegalovirus (CMV) promoter yielded high levels of protein expression in all cells studied, cardiac troponin T (cTnT) promoter segments demonstrated high specificity for cardiac myocytes. Their efficiency for protein expression was lower than that of the CMV promoter, but higher than that of cardiac myosin light chain or β-myosin heavy chain promoter segments. A double virus system for Cre-dependent expression under control of the CMV promoter and Cre expression under control of a cardiac-specific promoter yielded high protein levels in cardiac myocytes, but only partial cell specificity due to significant Cre expression in hepatocytes. Specific intracellular targeting of gene products was demonstrated in situ by specific immunostaining of exogenous SERCA1 and endogenous SERCA2 and comparative fluorescence microscopy. The -374 cTnT promoter segment was the most advantageous of the promoters studied, producing cell-specific SERCA expression and a definite increase over endogenous Ca2+-ATPase activity as well as faster removal of cytosolic calcium after membrane excitation. We conclude that analysis of promoter efficiency and cell specificity is of definite advantage when cell-specific expression of exogenous SERCA is wanted in cardiac myocytes after cDNA delivery to mixed cell populations.
Collapse
Affiliation(s)
- Hailun Ma
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1503, USA
| | | | | | | | | |
Collapse
|
16
|
Sumbilla C, Ma H, Seth M, Inesi G. Dependence of exogenous SERCA gene expression on coxsackie adenovirus receptor levels in neonatal and adult cardiac myocytes. Arch Biochem Biophys 2003; 415:178-83. [PMID: 12831840 DOI: 10.1016/s0003-9861(03)00258-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We demonstrate that the efficiency of adenovirus-assisted exogenous Ca(2+) ATPase (SERCA) and reporter (EGFP) gene expression is much higher in primary cultures of myocytes from neonatal rat hearts, than in primary cultures of myocytes from adult rat hearts. In this respect, the neonatal myocytes behave similarly to the established COS-1 cell line. This difference is related to the level of coxsackie adenovirus receptor (CAR) that affects cell penetration and expression level of exogenous genes, and explains variations in the observed consequences of exposure to adenovirus vector carrying SERCA cDNA. Awareness of these differences should be highly advantageous in complementary studies of exogenous gene expression in neonatal and adult myocytes. It should also be advantageous in evaluating conditions yielding optimal ratios of functional benefits over possible toxic effects upon exogenous SERCA gene delivery to cardiac muscle.
Collapse
Affiliation(s)
- Carlota Sumbilla
- Department of Biochemistry, University of Maryland School of Medicine, 108 N Greene Street, Baltimore, MD 21201-1503, USA
| | | | | | | |
Collapse
|
17
|
Rau T, Nose M, Remmers U, Weil J, Weissmüller A, Davia K, Harding S, Peppel K, Koch WJ, Eschenhagen T. Overexpression of wild-type Galpha(i)-2 suppresses beta-adrenergic signaling in cardiac myocytes. FASEB J 2003; 17:523-5. [PMID: 12631586 DOI: 10.1096/fj.02-0660fje] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The role of Galpha(i)-2 overexpression in desensitization of beta-adrenergic signaling in heart failure is controversial. An adenovirus-based approach was used to investigate whether overexpression of Galpha(i)-2 impairs beta-adrenergic stimulation of adenylyl cyclase (AC) activity and cAMP levels in neonatal rat cardiac myocytes (NRCM) and cell shortening of adult rat ventricular myocytes (ARVM). Infection of NRCM with Ad5Galpha(i)-2 increased Galpha(i)-2 by 50-600% in a virus dose-dependent manner. Overexpression was paralleled by suppression of GTP- and isoprenaline-stimulated AC by 10-72% (P<0.001) in a PTX-sensitive manner. Isoprenaline-stimulated shortening of Ad5Galpha(i)-2-infected ARVM was attenuated by 34% (P<0.01). Ad5Galpha(i)-2/GFP (Galpha(i)-2, green fluorescent protein; bicistronic) was constructed to monitor transfection homogeneity and target Galpha(i)-2 overexpression to levels found in heart failure. At Galpha(i)-2 levels of 93% above control, isoprenaline-stimulated AC activity and cAMP levels were reduced by 17% and 40% (P<0.02), respectively. Beta1- and beta2-adrenergic stimulation was reduced similarly. Our results suggest that (a) the Galpha(i)-2 system exhibits tonic inhibition of stimulated AC in cardiac myocytes, (b) Galpha(i)-2-mediated inhibition is concentration-dependent and occurs at Galpha(i)-2 levels seen in heart failure, and (c) Galpha(i)-2-mediated inhibition affects both beta1- and beta2-adrenergic stimulation of AC. The data argue for an important, independent role of the Galpha(i)-2 increase in heart failure.
Collapse
Affiliation(s)
- Thomas Rau
- Institute of Pharmacology and Toxicology, Friedrich Alexander University Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Gene therapy is proving likely to be a viable alternative to conventional therapies in coronary artery disease and heart failure. Phase 1 clinical trials indicate high levels of safety and clinical benefits with gene therapy using angiogenic growth factors in myocardial ischaemia. Although gene therapy for heart failure is still at the pre-clinical stage, experimental data indicate that therapeutic angiogenesis using short-term gene expression may elicit functional improvement in affected individuals.
Collapse
Affiliation(s)
- Jeffrey M Isner
- Department of Medicne, St. Elizabeth's Medical Center, Tufts School of Medicine, Boston, MA 02135, USA
| |
Collapse
|