1
|
Salama RAM, Raafat FA, Hasanin AH, Hendawy N, Saleh LA, Habib EK, Hamza M, Hassan ANE. A neuroprotective effect of pentoxifylline in rats with diabetic neuropathy: Mitigation of inflammatory and vascular alterations. Int Immunopharmacol 2024; 128:111533. [PMID: 38271813 DOI: 10.1016/j.intimp.2024.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Treatment of diabetic neuropathic pain does not change the natural history of neuropathy. Improved glycemic control is the recommended treatment in these cases, given that no specific treatment for the underlying nerve damage is available, so far. In the present study, the potential neuroprotective effect of pentoxifylline in streptozotocin (50 mg/kg) induced diabetic neuropathy in rats was investigated. METHODS Pentoxifylline was administered at doses equivalent to 50, 100 & 200 mg/kg, in drinking water, starting one week after streptozotocin injection and for 7 weeks. Mechanical allodynia, body weight and blood glucose level were assessed weekly. Epidermal thickness of the footpad skin, and neuroinflammation and vascular alterations markers were assessed. RESULTS Tactile allodynia was less in rats that received pentoxifylline at doses of 100 and 200 mg/kg (60 % mechanical threshold increased by 48 % and 60 %, respectively). The decrease in epidermal thickness of footpad skin was almost completely prevented by the same doses. This was associated with a decrease in spinal tumor necrosis factor alpha (TNFα) and nuclear factor kappa B levels and a decrease in microglial ionized calcium binding adaptor molecule 1 immunoreactivity, compared to the control diabetic group. In sciatic nerve, there was decrease in TNF-α and vascular endothelial growth factor levels and intercellular adhesion molecule immunoreactivity. CONCLUSION Pentoxifylline showed a neuroprotective effect in streptozotocin-induced diabetic neuropathy, which was associated with a suppression of both the inflammatory and vascular pathogenic pathways that was not associated with a hypoglycemic effect. Thus, it may represent a potential neuroprotective drug for diabetics.
Collapse
Affiliation(s)
- Raghda A M Salama
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Fatema Ahmed Raafat
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amany Helmy Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nevien Hendawy
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Faculty of Medicine, Galala University, Suez, Egypt
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman K Habib
- Faculty of Medicine, Galala University, Suez, Egypt; Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - May Hamza
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Ahmed Nour Eldin Hassan
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Faculty of Medicine, Galala University, Suez, Egypt
| |
Collapse
|
2
|
Wang M, Zhang Z, Liu D, Karhunen V, Georgakis MK, Ren Y, Ye D, Gill D, Liu M. Soluble adhesion molecules and functional outcome after ischemic stroke: A Mendelian randomization study. J Stroke Cerebrovasc Dis 2023; 32:107136. [PMID: 37068323 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
OBJECTIVES We employed Mendelian randomization to determine whether genetically predicted circulating levels of endothelial-derived adhesion molecules (soluble intercellular adhesion molecule-1 [sICAM-1]), soluble vascular-leukocyte adhesion molecule-1 [sVCAM-1], and soluble-endothelial-leukocyte adhesion molecule [sE-selectin]) were associated with functional outcome after ischemic stroke. METHODS Independent genetic variants robustly associated with soluble adhesion molecules, located at or close to the coding gene (cis), were used as genetic instruments. The functional outcome was evaluated using the 3-month modified Rankin Scale (mRS) score after ischemic stroke. A poor functional outcome was defined as mRS ≥ 3 at 3 months. We extracted summary data for functional outcome after ischemic stroke from the Genetics of Ischaemic Stroke Functional Outcome network (n = 6,021). RESULTS Genetically elevated sICAM-1 (OR 1.28, 95% CI 1.05-1.56) and sE-selectin (OR 2.69, 95% CI 1.23-5.86) levels were related with poor post-stroke outcome. However, we found no evidence that genetically elevated sVCAM-1 were associated with post-stroke outcome (OR 1.36, 95% CI 0.39-4.66). CONCLUSIONS We found that genetically elevated higher sICAM-1 and sE-selectin levels are associated with poor post-stroke outcome. Further studies are warranted to evaluate the potential of ICAM-1 and E-selectin to be drug targets for post-stroke recovery.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Zhizhong Zhang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dandan Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ville Karhunen
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yi Ren
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dan Ye
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Meng Liu
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
3
|
Bajorat R, Danckert L, Ebert F, Bancken T, Bergt S, Klawitter F, Vollmar B, Reuter DA, Schürholz T, Ehler J. The Effect of Early Application of Synthetic Peptides 19-2.5 and 19-4LF to Improve Survival and Neurological Outcome in a Mouse Model of Cardiac Arrest and Resuscitation. Biomedicines 2023; 11:biomedicines11030855. [PMID: 36979834 PMCID: PMC10045145 DOI: 10.3390/biomedicines11030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
The synthetic antimicrobial peptides (sAMPs) Pep19-2.5 and Pep19-4LF have been shown in vitro and in vivo to reduce the release of pro-inflammatory cytokines, leading to the suppression of inflammation and immunomodulation. We hypothesized that intervention with Pep19-2.5 and Pep19-4LF immediately after cardiac arrest and resuscitation (CA-CPR) might attenuate immediate systemic inflammation, survival, and long-term outcomes in a standardized mouse model of CA-CPR. Long-term outcomes up to 28 days were assessed between a control group (saline) and two peptide intervention groups. Primarily, survival as well as neurological and cognitive parameters were assessed. In addition, systemic inflammatory molecules and specific biomarkers were analyzed in plasma as well as in brain tissue. Treatment with sAMPs did not provide any short- or long-term benefits for either survival or neurological outcomes, and no significant benefit on inflammation in the CA-CPR animal model. While no difference was found in the plasma analysis of early cytokines between the intervention groups four hours after resuscitation, a significant increase in UCH-L1, a biomarker of neuronal damage and blood–brain barrier rupture, was measured in the Pep19-4LF-treated group. The theoretical benefit of both sAMPs tested here for the treatment of post-cardiac arrest syndrome could not be proven.
Collapse
Affiliation(s)
- Rika Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
- Correspondence:
| | - Lena Danckert
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Florian Ebert
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Theresa Bancken
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Stefan Bergt
- Department of Anesthesiology and Intensive Care Medicine, MEDICLIN Müritz-Klinikum, 17192 Waren, Germany
| | - Felix Klawitter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Daniel A. Reuter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Tobias Schürholz
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Johannes Ehler
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
4
|
Cerebral Ischemia/Reperfusion Injury and Pharmacologic Preconditioning as a Means to Reduce Stroke-induced Inflammation and Damage. Neurochem Res 2022; 47:3598-3614. [DOI: 10.1007/s11064-022-03789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
5
|
Zhang X, Zhou F, Wang W, E Y, Chen S, Cao H, Lian H, Jiang T, Zhang Y, Shi H, Zhou J. Levels of adhesion molecules and clinical outcomes in patients with ischemic stroke after mechanical thrombectomy. Front Neurol 2022; 13:1024162. [PMID: 36247764 PMCID: PMC9556902 DOI: 10.3389/fneur.2022.1024162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Background and purpose Data on adhesion molecule levels in patients treated with mechanical thrombectomy (MT) are scarce. We aimed to evaluate the association among adhesion molecule levels, symptomatic intracranial hemorrhage (sICH), and clinical outcome and to determine whether the sICH influences the association of adhesion molecules with functional outcome. Methods Patients with large artery occlusion in the anterior circulation and treated with MT were prospectively recruited. Adhesion molecules, such as soluble intercellular adhesion molecule-1, soluble vascular cell adhesion molecule-1 (sVCAM-1), and soluble E-selectin (sE-selectin) were tested. An unfavorable outcome was defined as a 90-day modified Rankin Scale (mRS) score of 3–6. The sICH was diagnosed according to the Heidelberg Bleeding Classification within 72 h of endovascular treatment (EVT). Results Of the 310 enrolled patients (mean age, 68.5 years; 198 men), 46 (14.8%) experienced sICH and 173 (55.8%) experienced an unfavorable outcome at 90 days. After adjusting for potential confounders, patients with higher sVCAM-1 and sE-selectin levels had an increasing trend of sICH [4th quartile vs. 1st quartile for sVCAM-1; odds ratio (OR), 2.766, p = 0.085; sE-selectin; OR, 2.422, p = 0.086] and poor outcome (4th quartile vs. 1st quartile for sVCAM-1; OR, 2.614, p = 0.025; sE-selectin; OR, 2.325, p = 0.046). Furthermore, the sICH might partially mediate the worse functional outcome in patients with higher adhesion molecules levels (Sobel test, p < 0.001 for sVCAM-1 and p = 0.007 for sE-selectin). Conclusions There were significant relationships between levels of adhesion molecules and a 90-day poor outcome in patients with ischemic stroke treated with MT, which was partially mediated by sICH.
Collapse
Affiliation(s)
- Xiaohao Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shuaiyu Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Haiming Cao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiwen Lian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongchao Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Hongchao Shi
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Junshan Zhou
| |
Collapse
|
6
|
Zhang SQ, Xiao J, Chen M, Zhou LQ, Shang K, Qin C, Tian DS. Sphingosine-1-Phosphate Signaling in Ischemic Stroke: From Bench to Bedside and Beyond. Front Cell Neurosci 2021; 15:781098. [PMID: 34916911 PMCID: PMC8669352 DOI: 10.3389/fncel.2021.781098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) signaling is being increasingly recognized as a strong modulator of immune cell migration and endothelial function. Fingolimod and other S1P modulators in ischemic stroke treatment have shown promise in emerging experimental models and small-scale clinical trials. In this article, we will review the current knowledge of the role of S1P signaling in brain ischemia from the aspects of inflammation and immune interventions, sustaining endothelial functions, regulation of blood-brain barrier integrity, and functional recovery. We will then discuss the current and future therapeutic perspectives of targeting S1P for the treatment of ischemic stroke. Mechanism studies would help to bridge the gap between preclinical studies and clinical practice. Future success of bench-to-bedside translation shall be based on in depth understanding of S1P signaling during stroke and on the ability to have a fine temporal and spatial regulation of the signal pathway.
Collapse
Affiliation(s)
- Shuo-Qi Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Evans LE, Taylor JL, Smith CJ, Pritchard HAT, Greenstein AS, Allan SM. Cardiovascular co-morbidities, inflammation and cerebral small vessel disease. Cardiovasc Res 2021; 117:2575-2588. [PMID: 34499123 DOI: 10.1093/cvr/cvab284] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cerebral small vessel disease (cSVD) is the most common cause of vascular cognitive impairment and affects all levels of the brain's vasculature. Features include diverse structural and functional changes affecting small arteries and capillaries that lead to a decline in cerebral perfusion. Due to an aging population, incidence of cerebral small vessel disease (cSVD) is continually rising. Despite its prevalence and its ability to cause multiple debilitating illnesses, such as stroke and dementia, there are currently no therapeutic strategies for the treatment of cSVD. In the healthy brain, interactions between neuronal, vascular and inflammatory cells are required for normal functioning. When these interactions are disturbed, chronic pathological inflammation can ensue. The interplay between cSVD and inflammation has attracted much recent interest and this review discusses chronic cardiovascular diseases, particularly hypertension, and explores how the associated inflammation may impact on the structure and function of the small arteries of the brain in cSVD. Molecular approaches in animal studies are linked to clinical outcomes in patients and novel hypotheses regarding inflammation and cSVD are proposed that will hopefully stimulate further discussion and study in this important area.
Collapse
Affiliation(s)
- Lowri E Evans
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Jade L Taylor
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Craig J Smith
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.,Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal Hospital, Manchester Academic Health Sciences Centre (MAHSC)
| | - Harry A T Pritchard
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Adam S Greenstein
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Stuart M Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. Int J Mol Sci 2021; 22:ijms22179486. [PMID: 34502395 PMCID: PMC8431165 DOI: 10.3390/ijms22179486] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022] Open
Abstract
Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.
Collapse
|
9
|
Zhang D, Ren J, Luo Y, He Q, Zhao R, Chang J, Yang Y, Guo ZN. T Cell Response in Ischemic Stroke: From Mechanisms to Translational Insights. Front Immunol 2021; 12:707972. [PMID: 34335623 PMCID: PMC8320432 DOI: 10.3389/fimmu.2021.707972] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke, caused by a sudden disruption of blood flow to the brain, is a leading cause of death and exerts a heavy burden on both patients and public health systems. Currently available treatments for ischemic stroke are very limited and are not feasible in many patients due to strict time windows required for their administration. Thus, novel treatment strategies are keenly required. T cells, which are part of the adaptive immune system, have gained more attention for its effects in ischemic stroke. Both preclinical and clinical studies have revealed the conflicting roles for T cells in post-stroke inflammation and as potential therapeutic targets. This review summarizes the mediators of T cell recruitment, as well as the temporal course of its infiltration through the blood-brain-barrier, choroid plexus, and meningeal pathways. Furthermore, we describe the mechanisms behind the deleterious and beneficial effects of T cells in the brain, in both antigen-dependent and antigen-independent manners, and finally we specifically focus on clinical and preclinical studies that have investigated T cells as potential therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Dianhui Zhang
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yun Luo
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China.,Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qianyan He
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Junlei Chang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Neuroscience Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
A Review on Potential Footprints of Ferulic Acid for Treatment of Neurological Disorders. Neurochem Res 2021; 46:1043-1057. [PMID: 33547615 DOI: 10.1007/s11064-021-03257-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Ferulic acid is being screened in preclinical settings to combat various neurological disorders. It is a naturally occurring dietary flavonoid commonly found in grains, fruits, and vegetables such as rice, wheat, oats, tomatoes, sweet corn etc., which exhibits protective effects against a number of neurological diseases such as epilepsy, depression, ischemia-reperfusion injury, Alzheimer's disease, and Parkinson's disease. Ferulic acid prevents and treats different neurological diseases pertaining to its potent anti-oxidative and anti-inflammatory effects, beside modulating unique neuro-signaling pathways. It stays in the bloodstream for longer periods than other dietary polyphenols and antioxidants and easily crosses blood brain barrier. The use of novel drug delivery systems such as solid-lipid nanoparticles (SLNs) or its salt forms (sodium ferulate, ethyl ferulate, and isopentyl ferulate) further enhance its bioavailability and cerebral penetration. Based on reported studies, ferulic acid appears to be a promising molecule for treatment of neurological disorders; however, more preclinical (in vitro and in vivo) mechanism-based studies should be planned and conceived followed by its testing in clinical settings.
Collapse
|
11
|
Blanco-Rivero J, Xavier FE. Therapeutic Potential of Phosphodiesterase Inhibitors for Endothelial Dysfunction- Related Diseases. Curr Pharm Des 2021; 26:3633-3651. [PMID: 32242780 DOI: 10.2174/1381612826666200403172736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/08/2020] [Indexed: 02/08/2023]
Abstract
Cardiovascular diseases (CVD) are considered a major health problem worldwide, being the main cause of mortality in developing and developed countries. Endothelial dysfunction, characterized by a decline in nitric oxide production and/or bioavailability, increased oxidative stress, decreased prostacyclin levels, and a reduction of endothelium-derived hyperpolarizing factor is considered an important prognostic indicator of various CVD. Changes in cyclic nucleotides production and/ or signalling, such as guanosine 3', 5'-monophosphate (cGMP) and adenosine 3', 5'-monophosphate (cAMP), also accompany many vascular disorders that course with altered endothelial function. Phosphodiesterases (PDE) are metallophosphohydrolases that catalyse cAMP and cGMP hydrolysis, thereby terminating the cyclic nucleotide-dependent signalling. The development of drugs that selectively block the activity of specific PDE families remains of great interest to the research, clinical and pharmaceutical industries. In the present review, we will discuss the effects of PDE inhibitors on CVD related to altered endothelial function, such as atherosclerosis, diabetes mellitus, arterial hypertension, stroke, aging and cirrhosis. Multiple evidences suggest that PDEs inhibition represents an attractive medical approach for the treatment of endothelial dysfunction-related diseases. Selective PDE inhibitors, especially PDE3 and PDE5 inhibitors are proposed to increase vascular NO levels by increasing antioxidant status or endothelial nitric oxide synthase expression and activation and to improve the morphological architecture of the endothelial surface. Thereby, selective PDE inhibitors can improve the endothelial function in various CVD, increasing the evidence that these drugs are potential treatment strategies for vascular dysfunction and reinforcing their potential role as an adjuvant in the pharmacotherapy of CVD.
Collapse
Affiliation(s)
- Javier Blanco-Rivero
- Departamento de Fisiologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Fabiano E Xavier
- Departamento de Fisiologia e Farmacologia, Centro de Biociencias, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
12
|
Andjelkovic AV, Xiang J, Stamatovic SM, Hua Y, Xi G, Wang MM, Keep RF. Endothelial Targets in Stroke: Translating Animal Models to Human. Arterioscler Thromb Vasc Biol 2019; 39:2240-2247. [PMID: 31510792 DOI: 10.1161/atvbaha.119.312816] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia (stroke) induces injury to the cerebral endothelium that may contribute to parenchymal injury and worsen outcome. This review focuses on current preclinical studies examining how to prevent ischemia-induced endothelial dysfunction. It particularly focuses on targets at the endothelium itself. Those include endothelial tight junctions, transcytosis, endothelial cell death, and adhesion molecule expression. It also examines how such studies are being translated to the clinic, especially as adjunct therapies for preventing intracerebral hemorrhage during reperfusion of the ischemic brain. Identification of endothelial targets may prove valuable in a search for combination therapies that would specifically protect different cell types in ischemia.
Collapse
Affiliation(s)
- Anuska V Andjelkovic
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Pathology (A.V.A., S.M.S.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Jianming Xiang
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Svetlana M Stamatovic
- Pathology (A.V.A., S.M.S.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Ya Hua
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Guohua Xi
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Michael M Wang
- Neurology (M.M.W.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Molecular and Integrative Physiology (M.M.W., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Richard F Keep
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Molecular and Integrative Physiology (M.M.W., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| |
Collapse
|
13
|
Abstract
Neutrophils have always been considered as uncomplicated front-line troopers of the innate immune system equipped with limited proinflammatory duties. Yet recently, the role of the neutrophil has been undergoing a rejuvenation of sorts. Neutrophils are now considered complex cells capable of a significant array of specialized functions, and as an effector of the innate immune response, they are able to regulate many processes such as acute injury and repair, cancer, autoimmunity, and chronic inflammatory processes. Furthermore, evidence exists to indicate that neutrophils also contribute to adaptive immunity by aiding the development of specific adaptive immune responses or guiding the subsequent adaptive immune response. With this revived interest in neutrophils and their many novel functions, it is prudent to review what is currently known about neutrophils and, even more importantly, understand what information is lacking. We discuss the essential features of the neutrophil, from its origins, lifespan, subsets, margination and sequestration of the neutrophil to the death of the neutrophil. We highlight neutrophil recruitment to both infected and injured tissues and outline differences in recruitment of neutrophils between different tissues. Finally, we examine how neutrophils use different mechanisms to either bolster protective immune responses or negatively cause pathological outcomes at different locations.
Collapse
Affiliation(s)
- Pei Xiong Liew
- Snyder Institute of Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; and Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul Kubes
- Snyder Institute of Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; and Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Jiang RH, Xu XQ, Wu CJ, Lu SS, Zu QQ, Zhao LB, Liu S, Shi HB. The CD40/CD40L system regulates rat cerebral microvasculature after focal ischemia/reperfusion via the mTOR/S6K signaling pathway. Neurol Res 2018; 40:717-723. [PMID: 29843579 DOI: 10.1080/01616412.2018.1473075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Run-Hao Jiang
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xiao-Quan Xu
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Chen-Jiang Wu
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Shan-Shan Lu
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Qing-Quan Zu
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Lin-Bo Zhao
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Sheng Liu
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Hai-Bin Shi
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
15
|
Abstract
Myeloid cell recruitment to sites of infection and injury started out as a simple model that has been referred to as the universal concept of leukocyte recruitment. However, as we gain more insight into the different mechanisms, it is becoming clear that each organ and perhaps even each cell has its own unique mechanism of recruitment. Moreover, as the ability to visualize specific cell types in specific organs becomes more accessible, it is also becoming clear that there are resident populations of leukocytes, some within the tissues and others attached to the vasculature of tissues, the latter poised to affect the local environment. In this review, we will first highlight the imaging approaches that have allowed us to gain spectacular insight into locale and function of specific cell types, and then we will discuss what we have learned from this approach as far as myeloid cells are concerned. We will also highlight some of the gaps in our knowledge, which exist almost certainly because of the challenges of being able to visualize certain compartments of the body.
Collapse
|
16
|
Fukuoka T, Hayashi T, Hirayama M, Maruyama H, Mogi M, Horiuchi M, Takao M, Tanahashi N. Platelet-endothelial cell interaction in brain microvessels of angiotensin II type-2 receptor knockout mice following transient bilateral common carotid artery occlusion. J Thromb Thrombolysis 2016; 40:401-5. [PMID: 26231766 DOI: 10.1007/s11239-015-1254-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The purpose of this study was to investigate the behavior of platelets (rolling and adhesion) in cerebral microvessels of angiotensin II type-2 receptor-knockout (AT2RKO) mice after transient bilateral carotid artery occlusion using intravital fluorescence microscopy. Twenty AT2RKO mice, consisting of 11 mice in the sham group and 9 mice in the ischemia reperfusion group (reperfusion after 15 min of bilateral, total carotid artery occlusion) were used in this study. The hole traversed the bone and dura mater, but arachnoid, pia mater, and cerebral parenchyma were preserved. Platelets were harvested from donor mice and stained using carboxyfluorescein diacetate succinimidyl ester. The number of platelets showing rolling and adhesion to pial vessels in AT2 deficient mice at 3 and 6 h after cerebral ischemia reperfusion was significantly higher than that in the sham group (P < 0.05). In addition, AT2 receptor has an inhibitory role in platelet rolling and adhesion after cerebral ischemia reperfusion.
Collapse
Affiliation(s)
- Takuya Fukuoka
- Department of Neurology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.
| | - Takeshi Hayashi
- Department of Neurology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Makiko Hirayama
- Department of Neurology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Hajime Maruyama
- Department of Neurology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Ehime, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Ehime, Japan
| | - Masaki Takao
- Department of Neurology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Norio Tanahashi
- Department of Neurology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| |
Collapse
|
17
|
Xiang Y, Zhao H, Wang J, Zhang L, Liu A, Chen Y. Inflammatory mechanisms involved in brain injury following cardiac arrest and cardiopulmonary resuscitation. Biomed Rep 2016; 5:11-17. [PMID: 27330748 DOI: 10.3892/br.2016.677] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/25/2016] [Indexed: 12/24/2022] Open
Abstract
Cardiac arrest (CA) is a leading cause of fatality and long-term disability worldwide. Recent advances in cardiopulmonary resuscitation (CPR) have improved survival rates; however, the survivors are prone to severe neurological injury subsequent to successful CPR following CA. Effective therapeutic options to protect the brain from CA remain limited, due to the complexities of the injury cascades caused by global cerebral ischemia/reperfusion (I/R). Although the precise mechanisms of neurological impairment following CA-initiated I/R injury require further clarification, evidence supports that one of the key cellular pathways of cerebral injury is inflammation. The inflammatory response is orchestrated by activated glial cells in response to I/R injury. Increased release of danger-associated molecular pattern molecules and cellular dysfunction in activated microglia and astrocytes contribute to ischemia-induced cytotoxic and pro-inflammatory cytokines generation, and ultimately to delayed death of neurons. Furthermore, cytokines and adhesion molecules generated within activated microglia, as well as astrocytes, are involved in the innate immune response; modulate influx of peripheral immune and inflammatory cells into the brain, resulting in neurological injury. The present review discusses the molecular aspects of immune and inflammatory mechanisms in global cerebral I/R injury following CA and CPR, and the potential therapeutic strategies that target neuroinflammation and the innate immune system.
Collapse
Affiliation(s)
- Yanxiao Xiang
- Department of Clinical Pharmacy, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Emergency, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hua Zhao
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiali Wang
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, Shandong 250012, P.R. China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Luetao Zhang
- Chest Pain Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, Shandong 250012, P.R. China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Anchang Liu
- Department of Clinical Pharmacy, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuguo Chen
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, Shandong 250012, P.R. China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
18
|
Schmidt EP, Kuebler WM, Lee WL, Downey GP. Adhesion Molecules: Master Controllers of the Circulatory System. Compr Physiol 2016; 6:945-73. [PMID: 27065171 DOI: 10.1002/cphy.c150020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript.
Collapse
Affiliation(s)
- Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Respirology and the Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine, Pediatrics, and Biomedical Research, National Jewish Health, Denver, Colorado, USA
- Departments of Medicine, and Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
19
|
Giacoppo S, Galuppo M, De Nicola GR, Iori R, Bramanti P, Mazzon E. Tuscan black kale sprout extract bioactivated with myrosinase: a novel natural product for neuroprotection by inflammatory and oxidative response during cerebral ischemia/reperfusion injury in rat. Altern Ther Health Med 2015; 15:397. [PMID: 26545366 PMCID: PMC4636745 DOI: 10.1186/s12906-015-0929-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/02/2015] [Indexed: 01/13/2023]
Abstract
Background Cerebral ischemia and reperfusion (CIR) is a pathological condition characterized by a first blood supply restriction to brain followed by the consequent restoration of blood flow and simultaneous reoxygenation. The aim of this study was to evaluate the neuroprotective effects of Tuscan black kale sprout extract (TBK-SE) bioactivated with myrosinase enzyme, assessing its capability to preserve blood–brain barrier (BBB), in a rat model of CIR. Methods CIR was induced in rats according to a classic model of carotid artery occlusion for a time period of 1 h and the reperfusion time was prolonged for seven days. Results By immunohistochemical evaluation and western blot analysis of brain and cerebellum tissues, our data have clearly shown that administration of bioactive TBK-SE is able to restore alterations of tight junction components (claudin-5 immunolocalization). Also, bioactive TBK-SE reduces some inflammatory key-markers (p-selectin, GFAP, Iba-1, ERK1/2 and TNF-α), as well as the triggering of neuronal apoptotic death pathway (data about Bax/Bcl-2 balance, p53 and cleaved-caspase 3) and the generation of radicalic species by oxidative stress (results focused on iNOS, nitrotyrosine and Nrf2). Conclusion Taken together, our findings lead to believe that bioactive TBK-SE exerts pharmacological properties in protecting BBB integrity through a mechanism of action that involves a modulation of inflammatory and oxidative pathway as well into control of neuronal death.
Collapse
|
20
|
Tang-Tong-Fang Confers Protection against Experimental Diabetic Peripheral Neuropathy by Reducing Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:574169. [PMID: 26539228 PMCID: PMC4619908 DOI: 10.1155/2015/574169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/19/2015] [Accepted: 08/04/2015] [Indexed: 01/12/2023]
Abstract
Tang-tong-fang (TTF) is a Chinese herbal formula that has been shown to be beneficial in diabetic peripheral neuropathy (DPN), a common complication secondary to diabetic microvascular injury. However, the underlying mechanism of protection in nerve ischemia provided by TTF is still unclear. We hypothesized that TTF alleviates DPN via inhibition of ICAM-1 expression. Therefore, we tested the effect of TTF in a previously established DPN model, in which nerve injury was induced by ischemia/reperfusion in streptozotocin-induced diabetic rats. We found that the conduction velocity and amplitude of action potentials of sciatic nerve conduction were reduced in the DPN model group but were rescued by TTF treatment. In addition, TTF treatment also attenuated the effect of DPN on other parameters including histology and ultrastructural changes, expression of ICAM-1, MPO, and TNF-α in rat sciatic nerves, and plasma sICAM-1 and MPO levels. Together, our data suggest that TTF treatment may alleviate DPN via ICAM-1 inhibition.
Collapse
|
21
|
Holloway PM, Durrenberger PF, Trutschl M, Cvek U, Cooper D, Orr AW, Perretti M, Getting SJ, Gavins FNE. Both MC1 and MC3 Receptors Provide Protection From Cerebral Ischemia-Reperfusion-Induced Neutrophil Recruitment. Arterioscler Thromb Vasc Biol 2015; 35:1936-44. [PMID: 26112010 DOI: 10.1161/atvbaha.115.305348] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/11/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Neutrophil recruitment is a key process in the pathogenesis of stroke, and may provide a valuable therapeutic target. Targeting the melanocortin (MC) receptors has previously shown to inhibit leukocyte recruitment in peripheral inflammation, however, it is not known whether treatments are effective in the unique cerebral microvascular environment. Here, we provide novel research highlighting the effects of the MC peptides on cerebral neutrophil recruitment, demonstrating important yet discrete roles for both MC1 and MC3. APPROACH AND RESULTS Using intravital microscopy, in 2 distinct murine models of cerebral ischemia-reperfusion (I/R) injury, we have investigated MC control for neutrophil recruitment. After global I/R, pharmacological treatments suppressed pathological neutrophil recruitment. MC1 selective treatment rapidly inhibited neutrophil recruitment while a nonselective MC agonist provided protection even when coadministered with an MC3/4 antagonist, suggesting the importance of early MC1 signaling. However, by 2-hour reperfusion, MC1-mediated effects were reduced, and MC3 anti-inflammatory circuits predominated. Mice bearing a nonfunctional MC1 displayed a transient exacerbation of neutrophil recruitment after global I/R, which diminished by 2 hours. However importantly, enhanced inflammatory responses in both MC1 mutant and MC3 (-/-) mice resulted in increased infarct size and poor functional outcome after focal I/R. Furthermore, we used an in vitro model of leukocyte recruitment to demonstrate these anti-inflammatory actions are also effective in human cells. CONCLUSIONS These studies reveal for the first time MC control for neutrophil recruitment in the unique pathophysiological context of cerebral I/R, while also demonstrating the potential therapeutic value of targeting multiple MCs in developing effective therapeutics.
Collapse
MESH Headings
- Animals
- Brain Ischemia/etiology
- Brain Ischemia/metabolism
- Brain Ischemia/prevention & control
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Male
- Melanocyte-Stimulating Hormones/pharmacology
- Mice
- Neutrophil Infiltration/genetics
- RNA, Messenger/genetics
- Receptor, Melanocortin, Type 1/antagonists & inhibitors
- Receptor, Melanocortin, Type 1/biosynthesis
- Receptor, Melanocortin, Type 1/genetics
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 3/biosynthesis
- Receptor, Melanocortin, Type 3/genetics
- Reperfusion Injury/complications
- Reperfusion Injury/metabolism
Collapse
Affiliation(s)
- Paul M Holloway
- From the Division of Brain Sciences, Imperial College London, London, United Kingdom (P.M.H., P.F.D., F.N.E.G.); LSU Shreveport, LA (M.T., U.C.); William Harvey Research Institute, Barts and The Royal London School of Medicine, London, United Kingdom (D.C., M.P.); Faculty of Science and Technology, University of Westminster, London, United Kingdom (S.J.G.); and LSU Health Science Center, Shreveport, LA (P.M.H., A.W.O., F.N.E.G.)
| | - Pascal F Durrenberger
- From the Division of Brain Sciences, Imperial College London, London, United Kingdom (P.M.H., P.F.D., F.N.E.G.); LSU Shreveport, LA (M.T., U.C.); William Harvey Research Institute, Barts and The Royal London School of Medicine, London, United Kingdom (D.C., M.P.); Faculty of Science and Technology, University of Westminster, London, United Kingdom (S.J.G.); and LSU Health Science Center, Shreveport, LA (P.M.H., A.W.O., F.N.E.G.)
| | - Marjan Trutschl
- From the Division of Brain Sciences, Imperial College London, London, United Kingdom (P.M.H., P.F.D., F.N.E.G.); LSU Shreveport, LA (M.T., U.C.); William Harvey Research Institute, Barts and The Royal London School of Medicine, London, United Kingdom (D.C., M.P.); Faculty of Science and Technology, University of Westminster, London, United Kingdom (S.J.G.); and LSU Health Science Center, Shreveport, LA (P.M.H., A.W.O., F.N.E.G.)
| | - Urska Cvek
- From the Division of Brain Sciences, Imperial College London, London, United Kingdom (P.M.H., P.F.D., F.N.E.G.); LSU Shreveport, LA (M.T., U.C.); William Harvey Research Institute, Barts and The Royal London School of Medicine, London, United Kingdom (D.C., M.P.); Faculty of Science and Technology, University of Westminster, London, United Kingdom (S.J.G.); and LSU Health Science Center, Shreveport, LA (P.M.H., A.W.O., F.N.E.G.)
| | - Dianne Cooper
- From the Division of Brain Sciences, Imperial College London, London, United Kingdom (P.M.H., P.F.D., F.N.E.G.); LSU Shreveport, LA (M.T., U.C.); William Harvey Research Institute, Barts and The Royal London School of Medicine, London, United Kingdom (D.C., M.P.); Faculty of Science and Technology, University of Westminster, London, United Kingdom (S.J.G.); and LSU Health Science Center, Shreveport, LA (P.M.H., A.W.O., F.N.E.G.)
| | - A Wayne Orr
- From the Division of Brain Sciences, Imperial College London, London, United Kingdom (P.M.H., P.F.D., F.N.E.G.); LSU Shreveport, LA (M.T., U.C.); William Harvey Research Institute, Barts and The Royal London School of Medicine, London, United Kingdom (D.C., M.P.); Faculty of Science and Technology, University of Westminster, London, United Kingdom (S.J.G.); and LSU Health Science Center, Shreveport, LA (P.M.H., A.W.O., F.N.E.G.)
| | - Mauro Perretti
- From the Division of Brain Sciences, Imperial College London, London, United Kingdom (P.M.H., P.F.D., F.N.E.G.); LSU Shreveport, LA (M.T., U.C.); William Harvey Research Institute, Barts and The Royal London School of Medicine, London, United Kingdom (D.C., M.P.); Faculty of Science and Technology, University of Westminster, London, United Kingdom (S.J.G.); and LSU Health Science Center, Shreveport, LA (P.M.H., A.W.O., F.N.E.G.)
| | - Stephen J Getting
- From the Division of Brain Sciences, Imperial College London, London, United Kingdom (P.M.H., P.F.D., F.N.E.G.); LSU Shreveport, LA (M.T., U.C.); William Harvey Research Institute, Barts and The Royal London School of Medicine, London, United Kingdom (D.C., M.P.); Faculty of Science and Technology, University of Westminster, London, United Kingdom (S.J.G.); and LSU Health Science Center, Shreveport, LA (P.M.H., A.W.O., F.N.E.G.)
| | - Felicity N E Gavins
- From the Division of Brain Sciences, Imperial College London, London, United Kingdom (P.M.H., P.F.D., F.N.E.G.); LSU Shreveport, LA (M.T., U.C.); William Harvey Research Institute, Barts and The Royal London School of Medicine, London, United Kingdom (D.C., M.P.); Faculty of Science and Technology, University of Westminster, London, United Kingdom (S.J.G.); and LSU Health Science Center, Shreveport, LA (P.M.H., A.W.O., F.N.E.G.).
| |
Collapse
|
22
|
Smith HK, Gil CD, Oliani SM, Gavins FNE. Targeting formyl peptide receptor 2 reduces leukocyte-endothelial interactions in a murine model of stroke. FASEB J 2015; 29:2161-71. [PMID: 25690650 DOI: 10.1096/fj.14-263160] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/13/2015] [Indexed: 01/25/2023]
Abstract
Ischemia/reperfusion (I/R) injury following stroke can worsen patient outcome through excess inflammation. This study investigated the pharmacologic potential of targeting an endogenous anti-inflammatory circuit via formyl peptide receptor (FPR) 2/lipoxin receptor (ALX) (Fpr2/3 in mouse) in global cerebral I/R. Mice (C57BL/6 and Fpr2/3(-/-)) were subjected to bilateral common carotid artery occlusion, followed by reperfusion and treatment with FPR agonists: AnxA1Ac2-26 [Annexin A1 mimetic peptide (Ac-AMVSEFLKQAWFIENEEQEYVQTVK), 2.5 μg/kg] and 15-epimer-lipoxin A4 (15-epi-LXA4; FPR2/ALX specific, 12.5 and 100 ng/kg). Leukocyte-endothelial (L-E) interactions in the cerebral microvasculature were then quantified in vivo using intravital fluorescence microscopy. 15-epi-LXA4 administration at the start of reperfusion reduced L-E interactions after 40 min (which was sustained at 2 h with high-dose 15-epi-LXA4) to levels seen in sham-operated animals. AnxA1Ac2-26 treatment decreased leukocyte adhesion at 40 min and all L-E interactions at 2 h (up to 95%). Combined treatment with AnxA1Ac2-26 plus FPR antagonists t-Boc-FLFLF (250 ng/kg) or WRW4 (FPR2/ALX selective, 1.4 μg/kg) abrogated the effects of AnxA1Ac2-26 fully at 40 min. Antagonists were less effective at 2 h, which we demonstrate is likely because of their impact on early L-E interactions. Our findings indicate that FPR2/ALX activity elicits considerable control over vascular inflammatory responses during cerebral I/R and, therefore, provide evidence that targeting FPR2/ALX may be beneficial for patients who suffered from stroke.
Collapse
Affiliation(s)
- Helen K Smith
- *Molecular and Cellular Physiology Department, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA; Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom; and Departments of Morphology and Genetics and Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Cristiane Damas Gil
- *Molecular and Cellular Physiology Department, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA; Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom; and Departments of Morphology and Genetics and Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Sonia M Oliani
- *Molecular and Cellular Physiology Department, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA; Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom; and Departments of Morphology and Genetics and Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Felicity N E Gavins
- *Molecular and Cellular Physiology Department, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA; Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom; and Departments of Morphology and Genetics and Biology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Winklewski PJ, Radkowski M, Demkow U. Cross-talk between the inflammatory response, sympathetic activation and pulmonary infection in the ischemic stroke. J Neuroinflammation 2014; 11:213. [PMID: 25539803 PMCID: PMC4297381 DOI: 10.1186/s12974-014-0213-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/02/2014] [Indexed: 01/29/2023] Open
Abstract
The immune system response and inflammation play a key role in brain injury during and after a stroke. The acute immune response is responsible for secondary brain tissue damage immediately after the stroke, followed by immunosuppression due to sympathetic nervous system activation. The latter increases risk of infection complications, such as pneumonia. The pneumonia-related inflammatory state can release a bystander autoimmune response against central nervous system antigens, thereby initiating a vicious circle. The aim of this review is to summarize the relationship between ischemic stroke, sympathetic nervous system activation and pulmonary infection.
Collapse
Affiliation(s)
- Pawel J Winklewski
- Institute of Human Physiology, Medical University of Gdansk, Tuwima Street 15, 80-210, Gdansk, Poland.
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
24
|
Wu L, Zhang K, Hu G, Yan H, Xie C, Wu X. Inflammatory response and neuronal necrosis in rats with cerebral ischemia. Neural Regen Res 2014; 9:1753-62. [PMID: 25422636 PMCID: PMC4238163 DOI: 10.4103/1673-5374.143419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 01/02/2023] Open
Abstract
In the middle cerebral artery occlusion model of ischemic injury, inflammation primarily occurs in the infarct and peripheral zones. In the ischemic zone, neurons undergo necrosis and apoptosis, and a large number of reactive microglia are present. In the present study, we investigated the pathological changes in a rat model of middle cerebral artery occlusion. Neuronal necrosis appeared 12 hours after middle cerebral artery occlusion, and the peak of neuronal apoptosis appeared 4 to 6 days after middle cerebral artery occlusion. Inflammatory cytokines and microglia play a role in damage and repair after middle cerebral artery occlusion. Serum intercellular cell adhesion molecule-1 levels were positively correlated with the permeability of the blood-brain barrier. These findings indicate that intercellular cell adhesion molecule-1 may be involved in blood-brain barrier injury, microglial activation, and neuronal apoptosis. Inhibiting blood-brain barrier leakage may alleviate neuronal injury following ischemia.
Collapse
Affiliation(s)
- Lingfeng Wu
- Nanchang University Medical College, Nanchang, Jiangxi Province, China ; Department of Neurology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Kunnan Zhang
- Nanchang University Medical College, Nanchang, Jiangxi Province, China
| | - Guozhu Hu
- Institution of Neurology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Haiyu Yan
- Institution of Neurology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Chen Xie
- Institution of Neurology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Xiaomu Wu
- Nanchang University Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
25
|
Inhibition of monocyte adhesion to brain-derived endothelial cells by dual functional RNA chimeras. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e209. [PMID: 25368913 PMCID: PMC4459546 DOI: 10.1038/mtna.2014.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
Because adhesion of leukocytes to endothelial cells is the first step of vascular-neuronal inflammation, inhibition of adhesion and recruitment of leukocytes to vascular endothelial cells will have a beneficial effect on neuroinflammatory diseases. In this study, we used the pRNA of bacteriophage phi29 DNA packaging motor to construct a novel RNA nanoparticle for specific targeting to transferrin receptor (TfR) on the murine brain-derived endothelial cells (bEND5) to deliver ICAM-1 siRNA. This RNA nanoparticle (FRS-NPs) contained a FB4 aptamer targeting to TfR and a siRNA moiety for silencing the intercellular adhesion molecule-1 (ICAM-1). Our data indicated that this RNA nanoparticle was delivered into murine brain-derived endothelial cells. Furthermore, the siRNA was released from the FRS-NPs in the cells and knocked down ICAM-1 expression in the TNF-α–stimulated cells and in the cells under oxygen-glucose deprivation/reoxygenation (OGD/R) condition. The functional end points of the study indicated that FRS-NPs significantly inhibited monocyte adhesion to the bEND5 cells induced by TNF-α and OGD/R. In conclusion, our approach using RNA nanotechnology for siRNA delivery could be potentially applied for inhibition of inflammation in ischemic stroke and other neuroinflammatory diseases, or diseases affecting endothelium of vasculature.
Collapse
|
26
|
Fukuoka T, Hayashi T, Hirayama M, Maruyama H, Tanahashi N. Cilostazol Inhibits Platelet–Endothelial Cell Interaction in Murine Microvessels after Transient Bilateral Common Carotid Artery Occlusion. J Stroke Cerebrovasc Dis 2014; 23:1056-61. [DOI: 10.1016/j.jstrokecerebrovasdis.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/30/2013] [Accepted: 09/04/2013] [Indexed: 11/26/2022] Open
|
27
|
Kuric E, Ruscher K. Reduction of rat brain CD8+ T-cells by levodopa/benserazide treatment after experimental stroke. Eur J Neurosci 2014; 40:2463-70. [PMID: 24754803 DOI: 10.1111/ejn.12598] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 12/26/2022]
Abstract
The activation of inflammatory cascades in the ischemic hemisphere impairs mechanisms of tissue reorganization with consequences for recovery of lost neurological function. Recruitment of T-cell populations to the post-ischemic brain occurs and represents a significant part of the inflammatory response. This study was conducted to investigate if treatment with levodopa, potentially acting as an immunomodulator, affects the T-cell accumulation in the post-ischemic brain. Male Sprague-Dawley rats were subjected to transient occlusion of the middle cerebral artery (tMCAO) for 105 min followed by levodopa/benserazide treatment (20 mg/kg/15 mg/kg) for 5 days initiated on day 2 post-stroke. One week after tMCAO, T-cell populations were analysed from brains, and levels of interleukin (IL)-1β, chemokine (C-X-C motif) ligand 1, IL-4, IL-5, interferon gamma and IL-13 were analysed. After levodopa/benserazide treatment, we found a significant reduction of cytotoxic T-cells (CD3+ CD8+ ) in the ischemic hemisphere together with reduced levels of T-cell-associated cytokine IL-5, while other T-cell populations (CD3+, CD3+ CD4+, CD3+ CD4+ CD25+) were unchanged compared with vehicle-treated rats. Moreover, a reduced number of cells was associated with reduced levels of intercellular adhesion molecule 1, expressed in endothelial cells, in the infarct core of levodopa/benserazide-treated animals. Together, we provide the first evidence that dopamine can act as a potential immunomodulator by attenuating inflammation in the post-ischemic brain.
Collapse
Affiliation(s)
- Enida Kuric
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, S-22184, Lund, Sweden
| | | |
Collapse
|
28
|
Cilostazol inhibits leukocyte-endothelial cell interactions in murine microvessels after transient bilateral common carotid artery occlusion. Brain Res 2014; 1543:173-8. [PMID: 24309140 DOI: 10.1016/j.brainres.2013.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 11/09/2013] [Accepted: 11/15/2013] [Indexed: 11/20/2022]
Abstract
Leukocyte behavior in the cerebral microvasculature following vessel occlusion has not been fully elucidated. The purpose of this study was to investigate the effects of cilostazol on leukocyte behavior (rolling and adhesion) in murine cerebral microvessels following transient bilateral carotid artery occlusion using intravital fluorescence microscopy. Four groups of mice were assigned: a sham group (n=16); an ischemia (induced by 15-min occlusion of bilateral common carotid arteries) and reperfusion (I/R) group (n=13); I/R+cilostazol (I/R+CZ3 mg/kg) group (I/R after oral administration of cilostazol at 3 mg/kg) (n=8); and I/R+cilostazol (I/R+CZ30 mg/kg) group (I/R after oral administration of cilostazol at 30 mg/kg) (n=12). Leukocytes labeled with 0.05% acridine orange were administered intravenously and their behavior was investigated at 3 and 6 h after reperfusion. Numbers of rolling or adherent leukocytes were expressed as the count per square millimeter per 30s. Numbers of rolling and adherent leukocytes at 3 and 6h after reperfusion were significantly higher in the I/R group than in the sham or I/R+CZ30 mg/kg groups in both pial veins (P<0.05) and pial arteries (P<0.05). Cilostazol (30 mg/kg) inhibited leukocyte-endothelial interactions following cerebral ischemia and reperfusion.
Collapse
|
29
|
Abstract
Ischemic diseases are a leading cause of death worldwide. It is becoming increasingly appreciated that atherosclerosis is a major cause of ischemia reperfusion. Hypercholesterolemia is a major risk factor for the development of atherosclerosis, and is associated with an increased incidence of ischemia reperfusion. Furthermore, elevated cholesterol levels exacerbate the vascular responses to ischemia-reperfusion, which intensifies the resulting organ dysfunction. One of the underlying features of both ischemia-reperfusion injury and hypercholesterolemia is the proinflammatory and prothrombogenic phenotype invoked in the microvasculature. This is manifested as an endothelial dysfunction, characterized by leukocyte and platelet recruitment, oxidative stress and angiotensin II receptor Type 1a activation. These common pathways of inflammation offer attractive targets for the development of drugs to combat cardiovascular disease and the associated ischemic disorders.
Collapse
Affiliation(s)
- Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | | |
Collapse
|
30
|
An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, Leak RK, Gao Y, Sun BL, Zheng P, Chen J. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol 2013; 115:6-24. [PMID: 24374228 DOI: 10.1016/j.pneurobio.2013.12.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/28/2013] [Accepted: 12/17/2013] [Indexed: 12/26/2022]
Abstract
Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialog between the brain and peripheral immune system show promise as potential novel treatments for stroke.
Collapse
Affiliation(s)
- Chengrui An
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yejie Shi
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ruth A Stetler
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, China.
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
31
|
Angiari S, Constantin G. Selectins and their ligands as potential immunotherapeutic targets in neurological diseases. Immunotherapy 2013; 5:1207-20. [DOI: 10.2217/imt.13.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Selectins are a family of adhesion receptors that bind to highly glycosylated molecules expressed on the surface of leukocytes and endothelial cells. The interactions between selectins and their ligands control tethering and rolling of leukocytes on the vascular wall during the process of leukocyte migration into the tissues under physiological and pathological conditions. In recent years, it has been shown that leukocyte recruitment in the CNS plays a pivotal role in diseases such as multiple sclerosis, ischemic stroke, epilepsy and traumatic brain injury. In this review, we discuss the role of selectins in leukocyte–endothelial interactions in the pathogenesis of neurological diseases, highlighting new findings suggesting that selectins and their ligands may represent novel potential therapeutic targets for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Stefano Angiari
- Department of Pathology & Diagnostics, Section of General Pathology, University of Verona, Strada le Grazie 8, Verona 37134, Italy
| | - Gabriela Constantin
- Department of Pathology & Diagnostics, Section of General Pathology, University of Verona, Strada le Grazie 8, Verona 37134, Italy
| |
Collapse
|
32
|
Wei J, Fang W, Sha L, Han D, Zhang R, Hao X, Li Y. XQ-1H Suppresses Neutrophils Infiltration and Oxidative Stress Induced by Cerebral Ischemia Injury Both In Vivo and In Vitro. Neurochem Res 2013; 38:2542-2549. [PMID: 24122081 DOI: 10.1007/s11064-013-1176-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/03/2013] [Accepted: 10/05/2013] [Indexed: 01/09/2023]
Abstract
Cerebral ischemia/reperfusion injury plays an important role in the development of tissue injury after acute stroke, including neutrophils adhesion and infiltration, inflammation and oxidative stress. 10-O-(N,N-dimethylaminoethyl)-ginkgolide B methanesulfonate (XQ-1H) is a novel ginkdolide B derivative. In this study, we investigated the anti-inflammatory and anti-oxidative activities of XQ-1H in vivo and vitro. In our study, rats were treating with XQ-1H (31.2, 15.6 and 7.8 mg/kg) after middle cerebral artery occlusion surgery. Primary cultured cortical rat neurons were treated with Na2S2O4 for 1.5 h to mimic hypoxia and reoxygenation injury in vitro. Cortical neurons were preincubated with XQ-1H (100, 10, 1 μM) 24 h before hypoxic injury. Brain edema was evaluated by brain water content. Neutrophil infiltration was determined by fluorescence imaging method and myeloperoxidase assay. Intercellular adhesion molecule 1 (ICAM-1) and matrix metallopeptidase 9 (MMP-9) expressions were examined by immunohistochemistry analysis. Neuronal injury was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, lactate dehydrogenase releasing and lactic acid content. The anti-oxidative effects of XQ-1H were evaluated by superoxide dismutase (SOD) activity and malondialdehyde content in ischemic brain and neuron cultures subjected to hypoxia/reoxygenation procedure. Results showed that XQ-1H reduced neutrophils infiltration to ischemic brain, which might result from down regulation of inflammatory mediators, such as ICAM-1 and MMP-9. In addition, an antioxidative effect of XQ-1H was observed in cortical neuron and brain homogenates by enhancing SOD activity and inhibiting lipid peroxidation. These results indicated that XQ-1H possessed a protective effect against cerebral ischemia, especially on neutrophil infiltration and oxidative stress.
Collapse
Affiliation(s)
- Jie Wei
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
It is being increasingly suggested that the microcirculation, which is known to be in a large part responsible for maintaining an adequate and constant microenvironment for function of the central nervous system, functions as part of a neurovascular unit. The neurovascular unit includes neurons, astrocytes and elements of capillaries. The cerebral circulation exhibits unique functional characteristics and critical elements for the pathogenesis of cerebrovascular disease. For example, the blood-brain barrier formed by epithelial-like high resistance tight junctions within the endothelium is a key feature of microvessels of the central nervous system. Alterations in the microcirculation after ischemia/reperfusion include disruption of the blood-brain barrier, edema and swelling of perivascular astrocyte foot processes, decrease in arteriole endothelium-dependent relaxation and reduced inwardly-rectifying potassium channel function, altered expression of proteases and matrix metalloproteinases, increased inflammatory mediators and inflammation. Experiments studying the microcirculation in ischemia are few compared with those examining neuroprotection, although the two overlap because protection of the microcirculation might achieve some degree of neuroprotection and both processes may be mediated by at least some mechanisms in common.
Collapse
Affiliation(s)
- Masataka Takahashi
- Section of Neurosurgery, Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, IL 60637, USA
| | | |
Collapse
|
34
|
Kalimeris K, Kouni S, Kostopanagiotou G, Nomikos T, Fragopoulou E, Kakisis J, Vasdekis S, Matsota P, Pandazi A. Cognitive function and oxidative stress after carotid endarterectomy: comparison of propofol to sevoflurane anesthesia. J Cardiothorac Vasc Anesth 2013; 27:1246-52. [PMID: 23725684 DOI: 10.1053/j.jvca.2012.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To examine the antioxidant role of propofol in ischemia-reperfusion during carotid endarterectomy (CEA) and its influence on cognitive dysfunction after CEA. DESIGN A randomized prospective study. SETTING Single-center study in a university hospital. PARTICIPANTS Forty-four patients. INTERVENTIONS Patients underwent elective CEA under general anesthesia with either sevoflurane (group S, n = 21) or propofol (group P, n = 23). MEASUREMENTS AND MAIN RESULTS Cognitive function was assessed with the Mini-Mental State Examination (MMSE) before CEA, 1 hour after CEA, and 24 hours after CEA. Blood samples from the radial artery and the internal jugular vein were drawn before carotid clamping and 5 minutes following unclamping, and peripheral blood was obtained 24 hours postoperatively. Samples were analyzed for lactate, S100B, and P-selectin concentrations and for the antioxidative markers malondialdehyde/low-density lipoprotein ratio and nitrate + nitrite concentrations. Compared with group S, patients in group P exhibited a greater increase in their MMSE values 24 hours postoperatively. Patients who had their MMSE performance reduced at 24 hours also were significantly fewer in group P (13% v 43% in group S, p<0.05). Significantly lower levels of lactate and S100B were observed in arterial and jugular vein samples in group P. In addition, the jugular vein-arterial differences of malondialdehyde-to-low-density lipoprotein ratio and nitrates + nitrites concentrations were lower during propofol anesthesia. CONCLUSIONS Propofol seemed to improve cognitive performance after CEA. This improvement was associated with decreased indices of ischemic cerebral damage and seemed to be due to antioxidative effect in the ischemic cerebral circulation.
Collapse
Affiliation(s)
- Konstantinos Kalimeris
- Second Department of Anesthesiology, School of Medicine, University of Athens, "Attikon" Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Higashiyama M, Hokari R, Kurihara C, Ueda T, Watanabe C, Tomita K, Komoto S, Okada Y, Kawaguchi A, Nagao S, Miura S. Indomethacin-induced small intestinal injury is ameliorated by cilostazol, a specific PDE-3 inhibitor. Scand J Gastroenterol 2012; 47:993-1002. [PMID: 22934593 DOI: 10.3109/00365521.2012.690043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Neutrophil migration, one of the major factors predisposing to nonsteroidal anti-inflammatory drugs (NSAIDs)-induced intestinal lesions, consists of several steps, including interaction with P-selectin from platelets. Cilostazol, a specific phosphodiesterase (PDE)-3 inhibitor, suppresses the expression of P-selectin from platelets and reduces interaction between platelets and leukocytes, leading to inflammatory amelioration in several disease models. We tried to clarify the therapeutic effectiveness of cilostazol for NSAID-induced small intestinal lesions. SUBJECTS AND METHODS 1) Anti-PSGL-1 antibody (2 mg/kg) or cilostazol (100 mg/kg) was administered to mice one hour before Indomethacin (IND, 2.5 mg/kg) administration for 4 days to evaluate small intestinal lesions. 2) IND-induced migratory behaviors of neutrophils and platelets were evaluated in intestinal vessels by an intravital microscopy. RESULTS i) IND induced small intestinal lesions with an increase in MPO activity. Anti-PSGL-1 antibody and cilostazol ameliorated intestinal lesions along with suppression of MPO activity. ii) Intravital microscopy revealed that administration of IND increased migration of platelet-bearing neutrophils. Cilostazol treatment ameliorated neutrophil migration by blocking interaction between platelets and neutrophils. CONCLUSION Our results suggest that enhanced platelets-bearing neutrophil migration is critically involved in the pathogenesis of IND-induced small intestinal lesions and suggest a potential application of cilostazol for prevention of NSAID-induced small intestinal lesions.
Collapse
Affiliation(s)
- Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cheng CY, Ho TY, Lee EJ, Su SY, Tang NY, Hsieh CL. Ferulic Acid Reduces Cerebral Infarct Through Its Antioxidative and Anti-Inflammatory Effects Following Transient Focal Cerebral Ischemia in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 36:1105-19. [PMID: 19051339 DOI: 10.1142/s0192415x08006570] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Both Angelica sinensis (Oliv.) Diels (AS) and Ligusticum chuanxiong Hort. (LC) have been used to treat stroke in traditional Chinese medicine for centuries. Ferulic acid (FA), a component in both AS and LC, plays a role in neuroprotection. The purpose of this study was to investigate the effects of FA on cerebral infarct and the involvement of neuroprotective pathway. Rats underwent 2 hours and 24 hours of reperfusion after 90 min middle cerebral artery occlusion (MCAo). The cerebral infarct and neurological deficits were measured after 24 hours of reperfusion. Furthermore, the expression of superoxide radicals, intercellular adhesion molecule-1 (ICAM-1), myeloperoxidase (MPO), nuclear factor-κB (NF-κB) immunoreactive cells were assessed after 2 hours and 24 hours of reperfusion. Administration of 80 and 100 mg/kg of FA at the beginning of MCAo significantly reduced cerebral infarct and neurological deficit-score, similar results were obtained by 100 mg/kg of FA administered 30 min after MCAo. FA treatment (100 mg/kg i.v.) effectively suppressed superoxide radicals in the parenchyma lesion, and ICAM-1 immunoreactive vessels in the ischemic striatum after 2 hours of reperfusion. FA (100 mg/kg i.v.) reduced the expression of ICAM-1 and NF-κB in the ischemic cortex and striatum, also down-regulated MPO immunoreactive cells in the ischemic cortex after 24 hours of reperfusion. These results showed that the effect of FA on reducing cerebral infarct area and neurological deficit-score were at least partially attributed to the inhibition of superoxide radicals, ICAM-1 and NF-κB expression in transient MCAo rats.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - E.-Jian Lee
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery and Institute of Biomedical Engineering, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | - Shan-Yu Su
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Nou-Ying Tang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Liang Hsieh
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
37
|
Brait VH, Arumugam TV, Drummond GR, Sobey CG. Importance of T lymphocytes in brain injury, immunodeficiency, and recovery after cerebral ischemia. J Cereb Blood Flow Metab 2012; 32:598-611. [PMID: 22293986 PMCID: PMC3318155 DOI: 10.1038/jcbfm.2012.6] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following an ischemic stroke, T lymphocytes become activated, infiltrate the brain, and appear to release cytokines and reactive oxygen species to contribute to early inflammation and brain injury. However, some subsets of T lymphocytes may be beneficial even in the early stages after a stroke, and recent evidence suggests that T lymphocytes can also contribute to the repair and regeneration of the brain at later stages. In the hours to days after stroke, T-lymphocyte numbers are then reduced in the blood and in secondary lymphoid organs as part of a 'stroke-induced immunodeficiency syndrome,' which is mediated by hyperactivity of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis, resulting in increased risk of infectious complications. Whether or not poststroke T-lymphocyte activation occurs via an antigen-independent process, as opposed to a classical antigen-dependent process, is still controversial. Although considerable recent progress has been made, a better understanding of the roles of the different T-lymphocyte subpopulations and their temporal profile of damage versus repair will help to clarify whether T-lymphocyte targeting may be a viable poststroke therapy for clinical use.
Collapse
Affiliation(s)
- Vanessa H Brait
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
38
|
Lukasik M, Dworacki G, Kufel-Grabowska J, Watala C, Kozubski W. Upregulation of CD40 ligand and enhanced monocyte-platelet aggregate formation are associated with worse clinical outcome after ischaemic stroke. Thromb Haemost 2012; 107:346-55. [PMID: 22234746 DOI: 10.1160/th11-05-0345] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 11/01/2011] [Indexed: 11/05/2022]
Abstract
The white blood cell count and mean platelet volume determined shortly after the symptom onset are known as independent predictors for clinical outcome after stroke. In the present study we sought to evaluate the prognostic value of platelet-derived inflammatory biomarkers measured prospectively after an ischaemic event. Using five-colour flow cytometry, the platelet surface expression of CD40L, CD62P and subpopulations of leukocyte-platelet aggregates were assessed in 93 stroke patients on the first (V(0)), 10th (V(1)) and 90th (V(2)) day after stroke, and once in 65 disease controls. The clinical outcome was evaluated using the Scandinavian Stroke Scale (SSS) and modified Rankin Scale (mRS) at the same time points as blood sampling and 24 months after the event. Patients with either CD40L surface expression or the percentage of monocyte-platelet aggregates (M-plt) in the third tertile (T3) at V0 had a significantly lower score on the SSS at V(1). Patients with the percentage M-plt at V(0) higher than the median value of M-plt in controls were at increased risk of SSS < 40 at V(1) (odds ratio: 2.6; 95% confidence interval [CI]: 1.4 - 8.7; p=0.006). Patients with the percentage of M-plt in T3 at V(0) showed progressive decline in survival (hazard ratio [HR]: 1.6; 95% CI: 1.1-1.9; p=0.02) and a significantly higher number of recurrent vascular events (HR: 2.64; 95% CI: 1.3-3.2; p=0.02) when compared to the first tertile. In conclusion, increased levels of M-plt could be a predictive marker for both early outcome and long-term prognosis while increased CD40L was correlated with worse clinical outcome.
Collapse
Affiliation(s)
- Maria Lukasik
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | |
Collapse
|
39
|
Pentón-Rol G, Marín-Prida J, Pardo-Andreu G, Martínez-Sánchez G, Acosta-Medina EF, Valdivia-Acosta A, Lagumersindez-Denis N, Rodríguez-Jiménez E, Llópiz-Arzuaga A, López-Saura PA, Guillén-Nieto G, Pentón-Arias E. C-Phycocyanin is neuroprotective against global cerebral ischemia/reperfusion injury in gerbils. Brain Res Bull 2011; 86:42-52. [PMID: 21669260 DOI: 10.1016/j.brainresbull.2011.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/30/2011] [Indexed: 12/15/2022]
Abstract
Although the huge economic and social impact and the predicted incidence increase, neuroprotection for ischemic stroke remains as a therapeutically empty niche. In the present study, we investigated the rationale of the C-Phycocyanin (C-PC) treatment on global cerebral ischemia/reperfusion (I/R) injury in gerbils. We demonstrated that C-PC given either prophylactically or therapeutically was able to significantly reduce the infarct volume as assessed by triphenyltetrazolium chloride (TTC) staining and the neurological deficit score 24h post-stroke. In addition, C-PC exhibited a protective effect against hippocampus neuronal cell death, and significantly improved the functional outcome (locomotor behavior) and gerbil survival after 7 days of reperfusion. Malondialdehyde (MDA), peroxidation potential (PP) and ferric reducing ability of plasma (FRAP) were assayed in serum and brain homogenates to evaluate the redox status 24h post-stroke. The treatment with C-PC prevented the lipid peroxidation and the increase of FRAP in both tissue compartments. These results suggest that the protective effects of C-PC are most likely due to its antioxidant activity, although its anti-inflammatory and immuno-modulatory properties reported elsewhere could also contribute to neuroprotection. To our knowledge, this is the first report of the neuroprotective effect of C-PC in an experimental model of global cerebral I/R damage, and strongly indicates that C-PC may represent a potential preventive and acute disease modifying pharmacological agent for stroke therapy.
Collapse
|
40
|
Yilmaz G, Vital S, Yilmaz CE, Stokes KY, Alexander JS, Granger DN. Selectin-mediated recruitment of bone marrow stromal cells in the postischemic cerebral microvasculature. Stroke 2011; 42:806-11. [PMID: 21257828 DOI: 10.1161/strokeaha.110.597088] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE The therapeutic potential of bone marrow stromal cells (BMSCs) has been demonstrated in different models of stroke. Although it is well established that BMSCs selectively migrate to the site of brain injury, the mechanisms underlying this process are poorly understood. This study addresses the hypothesis that selectins mediate the recruitment of BMSCs into the postischemic cerebral microvasculature. METHODS Focal ischemic stroke was induced by middle cerebral artery occlusion and reperfusion. Cell recruitment was monitored using either fluorescent- or radiolabeled BMSCs detected by intravital microscopy or tissue radioactivity. Mice were treated with either a blocking antibody against P- or E-selectin or with the nonselective selectin antagonist, fucoidin. The role of CD44 in cell recruitment was evaluated using BMSCs from CD44 knockout mice. RESULTS Middle cerebral artery occlusion and reperfusion was associated with a significantly increased adhesion of BMSCs in cerebral venules compared with sham mice. Immunoneutralization of either E- or P-selectin blocked the middle cerebral artery occlusion and reperfusion-induced recruitment of adherent BMSCs. An attenuated recruitment response in the postischemic hemisphere was also noted after fucoidin treatment or administration of CD44-deficient BMSCs. CONCLUSIONS Cerebral vascular endothelium assume a proadhesive phenotype after ischemic stroke that favors the recruitment of BMSCs, which use both P- and E-selectin to home into the infarct site. CD44 may serve as the critical ligand for selectin-mediated BMSC recruitment.
Collapse
Affiliation(s)
- Gokhan Yilmaz
- Department of Surgery, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | | | | | | | |
Collapse
|
41
|
WONG CONNIEH, ABEYNAIKE LATASHAD, CRACK PETERJ, HICKEY MICHAELJ. Divergent Roles of Glutathione Peroxidase-1 (Gpx1) in Regulation of Leukocyte-Endothelial Cell Interactions in the Inflamed Cerebral Microvasculature. Microcirculation 2010; 18:12-23. [DOI: 10.1111/j.1549-8719.2010.00063.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Wang Q, Kalogeris TJ, Wang M, Jones AW, Korthuis RJ. Antecedent ethanol attenuates cerebral ischemia/reperfusion-induced leukocyte-endothelial adhesive interactions and delayed neuronal death: role of large conductance, Ca2+-activated K+ channels. Microcirculation 2010; 17:427-38. [PMID: 20690981 DOI: 10.1111/j.1549-8719.2010.00041.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
EtOH-PC reduces postischemic neuronal injury in response to cerebral (I/R). We examined the mechanism underlying this protective effect by determining (i) whether it was associated with a decrease in I/R-induced leukocyte-endothelial adhesive interactions in postcapillary venules, and (ii) whether the protective effects were mediated by activation of large conductance, calcium-activated potassium (BK(Ca)) channels. Mice were administered ethanol by gavage or treated with the BK(Ca) channel opener, NS1619, 24 hours prior to I/R with or without prior treatment with the BK(Ca) channel blocker, PX. Both CCA were occluded for 20 minutes followed by two and three hours of reperfusion, and rolling (LR) and adherent (LA) leukocytes were quantified in pial venules using intravital microscopy. The extent of DND, apoptosis and glial activation in hippocampus were assessed four days after I/R. Compared with sham, I/R elicited increases in LR and LA in pial venules and DND and apoptosis as well as glial activation in the hippocampus. These effects were attenuated by EtOH-PC or antecedent NS1619 administration, and this protection was reversed by prior treatment with PX. Our results support a role for BK(Ca) channel activation in the neuroprotective effects of EtOH-PC in cerebral I/R.
Collapse
Affiliation(s)
- Qun Wang
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | |
Collapse
|
43
|
Vachharajani V, Wang SW, Mishra N, El Gazzar M, Yoza B, McCall C. Curcumin modulates leukocyte and platelet adhesion in murine sepsis. Microcirculation 2010; 17:407-16. [PMID: 20690979 DOI: 10.1111/j.1549-8719.2010.00039.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Circulating cell-endothelial cell interaction in sepsis is a rate-determining factor in organ dysfunction, and interventions targeting this process have a potential therapeutic value. In this project, we examined whether curcumin, an active ingredient of turmeric and an anti-inflammatory agent, could disrupt interactions between circulating blood cells and endothelium and improve survival in a murine model of sepsis. METHODS Mice were subjected to cecal ligation and puncture (CLP) to induce sepsis vs. sham surgery. We studied leukocyte and platelet adhesion in cerebral microcirculation using intravital fluorescent video microscopy technique, blood-brain barrier (BBB) dysfunction using Evans Blue (EB) leakage method, P-selectin expression using dual radiolabeling technique, and survival in mice subjected to Sham, CLP, and CLP with curcumin pre-treatment (CLP + curcumin). RESULTS Curcumin significantly attenuated leukocyte and platelet adhesion in cerebral microcirculation, EB leakage in the brain tissue, and improved survival in mice with CLP. P-selectin expression in mice with CLP + curcumin was significantly attenuated compared with CLP in various microcirculatory beds, including brain. Reduction in platelet adhesion was predominantly via modulation of endothelium by curcumin. CONCLUSION Curcumin pre-treatment modulates leukocyte and platelet adhesion and BBB dysfunction in mice with CLP via P-selectin expression and improves survival in mice with CLP.
Collapse
Affiliation(s)
- Vidula Vachharajani
- Department of Anesthesiology/Section for Critical Care, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Higashiyama M, Hokari R, Kurihara C, Ueda T, Nakamura M, Komoto S, Okada Y, Watanabe C, Kawaguchi A, Nagao S, Miura S. Interferon-α increases monocyte migration via platelet-monocyte interaction in murine intestinal microvessels. Clin Exp Immunol 2010; 162:156-62. [PMID: 20659125 DOI: 10.1111/j.1365-2249.2010.04222.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to investigate the effect of interferon (IFN)-α on recruitment of platelets and monocytes within the murine small intestinal venular endothelium. Monocytes were isolated from bone marrow of C57B6 mice. Platelets were collected from murine blood. Rolling and adhesion to submucosal microvessels in the small intestine were examined under an intravital fluorescence microscope after injection of fluorescein-labelled monocytes or platelets. In some mice, IFN-α (5×10(5) U/kg) was administered intraperitoneally. After treatment with an antibody against P-selectin, changes in monocyte and platelet migration were also investigated. Changes in monocyte migration under the condition of thrombocytopenia were also investigated. Platelets and monocytes interacted with murine intestinal microvessels, although only few platelets and monocytes showed migration behaviour. Intraperitoneal injection of IFN-α enhanced the migration of both platelets and monocytes in the intestinal microvessels. Pretreatment with anti-P-selectin attenuated the increase in migration of platelets and monocytes induced by administration of IFN-α. Thrombocytopenia decreased the rolling ratio of monocytes, suggesting that the effect of IFN-α on migration was P-selectin-dependent, derived from both the endothelium of microvessels and platelets. The results of this study suggest that IFN-α acts as a potent proinflammatory agent via its stimulatory effect on the endothelium-platelet-monocyte interaction in intestinal microvessels by a P-selectin-dependent mechanism.
Collapse
Affiliation(s)
- M Higashiyama
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Denes A, Thornton P, Rothwell NJ, Allan SM. Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun 2010; 24:708-23. [PMID: 19770034 DOI: 10.1016/j.bbi.2009.09.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a classical host defence response to infection and injury that has many beneficial effects. However, inappropriate (in time, place and magnitude) inflammation is increasingly implicated in diverse disease states, now including cancer, diabetes, obesity, atherosclerosis, heart disease and, most relevant here, CNS disease. A growing literature shows strong correlations between inflammatory status and the risk of cerebral ischaemia (CI, most commonly stroke), as well as with outcome from an ischaemic event. Intervention studies to demonstrate a causal link between inflammation and CI (or its consequences) are limited but are beginning to emerge, while experimental studies of CI have provided direct evidence that key inflammatory mediators (cytokines, chemokines and inflammatory cells) contribute directly to ischaemic brain injury. However, it remains to be determined what the relative importance of systemic (largely peripheral) versus CNS inflammation is in CI. Animal models in which CI is driven by a CNS intervention may not accurately reflect the clinical condition; stroke being typically induced by atherosclerosis or cardiac dysfunction, and hence current experimental paradigms may underestimate the contribution of peripheral inflammation. Experimental studies have already identified a number of potential anti-inflammatory therapeutic interventions that may limit ischaemic brain damage, some of which have been tested in early clinical trials with potentially promising results. However, a greater understanding of the contribution of inflammation to CI is still required, and this review highlights some of the key mechanism that may offer future therapeutic targets.
Collapse
Affiliation(s)
- A Denes
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
46
|
Jin AY, Tuor UI, Rushforth D, Filfil R, Kaur J, Ni F, Tomanek B, Barber PA. Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle. CONTRAST MEDIA & MOLECULAR IMAGING 2010; 4:305-11. [PMID: 19941323 DOI: 10.1002/cmmi.292] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have developed a magnetic resonance molecular imaging method using a novel iron-oxide contrast agent targeted towards P-selectin - MNP-PBP (magnetic nanoparticle-P-selectin binding peptide) - to image endothelial activation following cerebral ischemia/reperfusion. MNP-PBP consists of approximately 1000 PBP ligands (primary sequence: GSIQPRPQIHNDGDFEEIPEEYLQ GGSSLVSVLDLEPLDAAWL) conjugated to a 50 nm diameter aminated dextran iron oxide particle. In vitro P- and E-selectin binding was assessed by competition ELISA. Transient focal cerebral ischemia was induced in male C57/BL 6 mice followed by contrast injection (MNP-PBP; MNP-NH2; Feridex; MNP-PBP-FITC) at 24 h after reperfusion and T(2) magnetic resonance imaging at 9.4 T was performed. Infarction and microvasculature accumulation of contrast agent was assessed in coronal brain sections. MNP-PBP attenuated antibody binding to P-selectin by 34.8 +/- 1.7%. P-selectin was preferentially increased in the infarct hemisphere and MNP-PBP-FITC accumulation in the infarct hemisphere microvasculature was observed. Compared with the nontargeted iron oxide agents MNP-NH2 and Feridex, MNP-PBP showed a significantly greater T(2) effect within the infarction. MR imaging of P-selectin expression with a targeted iron oxide nanoparticle contrast agent may reveal early endothelial activation in stroke and other neuroinflammatory states.
Collapse
Affiliation(s)
- A Y Jin
- Department of Clinical Neurosciences, the Experimental Imaging Centre, and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jin AY, Tuor UI, Rushforth D, Kaur J, Muller RN, Petterson JL, Boutry S, Barber PA. Reduced blood brain barrier breakdown in P-selectin deficient mice following transient ischemic stroke: a future therapeutic target for treatment of stroke. BMC Neurosci 2010; 11:12. [PMID: 20122276 PMCID: PMC2829030 DOI: 10.1186/1471-2202-11-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 02/02/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The link between early blood- brain barrier (BBB) breakdown and endothelial cell activation in acute stroke remain poorly defined. We hypothesized that P-selectin, a mediator of the early phase of leukocyte recruitment in acute ischemia is also a major contributor to early BBB dysfunction following stroke. This was investigated by examining the relationship between BBB alterations following transient ischemic stroke and expression of cellular adhesion molecule P-selectin using a combination of magnetic resonance molecular imaging (MRMI), intravital microscopy and immunohistochemistry. MRMI was performed using the contrast, gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) conjugated to Sialyl Lewis X (Slex) where the latter is known to bind to activated endothelium via E- or P selectins. Middle cerebral artery occlusion was induced in male C57/BL 6 wild-type (WT) mice and P-selectin-knockout (KO) mice. At 24 hours following middle cerebral artery occlusion, T1 maps were acquired prior to and following contrast injection. In addition to measuring P- and E-selectin expression in brain homogenates, alterations in BBB function were determined immunohistochemically by assessing the extravasation of immunoglobulin G (IgG) or staining for polymorphonuclear (PMN) leukocytes. In vivo assessment of BBB dysfunction was also investigated optically using intravital microscopy of the pial circulation following the injection of Fluorescein Isothiocyanate (FITC)-dextran (MW 2000 kDa). RESULTS MRI confirmed similar infarct sizes and T1 values at 24 hours following stroke for both WT and KO animals. However, the blood to brain transfer constant for Gd DTPA (Kgd) demonstrated greater tissue extravasation of Gd DTPA in WT animals than KO mice (P < 0.03). In the P selectin KO mice, Delta T1 stroke -Delta T1 contralateral control cortex, decreased significantly in the Gd-DTPA(sLeX) group compared to Gd-DTPA, indicative of sLeX mediated accumulation of the targeted contrast agent. Regarding BBB function, in the P-selectin KO mice compared to WT control mice, there was an attenuation in the extravasation of IgG (P < 0.001), a trend for decreased FITC extravasation and less infiltration of PMN leukocytes (P < 0.001) thereby supporting the observed increase in Kgd permeability in stroke brain of WT compared to KO mice. CONCLUSION P-selectin expression contributes to enhanced BBB dysfunction at 24 hours after transient focal cerebral ischemia.
Collapse
Affiliation(s)
- Albert Y Jin
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Vachharajani V, Vital S, Russell J. Modulation of circulating cell–endothelial cell interaction by erythropoietin in lean and obese mice with cecal ligation and puncture. PATHOPHYSIOLOGY 2010; 17:9-18. [DOI: 10.1016/j.pathophys.2009.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/17/2009] [Accepted: 04/22/2009] [Indexed: 12/22/2022] Open
|
49
|
Vachharajani V, Russell JM, Scott KL, Conrad S, Stokes KY, Tallam L, Hall J, Granger DN. Obesity Exacerbates Sepsis-Induced Inflammation and Microvascular Dysfunction in Mouse Brain. Microcirculation 2010; 12:183-94. [PMID: 15828130 DOI: 10.1080/10739680590904982] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Obese patients with sepsis have higher morbidity and mortality than lean counterparts, but the mechanisms involved are unknown. The authors examined the inflammatory and thrombogenic responses of the cerebral microvasculature to sepsis induced by cecal ligation and perforation in obese and lean wild-type mice. METHODS Leukocyte and platelet adhesion in cerebral microvasculature and behavioral responses were measured in wild-type and obese mice 4 h postperforation. P-selectin expression in different vascular beds was assessed 6 h postperforation. The effects of immunoblockade of P-selectin, ICAM-1, and CD18 on leukocyte and platelet recruitment were evaluated in obese septic animals. RESULTS Cerebral venules of obese and wild-type mice assumed a proinflammatory and prothrombogenic phenotype 4 h post-perforation, with greatly exaggerated responses in obese mice compared to the lean counterparts. These enhanced responses were attenuated by blocking P-selectin, CD18, or ICAM-1. Obese mice also exhibited a more profound behavioral deficit after sepsis, which appears to be unrelated to the recruitment of leukocytes and platelets. Cecal ligation and perforation-induced P-selectin expression was greater in obese mice compared with lean counterparts. CONCLUSIONS These findings suggest that the increased morbidity to sepsis in obesity may result from exaggerated microvascular inflammatory and thrombogenic responses that include the activation of endothelial cells with subsequent expression of adhesion molecules, such as P-selectin.
Collapse
Affiliation(s)
- Vidula Vachharajani
- Department of Critical Care Medicine, Louisiana State University Health Sciences Center, Shreveport 71130-3932, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|