1
|
Xu W, Xu X, Zhang M, Sun C. Association between HDL cholesterol with diabetic retinopathy in diabetic patients: a cross-sectional retrospective study. BMC Endocr Disord 2024; 24:65. [PMID: 38730329 PMCID: PMC11084017 DOI: 10.1186/s12902-024-01599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Diabetic patients are often comorbid with dyslipidemia, however, the relationship between high-density lipoprotein cholesterol(HDL-C) and diabetic retinopathy (DR) in the adult diabetic population remains to be fully elucidated.The aim of this study is to evaluate the associations between HDL-C and DR in the United States adults with diabetes. METHODS A total of 1708 participants from the National Health and Nutrition Examination Survey (NHANES) 2005-2008 were enrolled in the present study. Fundus images of all study subjects were captured and evaluated using a digital camera and an ophthalmic digital imaging system, and the diagnosis of DR was made by the severity scale of the Early Treatment Diabetic Retinopathy Study (ETDRS).Roche Diagnostics were used to measure serum HDL-C concentration. The relationship of DR with HDL-C was investigated using multivariable logistic regression. The potential non-line correlation was explored with smooth curve fitting approach. RESULTS The fully-adjusted model showed that HDL-C positively correlated with DR(OR:1.69, 95%CI: 1.25-2.31).However, an inverted U-shaped association between them was observed by applying the smooth curve fitted method. The inflection point of HDL-C(1.99mmol/l) was calculated by utilizing the two-piecewise logistic regression model. In the subgroup analysis, the inverted U-shaped nonlinear correlation between HDL-C and DR was also found in female, Non-Hispanic White, and lower age groups. CONCLUSION Our study revealed an inverted U-shaped positive relationship between HDL-C and DR.The findings may provide us with a more comprehensive understanding of the association between HDL-C and DR.
Collapse
Affiliation(s)
- Wuping Xu
- Department of Ophthalmology, The First People's Hospital of Jiangyin District, Wuxi, Jiangsu, 214400, People's Republic of China.
| | - Xuedong Xu
- Department of Ophthalmology, The First People's Hospital of Jiangyin District, Wuxi, Jiangsu, 214400, People's Republic of China
| | - Min Zhang
- Department of Ophthalmology, The First People's Hospital of Jiangyin District, Wuxi, Jiangsu, 214400, People's Republic of China
| | - Chiping Sun
- Department of Ophthalmology, The First People's Hospital of Jiangyin District, Wuxi, Jiangsu, 214400, People's Republic of China
| |
Collapse
|
2
|
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL Composition, Heart Failure, and Its Comorbidities. Front Cardiovasc Med 2022; 9:846990. [PMID: 35350538 PMCID: PMC8958020 DOI: 10.3389/fcvm.2022.846990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although research on high-density lipoprotein (HDL) has historically focused on atherosclerotic coronary disease, there exists untapped potential of HDL biology for the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium, in part by modulating signal transduction pathways and sphingosine-1-phosphate biology. Furthermore, because heart failure is a complex syndrome characterized by multiple comorbidities, there are complex interactions between heart failure, its comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss the effects of heart failure and associated comorbidities on HDL, explore potential cardioprotective properties of HDL, and review novel HDL therapeutic targets in heart failure.
Collapse
|
3
|
HDL and Endothelial Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:27-47. [DOI: 10.1007/978-981-19-1592-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
High-Density Lipoprotein-Targeted Therapies for Heart Failure. Biomedicines 2020; 8:biomedicines8120620. [PMID: 33339429 PMCID: PMC7767106 DOI: 10.3390/biomedicines8120620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
The main and common constituents of high-density lipoproteins (HDLs) are apolipoprotein A-I, cholesterol, and phospholipids. Biochemical heterogeneity of HDL particles is based on the variable presence of one or more representatives of at least 180 proteins, 200 lipid species, and 20 micro RNAs. HDLs are circulating multimolecular platforms that perform divergent functions whereby the potential of HDL-targeted interventions for treatment of heart failure can be postulated based on its pleiotropic effects. Several murine studies have shown that HDLs exert effects on the myocardium, which are completely independent of any impact on coronary arteries. Overall, HDL-targeted therapies exert a direct positive lusitropic effect on the myocardium, inhibit the development of cardiac hypertrophy, suppress interstitial and perivascular myocardial fibrosis, increase capillary density in the myocardium, and prevent the occurrence of heart failure. In four distinct murine models, HDL-targeted interventions were shown to be a successful treatment for both pre-existing heart failure with reduced ejection fraction (HFrEF) and pre-existing heart failure with preserved ejection fraction (HFrEF). Until now, the effect of HDL-targeted interventions has not been evaluated in randomized clinical trials in heart failure patients. As HFpEF represents an important unmet therapeutic need, this is likely the preferred therapeutic domain for clinical translation.
Collapse
|
5
|
Effective Treatment of Diabetic Cardiomyopathy and Heart Failure with Reconstituted HDL (Milano) in Mice. Int J Mol Sci 2019; 20:ijms20061273. [PMID: 30871282 PMCID: PMC6470758 DOI: 10.3390/ijms20061273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
The risk of heart failure (HF) is prominently increased in patients with type 2 diabetes mellitus. The objectives of this study were to establish a murine model of diabetic cardiomyopathy induced by feeding a high-sugar/high-fat (HSHF) diet and to evaluate the effect of reconstituted HDLMilano administration on established HF in this model. The HSHF diet was initiated at the age of 12 weeks and continued for 16 weeks. To investigate the effect of reconstituted HDLMilano on HF, eight intraperitoneal administrations of MDCO-216 (100 mg/kg protein concentration) or of an identical volume of control buffer were executed with a 48-h interval starting at the age of 28 weeks. The HSHF diet-induced obesity, hyperinsulinemia, and type 2 diabetes mellitus. Diabetic cardiomyopathy was present in HSHF diet mice as evidenced by cardiac hypertrophy, increased interstitial and perivascular fibrosis, and decreased myocardial capillary density. Pressure-volume loop analysis indicated the presence of both systolic and diastolic dysfunction and of decreased cardiac output in HSHF diet mice. Treatment with MDCO-216 reversed pathological remodelling and cardiac dysfunction and normalized wet lung weight, indicating effective treatment of HF. No effect of control buffer injection was observed. In conclusion, reconstituted HDLMilano reverses HF in type 2 diabetic mice.
Collapse
|
6
|
Allard-Ratick MP, Sandesara PB, Quyyumi AA, Sperling LS. Everything in Moderation: Investigating the U-Shaped Link Between HDL Cholesterol and Adverse Outcomes. US CARDIOLOGY REVIEW 2019. [DOI: 10.15420/usc.2019.3.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Despite historical evidence suggesting an inverse association between HDL cholesterol (HDL-C) and adverse cardiovascular events, pharmacological efforts to increase HDL-C and improve outcomes have not been successful. Recently, a U-shaped association between HDL-C and adverse events has been demonstrated in several population cohorts, further complicating our understanding of the clinical significance of HDL. Potential explanations for this finding include genetic mutations linked to very high HDL-C, impaired HDL function at high HDL-C levels, and residual confounding. However, our understanding of this association remains premature and needs further investigation.
Collapse
Affiliation(s)
- Marc P Allard-Ratick
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA
| | - Pratik B Sandesara
- Division of Cardiology, Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA
| | - Laurence S Sperling
- Division of Cardiology, Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
7
|
Shih CM, Lin FY, Yeh JS, Lin YW, Loh SH, Tsao NW, Nakagami H, Morishita R, Sawamura T, Li CY, Lin CY, Huang CY. Dysfunctional high density lipoprotein failed to rescue the function of oxidized low density lipoprotein-treated endothelial progenitor cells: a novel index for the prediction of HDL functionality. Transl Res 2019; 205:17-32. [PMID: 30720435 DOI: 10.1016/j.trsl.2018.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/09/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Lipid metabolic disorders play critical roles in atherogenesis. Traditionally, it has been suggested that reduced high density lipoprotein (HDL) levels might be an important morbidity indicator for cardiovascular diseases. Therefore, it has been argued that therapeutically raising HDL levels may reduce atherogenesis in patients with dyslipidemia. However, recent clinical trials to elevate serum HDL levels by pharmacologic approaches failed to demonstrate clinical efficacy. Thus, to investigate the functionality of HDL and to explore the possible clinical relevance as well as to define an effective indicator that can represent HDL function may provide another key and reference to disclose the clinical treatment of dyslipidemia. We analyzed the association between the data of dichlorofluorescein assay (assay the functionality of HDL), the effect of HDL on oxidized low density lipoprotein (oxLDL)-stimulated endothelial progenitor cells (EPCs) in vitro, levels of circulating EPCs, and ex vitro EPC colony forming units of each case, we defined the indicator (relative HDL index (RHDL index) = dichlorofluorescein assay result of each subject/dichlorofluorescein assay reading of our young healthy controls) that may represent functionality of HDL. HDL from healthy adults protected oxLDL-treated EPCs by modulating p38 mitogen-activated protein kinase and Rho activation and by promoting nitric oxide production. HDL from subject with RHDL index ≧2 also failed to restore the functionality of oxLDL-treated EPCs via cell-signaling pathways in vitro. The RHDL index significantly correlated with patients' circulating EPC number or EPC colony forming units ex vivo. In conclusions, we explored the RHDL index as a score to predict a patient's EPC functions in vivo and ex vitro.
Collapse
Affiliation(s)
- Chun-Ming Shih
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jong-Shiuan Yeh
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei, Taiwan
| | - Yi-Wen Lin
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hurng Loh
- Department and Graduate Institute of Pharmacology, Defense Medical Center, Taipei, Taiwan
| | - Nai-Wen Tsao
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hironori Nakagami
- Division of Vascular Medicine and Epigenetic, Osaka University, Osaka, Japan
| | | | - Tatsuya Sawamura
- Department of Bioscience, National Cardiovascular Center Research Institute, Osaka, Japan
| | - Chi-Yuan Li
- Department of Anesthesiology and Graduate Institute of Clinical Medical Science, China Medical University and Hospital, Taichung, Taiwan
| | - Cheng-Yen Lin
- Department of Marketing Management, Takming University of Science and Technology, Taipei, Taiwan; Healthcare Information and Management Department, Ming Chuan University, Taoyuan, Taiwan
| | - Chun-Yao Huang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
8
|
Cannizzo CM, Adonopulos AA, Solly EL, Ridiandries A, Vanags LZ, Mulangala J, Yuen SCG, Tsatralis T, Henriquez R, Robertson S, Nicholls SJ, Di Bartolo BA, Ng MKC, Lam YT, Bursill CA, Tan JTM. VEGFR2 is activated by high-density lipoproteins and plays a key role in the proangiogenic action of HDL in ischemia. FASEB J 2018; 32:2911-2922. [PMID: 29401597 DOI: 10.1096/fj.201700617r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-density lipoproteins augment hypoxia-induced angiogenesis by inducing the key angiogenic vascular endothelial growth factor A (VEGFA) and total protein levels of its receptor 2 (VEGFR2). The activation/phosphorylation of VEGFR2 is critical for mediating downstream, angiogenic signaling events. This study aimed to determine whether reconstituted high-density lipoprotein (rHDL) activates VEGFR2 phosphorylation and the downstream signaling events and the importance of VEGFR2 in the proangiogenic effects of rHDL in hypoxia. In vitro, rHDL increased VEGFR2 activation and enhanced phosphorylation of downstream, angiogenic signaling proteins ERK1/2 and p38 MAPK in hypoxia. Incubation with a VEGFR2-neutralizing antibody attenuated rHDL-induced phosphorylation of VEGFR2, ERK1/2, p38 MAPK, and tubule formation. In a murine model of ischemia-driven neovascularization, rHDL infusions enhanced blood perfusion and augmented capillary and arteriolar density. Infusion of a VEGFR2-neutralizing antibody ablated those proangiogenic effects of rHDL. Circulating Sca1+/CXCR4+ angiogenic progenitor cell levels, important for neovascularization in response to ischemia, were higher in rHDL-infused mice 3 d after ischemic induction, but that did not occur in mice that also received the VEGFR2-neutralizing antibody. In summary, VEGFR2 has a key role in the proangiogenic effects of rHDL in hypoxia/ischemia. These findings have therapeutic implications for angiogenic diseases associated with an impaired response to tissue ischemia.-Cannizzo, C. M., Adonopulos, A. A., Solly, E. L., Ridiandries, A., Vanags, L. Z., Mulangala, J., Yuen, S. C. G., Tsatralis, T., Henriquez, R., Robertson, S., Nicholls, S. J., Di Bartolo, B. A., Ng, M. K. C., Lam, Y. T., Bursill, C. A., Tan, J. T. M. VEGFR2 is activated by high-density lipoproteins and plays a key role in the proangiogenic action of HDL in ischemia.
Collapse
Affiliation(s)
- Carla M Cannizzo
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Aaron A Adonopulos
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Emma L Solly
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Anisyah Ridiandries
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Laura Z Vanags
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jocelyne Mulangala
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Sui Ching G Yuen
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Tania Tsatralis
- The Heart Research Institute, Newtown, New South Wales, Australia
| | - Rodney Henriquez
- The Heart Research Institute, Newtown, New South Wales, Australia
| | - Stacy Robertson
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Stephen J Nicholls
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Belinda A Di Bartolo
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Martin K C Ng
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Yuen Ting Lam
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Christina A Bursill
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia.,Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Joanne T M Tan
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia.,Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| |
Collapse
|
9
|
Tschöpe C, Van Linthout S, Kherad B. Heart Failure with Preserved Ejection Fraction and Future Pharmacological Strategies: a Glance in the Crystal Ball. Curr Cardiol Rep 2017; 19:70. [PMID: 28656481 DOI: 10.1007/s11886-017-0874-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The current definition of heart failure is mainly based on an inappropriate measure of cardiac function, i.e., left ventricular ejection fraction (LVEF). The initial sole entity, heart failure with reduced ejection fraction (HFrEF, LVEF <40%), was complemented by the addition of heart failure with preserved ejection fraction (HFpEF, LVEF ≥50%) and most recently, heart failure with mid-range ejection fraction (HFmrEF, LVEF 40-49%). Initially, HFpEF was believed to be a purely left ventricular diastolic dysfunction. Pathophysiological concepts of HFpEF have changed considerably during the last years. In addition to intrinsic cardiac mechanisms, the heart failure pathogenesis is increasingly considered as driven by non-cardiac systemic processes including metabolic disorders, ischemic conditions, and pro-inflammatory/pro-fibrotic or immunological alterations. Presentation and pathophysiology of HFpEF is heterogeneous, and its management remains a challenge since evidence of therapeutic benefits is scarce. Up to now, there are no therapies improving survival in patients with HFpEF. RECENT FINDINGS Several results from clinical and preclinical interventions targeting non-cardiac mechanisms or non-pharmacological interventions including new anti-diabetic or anti-inflammatory drugs, mitochondrial-targeted anti-oxidants, anti-fibrotic strategies, microRNases incl. antagomirs, cell therapeutic options, and high-density lipoprotein-raising strategies are promising and under further investigation. This review addresses mechanisms and available data of current best clinical practice and novel approaches towards HFpEF.
Collapse
Affiliation(s)
- Carsten Tschöpe
- Department of Cardiology, Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany. .,Berliner Zentrum für Regenerative Therapien (BCRT), Campus Virchow Klinikum (CVK), Berlin, Germany. .,Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Berlin, Germany. .,Campus Virchow Clinic, Department of Cardiology, Charité - Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany.
| | - Sophie Van Linthout
- Berliner Zentrum für Regenerative Therapien (BCRT), Campus Virchow Klinikum (CVK), Berlin, Germany.,Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Berlin, Germany.,Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Föhrerstrasse 15, 13353, Berlin, Germany
| | - Behrouz Kherad
- Department of Cardiology, Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany.,Campus Virchow Clinic, Department of Cardiology, Charité - Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany.,Privatpraxis Dr. Kherad, Große Hamburger Strasse 5-11, 10115, Berlin, Germany
| |
Collapse
|
10
|
He D, Zhao M, Wu C, Zhang W, Niu C, Yu B, Jin J, Ji L, Willard B, Mathew AV, Chen YE, Pennathur S, Yin H, He Y, Pan B, Zheng L. Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1. Redox Biol 2017; 15:228-242. [PMID: 29277016 PMCID: PMC5975068 DOI: 10.1016/j.redox.2017.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 01/24/2023] Open
Abstract
Disruption of endothelial monolayer integrity is the primary instigating factor for many cardiovascular diseases. High density lipoprotein (HDL) oxidized by heme enzyme myeloperoxidase (MPO) is dysfunctional in promoting endothelial repair. Apolipoprotein A-1 mimetic 4F with its pleiotropic benefits has been proven effective in many in vivo models. In this study we investigated whether 4F promotes endothelial repair and restores the impaired function of oxidized HDL (Cl/NO2-HDL) in promoting re-endothelialization. We demonstrate that 4F and Cl/NO2-HDL act on scavenger receptor type I (SR-B1) using human aorta endothelial cells (HAEC) and SR-B1 (-/-) mouse aortic endothelial cells. Wound healing, transwell migration, lamellipodia formation and single cell migration assay experiments show that 4F treatment is associated with a recovery of endothelial cell migration and associated with significantly increased endothelial nitric oxide synthase (eNOS) activity, Akt phosphorylation and SR-B1 expression. 4F increases NO generation and diminishes oxidative stress. In vivo, 4F can stimulate cell proliferation and re-endothelialization in the carotid artery after treatment with Cl/NO2-HDL in a carotid artery electric injury model but fails to do so in SR-B1(-/-) mice. These findings demonstrate that 4F promotes endothelial cell migration and has a potential therapeutic benefit against early endothelial injury in cardiovascular diseases. 4F restores the decreased ability of Cl/NO2-HDL in promoting endothelial repair. 4F increases NO generation and diminishes oxidative stress. 4F increases eNOS activity, Akt phosphorylation and SR-B1 expression. 4F can stimulate re-endothelialization in a carotid artery electric injury model.
Collapse
Affiliation(s)
- Dan He
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Congying Wu
- The Institute of Systems Biomedicine, Department of Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Wenjing Zhang
- The Military General Hospital of Beijing, Beijing 100700, China
| | - Chenguang Niu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Baoqi Yu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Jingru Jin
- The Military General Hospital of Beijing, Beijing 100700, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Belinda Willard
- Proteomics Laboratory, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anna V Mathew
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Yuan He
- National Research Institute for Health and Family Planning, Beijing 100081, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China.
| |
Collapse
|
11
|
Zhao D, Yang LY, Wang XH, Yuan SS, Yu CG, Wang ZW, Lang JN, Feng YM. Different relationship between ANGPTL3 and HDL components in female non-diabetic subjects and type-2 diabetic patients. Cardiovasc Diabetol 2016; 15:132. [PMID: 27620179 PMCID: PMC5020513 DOI: 10.1186/s12933-016-0450-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/03/2016] [Indexed: 01/03/2023] Open
Abstract
Background Angiopoietin-like protein 3 (ANGPTL3) is a major lipoprotein regulator and shows positive correlation with high-density lipoprotein-cholesterol (HDL-c) in population studies and ANGPTL3 mutated subjects. However, no study has looked its correlation with HDL components nor with HDL function in patients with type 2 diabetes mellitus (T2DM). Methods We studied 298 non-diabetic subjects and 300 T2DM patients who were randomly recruited in the tertiary referral centre. Plasma levels of ANGPTL3 were quantified by ELISA. Plasma samples were fractionated to obtain HDLs. HDL components including apolipoprotein A-I (apoA-I), triglyceride, serum amyloid A (SAA), phospholipid and Sphingosine-1-phosphate were measured. HDLs were isolated from female controls and T2DM patients by ultracentrifugation to assess cholesterol efflux against HDLs. A Pearson unadjusted correlation analysis and a linear regression analysis adjusting for age, body mass index and lipid lowering drugs were performed in male or female non-diabetic participants or diabetic patients, respectively. Results We demonstrated that plasma level of ANGPTL3 was lower in female T2DM patients than female controls although no difference of ANGPTL3 levels was detected between male controls and T2DM patients. After adjusting for confounding factors, one SD increase of ANGPTL3 (164.6 ng/ml) associated with increase of 2.57 mg/dL cholesterol and 1.14 μg/mL apoA-I but decrease of 47.07 μg/L of SAA in HDL particles of non-diabetic females (p < 0.05 for cholesterol and SAA; p < 0.0001 for apoA-I). By contrast, 1-SD increase of ANGPTL3 (159.9 ng/ml) associated with increase of 1.69 mg/dl cholesterol and 1.25 μg/mL apoA-I but decrease of 11.70 μg/L of SAA in HDL particles of female diabetic patients (p < 0.05 for cholesterol; p < 0.0001 for apoA-I; p = 0.676 for SAA). Moreover, one SD increase of ANGPTL3 associated with increase of 2.11 % cholesterol efflux against HDLs in non-diabetic females (p = 0.071) but decrease of 1.46 % in female T2DM patients (p = 0.13) after adjusting for confounding factors. Conclusions ANGPTL3 is specifically correlated with HDL-c, apoA-I, SAA and HDL function in female non-diabetic participants. The decrease of ANGPTL3 level in female T2DM patients might contribute to its weak association to HDL components and function. ANGPTL3 could be considered as a novel therapeutic target for HDL metabolism for treating diabetes. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0450-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Long-Yan Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Xu-Hong Wang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Sha-Sha Yuan
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Cai-Guo Yu
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Zong-Wei Wang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Jia-Nan Lang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Ying-Mei Feng
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China. .,Stem Cell Institute, University of Leuven, 3000, Louvain, Belgium.
| |
Collapse
|
12
|
Spillmann F, Trimpert C, Peng J, Eckerle LG, Staudt A, Warstat K, Felix SB, Pieske B, Tschöpe C, Van Linthout S. High-density lipoproteins reduce palmitate-induced cardiomyocyte apoptosis in an AMPK-dependent manner. Biochem Biophys Res Commun 2015; 466:272-7. [PMID: 26362182 DOI: 10.1016/j.bbrc.2015.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/05/2015] [Indexed: 12/18/2022]
Abstract
Palmitate has been implicated in the induction of cardiomyocyte apoptosis via reducing the activity of 5' AMP-activated protein kinase (AMPK). We sought to evaluate whether high-density lipoproteins (HDLs), known for their cardioprotective features and their potential to increase AMPK activity, can reduce palmitate-induced cardiomyocyte apoptosis and whether this effect is AMPK-dependent. Therefore, cardiomyocytes were isolated from adult Wistar rat hearts via perfusion on a Langendorff-apparatus and cultured in free fatty acid-free BSA control medium or 0.5 mM palmitate medium in the presence or absence of HDL (5 μg protein/ml) with or without 0.1 μM of the AMPK-inhibitor compound S for the analysis of Annexin V/propidium, genes involved in apoptosis and fatty acid oxidation, and cardiomyocyte contractility. We found that HDLs decreased palmitate-induced cardiomyocyte apoptosis as indicated by a reduction in Annexin V-positive cardiomyocytes and an increase in Bcl-2 versus Bax ratio. Concomitantly, HDLs increased the palmitate-impaired expression of genes involved in fatty acid oxidation. Furthermore, HDLs improved the palmitate-impaired cardiomyocyte contractility. All effects were mediated in an AMPK-dependent manner, concluding that HDLs reduce palmitate-induced cardiomyocyte apoptosis, resulting in improved cardiomyocyte contractility through a mechanism involving AMPK.
Collapse
Affiliation(s)
- Frank Spillmann
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany
| | - Christiane Trimpert
- Department of Internal Medicine I, University Medicine Greifswald, Greifswald, Germany
| | - Jun Peng
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany
| | - Lars G Eckerle
- Department of Internal Medicine I, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Staudt
- Department of Internal Medicine I, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Warstat
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Stephan B Felix
- Department of Internal Medicine I, University Medicine Greifswald, Greifswald, Germany; Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Greifswald, Germany
| | - Burkert Pieske
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany; Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany
| | - Carsten Tschöpe
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany; Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany
| | - Sophie Van Linthout
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany; Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany.
| |
Collapse
|
13
|
Spillmann F, Miteva K, Pieske B, Tschöpe C, Van Linthout S. High-density lipoproteins reduce endothelial-to-mesenchymal transition. Arterioscler Thromb Vasc Biol 2015; 35:1774-7. [PMID: 26088574 DOI: 10.1161/atvbaha.115.305887] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/26/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Endothelial-to-mesenchymal transition is an inflammation-induced process by which endothelial cells can transdifferentiate into fibroblasts. Based on the endothelial-protective and antifibrotic effects of high-density lipoproteins (HDL), we aimed to investigate whether HDL can reduce endothelial-to-mesenchymal transition. APPROACH AND RESULTS Therefore, human aortic endothelial cells were stimulated with the profibrotic factor transforming growth factor (TGF)-β1 in the presence or absence of HDL. Their impact on the transition of endothelial cells to mesenchymal-like cells was analyzed. Phase contrast microscopy demonstrated that HDL abrogated the TGF-β1-induced spindle-shape morphology in human aortic endothelial cells. Furthermore, HDL decreased the TGF-β1-mediated induction of α-smooth muscle actin expression and concomitant loss in endothelial cadherin expression, as shown by immunofluorescence staining and flow cytometry. In addition, HDL decreased the TGF-β1-induced collagen deposition in human aortic endothelial cells involving the scavenger receptor class B, type 1 and downstream phosphatidyl inositol-3-kinase following the findings that the HDL-mediated reduction was abrogated by scavenger receptor class B, type 1 siRNA knockdown and phosphatidyl inositol-3-kinase inhibition, respectively. The HDL-mediated reduction in endothelial-to-mesenchymal transition was associated with an induction of the inhibitory Smad, Smad 7. CONCLUSIONS We provide the first in vitro evidence that the endothelial-protective and antifibrotic effects of HDL include the reduction in endothelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Frank Spillmann
- From the Department of Cardiology (F.S., B.P., C.T.) and Berlin-Brandenburg Center for Regenerative Therapy (BCRT) (K.M., C.T., S.V.L.), Charité-University-Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany; Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany (B.P.); and Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany (B.P., C.T., S.V.L.)
| | - Kapka Miteva
- From the Department of Cardiology (F.S., B.P., C.T.) and Berlin-Brandenburg Center for Regenerative Therapy (BCRT) (K.M., C.T., S.V.L.), Charité-University-Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany; Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany (B.P.); and Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany (B.P., C.T., S.V.L.)
| | - Burkert Pieske
- From the Department of Cardiology (F.S., B.P., C.T.) and Berlin-Brandenburg Center for Regenerative Therapy (BCRT) (K.M., C.T., S.V.L.), Charité-University-Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany; Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany (B.P.); and Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany (B.P., C.T., S.V.L.)
| | - Carsten Tschöpe
- From the Department of Cardiology (F.S., B.P., C.T.) and Berlin-Brandenburg Center for Regenerative Therapy (BCRT) (K.M., C.T., S.V.L.), Charité-University-Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany; Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany (B.P.); and Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany (B.P., C.T., S.V.L.)
| | - Sophie Van Linthout
- From the Department of Cardiology (F.S., B.P., C.T.) and Berlin-Brandenburg Center for Regenerative Therapy (BCRT) (K.M., C.T., S.V.L.), Charité-University-Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany; Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany (B.P.); and Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany (B.P., C.T., S.V.L.).
| |
Collapse
|
14
|
Cui B, Jin J, Ding X, Deng M, Yu S, Song M, Yu Y, Zhao X, Chen J, Huang L. Glycogen synthase kinase 3β inhibition enhanced proliferation, migration and functional re-endothelialization of endothelial progenitor cells in hypercholesterolemia microenvironment. Exp Biol Med (Maywood) 2015; 240:1752-63. [PMID: 26069270 DOI: 10.1177/1535370215589908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/30/2015] [Indexed: 11/15/2022] Open
Abstract
Hypercholesterolemia impairs the quantity and function of endothelial progenitor cell. We hypothesized that glycogen synthase kinase 3β activity is involved in regulating biological function of endothelial progenitor cells in hypercholesterolemia microenvironment. For study, endothelial progenitor cells derived from apolipoprotein E-deficient mice fed with high-fat diet were used. Glycogen synthase kinase 3β activity was interfered with glycogen synthase kinase 3β inhibitor lithium chloride or transduced with replication defective adenovirus vector expressing catalytically inactive glycogen synthase kinase 3β (GSK3β-KM). Functions of endothelial progenitor cells, proliferation, migration, secretion and network formation of endothelial progenitor cells were assessed in vitro. The expression of phospho-glycogen synthase kinase 3β, β-catenin and cyclinD1 in endothelial progenitor cells was detected by Western blot. The in vivo function re-endothelialization and vasodilation were also analyzed by artery injury model transplanted with glycogen synthase kinase 3β-inhibited endothelial progenitor cells. We demonstrated that while the proliferation, migration, network formation as well as VEGF and NO secretion were impaired in apolipoprotein E-deficient endothelial progenitor cells, glycogen synthase kinase 3β inhibition significantly improved all these functions. Apolipoprotein E-deficient endothelial progenitor cells showed decreased phospho-glycogen synthase kinase 3β, β-catenin and cyclinD1 expression, whereas these signals were enhanced by glycogen synthase kinase 3β inhibition and accompanied with β-catenin nuclear translocation. Our in vivo model showed that glycogen synthase kinase 3β inhibition remarkably increased re-endothelial and vasodilation. Taken together, our data suggest that inhibition of glycogen synthase kinase 3β is associated with endothelial progenitor cell biological functions both in vitro and in vivo. It might be an important interference target in hypercholesterolemia microenvironment.
Collapse
Affiliation(s)
- Bin Cui
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Jun Jin
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Xiaohan Ding
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Mengyang Deng
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Shiyong Yu
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - MingBao Song
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Yang Yu
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Xiaohui Zhao
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Jianfei Chen
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Lan Huang
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| |
Collapse
|
15
|
Tan JTM, Ng MKC, Bursill CA. The role of high-density lipoproteins in the regulation of angiogenesis. Cardiovasc Res 2015; 106:184-93. [PMID: 25759067 DOI: 10.1093/cvr/cvv104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/22/2015] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is important for postnatal physiological processes including tissue neovascularization in response to an ischaemic injury. Conversely, uncontrolled inflammatory-driven angiogenesis can accelerate atherosclerotic plaque and tumour growth. Angiogenesis-associated diseases are highly prevalent globally, with cardiovascular-related disorders and cancer being the leading causes of mortality worldwide. A vast amount of research has been conducted on the vasculoprotective effects of high-density lipoproteins (HDLs) and while current HDL-raising therapies to date have not yielded the desired benefits clinically, its role in angiogenesis is yet to be fully elucidated. Epidemiological studies report positive correlations between elevated HDL levels and improved prognosis in both ischaemia- and inflammatory-driven pathologies, in which angiogenesis plays a key role. This review focuses on current evidence from epidemiological and prospective studies, coupled with animal models and mechanistic studies that highlight the ability of HDL to conditionally regulate angiogenesis.
Collapse
Affiliation(s)
- Joanne T M Tan
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, New South Wales 2042, Australia Sydney Medical School, University of Sydney, Sydney, Australia
| | - Martin K C Ng
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, New South Wales 2042, Australia Sydney Medical School, University of Sydney, Sydney, Australia Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Christina A Bursill
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, New South Wales 2042, Australia Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
16
|
Van Linthout S, Frias M, Singh N, De Geest B. Therapeutic potential of HDL in cardioprotection and tissue repair. Handb Exp Pharmacol 2015; 224:527-565. [PMID: 25523001 DOI: 10.1007/978-3-319-09665-0_17] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Epidemiological studies support a strong association between high-density lipoprotein (HDL) cholesterol levels and heart failure incidence. Experimental evidence from different angles supports the view that low HDL is unlikely an innocent bystander in the development of heart failure. HDL exerts direct cardioprotective effects, which are mediated via its interactions with the myocardium and more specifically with cardiomyocytes. HDL may improve cardiac function in several ways. Firstly, HDL may protect the heart against ischaemia/reperfusion injury resulting in a reduction of infarct size and thus in myocardial salvage. Secondly, HDL can improve cardiac function in the absence of ischaemic heart disease as illustrated by beneficial effects conferred by these lipoproteins in diabetic cardiomyopathy. Thirdly, HDL may improve cardiac function by reducing infarct expansion and by attenuating ventricular remodelling post-myocardial infarction. These different mechanisms are substantiated by in vitro, ex vivo, and in vivo intervention studies that applied treatment with native HDL, treatment with reconstituted HDL, or human apo A-I gene transfer. The effect of human apo A-I gene transfer on infarct expansion and ventricular remodelling post-myocardial infarction illustrates the beneficial effects of HDL on tissue repair. The role of HDL in tissue repair is further underpinned by the potent effects of these lipoproteins on endothelial progenitor cell number, function, and incorporation, which may in particular be relevant under conditions of high endothelial cell turnover. Furthermore, topical HDL therapy enhances cutaneous wound healing in different models. In conclusion, the development of HDL-targeted interventions in these strategically chosen therapeutic areas is supported by a strong clinical rationale and significant preclinical data.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Charité-University-Medicine Berlin, Campus Virchow, Berlin-Brandenburg Center for Regenerative Therapy (BCRT), Berlin, Germany
| | | | | | | |
Collapse
|
17
|
Wang P, Du H, Zhou CC, Song J, Liu X, Cao X, Mehta JL, Shi Y, Su DF, Miao CY. Intracellular NAMPT-NAD+-SIRT1 cascade improves post-ischaemic vascular repair by modulating Notch signalling in endothelial progenitors. Cardiovasc Res 2014; 104:477-88. [PMID: 25341895 DOI: 10.1093/cvr/cvu220] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Intracellular nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for nicotinamide adenine dinucleotide (NAD(+)) biosynthesis. This study investigated the role of NAMPT-mediated NAD(+) signalling in post-ischaemic vascular repair. METHODS AND RESULTS Mouse hind-limb ischaemia up-regulated NAMPT expression and NAD(+) level in bone marrow (BM). Pharmacological inhibition of NAMPT by a chemical inhibitor FK866 impaired the mobilization of endothelial progenitor cells (EPCs) from BM upon ischaemic stress. Transgenic mice overexpressing NAMPT (Tg mice), but not H247A-mutant dominant-negative NAMPT (DN-Tg mice), exhibited enhanced capillary density, increased number of proliferating endothelial cells, improved blood flow recovery, and augmented collateral arterioles in the ischaemic limb. In cultured BM-derived EPCs, inhibition of NAMPT suppressed proliferation, migration, and tube formation, whereas overexpression of NAMPT induced opposite effects. The promoting effects of NAMPT on EPCs were abolished by silencing of sirtuin 1 (SIRT1), rather than silencing of SIRT2-7. Overexpression of NAMPT led to a SIRT1-depedent enhancement of Notch-1 intracellular domain deacetylation, which inhibited Delta-like ligand-4 (DLL4)-Notch signalling and thereby up-regulated of VEGFR-2 and VEGFR-3. Injection of recombinant VEGF induced a more pronounced EPC mobilization in Tg, but not in DN-Tg, mice. Furthermore, overexpression of NAMPT down-regulated Fringe family glycosyltransferases in a SIRT1-dependent manner, which rendered Notch more sensitive to the pro-angiogenic ligand Jagged1 rather than the anti-angiogenic ligand DLL4. CONCLUSIONS These results demonstrate that intracellular NAMPT-NAD(+)-SIRT1 cascade improves post-ischaemic neovascularization. The modulation of Notch signalling may contribute to the enhanced post-ischaemic neovascularization.
Collapse
Affiliation(s)
- Pei Wang
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| | - Hui Du
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China Department of Pharmacy, General Hospital of Lanzhou Military Region, Lanzhou, China
| | - Can-Can Zhou
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| | - Jie Song
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| | - Xingguang Liu
- Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Xuetao Cao
- Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Jawahar L Mehta
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yi Shi
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| |
Collapse
|
18
|
Tran-Dinh A, Diallo D, Delbosc S, Varela-Perez LM, Dang QB, Lapergue B, Burillo E, Michel JB, Levoye A, Martin-Ventura JL, Meilhac O. HDL and endothelial protection. Br J Pharmacol 2014; 169:493-511. [PMID: 23488589 DOI: 10.1111/bph.12174] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/07/2013] [Accepted: 02/24/2013] [Indexed: 12/23/2022] Open
Abstract
High-density lipoproteins (HDLs) represent a family of particles characterized by the presence of apolipoprotein A-I (apoA-I) and by their ability to transport cholesterol from peripheral tissues back to the liver. In addition to this function, HDLs display pleiotropic effects including antioxidant, anti-apoptotic, anti-inflammatory, anti-thrombotic or anti-proteolytic properties that account for their protective action on endothelial cells. Vasodilatation via production of nitric oxide is also a hallmark of HDL action on endothelial cells. Endothelial cells express receptors for apoA-I and HDLs that mediate intracellular signalling and potentially participate in the internalization of these particles. In this review, we will detail the different effects of HDLs on the endothelium in normal and pathological conditions with a particular focus on the potential use of HDL therapy to restore endothelial function and integrity.
Collapse
|
19
|
Yin K, Agrawal DK. High-density lipoprotein: a novel target for antirestenosis therapy. Clin Transl Sci 2014; 7:500-11. [PMID: 25043950 DOI: 10.1111/cts.12186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Restenosis is an integral pathological process central to the recurrent vessel narrowing after interventional procedures. Although the mechanisms for restenosis are diverse in different pathological conditions, endothelial dysfunction, inflammation, vascular smooth muscle cell (SMC) proliferation, and myofibroblasts transition have been thought to play crucial role in the development of restenosis. Indeed, there is an inverse relationship between high-density lipoprotein (HDL) levels and risk for coronary heart disease (CHD). However, relatively studies on the direct assessment of HDL effect on restenosis are limited. In addition to involvement in the cholesterol reverse transport, many vascular protective effects of HDL, including protection of endothelium, antiinflammation, antithrombus actions, inhibition of SMC proliferation, and regulation by adventitial effects may contribute to the inhibition of restenosis, though the exact relationships between HDL and restenosis remain to be elucidated. This review summarizes the vascular protective effects of HDL, emphasizing the potential role of HDL in intimal hyperplasia and vascular remodeling, which may provide novel prophylactic and therapeutic strategies for antirestenosis.
Collapse
Affiliation(s)
- Kai Yin
- Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | |
Collapse
|
20
|
Wang X, Zachman AL, Haglund NA, Maltais S, Sung HJ. Combined Usage of Stem Cells in End-Stage Heart Failure Therapies. J Cell Biochem 2014; 115:1217-24. [DOI: 10.1002/jcb.24782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/03/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Xintong Wang
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| | - Angela L. Zachman
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| | | | - Simon Maltais
- Division of Cardiovascular Surgery; Vanderbilt University; Nashville Tennessee
| | - Hak-Joon Sung
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| |
Collapse
|
21
|
The Impact of Lipoproteins on Wound Healing: Topical HDL Therapy Corrects Delayed Wound Healing in Apolipoprotein E Deficient Mice. Pharmaceuticals (Basel) 2014; 7:419-32. [PMID: 24705596 PMCID: PMC4014700 DOI: 10.3390/ph7040419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 12/22/2022] Open
Abstract
Chronic non-healing wounds lead to considerable morbidity and mortality. Pleiotropic effects of high density lipoproteins (HDL) may beneficially affect wound healing. The objectives of this murine study were: (1) to investigate the hypothesis that hypercholesterolemia induces impaired wound healing and (2) to study the effect of topical HDL administration in a model of delayed wound healing. A circular full thickness wound was created on the back of each mouse. A silicone splint was used to counteract wound contraction. Coverage of the wound by granulation tissue and by epithelium was quantified every 2 days. Re-epithelialization from day 0 till day 10 was unexpectedly increased by 21.3% (p < 0.05) in C57BL/6 low density lipoprotein (LDLr) deficient mice with severe hypercholesterolemia (489 ± 14 mg/dL) compared to C57BL/6 mice and this effect was entirely abrogated following cholesterol lowering adenoviral LDLr gene transfer. In contrast, re-epithelialization in hypercholesterolemic (434 ± 16 mg/dL) C57BL/6 apolipoprotein (apo) E−/− mice was 22.6% (p < 0.0001) lower than in C57BL/6 mice. Topical HDL gel administered every 2 days increased re-epithelialization by 25.7% (p < 0.01) in apo E−/− mice. In conclusion, topical HDL application is an innovative therapeutic strategy that corrects impaired wound healing in apo E−/− mice.
Collapse
|
22
|
Singh N, Jacobs F, Rader DJ, Vanhaecke J, Van Cleemput J, De Geest B. Impaired cholesterol efflux capacity and vasculoprotective function of high-density lipoprotein in heart transplant recipients. J Heart Lung Transplant 2014; 33:499-506. [PMID: 24630408 DOI: 10.1016/j.healun.2014.01.859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/19/2013] [Accepted: 01/16/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND High-density lipoprotein (HDL) metabolism is significantly altered in heart transplant recipients. We hypothesized that HDL function may be impaired in these patients. METHODS Fifty-two patients undergoing coronary angiography between 5 and 15 years after heart transplantation were recruited in this cross-sectional study. Cholesterol efflux capacity of apolipoprotein B-depleted plasma was analyzed using a validated assay. The vasculoprotective function of HDL was studied by means of an endothelial progenitor cell migration assay. RESULTS HDL cholesterol levels were similar in heart transplant patients compared with healthy controls. However, normalized cholesterol efflux and vasculoprotective function were reduced by 24.1% (p < 0.001) and 27.0% (p < 0.01), respectively, in heart transplant recipients compared with healthy controls. HDL function was similar in patients with and without cardiac allograft vasculopathy (CAV) and was not related to C-reactive protein (CRP) levels. An interaction effect (p = 0.0584) was observed between etiology of heart failure before transplantation and steroid use as factors of HDL cholesterol levels. Lower HDL cholesterol levels occurred in patients with prior ischemic cardiomyopathy who were not taking steroids. However, HDL function was independent of the etiology of heart failure before transplantation and steroid use. The percentage of patients with a CRP level ≥6 mg/liter was 3.92-fold (p < 0.01) higher in patients with CAV than in patients without CAV. CONCLUSIONS HDL function is impaired in heart transplant recipients, but it is unrelated to CAV status. The proportion of patients with a CRP level ≥6 mg/liter is prominently higher in CAV-positive patients.
Collapse
Affiliation(s)
- Neha Singh
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven, Belgium
| | - Frank Jacobs
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven, Belgium
| | - Daniel J Rader
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Johan Vanhaecke
- Division of Cardiology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven, Belgium
| | - Johan Van Cleemput
- Division of Cardiology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven, Belgium
| | - Bart De Geest
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven, Belgium.
| |
Collapse
|
23
|
Kypreos KE, Zafirovic S, Petropoulou PI, Bjelogrlic P, Resanovic I, Traish A, Isenovic ER. Regulation of endothelial nitric oxide synthase and high-density lipoprotein quality by estradiol in cardiovascular pathology. J Cardiovasc Pharmacol Ther 2014; 19:256-68. [PMID: 24414281 DOI: 10.1177/1074248413513499] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Estrogens have been recognized, in the last 3 decades, as important hormones in direct and indirect modulation of vascular health. In addition to their direct benefit on cardiovascular health, the presence of esterified estrogen in the lipid core of high-density lipoprotein (HDL) particles indirectly contributes to atheroprotection by significantly improving HDL quality and functionality. Estrogens modulate their physiological activity via genomic and nongenomic mechanisms. Genomic mechanisms are thought to be mediated directly by interaction of the hormone receptor complex with the hormone response elements that regulate gene expression. Nongenomic mechanisms are thought to occur via interaction of the estrogen with membrane-bound receptors, which rapidly activate intracellular signaling without binding of the hormone receptor complex to its hormone response elements. Estradiol in particular mediates early and late endothelial nitric oxide synthase (eNOS) activation via interaction with estrogen receptors through both nongenomic and genomic mechanisms. In the vascular system, the primary endogenous source of nitric oxide (NO) generation is eNOS. Nitric oxide primarily influences blood vessel relaxation, the heart rate, and myocyte contractility. The abnormalities in expression and/or functions of eNOS lead to the development of cardiovascular diseases, both in animals and in humans. Although considerable research efforts have been dedicated to understanding the mechanisms of action of estradiol in regulating cardiac eNOS, more research is needed to fully understand the details of such mechanisms. This review focuses on recent findings from animal and human studies on the regulation of eNOS and HDL quality by estradiol in cardiovascular pathology.
Collapse
Affiliation(s)
- Kyriakos E Kypreos
- 1Department of Medicine, University of Patras Medical School, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. For close to four decades, we have known that high density lipoprotein (HDL) levels are inversely correlated with the risk of CVD. HDL is a complex particle that consists of proteins, phospholipids, and cholesterol and has the ability to carry micro-RNAs. HDL is constantly undergoing remodelling throughout its life-span and carries out many functions. This review summarizes many of the different aspects of HDL from its assembly, the receptors it interacts with, along with the functions it performs and how it can be altered in disease. While HDL is a key cholesterol efflux particle, this review highlights the many other important functions of HDL in the innate immune system and details the potential therapeutic uses of HDL outside of CVD.
Collapse
|
25
|
Tan JTM, Prosser HCG, Vanags LZ, Monger SA, Ng MKC, Bursill CA. High-density lipoproteins augment hypoxia-induced angiogenesis via regulation of post-translational modulation of hypoxia-inducible factor 1α. FASEB J 2013; 28:206-17. [PMID: 24022405 DOI: 10.1096/fj.13-233874] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Increasing evidence suggests that high-density lipoproteins (HDLs) promote hypoxia-induced angiogenesis. The hypoxia-inducible factor 1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway is important in hypoxia and is modulated post-translationally by prolyl hydroxylases (PHD1-PHD3) and E3 ubiquitin ligases (Siah1 and Siah2). We aimed to elucidate the mechanisms by which HDLs augment hypoxia-induced angiogenesis. Preincubation (16 h) of human coronary artery endothelial cells with reconstituted high-density lipoprotein (rHDL) containing apolipoprotein A-I (apoA-I) and phosphatidylcholine (20 μM, final apoA-I concentration), before hypoxia, increased Siah1 (58%) and Siah2 (88%) mRNA levels and suppressed PHD2 (32%) and PHD3 (45%) protein levels compared with hypoxia-induced control levels. After Siah1/2 small interfering RNA knockdown, rHDL was unable to suppress PHD2/3 and failed to induce HIF-1α, VEGF, and tubulogenesis in hypoxia. Inhibition of the upstream phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway also abrogated the effects of rHDL. Furthermore, knockdown of the scavenger receptor SR-BI attenuated rHDL-induced elevations in Siah1/2 and tubulogenesis in hypoxia, indicating that SR-BI plays a key role. Finally, the importance of VEGF in mediating the ability of rHDL to drive hypoxia-induced angiogenesis was confirmed using a VEGF-neutralizing antibody. In summary, rHDL augments the HIF-1α/VEGF pathway via SR-BI and modulation of the post-translational regulators of HIF-1α (PI3K/Siahs/PHDs). HDL-induced augmentation of angiogenesis in hypoxia may have implications for therapeutic modulation of ischemic injury.
Collapse
Affiliation(s)
- Joanne T M Tan
- 1Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Campbell S, Genest J. HDL-C: clinical equipoise and vascular endothelial function. Expert Rev Cardiovasc Ther 2013; 11:343-53. [PMID: 23469914 DOI: 10.1586/erc.13.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serum levels of HDL cholesterol represent a strong, and coherent cardiovascular risk marker seen across all populations, with higher levels of HDL cholesterol being associated with decreased incidence of coronary artery disease. The cardiovascular protective effects of HDL particles are attributed, in great part, to the ability of HDL particles to promote cellular cholesterol efflux from lipid-laden macrophages within the atherosclerotic plaque. HDL also has pleiotropic effects that protect the vascular wall, at least in vitro. These effects include potent anti-inflammatory and antioxidant properties and the modulation of vascular endothelial function. The mechanisms by which HDL exert their function on the vascular endothelium is dependent on HDL particle size, protein (proteome) and lipid (lipidome). The cooperative binding of HDL via SR-BI and G-coupled S1PR1-5 receptors mediates phosphorylation of endothelial nitric oxide synthase at residue 1177 through AKT signaling, preventing uncoupling of NADPH oxidation and nitric oxide synthesis and increasing endothelial nitric oxide synthase abundance. Furthermore, HDL can modulate the activation of NF-κB and the expression of cell adhesion molecules, an early step in endothelial dysfunction. In the present review the authors will focus on the controversies surrounding HDL, clinical treatments and vascular endothelial functions of HDL.
Collapse
Affiliation(s)
- Steven Campbell
- McGill University Health Center, McGill University, Royal Victoria Hospital, 687 Pine avenue West, Montreal, QC, H3A 1A1, Canada
| | | |
Collapse
|
27
|
Riwanto M, Landmesser U. High density lipoproteins and endothelial functions: mechanistic insights and alterations in cardiovascular disease. J Lipid Res 2013; 54:3227-43. [PMID: 23873269 DOI: 10.1194/jlr.r037762] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prospective population studies in the primary prevention setting have shown that reduced plasma levels of HDL cholesterol are associated with an increased risk of coronary disease and myocardial infarction. Experimental and translational studies have further revealed several potential anti-atherogenic effects of HDL, including protective effects on endothelial cell functions. HDL has been suggested to protect endothelial cell functions by prevention of oxidation of LDL and its adverse endothelial effects. Moreover, HDL from healthy subjects can directly stimulate endothelial cell production of nitric oxide and anti-inflammatory, anti-apoptotic, and anti-thrombotic effects as well as endothelial repair processes. However, several recent clinical trials using HDL cholesterol-raising agents, such as torcetrapib, dalcetrapib, and niacin, did not demonstrate a significant reduction of cardiovascular events in patients with coronary disease. Of note, growing evidence suggests that the vascular effects of HDL can be highly heterogeneous and vasoprotective properties of HDL are altered in patients with coronary disease. Characterization of underlying mechanisms and understanding of the clinical relevance of this "HDL dysfunction" is currently an active field of cardiovascular research. Notably, in some recent studies no clear association of higher HDL cholesterol levels with a reduced risk of cardiovascular events was observed in patients with already established coronary disease. A greater understanding of mechanisms of action of HDL and its altered vascular effects is therefore critical within the context of HDL-targeted therapies. In this review, we will address different effects of HDL on endothelial cell functions potentially relevant to atherosclerotic vascular disease and explore molecular mechanisms leading to "dysfunctional HDL".
Collapse
Affiliation(s)
- Meliana Riwanto
- Cardiology, University Heart Center, University Hospital Zurich and Cardiovascular Research, Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
28
|
Abstract
Multiple human population studies have established the concentration of high density lipoprotein (HDL) cholesterol as an independent, inverse predictor of the risk of having a cardiovascular event. Furthermore, HDLs have several well-documented functions with the potential to protect against cardiovascular disease. These include an ability to promote the efflux of cholesterol from macrophages in the artery wall, inhibit the oxidative modification of low density lipoproteins (LDLs), inhibit vascular inflammation, inhibit thrombosis, promote endothelial repair, promote angiogenesis, enhance endothelial function, improve diabetic control, and inhibit hematopoietic stem cell proliferation. There are undoubtedly other beneficial functions of HDLs yet to be identified. The HDL fraction in human plasma is heterogeneous, consisting of several subpopulations of particles of varying size, density, and composition. The functions of the different HDL subpopulations remain largely unknown. Given that therapies that increase the concentration of HDL cholesterol have varying effects on the levels of specific HDL subpopulations, it is of great importance to understand how distribution of different HDL subpopulations contribute to the potentially cardioprotective functions of this lipoprotein fraction. This review summarizes current understanding of the relationship of HDL subpopulations to their cardioprotective properties and highlights the gaps in current knowledge regarding this important aspect of HDL biology.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- Lipid Research Group, Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia 2052
| | | |
Collapse
|
29
|
Gordts SC, Muthuramu I, Nefyodova E, Jacobs F, Van Craeyveld E, De Geest B. Beneficial effects of selective HDL-raising gene transfer on survival, cardiac remodelling and cardiac function after myocardial infarction in mice. Gene Ther 2013; 20:1053-61. [PMID: 23759702 PMCID: PMC3821036 DOI: 10.1038/gt.2013.30] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 02/02/2023]
Abstract
Post-myocardial infarction (MI) ejection fraction is decreased in patients with low high-density lipoprotein (HDL) cholesterol levels, independent of the degree of coronary atherosclerosis. The objective of this study is to evaluate whether selective HDL-raising gene transfer exerts cardioprotective effects post MI. Gene transfer in C57BL/6 low-density lipoprotein receptor (LDLr)−/− mice was performed with the E1E3E4-deleted adenoviral vector AdA-I, inducing hepatocyte-specific expression of human apo A-I, or with the control vector Adnull. A ligation of the left anterior descending coronary artery was performed 2 weeks after transfer or saline injection. HDL cholesterol levels were persistently 1.5-times (P<0.0001) higher in AdA-I mice compared with controls. Survival was increased (P<0.01) in AdA-I MI mice compared with control MI mice during the 28-day follow-up period (hazard ratio for mortality 0.42; 95% confidence interval 0.24–0.76). Longitudinal morphometric analysis demonstrated attenuated infarct expansion and inhibition of left ventricular (LV) dilatation in AdA-I MI mice compared with controls. AdA-I transfer exerted immunomodulatory effects and increased neovascularisation in the infarct zone. Increased HDL after AdA-I transfer significantly improved systolic and diastolic cardiac function post MI, and led to a preservation of peripheral blood pressure. In conclusion, selective HDL-raising gene transfer may impede the development of heart failure.
Collapse
Affiliation(s)
- S C Gordts
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Muthuramu I, Jacobs F, Singh N, Gordts SC, De Geest B. Selective homocysteine lowering gene transfer improves infarct healing, attenuates remodelling, and enhances diastolic function after myocardial infarction in mice. PLoS One 2013; 8:e63710. [PMID: 23675503 PMCID: PMC3652839 DOI: 10.1371/journal.pone.0063710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/07/2013] [Indexed: 01/26/2023] Open
Abstract
Background and aims Homocysteine levels predict heart failure incidence in prospective epidemiological studies and correlate with severity of heart failure in cross-sectional surveys. The objective of this study was to evaluate whether a selective homocysteine lowering intervention beneficially affects cardiac remodelling and cardiac function after myocardial infarction (MI) in a murine model of combined hypercholesterolemia and hyperhomocysteinemia. Methodology and principal findings A selective homocysteine lowering gene transfer strategy was evaluated in female C57BL/6 low density lipoprotein receptor (Ldlr)−/−cystathionine-ß-synthase (Cbs)+/− deficient mice fed a hyperhomocysteinemic and high saturated fat/high cholesterol diet using an E1E3E4-deleted hepatocyte-specific adenoviral vector expressing Cbs (AdCBS). MI was induced by permanent ligation of the left anterior descending coronary artery 14 days after saline injection or gene transfer. AdCBS gene transfer resulted in a persistent more than 5-fold (p<0.01) decrease of plasma homocysteine levels and significantly improved endothelial progenitor cell function. Selective homocysteine lowering enhanced infarct healing as indicated by a 21% (p<0.01) reduction of infarct length at day 28 after MI and by an increased number of capillaries and increased collagen content in the infarct zone. Adverse remodelling was attenuated in AdCBS MI mice as evidenced by a 29% (p<0.05) reduction of left ventricular cavity area at day 28, by an increased capillary density in the remote myocardium, and by reduced interstitial collagen. The peak rate of isovolumetric relaxation was increased by 19% (p<0.05) and the time constant of left ventricular relaxation was reduced by 21% (p<0.05) in AdCBS MI mice compared to control MI mice, indicating improved diastolic function. Conclusion/significance Selective homocysteine lowering gene transfer improves infarct healing, attenuates remodelling, and significantly enhances diastolic function post-MI in female C57BL/6 Ldlr−/−Cbs+/− mice. The current study corroborates the view that hyperhomocysteinemia exerts direct effects on the myocardium and may potentiate the development of heart failure.
Collapse
Affiliation(s)
- Ilayaraja Muthuramu
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium
| | - Frank Jacobs
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium
| | - Neha Singh
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium
| | - Stephanie C. Gordts
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium
| | - Bart De Geest
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
31
|
Huang CY, Shih CM, Tsao NW, Lin YW, Huang PH, Wu SC, Lee AW, Kao YT, Chang NC, Nakagami H, Morishita R, Ou KL, Hou WC, Lin CY, Shyu KG, Lin FY. Dipeptidyl peptidase-4 inhibitor improves neovascularization by increasing circulating endothelial progenitor cells. Br J Pharmacol 2013; 167:1506-19. [PMID: 22788747 DOI: 10.1111/j.1476-5381.2012.02102.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Current methods used to treat critical limb ischaemia (CLI) are hampered by a lack of effective strategies, therefore, therapeutic vasculogenesis may open up a new field for the treatment of CLI. In this study we investigated the ability of the DPP-4 inhibitor, sitagliptin, originally used as a hypoglycaemic agent, to induce vasculogenesis in vivo. EXPERIMENTAL APPROACH Sitagliptin were administered daily to C57CL/B6 mice and eGFP transgenic mouse bone marrow-transplanted ICR mice that had undergone hindlimb ischaemic surgery. Laser Doppler imaging and flow cytometry were used to evaluate the degree of neovasculogenesis and circulating levels of endothelial progenitor cells (EPCs) respectively. Cell surface markers of EPCs and endothelial NOS (eNOS) in vessels were studied. KEY RESULTS Sitagliptin elevated plasma glucagon-like peptide-1 (GLP-1) levels in mice subjected to ischaemia, decreased plasma dipeptidyl peptidase-4 (DPP-4) concentration, and augmented ischaemia-induced increases in stromal cell-derived factor-1 (SDF-1) in a dose-dependent manner. Blood flow in the ischaemic limb was significantly improved in mice treated with sitagliptin. Circulating levels of EPCs were also increased after sitagliptin treatment. Sitagliptin also enhanced the expression of CD 34 and eNOS in ischaemic muscle. In addition, sitagliptin promoted EPC mobilization and homing to ischaemic tissue in eGFP transgenic mouse bone marrow-transplanted ICR mice. CONCLUSION AND IMPLICATIONS Circulating EPC levels and neovasculogenesis were augmented by the DPP-4 inhibitor, sitagliptin and this effect was dependent on an eNOS-related pathway in a mouse model of hindlimb ischaemia. The results indicate that oral administration of sitagliptin has therapeutic potential as an inducer of vasculogenesis.
Collapse
Affiliation(s)
- Chun-Yao Huang
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
In addition to its role in reverse cholesterol transport, high-density lipoprotein (HDL) cholesterol has direct action on numerous cell types that influence cardiovascular and metabolic health. Cellular responses to HDL entail its capacity to invoke cholesterol efflux that causes signal initiation via scavenger receptor class B, type I, and plasma membrane receptor activation by HDL cargo molecules. In endothelial cells and their progenitors, HDL attenuates apoptosis and stimulates proliferation and migration. HDL also has diverse anti-inflammatory actions in both endothelial cells and leukocytes. In vascular smooth muscles, HDL tempers proinflammatory, promigratory, and degradative processes, and through actions on endothelium and platelets HDL is antithrombotic. There are additional actions of HDL of potential cardiovascular consequence that are indirect, including the capacities to promote pancreatic β-cell insulin secretion, to protect pancreatic β cells from apoptosis, and to enhance glucose uptake by skeletal muscle myocytes. Furthermore, HDL decreases white adipose tissue mass, increases energy expenditure, and promotes the production of adipose-derived cytokine adiponectin that has its own vascular-protective properties. Many of these numerous actions of HDL have been observed not only in cell culture and animal models but also in human studies, and assessments of these functions are now being applied to patient populations to better-elucidate which actions of HDL may contribute to its cardioprotective potential and how they can be quantified and targeted. Further work on the many mechanisms of HDL action promises to reveal new prophylactic and therapeutic strategies to optimize both cardiovascular and metabolic health.
Collapse
Affiliation(s)
- Chieko Mineo
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
33
|
Abstract
In addition to its role in reverse cholesterol transport, high-density lipoprotein (HDL) cholesterol has direct action on numerous cell types that influence cardiovascular and metabolic health. Cellular responses to HDL entail its capacity to invoke cholesterol efflux that causes signal initiation via scavenger receptor class B, type I, and plasma membrane receptor activation by HDL cargo molecules. In endothelial cells and their progenitors, HDL attenuates apoptosis and stimulates proliferation and migration. HDL also has diverse anti-inflammatory actions in both endothelial cells and leukocytes. In vascular smooth muscles, HDL tempers proinflammatory, promigratory, and degradative processes, and through actions on endothelium and platelets HDL is antithrombotic. There are additional actions of HDL of potential cardiovascular consequence that are indirect, including the capacities to promote pancreatic β-cell insulin secretion, to protect pancreatic β cells from apoptosis, and to enhance glucose uptake by skeletal muscle myocytes. Furthermore, HDL decreases white adipose tissue mass, increases energy expenditure, and promotes the production of adipose-derived cytokine adiponectin that has its own vascular-protective properties. Many of these numerous actions of HDL have been observed not only in cell culture and animal models but also in human studies, and assessments of these functions are now being applied to patient populations to better-elucidate which actions of HDL may contribute to its cardioprotective potential and how they can be quantified and targeted. Further work on the many mechanisms of HDL action promises to reveal new prophylactic and therapeutic strategies to optimize both cardiovascular and metabolic health.
Collapse
Affiliation(s)
- Chieko Mineo
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
34
|
Hematopoietic stem/progenitor cell proliferation and differentiation is differentially regulated by high-density and low-density lipoproteins in mice. PLoS One 2012; 7:e47286. [PMID: 23144813 PMCID: PMC3492382 DOI: 10.1371/journal.pone.0047286] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 09/14/2012] [Indexed: 12/03/2022] Open
Abstract
Rationale Hematopoietic stem/progenitor cells (HSPC) are responsible for maintaining the blood system as a result of their self-renewal and multilineage differentiation capacity. Recently, studies have suggested that HDL cholesterol may inhibit and impaired cholesterol efflux may increase HSPC proliferation and differentiation. Objectives We hypothesized that LDL may enhance HSPC proliferation and differentiation while HDL might have the opposing effect which might influence the size of the pool of inflammatory cells. Methods and Results HSPC number and function were studied in hypercholesterolemic LDL receptor knockout (LDLr−/−) mice on high fat diet. Hypercholesterolemia was associated with increased frequency of HSPC, monocytes and granulocytes in the peripheral blood (PB). In addition, an increased proportion of BM HSPC was in G2M of the cell cycle, and the percentage of HSPC and granulocyte-macrophage progenitors (GMP) increased in BM of LDLr−/− mice. When BM Lin-Sca-1+cKit+ (i.e. “LSK”) cells were cultured in the presence of LDL in vitro we also found enhanced differentiation towards monocytes and granulocytes. Furthermore, LDL promoted lineage negative (Lin−) cells motility. The modulation by LDL on HSPC differentiation into granulocytes and motility was inhibited by inhibiting ERK phosphorylation. By contrast, when mice were infused with human apoA-I (the major apolipoprotein of HDL) or reconstituted HDL (rHDL), the frequency and proliferation of HSPC was reduced in BM in vivo. HDL also reversed the LDL-induced monocyte and granulocyte differentiation in vitro. Conclusion Our data suggest that LDL and HDL have opposing effects on HSPC proliferation and differentiation. It will be of interest to determine if breakdown of HSPC homeostasis by hypercholesterolemia contributes to inflammation and atherosclerosis progression.
Collapse
|
35
|
Singh N, Van Craeyveld E, Tjwa M, Ciarka A, Emmerechts J, Droogne W, Gordts SC, Carlier V, Jacobs F, Fieuws S, Vanhaecke J, Van Cleemput J, De Geest B. Circulating apoptotic endothelial cells and apoptotic endothelial microparticles independently predict the presence of cardiac allograft vasculopathy. J Am Coll Cardiol 2012; 60:324-31. [PMID: 22813611 DOI: 10.1016/j.jacc.2012.02.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/07/2012] [Accepted: 02/18/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Maintenance of endothelial homeostasis may prevent the development of cardiac allograft vasculopathy (CAV). This study investigated whether biomarkers related to endothelial injury and endothelial repair discriminate between CAV-negative and CAV-positive heart transplant recipients. BACKGROUND CAV is the most important determinant of cardiac allograft survival and a major cause of death after heart transplantation. METHODS Fifty-two patients undergoing coronary angiography between 5 and 15 years after heart transplantation were recruited in this study. Flow cytometry was applied to quantify endothelial progenitor cells (EPCs), circulating endothelial cells (CECs), and endothelial microparticles. Cell culture was used for quantification of circulating EPC number and hematopoietic progenitor cell number and for analysis of EPC function. RESULTS The EPC number and function did not differ between CAV-negative and CAV-positive patients. In univariable models, age, creatinine, steroid dose, granulocyte colony-forming units, apoptotic CECs, and apoptotic endothelial microparticles discriminated between CAV-positive and CAV-negative patients. The logistic regression model containing apoptotic CECs and apoptotic endothelial microparticles as independent predictors provided high discrimination between CAV-positive and CAV-negative patients (C-statistic 0.812; 95% confidence interval: 0.692 to 0.932). In a logistic regression model with age and creatinine as covariates, apoptotic CECs (p = 0.0112) and apoptotic endothelial microparticles (p = 0.0141) were independent predictors (C-statistic 0.855; 95% confidence interval: 0.756 to 0.953). These 2 biomarkers remained independent predictors when steroid dose was introduced in the model. CONCLUSIONS The high discriminative ability of apoptotic CECs and apoptotic endothelial microparticles is a solid foundation for the development of clinical prediction models of CAV.
Collapse
Affiliation(s)
- Neha Singh
- Center for Molecular and Vascular Biology, University of Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gordts SC, Van Craeyveld E, Muthuramu I, Singh N, Jacobs F, De Geest B. Lipid lowering and HDL raising gene transfer increase endothelial progenitor cells, enhance myocardial vascularity, and improve diastolic function. PLoS One 2012; 7:e46849. [PMID: 23056485 PMCID: PMC3464236 DOI: 10.1371/journal.pone.0046849] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 09/10/2012] [Indexed: 11/23/2022] Open
Abstract
Background Hypercholesterolemia and low high density lipoprotein (HDL) cholesterol contribute to coronary heart disease but little is known about their direct effects on myocardial function. Low HDL and raised non-HDL cholesterol levels carried increased risk for heart failure development in the Framingham study, independent of any association with myocardial infarction. The objective of this study was to test the hypothesis that increased endothelial progenitor cell (EPC) number and function after lipid lowering or HDL raising gene transfer in C57BL/6 low density lipoprotein receptor deficient (LDLr−/−) mice may be associated with an enhanced relative vascularity in the myocardium and an improved cardiac function. Methodology/principal findings Lipid lowering and HDL raising gene transfer were performed using the E1E3E4-deleted LDLr expressing adenoviral vector AdLDLr and the human apolipoprotein A-I expressing vector AdA-I, respectively. AdLDLr transfer in C57BL/6 LDLr−/− mice resulted in a 2.0-fold (p<0.05) increase of the circulating number of EPCs and in an improvement of EPC function as assessed by ex vivo EPC migration and EPC adhesion. Capillary density and relative vascularity in the myocardium were 28% (p<0.01) and 22% (p<0.05) higher, respectively, in AdLDLr mice compared to control mice. The peak rate of isovolumetric relaxation was increased by 12% (p<0.05) and the time constant of isovolumetric relaxation was decreased by 14% (p<0.05) after AdLDLr transfer. Similarly, HDL raising gene transfer increased EPC number and function and raised both capillary density and relative vascularity in the myocardium by 24% (p<0.05). The peak rate of isovolumetric relaxation was increased by 16% (p<0.05) in AdA-I mice compared to control mice. Conclusions/Significance Both lipid lowering and HDL raising gene transfer have beneficial effects on EPC biology, relative myocardial vascularity, and diastolic function. These findings raise concerns over the external validity of studies evaluating myocardial biology and cardiac repair in normocholesterolemic animals.
Collapse
Affiliation(s)
- Stephanie C. Gordts
- Center for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium
| | - Eline Van Craeyveld
- Center for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium
| | - Ilayaraja Muthuramu
- Center for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium
| | - Neha Singh
- Center for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium
| | - Frank Jacobs
- Center for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium
| | - Bart De Geest
- Center for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
37
|
Huang CY, Lin FY, Shih CM, Au HK, Chang YJ, Nakagami H, Morishita R, Chang NC, Shyu KG, Chen JW. Moderate to High Concentrations of High-Density Lipoprotein From Healthy Subjects Paradoxically Impair Human Endothelial Progenitor Cells and Related Angiogenesis by Activating Rho-Associated Kinase Pathways. Arterioscler Thromb Vasc Biol 2012; 32:2405-17. [DOI: 10.1161/atvbaha.112.248617] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Recent clinical evidence has failed to demonstrate the benefits of elevation of serum high-density lipoprotein (HDL), suggesting potential loss of protective effects of HDL at high concentrations. This study aimed to investigate the concentration-related effects of HDL on in vitro and in vivo functions of human endothelial progenitor cells (EPCs) and related angiogenesis.
Methods and Results—
Early and late outgrowth EPCs were generated from human circulating mononuclear cells. Oxidized low-density lipoprotein reduced viability of late outgrowth EPCs, which was reversed dose dependently by HDL. In the absence of oxidized low-density lipoprotein, HDL at low concentrations (5–50 μg/mL, equal to 0.5–5 mg/dL in human) enhanced EPC tube formation by activating phosphatidylinositol-3 kinase/Akt/endothelial NO synthase pathways. Moderate to high concentrations (400–800 μg/mL) of HDL paradoxically enhanced EPC senescence and impaired tube formation by activating Rho-associated kinase (ROCK) and inhibiting phosphatidylinositol-3 kinase/Akt and p38 mitogen-activated protein kinase pathways. Rho-associated kinase inhibitors, either Y27632 or statins, prevented high HDL–induced EPC senescence and improved in vitro tube formation, as well as in vivo capacity of angiogenesis of EPCs.
Conclusion—
While protecting EPCs from the injury of oxidized low-density lipoprotein, moderate to high concentrations of HDL paradoxically impaired EPCs and related angiogenesis in the absence of oxidized low-density lipoprotein by activating Rho-associated kinase pathways, providing mechanistic evidence of potential hazard effects of HDL.
Collapse
Affiliation(s)
- Chun-Yao Huang
- From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics
| | - Feng-Yen Lin
- From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics
| | - Chun-Ming Shih
- From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics
| | - Heng-Kien Au
- From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics
| | - Yu-Jia Chang
- From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics
| | - Hironori Nakagami
- From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics
| | - Ryuichi Morishita
- From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics
| | - Nen-Chung Chang
- From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics
| | - Kou-Gi Shyu
- From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics
| | - Jaw-Wen Chen
- From the Graduate Institute of Clinical Medicine (C.-Y.H., Y.-J.C., K.-G.S), Department of Internal Medicine, College of Medicine (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.), and School of Medicine, Biomedical Apparatus Research Center (C.-Y.H., F.-Y.L.), Taipei Medical University, Taipei, Taiwan; Division of Cardiology (C.-Y.H., F.-Y.L., C.-M.S., N.-C.C.) and Department of Obstetrics and Gynecology (H.-K.A.), Taipei Medical University Hospital, Taipei, Taiwan; Division of Vascular Medicine and Epigenetics
| |
Collapse
|
38
|
Chen F, Feng Y, Zheng K, De Keyzer F, Li J, Feng Y, Cona MM, Wang H, Jiang Y, Yu J, Marchal G, Verfaillie C, De Geest B, Oyen R, Ni Y. Enhanced antitumor efficacy of a vascular disrupting agent combined with an antiangiogenic in a rat liver tumor model evaluated by multiparametric MRI. PLoS One 2012; 7:e41140. [PMID: 22815943 PMCID: PMC3399789 DOI: 10.1371/journal.pone.0041140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/17/2012] [Indexed: 12/16/2022] Open
Abstract
A key problem in solid tumor therapy is tumor regrowth from a residual viable rim after treatment with a vascular disrupting agent (VDA). As a potential solution, we studied a combined treatment of a VDA and antiangiogenic. This study was approved by the institutional ethical committee for the use and care of laboratory animals. Rats with implanted liver tumors were randomized into four treatment groups: 1) Zd6126 (Zd); 2) Thalidomide (Tha); 3) Zd in combination with Tha (ZdTha); and 4) controls. Multiparametric MRIs were performed and quantified before and after treatment. Circulating endothelial progenitor cells (EPCs) and plasma stromal cell-derived factor-1α (SDF-1α) were monitored. Tumor apoptosis, necrosis, and microvessels were verified by histopathology. A single use of Zd or Tha did not significantly delay tumor growth. The combined ZdTha showed enhanced antitumor efficacy due to synergistic effects; it induced a cumulative tumor apoptosis or necrosis, which resulted in significant delay in tumor growth and reduction in the viable tumor rim; it also reduced tumor vessel permeability; and it improved tumor hemodynamic indexes, most likely via a transient normalization of tumor vasculature induced by Tha. A stepwise linear regression analysis showed that the apparent diffusion coefficient was an independent predictor of tumor growth. We found no significant increases in Zd-induced circulating EPCs or plasma SDF-1α. ZdTha showed improved therapeutic efficacy in solid tumors compared to either agent alone. The therapeutic effects were successfully tracked in vivo with multiparametric MRI.
Collapse
Affiliation(s)
- Feng Chen
- Theragnostic Laboratory, Department of Imaging and Pathology, University Hospital, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Van Craeyveld E, Jacobs F, Gordts SC, De Geest B. Low-density lipoprotein receptor gene transfer in hypercholesterolemic mice improves cardiac function after myocardial infarction. Gene Ther 2011; 19:860-71. [PMID: 21975462 PMCID: PMC3419972 DOI: 10.1038/gt.2011.147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Left ventricular (LV) function post-myocardial infarction (MI) is adversely influenced by hypercholesterolemia independent of the severity of coronary atherosclerosis. The objective of this study was to evaluate whether lipid lowering by adenoviral low-density lipoprotein (LDL) receptor (AdLDLr) gene transfer in C57BL/6 LDL receptor (LDLr)-deficient mice beneficially affects ventricular remodeling and cardiac function post-MI independent of effects on the coronary circulation. AdLDLr transfer reduced plasma cholesterol by 77% (P<0.0001). Survival 28 days post-MI was higher in AdLDLr-treated mice (95%) compared with control mice (80%) (P<0.05) (hazard ratio for mortality 0.26, 95% confidence interval 0.11–0.84). Infarct size was not significantly different at day 1 and day 7 but was reduced by 18% (P<0.05) at day 28 in AdLDLr MI mice compared with control MI mice. Cardiomyocyte hypertrophy and interstitial fibrosis were reduced and neovascularization was increased in AdLDLr MI mice. LDLr gene transfer had beneficial effects on endothelial progenitor cell (EPC) number and ex vivo EPC function. LV contractility and relaxation were better preserved in AdLDLr MI mice compared with control MI mice. In conclusion, lipid lowering in hypercholesterolemic mice exerts direct cardioprotective effects resulting in enhanced survival, reduced infarct size, decreased ventricular remodeling and better cardiac function.
Collapse
Affiliation(s)
- E Van Craeyveld
- Department of Molecular and Cellular Medicine, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
40
|
Zhang Z, Qun J, Cao C, Wang J, Li W, Wu Y, Du L, Zhao P, Gong K. Apolipoprotein A-I mimetic peptide D-4F promotes human endothelial progenitor cell proliferation, migration, adhesion though eNOS/NO pathway. Mol Biol Rep 2011; 39:4445-54. [PMID: 21947883 DOI: 10.1007/s11033-011-1233-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 09/13/2011] [Indexed: 02/07/2023]
Abstract
Circulating endothelial progenitor cells (EPCs) have a critical role in endothelial maintenance and repair. Apolipoprotein A-I mimetic peptide D-4F has been shown to posses anti-atherogenic properties via sequestration of oxidized phospholipids, induction of remodeling of high density lipoprotein and promotion of cholesterol efflux from macrophage-derived foam cells. In this study, we test the effects of D-4F on EPC biology. EPCs were isolated from the peripheral venous blood of healthy male volunteers and characterized by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-labeled acetylated LDL uptake and ulex europaeus agglutinin binding and flow cytometry. Cell proliferation, migration, adhesion, nitric oxide production and endothelial nitric oxide synthase (eNOS) expression in the absence and presence of D-4F or simvastatin (as a positive control), were assayed. We demonstrated that D-4F significantly enhanced EPC proliferation, migration and adhesion in a dose-dependent manner compared with vehicle. However, all of the favorable effects of D-4F on EPCs were dramatically attenuated by preincubation with NOS inhibitor L-NAME. Further, D-4F also increased nitric oxide production in culture supernatant and the levels of eNOS expression and phosphorylation. The stimulatory effects of D-4F (10 μg/ml) on EPC biology were comparable to 0.5 μM simvastatin. These results suggest that eNOS/NO pathway mediates the functional modulation of EPC biology in response to D-4F treatment and support the notion that the beneficial role of D-4F on EPCs may be one of the important components of its anti-atherogenic potential.
Collapse
Affiliation(s)
- Zhengang Zhang
- Department of Cardiology, The Second Clinic Medical College, Yangzhou University, Yangzhou, 225001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Alev C, Ii M, Asahara T. Endothelial progenitor cells: a novel tool for the therapy of ischemic diseases. Antioxid Redox Signal 2011; 15:949-65. [PMID: 21254837 DOI: 10.1089/ars.2010.3872] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Circulating endothelial progenitor cells (EPCs) are believed to home to sites of neovascularization, contributing to vascular regeneration either directly via incorporation into newly forming vascular structures or indirectly via the secretion of pro-angiogenic growth factors, thereby enhancing the overall vascular and hemodynamic recovery of ischemic tissues. The therapeutic application of EPCs has been shown to be effective in animal models of ischemia, and we as well as other groups involved in clinical trials have demonstrated that the use of EPCs was safe and feasible for the treatment of critical limb ischemia and cardiovascular diseases. However, many issues in the field of EPC biology, especially in regard to the proper and unambiguous molecular characterization of these cells, still remain unresolved, hampering not only basic research but also the effective therapeutic use and widespread application of these cells. Further, recent evidence suggests that several diseases and pathological conditions are correlated with a reduction in the number and biological activity of EPCs, making the development of novel strategies to overcome the current limitations and shortcomings of this promising but still limited therapeutic tool by refinement and improvement of EPC purification, expansion, and administration techniques, a rather pressing issue.
Collapse
Affiliation(s)
- Cantas Alev
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation/RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | |
Collapse
|
42
|
Abstract
Accumulating evidence indicates that the mobilization and recruitment of circulating or tissue-resident progenitor cells that give rise to endothelial cells (ECs) and smooth muscle cells (SMCs) can participate in atherosclerosis, neointima hyperplasia after arterial injury, and transplant arteriosclerosis. It is believed that endothelial progenitor cells do exist and can repair and rejuvenate the arteries under physiologic conditions; however, they may also contribute to lesion formation by influencing plaque stability in advanced atherosclerotic plaque under specific pathologic conditions. At the same time, smooth muscle progenitors, despite their capacity to expedite lesion formation during restenosis, may serve to promote atherosclerotic plaque stabilization by producing extracellular matrix proteins. This profound evidence provides support to the hypothesis that both endothelial and smooth muscle progenitors may act as a double-edged sword in the pathogenesis of arteriosclerosis. Therefore, the understanding of the regulatory networks that control endothelial and smooth muscle progenitor differentiation is undoubtedly fundamental both for basic research and for improving current therapeutic avenues for atherosclerosis. We update the progress in progenitor cell study related to the development of arteriosclerosis, focusing specifically on the role of progenitor cells in lesion formation and discuss the controversial issues that regard the origins, frequency, and impact of the progenitors in the disease.
Collapse
Affiliation(s)
- Paola Campagnolo
- Cardiovascular Division, King's College London BHF Centre, London, England
| | | | | |
Collapse
|
43
|
Besler C, Heinrich K, Rohrer L, Doerries C, Riwanto M, Shih DM, Chroni A, Yonekawa K, Stein S, Schaefer N, Mueller M, Akhmedov A, Daniil G, Manes C, Templin C, Wyss C, Maier W, Tanner FC, Matter CM, Corti R, Furlong C, Lusis AJ, von Eckardstein A, Fogelman AM, Lüscher TF, Landmesser U. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Clin Invest 2011; 121:2693-708. [PMID: 21701070 DOI: 10.1172/jci42946] [Citation(s) in RCA: 432] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/04/2011] [Indexed: 01/05/2023] Open
Abstract
Therapies that raise levels of HDL, which is thought to exert atheroprotective effects via effects on endothelium, are being examined for the treatment or prevention of coronary artery disease (CAD). However, the endothelial effects of HDL are highly heterogeneous, and the impact of HDL of patients with CAD on the activation of endothelial eNOS and eNOS-dependent pathways is unknown. Here we have demonstrated that, in contrast to HDL from healthy subjects, HDL from patients with stable CAD or an acute coronary syndrome (HDLCAD) does not have endothelial antiinflammatory effects and does not stimulate endothelial repair because it fails to induce endothelial NO production. Mechanistically, this was because HDLCAD activated endothelial lectin-like oxidized LDL receptor 1 (LOX-1), triggering endothelial PKCβII activation, which in turn inhibited eNOS-activating pathways and eNOS-dependent NO production. We then identified reduced HDL-associated paraoxonase 1 (PON1) activity as one molecular mechanism leading to the generation of HDL with endothelial PKCβII-activating properties, at least in part due to increased formation of malondialdehyde in HDL. Taken together, our data indicate that in patients with CAD, HDL gains endothelial LOX-1- and thereby PKCβII-activating properties due to reduced HDL-associated PON1 activity, and that this leads to inhibition of eNOS-activation and the subsequent loss of the endothelial antiinflammatory and endothelial repair-stimulating effects of HDL.
Collapse
Affiliation(s)
- Christian Besler
- Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Adeno-associated Virus Serotype 8 ApoA-I Gene Transfer Reduces Progression of Atherosclerosis in ApoE-KO Mice: Comparison of Intramuscular and Intravenous Administration. J Cardiovasc Pharmacol 2011; 57:325-33. [DOI: 10.1097/fjc.0b013e3182092841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Xu J, Wang D, Zhang C, Song J, Liang T, Jin W, Kim YC, Wang SM, Hou G. Alternatively Expressed Genes Identified in the CD4+ T Cells of Allograft Rejection Mice. Cell Transplant 2011; 20:333-50. [DOI: 10.3727/096368910x552844] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Allograft rejection is a leading cause for the failure of allotransplantation. CD4+ T cells play critical roles in this process. The identification of genes that alternatively expressed in CD4+ T cells during allograft rejection will provide critical information for studying the mechanism of allograft rejection, finding specific gene markers for monitoring, predicting allograft rejection, and opening new ways to regulate and prevent allograft rejection. Here, we established allograft and isograft transplantation models by adoptively transferring wild-type BALB/c mouse CD4+ T cells into severe combined immunodeficient (SCID) mice with a C57BL/6 or BALB/c mouse skin graft. Using the whole transcriptome sequencing-based serial analysis of gene expression (SAGE) technology, we identified 97 increasingly and 88 decreasingly expressed genes that may play important roles in allograft rejection and tolerance. Functional classification of these genes shows that apoptosis, transcription regulation, cell growth and maintenance, and signal transduction are among the frequently changed functional groups. This study provides a genome-wide view for the candidate genes of CD4+ T cells related to allotransplantation, and this report is a good resource for further microarray studies and for identifying the specific markers that are associated with clinical organ transplantations.
Collapse
Affiliation(s)
- Jia Xu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Dan Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Chao Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Jing Song
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Ting Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Weirong Jin
- Shanghai Huaguan BioChip Co., Ltd, Shanghai, P.R. China
| | - Yeong C. Kim
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - San Ming Wang
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
46
|
Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease. Clin Sci (Lond) 2011; 120:263-83. [PMID: 21143202 DOI: 10.1042/cs20100429] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone-marrow-derived EPCs (endothelial progenitor cells) play an integral role in the regulation and protection of the endothelium, as well as new vessel formation. Peripheral circulating EPC number and function are robust biomarkers of vascular risk for a multitude of diseases, particularly CVD (cardiovascular disease). Importantly, using EPCs as a biomarker is independent of both traditional and non-traditional risk factors (e.g. hypertension, hypercholesterolaemia and C-reactive protein), with infused ex vivo-expanded EPCs showing potential for improved endothelial function and either reducing the risk of events or enhancing recovery from ischaemia. However, as the number of existing cardiovascular risk factors is variable between patients, simple EPC counts do not adequately describe vascular disease risk in all clinical conditions and, as such, the risk of CVD remains. It is likely that this limitation is attributable to variation in the definition of EPCs, as well as a difference in the interaction between EPCs and other cells involved in vascular control such as pericytes, smooth muscle cells and macrophages. For EPCs to be used regularly in clinical practice, agreement on definitions of EPC subtypes is needed, and recognition that function of EPCs (rather than number) may be a better marker of vascular risk in certain CVD risk states. The present review focuses on the identification of measures to improve individual risk stratification and, further, to potentially individualize patient care to address specific EPC functional abnormalities. Herein, we describe that future therapeutic use of EPCs will probably rely on a combination of strategies, including optimization of the function of adjunct cell types to prime tissues for the effect of EPCs.
Collapse
|
47
|
Feng Y, Gordts SC, Chen F, Hu Y, Van Craeyveld E, Jacobs F, Carlier V, Feng Y, Zhang Z, Xu Q, Ni Y, De Geest B. Topical HDL administration reduces vein graft atherosclerosis in apo E deficient mice. Atherosclerosis 2011; 214:271-8. [DOI: 10.1016/j.atherosclerosis.2010.09.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 09/03/2010] [Accepted: 09/21/2010] [Indexed: 01/24/2023]
|
48
|
Li X, Tse HF, Yiu KH, Li LSW, Jin L. Effect of periodontal treatment on circulating CD34(+) cells and peripheral vascular endothelial function: a randomized controlled trial. J Clin Periodontol 2010; 38:148-56. [PMID: 21133981 DOI: 10.1111/j.1600-051x.2010.01651.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM periodontal disease is associated with endothelial dysfunction and increased circulating progenitor cell (CPC) count. This study sought to investigate the effect of periodontal treatment on CPC count and vascular endothelial function. MATERIALS AND METHODS a single-blind, randomized controlled trial was conducted in 50 otherwise healthy subjects with moderate-to-severe chronic periodontitis. They were randomly assigned into Treatment group (n=25), in whom periodontal treatment was conducted immediately, and Control group (n=25), in whom periodontal treatment was postponed until the completion of this 3-month study. CPCs and peripheral endothelial function were evaluated at baseline and 3-month follow-up using flow cytometry and peripheral arterial tonometry, respectively. RESULTS based on the intention-to-treat analysis, periodontal treatment exhibited neutral effects on endothelial function [treatment effect: 0.03, 95% confidence interval (CI): -0.29 to 0.35, p=0.85]. However, circulating CD34(+) cells count significantly decreased in the Treatment group compared with the controls (treatment effect: -29.85 cells/μl, 95% CI: -52.62 to -7.08, p=0.011). The reduction of circulating CD34(+) count was positively correlated with the decrease in sites% with bleeding on probing or periodontal pockets 4 mm. CONCLUSIONS this study suggests that treatment of periodontitis has neutral effects on peripheral endothelial function but significantly decreases circulating CD34(+) cell count.
Collapse
Affiliation(s)
- Xiao Li
- Faculty of Dentistry, Periodontology Department of Medicine, Division of Cardiology, Queen Mary Hospital Department of Medicine, Tung Wah Hospital, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
49
|
Van Linthout S, Spillmann F, Graiani G, Miteva K, Peng J, Van Craeyveld E, Meloni M, Tölle M, Escher F, Subasigüller A, Doehner W, Quaini F, De Geest B, Schultheiss HP, Tschöpe C. Down-regulation of endothelial TLR4 signalling after apo A-I gene transfer contributes to improved survival in an experimental model of lipopolysaccharide-induced inflammation. J Mol Med (Berl) 2010; 89:151-60. [PMID: 20972769 PMCID: PMC3022151 DOI: 10.1007/s00109-010-0690-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 12/17/2022]
Abstract
The protective effects of high-density lipoprotein (HDL) under lipopolysaccharide (LPS) conditions have been well documented. Here, we investigated whether an effect of HDL on Toll-like receptor 4 (TLR4) expression and signalling may contribute to its endothelial-protective effects and to improved survival in a mouse model of LPS-induced inflammation and lethality. HDL cholesterol increased 1.7-fold (p < 0.005) and lung endothelial TLR4 expression decreased 8.4-fold (p < 0.005) 2 weeks after apolipoprotein (apo) A-I gene transfer. Following LPS administration in apo A-I gene transfer mice, lung TLR4 and lung MyD88 mRNA expression, reflecting TLR4 signalling, were 3.0-fold (p < 0.05) and 2.1-fold (p < 0.05) lower, respectively, than in LPS control mice. Concomitantly, LPS-induced lung neutrophil infiltration, lung oedema and mortality were significantly attenuated following apo A–I transfer. In vitro, supplementation of HDL or apo A–I to human microvascular endothelial cells-1 24 h before LPS administration reduced TLR4 expression, as assessed by fluorescent-activated cell sorting, and decreased the LPS-induced MyD88 mRNA expression and NF-κB activity, independently of LPS binding. In conclusion, HDL reduces TLR4 expression and signalling in endothelial cells, which may contribute significantly to the protective effects of HDL in LPS-induced inflammation and lethality.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Department of Cardiology & Pneumology, Charité-University-Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapy (BCRT), Charité-University-Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Frank Spillmann
- Department of Cardiology & Pneumology, Charité-University-Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | - Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapy (BCRT), Charité-University-Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Jun Peng
- Department of Cardiology & Pneumology, Charité-University-Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Eline Van Craeyveld
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Marco Meloni
- Department of Cardiology & Pneumology, Charité-University-Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Markus Tölle
- Department of Nephrology, Charité-University-Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Felicitas Escher
- Department of Cardiology & Pneumology, Charité-University-Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Aysun Subasigüller
- Department of Cardiology & Pneumology, Charité-University-Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin, Charité-University-Medicine Berlin, Campus Mitte, Berlin, Germany
| | | | - Bart De Geest
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Heinz-Peter Schultheiss
- Department of Cardiology & Pneumology, Charité-University-Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Carsten Tschöpe
- Department of Cardiology & Pneumology, Charité-University-Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapy (BCRT), Charité-University-Medicine Berlin, Campus Virchow, Berlin, Germany
| |
Collapse
|
50
|
Zhang Q, Yin H, Liu P, Zhang H, She M. Essential role of HDL on endothelial progenitor cell proliferation with PI3K/Akt/cyclin D1 as the signal pathway. Exp Biol Med (Maywood) 2010; 235:1082-92. [PMID: 20724534 DOI: 10.1258/ebm.2010.010060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
High-density lipoprotein (HDL) is known as an important factor in vascular wall remodeling that also affects gene expression in cell proliferation and differentiation. In this article, the role of HDL on endothelial progenitor cell (EPC) proliferation, angiogenesis and the signal pathway involved was studied, particularly the influence of HDL in strengthening the promoting effect of EPCs on wound healing of the arterial wall in hypercholesterolemic rats. Mononuclear cells isolated from rat bone marrow displayed characteristics of EPCs after cultivation. The role of HDL on EPC function and the signal pathway involved were studied by Western blotting, in vitro migration and 'tube' formation. Re-endothelialization and the number of circulating EPCs were compared between normal rats, hypercholesterolemic rats and hypercholesterolemic rats with HDL treatment. Results showed that HDL participated in the healing process by promoting EPC proliferation, migration and 'tube' formation. HDL activates cyclin D1 via phosphatidylinositol 3-kinase (PI3K)/Akt stimulation. Inhibition of PI3K/Akt via pharmacological or small interfering RNA approaches significantly attenuated HDL-induced EPC migration, proliferation and 'tube' formation. Results of experiments in vivo showed that HDL increased the number of circulating EPCs and promoted re-endothelialization in wound healing. These findings demonstrate for the first time that PI3K/Akt-dependent cyclin D1 activation plays an essential role in HDL-induced EPC proliferation, migration and angiogenesis.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, #5, Dong Dan San Tiao, Beijing 100005, China
| | | | | | | | | |
Collapse
|