1
|
Bonetti G, Paolacci S, Samaja M, Maltese PE, Michelini S, Michelini S, Michelini S, Ricci M, Cestari M, Dautaj A, Medori MC, Bertelli M. Low Efficacy of Genetic Tests for the Diagnosis of Primary Lymphedema Prompts Novel Insights into the Underlying Molecular Pathways. Int J Mol Sci 2022; 23:ijms23137414. [PMID: 35806420 PMCID: PMC9267137 DOI: 10.3390/ijms23137414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
Lymphedema is a chronic inflammatory disorder caused by ineffective fluid uptake by the lymphatic system, with effects mainly on the lower limbs. Lymphedema is either primary, when caused by genetic mutations, or secondary, when it follows injury, infection, or surgery. In this study, we aim to assess to what extent the current genetic tests detect genetic variants of lymphedema, and to identify the major molecular pathways that underlie this rather unknown disease. We recruited 147 individuals with a clinical diagnosis of primary lymphedema and used established genetic tests on their blood or saliva specimens. Only 11 of these were positive, while other probands were either negative (63) or inconclusive (73). The low efficacy of such tests calls for greater insight into the underlying mechanisms to increase accuracy. For this purpose, we built a molecular pathways diagram based on a literature analysis (OMIM, Kegg, PubMed, Scopus) of candidate and diagnostic genes. The PI3K/AKT and the RAS/MAPK pathways emerged as primary candidates responsible for lymphedema diagnosis, while the Rho/ROCK pathway appeared less critical. The results of this study suggest the most important pathways involved in the pathogenesis of lymphedema, and outline the most promising diagnostic and candidate genes to diagnose this disease.
Collapse
Affiliation(s)
- Gabriele Bonetti
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
- Correspondence: ; Tel.: +39-0365-62-061
| | - Stefano Paolacci
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | | | | | - Sandro Michelini
- Vascular Diagnostics and Rehabilitation Service, Marino Hospital, ASL Roma 6, 00047 Marino, Italy;
| | - Serena Michelini
- Unit of Physical Medicine, “Sapienza” University of Rome, 00185 Rome, Italy;
| | | | - Maurizio Ricci
- Division of Rehabilitation Medicine, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, 60126 Ancona, Italy;
| | - Marina Cestari
- Study Centre Pianeta Linfedema, 05100 Terni, Italy;
- Lymphology Sector of the Rehabilitation Service, USLUmbria2, 05100 Terni, Italy
| | - Astrit Dautaj
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | - Maria Chiara Medori
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | - Matteo Bertelli
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
- MAGI Group, 25010 San Felice del Benaco, Italy;
- MAGI Euregio, 39100 Bolzano, Italy
| |
Collapse
|
2
|
Xu W, Nelson-Maney NP, Bálint L, Kwon HB, Davis RB, Dy DCM, Dunleavey JM, St. Croix B, Caron KM. Orphan G-Protein Coupled Receptor GPRC5B Is Critical for Lymphatic Development. Int J Mol Sci 2022; 23:ijms23105712. [PMID: 35628521 PMCID: PMC9146384 DOI: 10.3390/ijms23105712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
Numerous studies have focused on the molecular signaling pathways that govern the development and growth of lymphatics in the hopes of elucidating promising druggable targets. G protein-coupled receptors (GPCRs) are currently the largest family of membrane receptors targeted by FDA-approved drugs, but there remain many unexplored receptors, including orphan GPCRs with no known biological ligand or physiological function. Thus, we sought to illuminate the cadre of GPCRs expressed at high levels in lymphatic endothelial cells and identified four orphan receptors: GPRC5B, AGDRF5/GPR116, FZD8 and GPR61. Compared to blood endothelial cells, GPRC5B is the most abundant GPCR expressed in cultured human lymphatic endothelial cells (LECs), and in situ RNAscope shows high mRNA levels in lymphatics of mice. Using genetic engineering approaches in both zebrafish and mice, we characterized the function of GPRC5B in lymphatic development. Morphant gprc5b zebrafish exhibited failure of thoracic duct formation, and Gprc5b-/- mice suffered from embryonic hydrops fetalis and hemorrhage associated with subcutaneous edema and blood-filled lymphatic vessels. Compared to Gprc5+/+ littermate controls, Gprc5b-/- embryos exhibited attenuated developmental lymphangiogenesis. During the postnatal period, ~30% of Gprc5b-/- mice were growth-restricted or died prior to weaning, with associated attenuation of postnatal cardiac lymphatic growth. In cultured human primary LECs, expression of GPRC5B is required to maintain cell proliferation and viability. Collectively, we identify a novel role for the lymphatic-enriched orphan GPRC5B receptor in lymphangiogenesis of fish, mice and human cells. Elucidating the roles of orphan GPCRs in lymphatics provides new avenues for discovery of druggable targets to treat lymphatic-related conditions such as lymphedema and cancer.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA; (W.X.); (N.P.N.-M.); (L.B.); (H.-B.K.); (R.B.D.); (D.C.M.D.)
| | - Nathan P. Nelson-Maney
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA; (W.X.); (N.P.N.-M.); (L.B.); (H.-B.K.); (R.B.D.); (D.C.M.D.)
| | - László Bálint
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA; (W.X.); (N.P.N.-M.); (L.B.); (H.-B.K.); (R.B.D.); (D.C.M.D.)
| | - Hyouk-Bum Kwon
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA; (W.X.); (N.P.N.-M.); (L.B.); (H.-B.K.); (R.B.D.); (D.C.M.D.)
| | - Reema B. Davis
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA; (W.X.); (N.P.N.-M.); (L.B.); (H.-B.K.); (R.B.D.); (D.C.M.D.)
| | - Danielle C. M. Dy
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA; (W.X.); (N.P.N.-M.); (L.B.); (H.-B.K.); (R.B.D.); (D.C.M.D.)
| | - James M. Dunleavey
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute–Frederick, NIH, Frederick, MD 21702, USA; (J.M.D.); (B.S.C.)
| | - Brad St. Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute–Frederick, NIH, Frederick, MD 21702, USA; (J.M.D.); (B.S.C.)
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA; (W.X.); (N.P.N.-M.); (L.B.); (H.-B.K.); (R.B.D.); (D.C.M.D.)
- Correspondence:
| |
Collapse
|
3
|
Kaipainen A, Chen E, Chang L, Zhao B, Shin H, Stahl A, Fishman SJ, Mulliken JB, Folkman J, Huang S, Fannon M. Characterization of lymphatic malformations using primary cells and tissue transcriptomes. Scand J Immunol 2019; 90:e12800. [DOI: 10.1111/sji.12800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/10/2019] [Accepted: 06/22/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Arja Kaipainen
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Emy Chen
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Lynn Chang
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Bing Zhao
- Department of Ophthalmology and Visual Sciences University of Kentucky Lexington KY USA
| | - Hainsworth Shin
- Department of Biomedical Engineering University of Kentucky Lexington KY USA
| | - Andreas Stahl
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Steven J. Fishman
- Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - John B. Mulliken
- Department of Plastic and Oral Surgery, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Judah Folkman
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Sui Huang
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Michael Fannon
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
- Department of Ophthalmology and Visual Sciences University of Kentucky Lexington KY USA
| |
Collapse
|
4
|
Davis RB, Ding S, Nielsen NR, Pawlak JB, Blakeney ES, Caron KM. Calcitonin-Receptor-Like Receptor Signaling Governs Intestinal Lymphatic Innervation and Lipid Uptake. ACS Pharmacol Transl Sci 2019; 2:114-121. [PMID: 32219216 DOI: 10.1021/acsptsci.8b00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 02/06/2023]
Abstract
The absorption of dietary fat requires complex neuroendocrine-mediated regulation of chylomicron trafficking through enterocytes and intestinal lymphatic vessels. Calcitonin-receptor-like receptor (Calcrl) is a G protein-coupled receptor that can bind either a lymphangiogenic ligand adrenomedullin, with coreceptor RAMP2, or the neuropeptide CGRP, with coreceptor RAMP1. The extent to which this common GPCR controls lipid absorption via lymphatics or enteric innervation remains unclear. We used conditional and inducible genetic deletion of Calcrl in lymphatics to elucidate the pathophysiological consequences of this receptor pathway under conditions of high-fat diet. Inefficient absorption of dietary fat coupled with altered lymphatic endothelial junctions in Calcrl fl/fl /Prox1-CreER T2 mice results in excessive, transcellular lipid accumulation and abnormal enterocyte chylomicron processing and failure to gain weight. Interestingly, Calcrl fl/fl /Prox1-CreER T2 animals show reduced and disorganized mucosal and submucosal innervation. Consistently, mice with genetic loss of the CGRP coreceptor RAMP1 also displayed mucosal and submucosal innervation deficits, substantiating the CGRP-biased function of Calcrl in the neurolymphocrine axis. Thus, the common Calcrl receptor is a critical regulator of lipid absorption through its cell-specific functions in neurolymphocrine crosstalk.
Collapse
Affiliation(s)
- Reema B Davis
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - Shengli Ding
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - John B Pawlak
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - Elizabeth S Blakeney
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| |
Collapse
|
5
|
Castro PR, Barbosa AS, Pereira JM, Ranfley H, Felipetto M, Gonçalves CAX, Paiva IR, Berg BB, Barcelos LS. Cellular and Molecular Heterogeneity Associated with Vessel Formation Processes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6740408. [PMID: 30406137 PMCID: PMC6199857 DOI: 10.1155/2018/6740408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
The microvasculature heterogeneity is a complex subject in vascular biology. The difficulty of building a dynamic and interactive view among the microenvironments, the cellular and molecular heterogeneities, and the basic aspects of the vessel formation processes make the available knowledge largely fragmented. The neovascularisation processes, termed vasculogenesis, angiogenesis, arteriogenesis, and lymphangiogenesis, are important to the formation and proper functioning of organs and tissues both in the embryo and the postnatal period. These processes are intrinsically related to microvascular cells, such as endothelial and mural cells. These cells are able to adjust their activities in response to the metabolic and physiological requirements of the tissues, by displaying a broad plasticity that results in a significant cellular and molecular heterogeneity. In this review, we intend to approach the microvasculature heterogeneity in an integrated view considering the diversity of neovascularisation processes and the cellular and molecular heterogeneity that contribute to microcirculatory homeostasis. For that, we will cover their interactions in the different blood-organ barriers and discuss how they cooperate in an integrated regulatory network that is controlled by specific molecular signatures.
Collapse
Affiliation(s)
- Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Alan Sales Barbosa
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Jousie Michel Pereira
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Hedden Ranfley
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Mariane Felipetto
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Carlos Alberto Xavier Gonçalves
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Isabela Ribeiro Paiva
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Bárbara Betônico Berg
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Luciola Silva Barcelos
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
6
|
Kadmiel M, Matson BC, Espenschied ST, Lenhart PM, Caron KM. Loss of receptor activity-modifying protein 2 in mice causes placental dysfunction and alters PTH1R regulation. PLoS One 2017; 12:e0181597. [PMID: 28727763 PMCID: PMC5519170 DOI: 10.1371/journal.pone.0181597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/03/2017] [Indexed: 11/18/2022] Open
Abstract
Receptor activity-modifying protein 2 (Ramp2) is a single-pass transmembrane protein that heterodimerizes with several family B G-protein coupled receptors to alter their function. Ramp2 has been primarily characterized in association with calcitonin receptor-like receptor (Calcrl, CLR), forming the canonical receptor complex for the endocrine peptide adrenomedullin (Adm, AM). However, we previously demonstrated that Ramp2+/- female mice display a constellation of endocrine-related phenotypes that are distinct from those of Adm+/- and Calcrl+/- mice, implying that RAMP2 has physiological functions beyond its canonical complex. Here, we localize Ramp2 expression in the mouse placenta, finding that Ramp2 is robustly expressed in the fetal labyrinth layer, and then characterize the effects of loss of Ramp2 on placental development. Consistent with the expression pattern of Ramp2 in the placenta, Ramp2-/- placentas have a thinner labyrinth layer with significantly fewer trophoblast cells secondary to a reduction in trophoblast proliferation. We also find that absence of Ramp2 leads to failed spiral artery remodeling unaccompanied by changes in the uterine natural killer cell population. Furthermore, we assess changes in gene expression of other RAMP2-associated G-protein coupled receptors (GPCRs), concluding that Ramp2 loss decreases parathyroid hormone 1 receptor (Pthr1) expression and causes a blunted response to systemic parathyroid hormone (PTH) administration in mice. Ultimately, these studies provide in vivo evidence of a role for RAMP2 in placental development distinct from the RAMP2-CLR/AM signaling paradigm and identify additional pathways underlying the endocrine and fertility defects of the previously characterized Ramp2 heterozygous adult females.
Collapse
Affiliation(s)
- Mahita Kadmiel
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brooke C. Matson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Scott T. Espenschied
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Patricia M. Lenhart
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
7
|
Sekar R, Singh K, Arokiaraj AWR, Chow BKC. Pharmacological Actions of Glucagon-Like Peptide-1, Gastric Inhibitory Polypeptide, and Glucagon. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:279-341. [PMID: 27572131 DOI: 10.1016/bs.ircmb.2016.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucagon family of peptide hormones is a group of structurally related brain-gut peptides that exert their pleiotropic actions through interactions with unique members of class B1 G protein-coupled receptors (GPCRs). They are key regulators of hormonal homeostasis and are important drug targets for metabolic disorders such as type-2 diabetes mellitus (T2DM), obesity, and dysregulations of the nervous systems such as migraine, anxiety, depression, neurodegeneration, psychiatric disorders, and cardiovascular diseases. The current review aims to provide a detailed overview of the current understanding of the pharmacological actions and therapeutic advances of three members within this family including glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), and glucagon.
Collapse
Affiliation(s)
- R Sekar
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - K Singh
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - A W R Arokiaraj
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - B K C Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Dai SX, Li GH, Gao YD, Huang JF. Pharmacophore-Map-Pick: A Method to Generate Pharmacophore Models for All Human GPCRs. Mol Inform 2015; 35:81-91. [PMID: 27491793 DOI: 10.1002/minf.201500075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/21/2015] [Indexed: 01/04/2023]
Abstract
GPCR-based drug discovery is hindered by a lack of effective screening methods for most GPCRs that have neither ligands nor high-quality structures. With the aim to identify lead molecules for these GPCRs, we developed a new method called Pharmacophore-Map-Pick to generate pharmacophore models for all human GPCRs. The model of ADRB2 generated using this method not only predicts the binding mode of ADRB2-ligands correctly but also performs well in virtual screening. Findings also demonstrate that this method is powerful for generating high-quality pharmacophore models. The average enrichment for the pharmacophore models of the 15 targets in different GPCR families reached 15-fold at 0.5 % false-positive rate. Therefore, the pharmacophore models can be applied in virtual screening directly with no requirement for any ligand information or shape constraints. A total of 2386 pharmacophore models for 819 different GPCRs (99 % coverage (819/825)) were generated and are available at http://bsb.kiz.ac.cn/GPCRPMD.
Collapse
Affiliation(s)
- Shao-Xing Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P. R. China phone/fax: + 86 087165199200/+ 86 087165199200.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P. R. China phone/fax: + 86 087165199200/+ 86 087165199200.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yue-Dong Gao
- Kunming Biological Diversity Regional Center of Instruments, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P. R. China
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P. R. China phone/fax: + 86 087165199200/+ 86 087165199200. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China. .,Kunming Institute of Zoology - Chinese University of Hongkong Joint Research Center for Bio-resources and Human Disease Mechanisms, Kunming 650223, P. R. China.
| |
Collapse
|
9
|
Abstract
Blood and lymphatic vessels deliver oxygen and nutrients, remove waste and CO2, and regulate interstitial pressure in tissues and organs. These vessels begin life early in embryogenesis using transcription factors and signaling pathways that regulate differentiation, morphogenesis, and proliferation. Here we describe how these vessels develop in the mouse embryo, and the signals that are important to their development.
Collapse
Affiliation(s)
- Victoria L Bautch
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kathleen M Caron
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
10
|
Karpinich NO, Caron KM. Apelin signaling: new G protein-coupled receptor pathway in lymphatic vascular development. Arterioscler Thromb Vasc Biol 2014; 34:239-41. [PMID: 24431421 DOI: 10.1161/atvbaha.113.302905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Natalie O Karpinich
- From the Departments of Cell Biology and Physiology (N.O.K., K.M.C.) and Genetics (K.M.C.), University of North Carolina at Chapel Hill, NC
| | | |
Collapse
|
11
|
Kurashige C, Hosono K, Matsuda H, Tsujikawa K, Okamoto H, Majima M. Roles of receptor activity-modifying protein 1 in angiogenesis and lymphangiogenesis during skin wound healing in mice. FASEB J 2013; 28:1237-47. [PMID: 24308973 DOI: 10.1096/fj.13-238998] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptor activity-modifying protein 1 (RAMP1) forms a complex with calcitonin receptor-like receptor (CLR) to produce the receptor for calcitonin gene-related peptide (CGRP). CGRP, a 37-aa neuropeptide, is widely distributed in neuronal tissues and exerts its biological effects via CLR/RAMP1; however, the pathophysiological roles of CLR/RAMP1 remain to be clarified. To study the functions of CLR/RAMP1, we generated RAMP1-knockout (RAMP1(-/-)) mice. Compared with those of wild-type (WT) mice, wound healing and wound-induced angiogenesis were significantly suppressed in RAMP1(-/-) mice, with reduced expression of vascular endothelial growth factor (VEGF)-A. Formation of the lymphatic vessels that drain interstitial fluids was also suppressed in RAMP1(-/-) mice, with reduced expression of VEGF-C and VEGFR-3 in wound granulation tissues. RAMP1 was expressed in endothelial cells (ECs) in the preexisting skin blood vessels, but was not observed in ECs in newly formed blood or lymphatic vessels. Macrophages in the wound granulation tissues expressed RAMP1 and produced substantial amounts of VEGF-C in response to CGRP in vitro. RAMP1(-/-) bone marrow chimeric mice showed delayed wound healing with reduced angiogenesis/lymphangiogenesis in wound granulation tissues. These findings suggest that RAMP1 plays a crucial role in wound healing and wound-induced angiogenesis and lymphangiogenesis and that it is a promising target for controlling angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Chie Kurashige
- 1Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Valtcheva N, Primorac A, Jurisic G, Hollmén M, Detmar M. The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42. J Biol Chem 2013; 288:35736-48. [PMID: 24178298 DOI: 10.1074/jbc.m113.512954] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The important role of the lymphatic vascular system in pathological conditions such as inflammation and cancer has been increasingly recognized, but its potential as a pharmacological target is poorly exploited. Our study aimed at the identification and molecular characterization of lymphatic-specific G protein-coupled receptors (GPCRs) to assess new targets for pharmacological manipulation of the lymphatic vascular system. We used a TaqMan quantitative RT-PCR-based low density array to determine the GPCR expression profiles of ex vivo isolated intestinal mouse lymphatic (LECs) and blood vascular endothelial cells (BECs). GPR97, an orphan adhesion GPCR of unknown function, was the most highly and specifically expressed GPCR in mouse lymphatic endothelium. Using siRNA silencing, we found that GPR97-deficient primary human LECs displayed increased adhesion and collective cell migration, whereas single cell migration was decreased as compared with nontargeting siRNA-transfected control LECs. Loss of GPR97 shifted the ratio of active Cdc42 and RhoA and initiated cytoskeletal rearrangements, including F-actin redistribution, paxillin and PAK4 phosphorylation, and β1-integrin activation. Our data suggest a possible role of GPR97 in lymphatic remodeling and furthermore provide the first insights into the biological functions of GPR97.
Collapse
Affiliation(s)
- Nadejda Valtcheva
- From the Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Karpinich NO, Kechele DO, Espenschied ST, Willcockson HH, Fedoriw Y, Caron KM. Adrenomedullin gene dosage correlates with tumor and lymph node lymphangiogenesis. FASEB J 2012; 27:590-600. [PMID: 23099649 DOI: 10.1096/fj.12-214080] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Adrenomedullin (AM) is a potent lymphangiogenic factor that promotes lymphatic endothelial cell (LEC) proliferation through a pharmacologically tractable G-protein-coupled receptor. Numerous types of human cancers have increased levels of AM; however, the functional consequences of this fact have not been characterized. Therefore, we evaluated whether modulating adrenomedullin (Adm) gene dosage within tumor cells affects lymphangiogenesis. Murine Lewis lung carcinoma (LLC) cells that overexpress or underexpress Adm were injected subcutaneously into C57BL/6 mice, and tumors were evaluated for growth and vascularization. A dosage range from ∼10 to 200% of wild-type Adm expression did not affect LLC proliferation in vitro or in vivo, nor did it affect angiogenesis. Notably, the dosage of Adm markedly and significantly influenced tumor lymphangiogenesis. Reduced Adm expression in tumors decreased the proliferation of LECs and the number of lymphatic vessels, while elevated tumor Adm expression led to enlarged lymphatic vessels. Moreover, overexpression of Adm in tumors induced sentinel lymph node lymphangiogenesis and led to an increased incidence of Ki67-positive foci within the lung. These data show that tumor-secreted AM is a critical factor for driving both tumor and lymph node lymphangiogenesis. Thus, pharmacological targeting of AM signaling may provide a new avenue for inhibition of tumor lymphangiogenesis.
Collapse
Affiliation(s)
- Natalie O Karpinich
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | | | | | | | | | | |
Collapse
|
14
|
Poyner DR, Hay DL. Secretin family (Class B) G protein-coupled receptors - from molecular to clinical perspectives. Br J Pharmacol 2012; 166:1-3. [PMID: 22489621 DOI: 10.1111/j.1476-5381.2011.01810.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Family B G protein-coupled receptors represent an important but under-researched group of receptors. This edition of the British Journal of Pharmacology considers the roles and pharmacology of a number of these receptors. Whilst common themes emerge, it is clear that more work is needed to understand the details of each receptor in order to properly exploit them therapeutically.
Collapse
|
15
|
Halim A, Hay DL. The role of glutamic acid 73 in adrenomedullin interactions with rodent AM2 receptors. Peptides 2012; 36:137-41. [PMID: 22546239 DOI: 10.1016/j.peptides.2012.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 11/22/2022]
Abstract
Adrenomedullin (AM) is a peptide, which is important for vascular development. There is much interest in the clinical potential of its receptors. The mode of AM binding to its receptors is poorly understood. Previous studies have identified amino acid Glu74, which is found in the receptor activity-modifying protein (RAMP3) subunit of the AM(2) receptor as important for high affinity AM interactions with this receptor. Its reciprocal residue in RAMP1 (Trp) impedes AM interactions in the closely related human calcitonin gene-related peptide (CGRP) receptor. The Glu is conserved in RAMP3 across species, supporting its role in contributing to AM binding. We mutated this residue in rat and mouse RAMP3 to Ala, Lys and Trp to determine its function in rodent AM(2) receptors. Only the Trp substitution in mouse RAMP3 produced a substantial reduction in AM potency. However, mutation of the Lys found in rat RAMP1 to Glu enhanced AM potency. Although Glu is highly conserved in RAMP3, this work suggests that it may only make a small or indirect contribution to AM interactions. Nevertheless, the equivalent amino acid in RAMP1 may serve to impair high affinity AM interactions.
Collapse
Affiliation(s)
- Angela Halim
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
16
|
Hadj-Hamou NS, Laé M, Almeida A, Grange PDL, Kirova Y, Sastre-Garau X, Malfoy B. A transcriptome signature of endothelial lymphatic cells coexists with the chronic oxidative stress signature in radiation-induced post-radiotherapy breast angiosarcomas. Carcinogenesis 2012; 33:1399-405. [DOI: 10.1093/carcin/bgs155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Mu H, Calderone TL, Davies MA, Prieto VG, Wang H, Mills GB, Bar-Eli M, Gershenwald JE. Lysophosphatidic acid induces lymphangiogenesis and IL-8 production in vitro in human lymphatic endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2170-81. [PMID: 22465753 DOI: 10.1016/j.ajpath.2012.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2012] [Indexed: 02/06/2023]
Abstract
The bioactive phospholipid lysophosphatidic acid (LPA) and its receptors LPA(1-3) are aberrantly expressed in many types of human cancer. LPA has been reported to induce tumor cell proliferation, migration, and cytokine production. However, whether LPA exerts an effect on lymphatic endothelial cells (LECs) or on lymphangiogenesis, a process of new lymphatic vessel formation that is associated with increased metastasis and poor prognosis in cancer patients, has been unknown. Here, we show that LPA induces cell proliferation, survival, migration, and tube formation, and promotes lymphangiogenesis in vitro in human dermal LECs. In addition, LPA induces IL-8 expression by enhancing IL-8 promoter activity via activation of the NF-κB pathway in LECs. Using IL-8 siRNA and IL-8 neutralizing antibody, we revealed that IL-8 plays an important role in LPA-induced lymphangiogenesis in vitro. Moreover, using siRNA inhibition, we discovered that LPA-induced lymphangiogenesis in vitro and IL-8 production are mediated via the LPA(2) receptor in LECs. Finally, using human sentinel afferent lymphatic vessel explants, we demonstrated that LPA up-regulates IL-8 production in the LECs of lymphatic endothelia. These studies provide the first evidence that LPA promotes lymphangiogenesis and induces IL-8 production in LECs; we also reveal a possible new role of LPA in the promotion of tumor progression, as well as metastasis, in different cancer types.
Collapse
Affiliation(s)
- Hong Mu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Watkins HA, Hay DL. Recent progress in unraveling the complexities of receptor biology: towards new therapeutics. Expert Rev Clin Pharmacol 2012; 5:145-7. [DOI: 10.1586/ecp.12.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Arai T, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Iinuma N, Iesato Y, Koyama T, Yoshizawa T, Uetake R, Yamauchi A, Yang L, Kawate H, Ogawa S, Kobayashi A, Miyagawa S, Shindo T. Induction of LYVE-1/stabilin-2-positive liver sinusoidal endothelial-like cells from embryoid bodies by modulation of adrenomedullin-RAMP2 signaling. Peptides 2011; 32:1855-65. [PMID: 21782867 DOI: 10.1016/j.peptides.2011.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 01/29/2023]
Abstract
Embryonic stem cells (ESCs) are a useful source for various cell lineages. So far, however, progress toward reconstitution of mature liver morphology and function has been limited. We have shown that knockout mice deficient in adrenomedullin (AM), a multifunctional endogenous peptide, or its receptor-activity modifying protein (RAMP2) die in utero due to poor vascular development and hemorrhage within the liver. In this study, using embryoid bodies (EBs)-culture system, we successfully induced liver sinusoidal endothelial-like cells by modulation of AM-RAMP2. In an EB differentiation system, we found that co-administration of AM and SB431542, an inhibitor of transforming growth factor β (TGFβ) receptor type 1, markedly enhanced differentiation of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)/stabilin-2-positive endothelial cells. These cells showed robust endocytosis of acetylated low-density lipoprotein (Ac-LDL) and upregulated expression of liver sinusoidal endothelial cells (LSECs)-specific markers, including factor 8 (F8), Fc-γ receptor 2b (Fcgr2b), and mannose receptor C type 1 (Mrc1), and also possessed fenestrae-like structure, a key morphological feature of LSECs. In RAMP2-null liver, by contrast, LYVE-1 was downregulated in LSECs, and the sinusoidal structure was disrupted. Our findings highlight the importance of AM-RAMP2 signaling for development of LSECs.
Collapse
Affiliation(s)
- Takuma Arai
- Department of Organ Regeneration, Shinshu University Graduate School of Medicine, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gayen A, Goswami SK, Mukhopadhyay C. NMR evidence of GM1-induced conformational change of Substance P using isotropic bicelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:127-39. [DOI: 10.1016/j.bbamem.2010.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/24/2010] [Accepted: 09/22/2010] [Indexed: 01/30/2023]
|
21
|
Kubo M, Li TS, Kamota T, Ohshima M, Shirasawa B, Hamano K. Extracorporeal shock wave therapy ameliorates secondary lymphedema by promoting lymphangiogenesis. J Vasc Surg 2010; 52:429-34. [DOI: 10.1016/j.jvs.2010.03.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/04/2010] [Accepted: 03/07/2010] [Indexed: 10/19/2022]
|
22
|
Affiliation(s)
- Mark W Majesky
- Department of Medicine, Carolina Cardiovascular Biology Center, MBRB-8200, University of North Carolina, Chapel Hill, NC 27599-7126, USA.
| |
Collapse
|