1
|
Liu H, Yang P, Chen S, Wang S, Jiang L, Xiao X, Le S, Chen S, Chen X, Ye P, Xia J. Ncf1 knockout in smooth muscle cells exacerbates angiotensin II-induced aortic aneurysm and dissection by activating the STING pathway. Cardiovasc Res 2024; 120:1081-1096. [PMID: 38639325 PMCID: PMC11288755 DOI: 10.1093/cvr/cvae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 04/20/2024] Open
Abstract
AIMS Aortic aneurysm and dissection (AAD) is caused by the progressive loss of aortic smooth muscle cells (SMCs) and is associated with a high mortality rate. Identifying the mechanisms underlying SMC apoptosis is crucial for preventing AAD. Neutrophil cytoplasmic factor 1 (Ncf1) is essential in reactive oxygen species production and SMC apoptosis; Ncf1 absence leads to autoimmune diseases and chronic inflammation. Here, the role of Ncf1 in angiotensin II (Ang II)-induced AAD was investigated. METHODS AND RESULTS Ncf1 expression increased in injured SMCs. Bioinformatic analysis identified Ncf1 as a mediator of AAD-associated SMC damage. Ncf1 expression is positively correlated with DNA replication and repair in SMCs of AAD aortas. AAD incidence increased in Ang II-challenged Sm22CreNcf1fl mice. Transcriptomics showed that Ncf1 knockout activated the stimulator of interferon genes (STING) and cell death pathways. The effects of Ncf1 on SMC death and the STING pathway in vitro were examined. Ncf1 regulated the hydrogen peroxide-mediated activation of the STING pathway and inhibited SMC apoptosis. Mechanistically, Ncf1 knockout promoted the ubiquitination of nuclear factor erythroid 2-related factor 2 (NRF2), thereby inhibiting the negative regulatory effect of NRF2 on the stability of STING mRNA and ultimately promoting STING expression. Additionally, the pharmacological inhibition of STING activation prevented AAD progression. CONCLUSION Ncf1 deficiency in SMCs exacerbated Ang II-induced AAD by promoting NRF2 ubiquitination and degradation and activating the STING pathway. These data suggest that Ncf1 may be a potential therapeutic target for AAD treatment.
Collapse
MESH Headings
- Animals
- Angiotensin II
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Aortic Dissection/chemically induced
- Aortic Dissection/prevention & control
- Signal Transduction
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Apoptosis
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Disease Models, Animal
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice, Knockout
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/pathology
- Aortic Aneurysm/genetics
- Aortic Aneurysm/chemically induced
- Aortic Aneurysm/prevention & control
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/deficiency
- Cells, Cultured
- Mice, Inbred C57BL
- Male
- Ubiquitination
- NADPH Oxidases/metabolism
- NADPH Oxidases/genetics
- Humans
- Mice
Collapse
Affiliation(s)
- Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Peiwen Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shilin Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xiaoyue Xiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Sheng Le
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Central Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinzhong Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ping Ye
- Department of Cardiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, ShengLi Street 26, Wuhan 430014, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
2
|
Fan R, An X, Wang Y, Zhang J, Liu S, Bai J, Li J, Lin Q, Xie Y, Xia Y, Liao J. Severe hypertriglyceridemia caused by Gpihbp1 deficiency facilitates vascular remodeling through increasing endothelial activation and oxidative stress. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159330. [PMID: 37172802 DOI: 10.1016/j.bbalip.2023.159330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerosis. However, its impact on non-atherosclerotic cardiovascular diseases remains largely unknown. Glycosylphosphatidylinositol anchored high-density lipoprotein binding protein 1 (GPIHBP1) is essential for the hydrolysis of circulating triglycerides and loss of functional GPIHBP1 causes severe HTG. In this study, we used Gpihbp1 knockout (GKO) mice to investigate the potential effects of HTG on non-atherosclerotic vascular remodeling. We compared the aortic morphology and gene expressions between three-month-old and ten-month-old GKO mice and their age-matched wild-type controls. We also conducted similar comparisons between GKO mice and wild-type controls in an angiotensin II (AngII)-induced vascular remodeling model. Our data showed that the intima-media wall of ten-month-old GKO mice but not three-month-olds was significantly thickened compared to wild-type controls. Moreover, ten-month-old GKO mice but not three-month-olds had increased aortic macrophage infiltration and perivascular fibrosis, along with increased endothelial activation and oxidative stress. Similarly, the AngII-induced vascular remodeling, as well as endothelial activation and oxidative stress, were also exacerbated in the GKO mice compared to wild-type controls. In conclusion, we demonstrated that severe HTG caused by Gpihbp1 deficiency could facilitate the onset and progression of non-atherosclerotic vascular remodeling through endothelial activation and oxidative stress in mice.
Collapse
Affiliation(s)
- Rui Fan
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Yao Wang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Jinjin Zhang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Shuang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116004, PR China
| | - Jie Bai
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116004, PR China
| | - Jiatian Li
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Qiuyue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Yunpeng Xie
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Yunlong Xia
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China.
| | - Jiawei Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China.
| |
Collapse
|
3
|
Jeong SJ, Oh GT. Unbalanced Redox With Autophagy in Cardiovascular Disease. J Lipid Atheroscler 2023; 12:132-151. [PMID: 37265853 PMCID: PMC10232220 DOI: 10.12997/jla.2023.12.2.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 06/03/2023] Open
Abstract
Precise redox balance is essential for the optimum health and physiological function of the human body. Furthermore, an unbalanced redox state is widely believed to be part of numerous diseases, ultimately resulting in death. In this review, we discuss the relationship between redox balance and cardiovascular disease (CVD). In various animal models, excessive oxidative stress has been associated with increased atherosclerotic plaque formation, which is linked to the inflammation status of several cell types. However, various antioxidants can defend against reactive oxidative stress, which is associated with an increased risk of CVD and mortality. The different cardiovascular effects of these antioxidants are presumably due to alterations in the multiple pathways that have been mechanistically linked to accelerated atherosclerotic plaque formation, macrophage activation, and endothelial dysfunction in animal models of CVD, as well as in in vitro cell culture systems. Autophagy is a regulated cell survival mechanism that removes dysfunctional or damaged cellular organelles and recycles the nutrients for the generation of energy. Furthermore, in response to atherogenic stress, such as the generation of reactive oxygen species, oxidized lipids, and inflammatory signaling between cells, autophagy protects against plaque formation. In this review, we characterize the broad spectrum of oxidative stress that influences CVD, summarize the role of autophagy in the content of redox balance-associated pathways in atherosclerosis, and discuss potential therapeutic approaches to target CVD by stimulating autophagy.
Collapse
Affiliation(s)
- Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
4
|
Lowis C, Ramara Winaya A, Kumari P, Rivera CF, Vlahos J, Hermantara R, Pratama MY, Ramkhelawon B. Mechanosignals in abdominal aortic aneurysms. Front Cardiovasc Med 2023; 9:1021934. [PMID: 36698932 PMCID: PMC9868277 DOI: 10.3389/fcvm.2022.1021934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023] Open
Abstract
Cumulative evidence has shown that mechanical and frictional forces exert distinct effects in the multi-cellular aortic layers and play a significant role in the development of abdominal aortic aneurysms (AAA). These mechanical cues collectively trigger signaling cascades relying on mechanosensory cellular hubs that regulate vascular remodeling programs leading to the exaggerated degradation of the extracellular matrix (ECM), culminating in lethal aortic rupture. In this review, we provide an update and summarize the current understanding of the mechanotransduction networks in different cell types during AAA development. We focus on different mechanosensors and stressors that accumulate in the AAA sac and the mechanotransduction cascades that contribute to inflammation, oxidative stress, remodeling, and ECM degradation. We provide perspectives on manipulating this mechano-machinery as a new direction for future research in AAA.
Collapse
Affiliation(s)
- Christiana Lowis
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Biomedicine, Indonesia International Institute for Life-Sciences, Jakarta, Indonesia
| | - Aurellia Ramara Winaya
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Biomedicine, Indonesia International Institute for Life-Sciences, Jakarta, Indonesia
| | - Puja Kumari
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - Cristobal F. Rivera
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - John Vlahos
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - Rio Hermantara
- Department of Biomedicine, Indonesia International Institute for Life-Sciences, Jakarta, Indonesia
| | - Muhammad Yogi Pratama
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - Bhama Ramkhelawon
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|
5
|
NADPH Oxidases in Aortic Aneurysms. Antioxidants (Basel) 2022; 11:antiox11091830. [PMID: 36139902 PMCID: PMC9495752 DOI: 10.3390/antiox11091830] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a progressive dilation of the infrarenal aorta and are characterized by inflammatory cell infiltration, smooth muscle cell migration and proliferation, and degradation of the extracellular matrix. Oxidative stress and the production of reactive oxygen species (ROS) have been shown to play roles in inflammatory cell infiltration, and smooth muscle cell migration and apoptosis in AAAs. In this review, we discuss the principles of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase/NOX) signaling and activation. We also discuss the effects of some of the major mediators of NOX signaling in AAAs. Separately, we also discuss the influence of genetic or pharmacologic inhibitors of NADPH oxidases on experimental pre-clinical AAAs. Experimental evidence suggests that NADPH oxidases may be a promising future therapeutic target for developing pharmacologic treatment strategies for halting AAA progression or rupture prevention in the management of clinical AAAs.
Collapse
|
6
|
Calpain-mediated proteolytic production of free amino acids in vascular endothelial cells augments obesity-induced hepatic steatosis. J Biol Chem 2022; 298:101953. [PMID: 35447117 PMCID: PMC9110893 DOI: 10.1016/j.jbc.2022.101953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 10/25/2022] Open
Abstract
Free amino acids that accumulate in the plasma of diabetes and obesity patients influence lipid metabolism and protein synthesis in the liver. The stress-inducible intracellular protease calpain proteolyzes various substrates in vascular endothelial cells (ECs), although its contribution to the supply of free amino acids in the liver microenvironment remains enigmatic. In the present study, we showed that calpains are associated with free amino acid production in cultured ECs. Furthermore, conditioned media derived from calpain-activated ECs facilitated the phosphorylation of ribosomal protein S6 kinase (S6K) and de novo lipogenesis in hepatocytes, which were abolished by the amino acid transporter inhibitor, JPH203, and the mTORC1 inhibitor, rapamycin. Meanwhile, calpain-overexpressing capillary-like ECs were observed in the livers of high-fat diet-fed mice. Conditional knockout of EC/hematopoietic Capns1, which encodes a calpain regulatory subunit, diminished levels of branched chain amino acids in the hepatic microenvironment without altering plasma amino acid levels. Concomitantly, conditional knockout of Capns1 mitigated hepatic steatosis without normalizing body weight and the plasma lipoprotein profile in an amino acid transporter-dependent manner. Mice with targeted Capns1 knockout exhibited reduced phosphorylation of S6K and maturation of lipid homeostasis transcription factor SREBP1 in hepatocytes. Finally, we show that bone marrow transplantation negated the contribution of hematopoietic calpain systems; therefore, calpains are likely responsible for the observed phenotypes of ECs. We conclude that overactivation of calpain systems may be responsible for the production of free amino acid in ECs, which may be sufficient to potentiate S6K/SREBP1-induced lipogenesis in surrounding hepatocytes.
Collapse
|
7
|
Rysz J, Gluba-Brzózka A, Rokicki R, Franczyk B. Oxidative Stress-Related Susceptibility to Aneurysm in Marfan's Syndrome. Biomedicines 2021; 9:biomedicines9091171. [PMID: 34572356 PMCID: PMC8467736 DOI: 10.3390/biomedicines9091171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/01/2023] Open
Abstract
The involvement of highly reactive oxygen-derived free radicals (ROS) in the genesis and progression of various cardiovascular diseases, including arrhythmias, aortic dilatation, aortic dissection, left ventricular hypertrophy, coronary arterial disease and congestive heart failure, is well-established. It has also been suggested that ROS may play a role in aortic aneurysm formation in patients with Marfan's syndrome (MFS). This syndrome is a multisystem disorder with manifestations including cardiovascular, skeletal, pulmonary and ocular systems, however, aortic aneurysm and dissection are still the most life-threatening manifestations of MFS. In this review, we will concentrate on the impact of oxidative stress on aneurysm formation in patients with MFS as well as on possible beneficial effects of some agents with antioxidant properties. Mechanisms responsible for oxidative stress in the MFS model involve a decreased expression of superoxide dismutase (SOD) as well as enhanced expression of NAD(P)H oxidase, inducible nitric oxide synthase (iNOS) and xanthine oxidase. The results of studies have indicated that reactive oxygen species may be involved in smooth muscle cell phenotype switching and apoptosis as well as matrix metalloproteinase activation, resulting in extracellular matrix (ECM) remodeling. The progression of the thoracic aortic aneurysm was suggested to be associated with markedly impaired aortic contractile function and decreased nitric oxide-mediated endothelial-dependent relaxation.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
- Correspondence: or ; Tel.: +48-42-639-3750
| | - Robert Rokicki
- Clinic of Hand Surgery, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| |
Collapse
|
8
|
Liu X, Guo Y, Yang Y, Qi C, Xiong T, Chen Y, Wu G, Zeng C, Wang D. DRD4 (Dopamine D4 Receptor) Mitigate Abdominal Aortic Aneurysm via Decreasing P38 MAPK (mitogen-activated protein kinase)/NOX4 (NADPH Oxidase 4) Axis-Associated Oxidative Stress. Hypertension 2021; 78:294-307. [PMID: 34176291 DOI: 10.1161/hypertensionaha.120.16738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xuesong Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China (X.L., C.Q., T.X.)
| | - Yansong Guo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fuzhou, China (Y.G.)
| | - Yuxue Yang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), China (Y.Y., D.W.)
| | - Chunlei Qi
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China (X.L., C.Q., T.X.)
| | - Ting Xiong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China (X.L., C.Q., T.X.)
| | - Yue Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China (Y.C., G.W., C.Z.)
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China (Y.C., G.W., C.Z.)
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China (Y.C., G.W., C.Z.)
| | - Daxin Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), China (Y.Y., D.W.)
| |
Collapse
|
9
|
Gurung R, Choong AM, Woo CC, Foo R, Sorokin V. Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm. Int J Mol Sci 2020; 21:ijms21176334. [PMID: 32878347 PMCID: PMC7504666 DOI: 10.3390/ijms21176334] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) refers to the localized dilatation of the infra-renal aorta, in which the diameter exceeds 3.0 cm. Loss of vascular smooth muscle cells, degradation of the extracellular matrix (ECM), vascular inflammation, and oxidative stress are hallmarks of AAA pathogenesis and contribute to the progressive thinning of the media and adventitia of the aortic wall. With increasing AAA diameter, and left untreated, aortic rupture ensues with high mortality. Collective evidence of recent genetic and epigenetic studies has shown that phenotypic modulation of smooth muscle cells (SMCs) towards dedifferentiation and proliferative state, which associate with the ECM remodeling of the vascular wall and accompanied with increased cell senescence and inflammation, is seen in in vitro and in vivo models of the disease. This review critically analyses existing publications on the genetic and epigenetic mechanisms implicated in the complex role of SMCs within the aortic wall in AAA formation and reflects the importance of SMCs plasticity in AAA formation. Although evidence from the wide variety of mouse models is convincing, how this knowledge is applied to human biology needs to be addressed urgently leveraging modern in vitro and in vivo experimental technology.
Collapse
Affiliation(s)
- Rijan Gurung
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Andrew Mark Choong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
| | - Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|
10
|
Maqbool A, Watt NT, Haywood N, Viswambharan H, Skromna A, Makava N, Visnagri A, Shawer HM, Bridge K, Muminov SK, Griffin K, Beech DJ, Wheatcroft SB, Porter KE, Simmons KJ, Sukumar P, Shah AM, Cubbon RM, Kearney MT, Yuldasheva NY. Divergent effects of genetic and pharmacological inhibition of Nox2 NADPH oxidase on insulin resistance-related vascular damage. Am J Physiol Cell Physiol 2020; 319:C64-C74. [PMID: 32401607 PMCID: PMC7468885 DOI: 10.1152/ajpcell.00389.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance leads to excessive endothelial cell (EC) superoxide generation and accelerated atherosclerosis. The principal source of superoxide from the insulin-resistant endothelium is the Nox2 isoform of NADPH oxidase. Here we examine the therapeutic potential of Nox2 inhibition on superoxide generation in saphenous vein ECs (SVECs) from patients with advanced atherosclerosis and type 2 diabetes and on vascular function, vascular damage, and lipid deposition in apolipoprotein E-deficient (ApoE−/−) mice with EC-specific insulin resistance (ESMIRO). To examine the effect of genetic inhibition of Nox2, ESMIRO mice deficient in ApoE−/− and Nox2 (ESMIRO/ApoE−/−/Nox2−/y) were generated and compared with ESMIRO/ApoE−/−/Nox2+/y littermates. To examine the effect of pharmacological inhibition of Nox2, we administered gp91dstat or scrambled peptide to ESMIRO/ApoE−/− mice. SVECs from diabetic patients had increased expression of Nox2 protein with concomitant increase in superoxide generation, which could be reduced by the Nox2 inhibitor gp91dstat. After 12 wk Western diet, ESMIRO/ApoE−/−/Nox2−/y mice had reduced EC superoxide generation and greater aortic relaxation to acetylcholine. ESMIRO/ApoE−/−/Nox2−/y mice developed more lipid deposition in the thoraco-abdominal aorta with multiple foci of elastin fragmentation at the level of the aortic sinus and greater expression of intercellular adhesion molecule-1 (ICAM-1). Gp91dstat reduced EC superoxide and lipid deposition in the thoraco-abdominal aorta of ESMIRO/ApoE−/− mice without causing elastin fragmentation or increased ICAM-1 expression. These results demonstrate that insulin resistance is characterized by increased Nox2-derived vascular superoxide. Complete deletion of Nox2 in mice with EC insulin resistance exacerbates, whereas partial pharmacological Nox2 inhibition protects against, insulin resistance-induced vascular damage.
Collapse
Affiliation(s)
- Azhar Maqbool
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Nicole T Watt
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Natalie Haywood
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Hema Viswambharan
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Anna Skromna
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Natalia Makava
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Asjad Visnagri
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Heba M Shawer
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Bridge
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Kathryn Griffin
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Karen E Porter
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katie J Simmons
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Piruthivi Sukumar
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Ajay M Shah
- British Heart Foundation, Centre of Research Excellence, King's College London, London, United Kingdom
| | - Richard M Cubbon
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Nadira Y Yuldasheva
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Li Z, Kong W. Cellular signaling in Abdominal Aortic Aneurysm. Cell Signal 2020; 70:109575. [PMID: 32088371 DOI: 10.1016/j.cellsig.2020.109575] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are highly lethal cardiovascular diseases without effective medications. However, the molecular and signaling mechanisms remain unclear. A series of pathological cellular processes have been shown to contribute to AAA formation, including vascular extracellular matrix remodeling, inflammatory and immune responses, oxidative stress, and dysfunction of vascular smooth muscle cells. Each cellular process involves complex cellular signaling, such as NF-κB, MAPK, TGFβ, Notch and inflammasome signaling. In this review, we discuss how cellular signaling networks function in various cellular processes during the pathogenesis and progression of AAA. Understanding the interaction of cellular signaling networks with AAA pathogenesis as well as the crosstalk of different signaling pathways is essential for the development of novel therapeutic approaches to and personalized treatments of AAA diseases.
Collapse
Affiliation(s)
- Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
12
|
The role of IL-1β in aortic aneurysm. Clin Chim Acta 2020; 504:7-14. [PMID: 31945339 DOI: 10.1016/j.cca.2020.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
Interleukin-1β (IL-1β) is a vital cytokine that plays an important role in regulating immune responses to infectious challenges and sterile insults. In addition, two endogenous inhibitors of functional receptor binding, IL-1 receptor antagonist (IL-1Ra), complete the family. To gain biological activity, IL-1β requires processing by the protease caspase-1 and activation of inflammasomes. Numerous clinical association studies and experimental approaches have implicated members of the IL-1 family, their receptors, or components of the processing machinery in the underlying processes of cardiovascular diseases. Here, we summarize the current state of knowledge regarding the pro-inflammatory and disease-modulating role of the IL-1 family in aneurysm. We discuss clinical evidence, signalling pathway, and mechanism of action and last, lend a perspective on currently developing therapeutic strategies involving IL-1β in aneurysm.
Collapse
|
13
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Abstract
Aortic aneurysms are a common vascular disease in Western populations that can involve virtually any portion of the aorta. Abdominal aortic aneurysms are much more common than thoracic aortic aneurysms and combined they account for >25 000 deaths in the United States annually. Although thoracic and abdominal aortic aneurysms share some common characteristics, including the gross anatomic appearance, alterations in extracellular matrix, and loss of smooth muscle cells, they are distinct diseases. In recent years, advances in genetic analysis, robust molecular tools, and increased availability of animal models have greatly enhanced our knowledge of the pathophysiology of aortic aneurysms. This review examines the various proposed cellular mechanisms responsible for aortic aneurysm formation and identifies opportunities for future studies.
Collapse
Affiliation(s)
- Raymundo Alain Quintana
- From the Division of Cardiology, Department of Medicine (R.A.Q., W.R.T.), Emory University School of Medicine, Atlanta, GA
| | - W Robert Taylor
- From the Division of Cardiology, Department of Medicine (R.A.Q., W.R.T.), Emory University School of Medicine, Atlanta, GA.,Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology (W.R.T.), Emory University School of Medicine, Atlanta, GA.,Division of Cardiology, Atlanta VA Medical Center, Decatur, GA (W.R.T.)
| |
Collapse
|
15
|
NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2019; 17:170-194. [PMID: 31591535 DOI: 10.1038/s41569-019-0260-8] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|
16
|
Petsophonsakul P, Furmanik M, Forsythe R, Dweck M, Schurink GW, Natour E, Reutelingsperger C, Jacobs M, Mees B, Schurgers L. Role of Vascular Smooth Muscle Cell Phenotypic Switching and Calcification in Aortic Aneurysm Formation. Arterioscler Thromb Vasc Biol 2019; 39:1351-1368. [PMID: 31144989 DOI: 10.1161/atvbaha.119.312787] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aortic aneurysm is a vascular disease whereby the ECM (extracellular matrix) of a blood vessel degenerates, leading to dilation and eventually vessel wall rupture. Recently, it was shown that calcification of the vessel wall is involved in both the initiation and progression of aneurysms. Changes in aortic wall structure that lead to aneurysm formation and vascular calcification are actively mediated by vascular smooth muscle cells. Vascular smooth muscle cells in a healthy vessel wall are termed contractile as they maintain vascular tone and remain quiescent. However, in pathological conditions they can dedifferentiate into a synthetic phenotype, whereby they secrete extracellular vesicles, proliferate, and migrate to repair injury. This process is called phenotypic switching and is often the first step in vascular pathology. Additionally, healthy vascular smooth muscle cells synthesize VKDPs (vitamin K-dependent proteins), which are involved in inhibition of vascular calcification. The metabolism of these proteins is known to be disrupted in vascular pathologies. In this review, we summarize the current literature on vascular smooth muscle cell phenotypic switching and vascular calcification in relation to aneurysm. Moreover, we address the role of vitamin K and VKDPs that are involved in vascular calcification and aneurysm. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Ploingarm Petsophonsakul
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (P.P., M.F., C.R., L.S.)
| | - Malgorzata Furmanik
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (P.P., M.F., C.R., L.S.)
| | - Rachael Forsythe
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (R.F., M.D.)
| | - Marc Dweck
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (R.F., M.D.)
| | - Geert Willem Schurink
- Department of Vascular Surgery (G.W.S., M.J., B.M.), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Ehsan Natour
- Department of Cardiovascular Surgery (E.N.), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands.,European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands (E.N., M.J., B.M.)
| | - Chris Reutelingsperger
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (P.P., M.F., C.R., L.S.)
| | - Michael Jacobs
- Department of Vascular Surgery (G.W.S., M.J., B.M.), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands.,European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands (E.N., M.J., B.M.)
| | - Barend Mees
- Department of Vascular Surgery (G.W.S., M.J., B.M.), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands.,European Vascular Center Aachen-Maastricht, Maastricht, the Netherlands (E.N., M.J., B.M.)
| | - Leon Schurgers
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (P.P., M.F., C.R., L.S.)
| |
Collapse
|
17
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 682] [Impact Index Per Article: 97.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
18
|
Zhang TH, Chi DC, Jiang WL, Qiang S. Marfan syndrome combined with huge abdominal aortic aneurysm size of 20 × 11 cm: A case report of surgical approach. Medicine (Baltimore) 2018; 97:e09398. [PMID: 30212924 PMCID: PMC6156054 DOI: 10.1097/md.0000000000009398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Abdominal aortic aneurysm is one of the most common aneurisms. Patients presenting with secondary back pain should be given prompt medical attention. Herein, a rare case of a giant abdominal aortic aneurysm that was successfully treated with surgery is described. PATIENT CONCERNS A 33-year-old Chinese male suffered from Marfan syndrome combined with giant abdominal aortic aneurysm, and presented with back pain, fever, nausea, vomiting, abdominal distention, and constipation. After undergoing numerous tests, the patient underwent an abdominal aortic aneurysm resection coupled with artificial graft bypass. The patient's recovery was smooth, and he was discharged 14 days after the operation in stable condition. DIAGNOSIS Abdominal aortic aneurysm. INTERVENTIONS The patient underwent a surgery involving mass resection and artificial graft bypass. OUTCOME The patient was discharged 14 days after surgery in stable condition. LESSONS Giant abdominal aortic aneurysms are rarely seen, and aneurysmectomy associated with prosthetic vascular graft repair is an effective and standard treatment for such aneurysms.
Collapse
Affiliation(s)
| | | | | | - Shuai Qiang
- Department of Plastic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
19
|
Isoda K, Akita K, Kitamura K, Sato-Okabayashi Y, Kadoguchi T, Isobe S, Ohtomo F, Sano M, Shimada K, Iwakura Y, Daida H. Inhibition of interleukin-1 suppresses angiotensin II-induced aortic inflammation and aneurysm formation. Int J Cardiol 2018; 270:221-227. [PMID: 29884291 DOI: 10.1016/j.ijcard.2018.05.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Angiotensin II (Ang II) activates components of the inflammatory cascade, which promotes hypertension and development of abdominal aortic aneurysm (AAA). This study aimed to elucidate the effects of an IL-1 receptor antagonist (IL-1Ra) and an anti-IL-1β antibody (01BSUR) on Ang II-induced AAA. METHODS AND RESULTS Male wild-type (WT) and IL-1Ra-deficient (IL-1Ra-/-) mice were infused with Ang II (1000 ng/kg/min) using subcutaneous osmotic pumps for 28 days. Fourteen days post-infusion, both systolic blood pressure (SBP) (Ang II-treated IL-1Ra-/-:149 ± 2 vs. Ang II-treated WT:126 ± 3 mm Hg, p < 0.001) and abdominal aortic width (0.94 ± 0.09 vs. 0.49 ± 0.03 mm, p < 0.001) were significantly higher in IL-1Ra-/- mice than in WT mice. Because 28-day infusion with Ang II in IL-1Ra-/- mice significantly increased the occurrence of fatal aortic rupture (89% vs. 6%, p < 0.0001), both types of mice were infused with Ang II for only 14 days, and histological analyses were performed at 28 days. Interestingly, AAA increased more significantly in IL-1Ra-/- mice than in WT mice (p < 0.001), although SBP did not differ at 28 days in IL-1Ra-/- and WT mice (117 ± 4 vs. 115 ± 3 mm Hg, p = 0.71 (after cessation of Ang II infusion)). Histological analyses showed numerous inflammatory cells around the abdominal aorta in IL-1Ra-/- mice, but not in WT mice. Finally, compared with IgG2a treatment, treatment with 01BSUR decreased Ang II-induced AAA in IL-1Ra-/- mice. CONCLUSIONS The present study demonstrates that inhibition of IL-1β significantly suppresses AAA formation after Ang II infusion, suggesting that suppression of IL-1β may provide an additional strategy to protect against AAA in hypertensive patients.
Collapse
Affiliation(s)
- Kikuo Isoda
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Koji Akita
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kenichi Kitamura
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yayoi Sato-Okabayashi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomoyasu Kadoguchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Sarasa Isobe
- Division of Cardiology, Keio University, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Fumie Ohtomo
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Motoaki Sano
- Division of Cardiology, Keio University, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Kazunori Shimada
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
20
|
Seto SW, Chang D, Kiat H, Wang N, Bensoussan A. Chinese Herbal Medicine as a Potential Treatment of Abdominal Aortic Aneurysm. Front Cardiovasc Med 2018; 5:33. [PMID: 29732374 PMCID: PMC5919947 DOI: 10.3389/fcvm.2018.00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an irreversible condition where the abdominal aorta is dilated leading to potentially fatal consequence of aortic rupture. Multiple mechanisms are involved in the development and progression of AAA, including chronic inflammation, oxidative stress, vascular smooth muscle (VSMC) apoptosis, immune cell infiltration and extracellular matrix (ECM) degradation. Currently surgical therapies, including minimally invasive endovascular aneurysm repair (EVAR), are the only viable interventions for AAAs. However, these treatments are not appropriate for the majority of AAAs, which measure <50 mm. Substantial effort has been invested to identify and develop pharmaceutical treatments such as statins and doxycycline for this potentially lethal condition but these interventions failed to offer a cure or to retard the progression of AAA. Chinese herbal medicine (CHM) has been used for the management of cardiovascular diseases for thousands of years in China and other Asian countries. The unique multi-component and multi-target property of CHMs makes it a potentially ideal therapy for multifactorial diseases such as AAA. In this review, we review the current scientific evidence to support the use of CHMs for the treatment of AAA. Mechanisms of action underlying the effects of CHMs on AAA are also discussed.
Collapse
Affiliation(s)
- Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Hosen Kiat
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,School of Medicine, Western Sydney University, Penrith, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Ning Wang
- NICM Health Research Institute, Western Sydney University, Penrith, Australia.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Alan Bensoussan
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| |
Collapse
|
21
|
Abstract
Reactive oxygen species (ROS) are well known for their role in mediating both physiological and pathophysiological signal transduction. Enzymes and subcellular compartments that typically produce ROS are associated with metabolic regulation, and diseases associated with metabolic dysfunction may be influenced by changes in redox balance. In this review, we summarize the current literature surrounding ROS and their role in metabolic and inflammatory regulation, focusing on ROS signal transduction and its relationship to disease progression. In particular, we examine ROS production in compartments such as the cytoplasm, mitochondria, peroxisome, and endoplasmic reticulum and discuss how ROS influence metabolic processes such as proteasome function, autophagy, and general inflammatory signaling. We also summarize and highlight the role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes mellitus, and stroke. In order to develop therapies that target oxidative signaling, it is vital to understand the balance ROS signaling plays in both physiology and pathophysiology, and how manipulation of this balance and the identity of the ROS may influence cellular and tissue homeostasis. An increased understanding of specific sources of ROS production and an appreciation for how ROS influence cellular metabolism may help guide us in the effort to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Daniel S Kikuchi
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Marina S Hernandes
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Qian Xu
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Kathy K Griendling
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA.
| |
Collapse
|
22
|
Tanaka LY, Laurindo FRM. Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation. Free Radic Biol Med 2017; 109:11-21. [PMID: 28109889 DOI: 10.1016/j.freeradbiomed.2017.01.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/13/2017] [Accepted: 01/15/2017] [Indexed: 11/17/2022]
Abstract
Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho)physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases.
Collapse
Affiliation(s)
- Leonardo Y Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Enéas Carvalho Aguiar, 44, Annex II, 9th Floor, São Paulo CEP 05403-000, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Enéas Carvalho Aguiar, 44, Annex II, 9th Floor, São Paulo CEP 05403-000, Brazil.
| |
Collapse
|
23
|
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disease associated with high morbidity, and high mortality in the event of aortic rupture. Major advances in open surgical and endovascular repair of AAA have been achieved during the past 2 decades. However, drug-based therapies are still lacking, highlighting a real need for better understanding of the molecular and cellular mechanisms involved in AAA formation and progression. The main pathological features of AAA include extracellular matrix remodelling associated with degeneration and loss of vascular smooth muscle cells and accumulation and activation of inflammatory cells. The inflammatory process has a crucial role in AAA and substantially influences many determinants of aortic wall remodelling. In this Review, we focus specifically on the involvement of monocytes and macrophages, summarizing current knowledge on the roles, origin, and functions of these cells in AAA development and its complications. Furthermore, we show and propose that distinct monocyte and macrophage subsets have critical and differential roles in initiation, progression, and healing of the aneurysmal process. On the basis of experimental and clinical studies, we review potential translational applications to detect, assess, and image macrophage subsets in AAA, and discuss the relevance of these applications for clinical practice.
Collapse
|
24
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
25
|
TRPM8 downregulation by angiotensin II in vascular smooth muscle cells is involved in hypertension. Mol Med Rep 2017; 15:1900-1908. [PMID: 28138709 DOI: 10.3892/mmr.2017.6158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/08/2016] [Indexed: 11/05/2022] Open
Abstract
Angiotensin II (Ang II)-induced injury of vascular smooth muscle cells (VSMCs) serves an important role in hypertension and other cardiovascular disorders. Transient receptor potential melastatin 8 (TRPM8) is a thermally‑regulated Ca2+‑permeable channel that is activated by reduced body temperature. Although several recent studies have revealed the regulatory effect of TRPM8 in vascular tone and hypertension, the precise role of TRPM8 in dysfunction of vascular smooth muscle cells (VSMCs) induced by Ang II remains elusive. In the present study, the possible function of TRPM8 in Ang II‑induced VSMCs malfunction in vivo and in vitro was investigated. In the aortae from rats that had undergone a two‑kidney one‑clip operation, which is a widely‑used renovascular hypertension model, the mRNA and protein levels of TRPM8 were reduced. In addition, exogenous Ang II treatment decreased TRPM8 mRNA and protein expression levels in primary cultures of rat VSMCs. TRPM8 activation by menthol, a pharmacological agonist, in VSMCs, significantly attenuated the Ang II‑induced increase in reactive oxygen species and H2O2 production. In addition, TRPM8 activation reduced the Ang II‑induced upregulation of NADPH oxidase (NOX) 1 and NOX4 in VSMCs. Furthermore, TRPM8 activation relieved the Ang II‑induced activation of ras homolog gene family, member A‑rho associated protein kinase 2 and janus kinase 2 signaling pathways in VSMCs. In conclusion, the results presented in the current study indicated that TRPM8 downregulation by Ang II in VSMCs may be involved in hypertension.
Collapse
|
26
|
Miyazaki T, Tonami K, Hata S, Aiuchi T, Ohnishi K, Lei XF, Kim-Kaneyama JR, Takeya M, Itabe H, Sorimachi H, Kurihara H, Miyazaki A. Calpain-6 confers atherogenicity to macrophages by dysregulating pre-mRNA splicing. J Clin Invest 2016; 126:3417-32. [PMID: 27525442 DOI: 10.1172/jci85880] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 07/07/2016] [Indexed: 01/10/2023] Open
Abstract
Macrophages contribute to the development of atherosclerosis through pinocytotic deposition of native LDL-derived cholesterol in macrophages in the vascular wall. Inhibiting macrophage-mediated lipid deposition may have protective effects in atheroprone vasculature, and identifying mechanisms that potentiate this process may inform potential therapeutic interventions for atherosclerosis. Here, we report that dysregulation of exon junction complex-driven (EJC-driven) mRNA splicing confers hyperpinocytosis to macrophages during atherogenesis. Mechanistically, we determined that inflammatory cytokines induce an unconventional nonproteolytic calpain, calpain-6 (CAPN6), which associates with the essential EJC-loading factor CWC22 in the cytoplasm. This association disturbs the nuclear localization of CWC22, thereby suppressing the splicing of target genes, including those related to Rac1 signaling. CAPN6 deficiency in LDL receptor-deficient mice restored CWC22/EJC/Rac1 signaling, reduced pinocytotic deposition of native LDL in macrophages, and attenuated macrophage recruitment into the lesions, generating an atheroprotective phenotype in the aorta. In macrophages, the induction of CAPN6 in the atheroma interior limited macrophage movements, resulting in a decline in cell clearance from the lesions. Consistent with this finding, we observed that myeloid CAPN6 contributed to atherogenesis in a murine model of bone marrow transplantation. Furthermore, macrophages from advanced human atheromas exhibited increased CAPN6 induction and impaired CWC22 nuclear localization. Together, these results indicate that CAPN6 promotes atherogenicity in inflamed macrophages by disturbing CWC22/EJC systems.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Abdominal aortic aneurysm (AAA) is a pathological condition of permanent dilation that portends the potentially fatal consequence of aortic rupture. This review emphasizes recent advances in mechanistic insight into aneurysm pathogenesis and potential pharmacologic therapies that are on the horizon for AAAs. RECENT FINDINGS An increasing body of evidence demonstrates that genetic factors, including 3p12.3, DAB2IP, LDLr, LRP1, matrix metalloproteinase (MMP)-3, TGFBR2, and SORT1 loci, are associated with AAA development. Current human studies and animal models have shown that many leukocytes and inflammatory mediators, such as IL-1, IL-17, TGF-β, and angiotensin II, are involved in the pathogenesis of AAAs. Leukocytic infiltration into aortic media leads to smooth muscle cell depletion, generation of reactive oxygen species, and extracellular matrix fragmentation. Preclinical investigations into pharmacological therapies for AAAs have provided intriguing insight into the roles of microRNAs in regulating many pathological pathways in AAA development. Several large clinical trials are ongoing, seeking to translate preclinical findings into therapeutic options. SUMMARY Recent studies have identified many potential mechanisms involved in AAA pathogenesis that provide insight into the development of a medical treatment for this disease.
Collapse
|
28
|
Kigawa Y, Miyazaki T, Lei XF, Kim-Kaneyama JR, Miyazaki A. Functional Heterogeneity of Nadph Oxidases in Atherosclerotic and Aneurysmal Diseases. J Atheroscler Thromb 2016; 24:1-13. [PMID: 27476665 PMCID: PMC5225127 DOI: 10.5551/jat.33431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
NADPH oxidases (NOX) are enzymes that catalyze the production of reactive oxygen species (ROS). Four species of NOX catalytic homologs (NOX1, NOX2, NOX4, and NOX5) are reportedly expressed in vascular tissues. The pro-atherogenic roles of NOX1, NOX2, and their organizer protein p47phox were manifested, and it was noted that the hydrogen peroxide-generating enzyme NOX4 possesses atheroprotective effects. Loss of NOX1 or p47phox appears to ameliorate murine aortic dissection and subsequent aneurysmal diseases; in contrast, the ablation of NOX2 exacerbates the aneurysmal diseases. It is possible that the loss of NOX2 activates inflammatory cascades in macrophages in the lesions. Roles of NOX5 in vascular functions are currently undetermined, owing to the absence of this enzyme in rodents and the limitation of the experimental procedure. Thus, it is possible that the NOX family of enzymes exhibits heterogeneity in the atherosclerotic diseases. In this aspect, subtype-selective NOX inhibitor may be promising when NOX systems serve as a molecular target for atherosclerotic and aneurysmal diseases.
Collapse
Affiliation(s)
- Yasuyoshi Kigawa
- Division of Endocrinology and Metabolism, Showa University Fujigaoka Hospital
| | | | | | | | | |
Collapse
|
29
|
Abstract
Abdominal aortic aneurysm (AAA) is a significant cause of mortality in older adults. A key mechanism implicated in AAA pathogenesis is inflammation and the associated production of reactive oxygen species (ROS) and oxidative stress. These have been suggested to promote degradation of the extracellular matrix (ECM) and vascular smooth muscle apoptosis. Experimental and human association studies suggest that ROS can be favourably modified to limit AAA formation and progression. In the present review, we discuss mechanisms potentially linking ROS to AAA pathogenesis and highlight potential treatment strategies targeting ROS. Currently, none of these strategies has been shown to be effective in clinical practice.
Collapse
|
30
|
Sharma AK, Salmon MD, Lu G, Su G, Pope NH, Smith JR, Weiss ML, Upchurch GR. Mesenchymal Stem Cells Attenuate NADPH Oxidase-Dependent High Mobility Group Box 1 Production and Inhibit Abdominal Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2016; 36:908-18. [PMID: 26988591 DOI: 10.1161/atvbaha.116.307373] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/23/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) formation is characterized by inflammation, smooth muscle activation, and matrix degradation. This study tests the hypothesis that macrophage-produced high mobility group box 1 (HMGB1) production is dependent on nicotinamide adenine dinucleotide phosphate oxidase (Nox2), which leads to increase in interleukin (IL)-17 production resulting in AAA formation and that treatment with human mesenchymal stem cells (MSCs) can attenuate this process thereby inhibiting AAA formation. APPROACH AND RESULTS Human aortic tissue demonstrated a significant increase in HMGB1 expression in AAA patients when compared with controls. An elastase-perfusion model of AAA demonstrated a significant increase in HMGB1 production in C57BL/6 (wild-type [WT]) mice, which was attenuated by MSC treatment. Furthermore, anti-HMGB1 antibody treatment of WT mice attenuated AAA formation, IL-17 production, and immune cell infiltration when compared with elastase-perfused WT mice on day 14. Elastase-perfused Nox2(-/y) mice demonstrated a significant attenuation of HMGB1 and IL-17 production, cellular infiltration, matrix metalloproteinase activity, and AAA formation when compared with WT mice on day 14. In vitro studies showed that elastase-treated macrophages from WT mice, but not from Nox2(-/y) mice, produced HMGB1, which was attenuated by MSC treatment. The production of macrophage-dependent HMGB1 involved Nox2 activation and superoxide anion production, which was mitigated by MSC treatment. CONCLUSIONS These results demonstrate that macrophage-produced HMGB1 leads to aortic inflammation and acts as a trigger for CD4(+) T-cell-produced IL-17 during AAA formation. HMGB1 release is dependent on Nox2 activation, which can be inhibited by MSCs leading to attenuation of proinflammatory cytokines, especially IL-17, and protection against AAA formation.
Collapse
Affiliation(s)
- Ashish K Sharma
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Morgan D Salmon
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Guanyi Lu
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Gang Su
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Nicolas H Pope
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Joseph R Smith
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Mark L Weiss
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Gilbert R Upchurch
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.).
| |
Collapse
|
31
|
Affiliation(s)
- Daniel N Meijles
- From the Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, PA
| | - Patrick J Pagano
- From the Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, PA.
| |
Collapse
|
32
|
Quesada IM, Lucero A, Amaya C, Meijles DN, Cifuentes ME, Pagano PJ, Castro C. Selective inactivation of NADPH oxidase 2 causes regression of vascularization and the size and stability of atherosclerotic plaques. Atherosclerosis 2015; 242:469-75. [PMID: 26298737 DOI: 10.1016/j.atherosclerosis.2015.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND A variety of NADPH oxidase (Nox) isoforms including Noxs 1, 2, 4 and 5 catalyze the formation of reactive oxygen species (ROS) in the vascular wall. The Nox2 isoform complex has arguably received the greatest attention in the progression of atherogenesis in animal models. Thus, in the current study we postulated that specific Nox2 oxidase inhibition could reverse or attenuate atherosclerosis in mice fed a high-fat diet. METHODS We evaluated the effect of isoform-selective Nox2 assembly inhibitor on the progression and vascularization of atheromatous plaques. Apolipoprotein E-deficient mice (ApoE-/-) were fed a high fat diet for two months and treated over 15 days with Nox2ds-tat or control sequence (scrambled); 10 mg/kg/day, i.p. Mice were sacrificed and superoxide production in arterial tissue was detected by cytochrome C reduction assay and dihydroethidium staining. Plaque development was evaluated and the angiogenic markers VEGF, HIF1-α and visfatin were quantified by real time qRT-PCR. MMP-9 protein release and gelatinolytic activity was determined as a marker for vascularization. RESULTS Nox2ds-tat inhibited Nox-derived superoxide determined by cytochrome C in carotid arteries (2.3 ± 0.1 vs 1.7 ± 0.1 O2(•-) nmol/min*mg protein; P < 0.01) and caused a significant regression in atherosclerotic plaques in aorta (66 ± 6 μm(2) vs 37 ± 1 μm(2); scrmb vs. Nox2ds-tat; P < 0.001). Increased VEGF, HIF-1α, MMP-9 and visfatin expression in arterial tissue in response to high-fat diet were significantly attenuated by Nox2ds-tat which in turn impaired both MMP-9 protein expression and activity. CONCLUSION Given these results, it is quite evident that selective Nox inhibitors can reverse vascular pathology arising with atherosclerosis.
Collapse
Affiliation(s)
- I M Quesada
- Vascular Biology Lab, Institute of Medicine and Experimental Biology of Cuyo (IMBECU) CONICET, School of Medical Sciences, National University of Cuyo, Mendoza, Argentina
| | - A Lucero
- Vascular Biology Lab, Institute of Medicine and Experimental Biology of Cuyo (IMBECU) CONICET, School of Medical Sciences, National University of Cuyo, Mendoza, Argentina
| | - C Amaya
- Cellular and Molecular Biology Lab, Institute of Histology and Embryology (IHEM) CONICET, Mendoza, Argentina
| | - D N Meijles
- Department of Pharmacology & Chemical Biology and Vascular Medicine Institute, 200 Lothrop Street, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - M E Cifuentes
- Department of Pharmacology & Chemical Biology and Vascular Medicine Institute, 200 Lothrop Street, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - P J Pagano
- Department of Pharmacology & Chemical Biology and Vascular Medicine Institute, 200 Lothrop Street, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - C Castro
- Vascular Biology Lab, Institute of Medicine and Experimental Biology of Cuyo (IMBECU) CONICET, School of Medical Sciences, National University of Cuyo, Mendoza, Argentina.
| |
Collapse
|
33
|
Dyer LA. Hypercysteinemia hypes up the inflammasome. J Mol Cell Cardiol 2015; 82:33-5. [PMID: 25758430 DOI: 10.1016/j.yjmcc.2015.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Laura A Dyer
- Department of Natural Sciences, Middle Georgia State College, Macon, GA 31206, USA.
| |
Collapse
|