1
|
De Luca G, Verburg A, Hof AV, ten Berg J, Kereiakes DJ, Coller BS, Gibson CM. Current and Future Roles of Glycoprotein IIb-IIIa Inhibitors in Primary Angioplasty for ST-Segment Elevation Myocardial Infarction. Biomedicines 2024; 12:2023. [PMID: 39335537 PMCID: PMC11428685 DOI: 10.3390/biomedicines12092023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Acute myocardial infarction still represents the major cause of mortality in high-income countries. Therefore, considerable efforts have been focused on the treatment of myocardial infarctions in the acute and long-term phase, with special attention being paid to reperfusion strategies and adjunctive antithrombotic therapies. In fact, despite the successful mechanical recanalization of the epicardial conduit, a substantial percentage of patients still experience poor myocardial reperfusion or acute/subacute in-stent thrombosis. Due the delayed onset of action of currently available oral antiplatelet therapies, glycoprotein (GP) IIb-IIIa inhibitors could be expected to improve clinical outcomes, especially when administrated in the early phase of the infarction, due to the larger platelet composition of fresh thrombi, the dynamic nature of early thrombi, and the larger amount of viable myocardium existing in the early, as compared to a delayed, phase. Considerable evidence has accumulated regarding the benefits from GP IIb-IIIa inhibitors on mortality, especially among high-risk patients and when administered as an upstream strategy. Therefore, based on currently available data, GP IIb-IIIa inhibitors can be considered when the drug can be administered within the first 3 h of symptom onset and among high-risk patients (e.g., those with advanced Killip class or an anterior myocardial infarction). Even though it is not universally accepted, in our opinion, this strategy should be implemented in a pre-hospital setting (in an ambulance) or as soon as possible when arriving at the hospital (at the Emergency Room or Coronary Care Unit, irrespective of whether they are in spoke or hub hospitals). A new, second-generation GP IIb-IIIa inhibitor (zalunfiban) appears to be highly suitable as a pre-hospital pharmacological facilitation strategy at the time of first medical contact due to its favourable features, including its simple subcutaneous administration, rapid onset of action (15 min), and limited time of action (with a half-life of ~1 h), which is likely to minimize the risk of bleeding. The ongoing CELEBRATE trial, including 2499 STEMI patients, may potentially provide compelling data to support the upstream treatment of STEMI patients undergoing mechanical reperfusion. In fact, although the current therapeutic target of increased rates of timely reperfusion has been achieved, the future goal in myocardial infarction treatment should be to achieve the most rapid reperfusion prior to primary percutaneous coronary intervention, thus further minimizing myocardial damage, or, in some cases, even preventing it completely, and improving survival.
Collapse
Affiliation(s)
- Giuseppe De Luca
- Division of Cardiology, Polyclinic G. Martino, University of Messina, 98122 Messina, Italy
- Division of Cardiology, IRCSS Hospital Nuovo-Galeazzi Sant’Ambrogio, 20157 Milan, Italy
| | - Ashley Verburg
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.V.)
| | - Arnoud van’t Hof
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
- Cardiovascular Research Institute Maastricht, 6229 ER Maastricht, The Netherlands
| | - Jurrien ten Berg
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.V.)
| | - Dean J. Kereiakes
- The Carl and Edyth Lindner Research Center, The Christ Hospital, Cincinnati, OH 45219, USA
| | - Barry S. Coller
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY 10065, USA;
| | - Charles Michael Gibson
- Perfuse Study Group, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Chen J, Liu S, Ruan Z, Wang K, Xi X, Mao J. Thrombotic events associated with immune checkpoint inhibitors and novel antithrombotic strategies to mitigate bleeding risk. Blood Rev 2024; 67:101220. [PMID: 38876840 DOI: 10.1016/j.blre.2024.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Although immunotherapy is expanding treatment options for cancer patients, the prognosis of advanced cancer remains poor, and these patients must contend with both cancers and cancer-related thrombotic events. In particular, immune checkpoint inhibitors are associated with an increased risk of atherosclerotic thrombotic events. Given the fundamental role of platelets in atherothrombosis, co-administration of antiplatelet agents is always indicated. Platelets are also involved in all steps of cancer progression. Classical antithrombotic drugs can cause inevitable hemorrhagic side effects due to blocking integrin β3 bidirectional signaling, which regulates simultaneously thrombosis and hemostasis. Meanwhile, many promising new targets are emerging with minimal bleeding risk and desirable anti-tumor effects. This review will focus on the issue of thrombosis during immune checkpoint inhibitor treatment and the role of platelet activation in cancer progression as well as explore the mechanisms by which novel antiplatelet therapies may exert both antithrombotic and antitumor effects without excessive bleeding risk.
Collapse
Affiliation(s)
- Jiayi Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zheng Ruan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiaodong Xi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jianhua Mao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
3
|
Coffman RE, Bidone TC. Application of Funnel Metadynamics to the Platelet Integrin αIIbβ3 in Complex with an RGD Peptide. Int J Mol Sci 2024; 25:6580. [PMID: 38928286 PMCID: PMC11203998 DOI: 10.3390/ijms25126580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Integrin αIIbβ3 mediates platelet aggregation by binding the Arginyl-Glycyl-Aspartic acid (RGD) sequence of fibrinogen. RGD binding occurs at a site topographically proximal to the αIIb and β3 subunits, promoting the conformational activation of the receptor from bent to extended states. While several experimental approaches have characterized RGD binding to αIIbβ3 integrin, applying computational methods has been significantly more challenging due to limited sampling and the need for a priori information regarding the interactions between the RGD peptide and integrin. In this study, we employed all-atom simulations using funnel metadynamics (FM) to evaluate the interactions of an RGD peptide with the αIIb and β3 subunits of integrin. FM incorporates an external history-dependent potential on selected degrees of freedom while applying a funnel-shaped restraint potential to limit RGD exploration of the unbound state. Furthermore, it does not require a priori information about the interactions, enhancing the sampling at a low computational cost. Our FM simulations reveal significant molecular changes in the β3 subunit of integrin upon RGD binding and provide a free-energy landscape with a low-energy binding mode surrounded by higher-energy prebinding states. The strong agreement between previous experimental and computational data and our results highlights the reliability of FM as a method for studying dynamic interactions of complex systems such as integrin.
Collapse
Affiliation(s)
- Robert E. Coffman
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Tamara C. Bidone
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Rikken SAOF, van 't Hof AWJ, ten Berg JM, Kereiakes DJ, Coller BS. Critical Analysis of Thrombocytopenia Associated With Glycoprotein IIb/IIIa Inhibitors and Potential Role of Zalunfiban, a Novel Small Molecule Glycoprotein Inhibitor, in Understanding the Mechanism(s). J Am Heart Assoc 2023; 12:e031855. [PMID: 38063187 PMCID: PMC10863773 DOI: 10.1161/jaha.123.031855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Thrombocytopenia is a rare but serious complication of the intravenous glycoprotein IIb/IIIa (GPIIb/IIIa; integrin αIIbβ3) receptor inhibitors (GPIs), abciximab, eptifibatide, and tirofiban. The thrombocytopenia ranges from mild (50 000-100 000 platelets/μL), to severe (20 000 to <50 000/μL), to profound (<20 000/μL). Profound thrombocytopenia appears to occur in <1% of patients receiving their first course of therapy. Thrombocytopenia can be either acute (<24 hours) or delayed (up to ~14 days). Both hemorrhagic and thrombotic complications have been reported in association with thrombocytopenia. Diagnosis requires exclusion of pseudothrombocytopenia and heparin-induced thrombocytopenia. Therapy based on the severity of thrombocytopenia and symptoms may include drug withdrawals and treatment with steroids, intravenous IgG, and platelet transfusions. Abciximab-associated thrombocytopenia is most common and due to either preformed antibodies or antibodies induced in response to abciximab (delayed). Readministration of abciximab is associated with increased risk of thrombocytopenia. Evidence also supports an immune basis for thrombocytopenia associated with the 2 small molecule GPIs. The latter bind αIIbβ3 like the natural ligands and thus induce the receptor to undergo major conformational changes that potentially create neoepitopes. Thrombocytopenia associated with these drugs is also immune-mediated, with antibodies recognizing the αIIbβ3 receptor only in the presence of the drug. It is unclear whether the antibody binding depends on the conformational change and whether the drug contributes directly to the epitope. Zalunfiban, a second-generation subcutaneous small molecule GPI, does not induce the conformational changes; therefore, data from studies of zalunfiban will provide information on the contribution of the conformational changes to the development of GPI-associated thrombocytopenia.
Collapse
Affiliation(s)
- Sem A. O. F. Rikken
- Department of CardiologySt. Antonius HospitalNieuwegeinThe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)MaastrichtThe Netherlands
| | - Arnoud W. J. van 't Hof
- Cardiovascular Research Institute Maastricht (CARIM)MaastrichtThe Netherlands
- Department of CardiologyMUMC+MaastrichtThe Netherlands
- Department of CardiologyZuyderland Medical CentreHeerlenThe Netherlands
| | - Jurriën M. ten Berg
- Department of CardiologySt. Antonius HospitalNieuwegeinThe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)MaastrichtThe Netherlands
- Department of CardiologyMUMC+MaastrichtThe Netherlands
| | - Dean J. Kereiakes
- The Christ Hospital Heart and Vascular Institute and Lindner Clinical Research CenterCincinnatiOHUSA
| | - Barry S. Coller
- Allen and Frances Adler Laboratory of Blood and Vascular BiologyRockefeller UniversityNew YorkNYUSA
| |
Collapse
|
5
|
Curry BJ, Rikken AOFS, Gibson CM, Granger CB, van 't Hof AWJ, Ten Berg JM, Jennings LK. Comparison of the effects of the GPIIb-IIIa antagonist Zalunfiban and the P2Y12 antagonist Selatogrel on Platelet Aggregation. J Thromb Thrombolysis 2023; 56:499-510. [PMID: 37563502 PMCID: PMC10550877 DOI: 10.1007/s11239-023-02867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2023] [Indexed: 08/12/2023]
Abstract
Understanding the pharmacodynamic effects of platelet inhibitors is standard for developing more effective antithrombotic therapies. An example is the antithrombotic treatment of acute coronary syndrome (ACS), in particular ST-elevated myocardial infarction (STEMI) patients who are in need for rapid acting strong antithrombotic therapy despite the use of aspirin and oral P2Y12-inhibitors. In this study, we evaluated two injectable platelet inhibitors under clinical development (the P2Y12 antagonist selatogrel and the GPIIb-IIIa antagonist zalunfiban) that may be amenable to pre-hospital treatment of STEMI patients. Platelet reactivity was assessed at inhibitor concentrations that represent clinically relevant levels of platelet inhibition (IC20-50%, 1/2Cmax, and Cmax). Light transmission aggregometry (LTA), was used to evaluate the initial rate of aggregation (primary slope, PS) and maximal aggregation (MA). Both adenosine diphosphate (ADP) and thrombin receptor agonist peptide (TRAP) were used as agonists. Zalunfiban demonstrated similar inhibition of platelet aggregation when blood was collected in PPACK or TSC, whereas selatogrel demonstrated greater inhibition in PPACK. In this study, using PPACK anticoagulant, selatogrel and zalunfiban affected PS in response to ADP equivalently at all drug concentrations tested. In contrast, zalunfiban had significantly greater potency at its Cmax concentration compared to selatogrel using TRAP as agonist. Upon evaluation of MA responses at lower doses, selatogrel had greater inhibition of MA in response to ADP than zalunfiban; however, at concentrations that represent Cmax, the drugs were equivalent. Zalunfiban also had greater inhibition of MA in response to TRAP at the Cmax dose. These data suggest that zalunfiban may provide greater protection in reducing thrombus formation than selatogrel, especially since thrombin is an early, key primary agonist in the pathophysiology of thrombotic events.
Collapse
Affiliation(s)
| | - A O F Sem Rikken
- St. Antonius Hospital, Nieuwegein, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | | | | | - Arnoud W J van 't Hof
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- MUMC+, Maastricht, The Netherlands
- Department of Cardiology, Zuyderland Medical Centre, Heerlen, The Netherlands
| | - Jurriën M Ten Berg
- St. Antonius Hospital, Nieuwegein, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- MUMC+, Maastricht, The Netherlands
| | - Lisa K Jennings
- MLM Medical Labs, 140 Collins Street, Memphis, TN, 38117, USA.
- University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
6
|
Sim MMS, Shiferawe S, Wood JP. Novel strategies in antithrombotic therapy: targeting thrombosis while preserving hemostasis. Front Cardiovasc Med 2023; 10:1272971. [PMID: 37937289 PMCID: PMC10626538 DOI: 10.3389/fcvm.2023.1272971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Antithrombotic therapy is a delicate balance between the benefits of preventing a thrombotic event and the risks of inducing a major bleed. Traditional approaches have included antiplatelet and anticoagulant medications, require careful dosing and monitoring, and all carry some risk of bleeding. In recent years, several new targets have been identified, both in the platelet and coagulation systems, which may mitigate this bleeding risk. In this review, we briefly describe the current state of antithrombotic therapy, and then present a detailed discussion of the new generation of drugs that are being developed to target more safely existing or newly identified pathways, alongside the strategies to reverse direct oral anticoagulants, showcasing the breadth of approaches. Combined, these exciting advances in antithrombotic therapy bring us closer than we have ever been to the "holy grail" of the field, a treatment that separates the hemostatic and thrombotic systems, preventing clots without any concurrent bleeding risk.
Collapse
Affiliation(s)
- Martha M. S. Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Semekidus Shiferawe
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
- Division of Cardiovascular Medicine Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
7
|
Gawaz M, Geisler T, Borst O. Current concepts and novel targets for antiplatelet therapy. Nat Rev Cardiol 2023; 20:583-599. [PMID: 37016032 DOI: 10.1038/s41569-023-00854-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
Platelets have a crucial role in haemostasis and atherothrombosis. Pharmacological control of platelet hyper-reactivity has become a cornerstone in the prevention of thrombo-ischaemic complications in atherosclerotic diseases. Current antiplatelet therapies substantially improve clinical outcomes in patients with coronary artery disease, but at the cost of increased risk of bleeding. Beyond their role in thrombosis, platelets are known to regulate inflammatory (thrombo-inflammatory) and microcirculatory pathways. Therefore, controlling platelet hyper-reactivity might have implications for both tissue inflammation (myocardial ischaemia) and vascular inflammation (vulnerable plaque formation) to prevent atherosclerosis. In this Review, we summarize the pathophysiological role of platelets in acute myocardial ischaemia, vascular inflammation and atherosclerotic progression. Furthermore, we highlight current clinical concepts of antiplatelet therapy that have contributed to improving patient care and have facilitated more individualized therapy. Finally, we discuss novel therapeutic targets and compounds for antiplatelet therapy that are currently in preclinical development, some of which have a more favourable safety profile than currently approved drugs with regard to bleeding risk. These novel antiplatelet targets might offer new strategies to treat cardiovascular disease.
Collapse
Affiliation(s)
- Meinrad Gawaz
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Tobias Geisler
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Janus-Bell E, Mangin PH. The relative importance of platelet integrins in hemostasis, thrombosis and beyond. Haematologica 2023; 108:1734-1747. [PMID: 36700400 PMCID: PMC10316258 DOI: 10.3324/haematol.2022.282136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Integrins are heterodimeric transmembrane receptors composed of α and β chains, with an N-terminal extracellular domain forming a globular head corresponding to the ligand binding site. Integrins regulate various cellular functions including adhesion, migration, proliferation, spreading and apoptosis. On platelets, integrins play a central role in adhesion and aggregation on subendothelial matrix proteins of the vascular wall, thereby ensuring hemostasis. Platelet integrins belong either to the β1 family (α2β1, α5β1 and α6β1) or to the β3 family (αIIbβ3 and αvβ3). On resting platelets, integrins can engage their ligands when the latter are immobilized but not in their soluble form. The effects of various agonists promote an inside-out signal in platelets, increasing the affinity of integrins for their ligands and conveying a modest signal reinforcing platelet activation, called outside-in signaling. This outside-in signal ensures platelet adhesion, shape change, granule secretion and aggregation. In this review, we examine the role of each platelet integrin in hemostatic plug formation, hemostasis and arterial thrombosis and also beyond these classical functions, notably in tumor metastasis and sepsis.
Collapse
Affiliation(s)
- Emily Janus-Bell
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg.
| | - Pierre H Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg
| |
Collapse
|
9
|
Tantry US, Duhan S, Navarese E, Ramotowski B, Kundan P, Bliden KP, Gurbel P. An update on novel therapies for treating patients with arterial thrombosis. Expert Rev Hematol 2023; 16:593-605. [PMID: 37335893 DOI: 10.1080/17474086.2023.2227788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION Antithrombotic therapy field is undergoing rapid and significant changes during the past decade. In addition to new therapeutic strategies with existing targets, investigators are exploring the potential use of new targets to address unmet needs to treat patients with arterial diseases. AREAS COVERED We aim to provide an update on and a comprehensive review of the antithrombic agents that are being explored in patients with arterial diseases. We discuss latest developments with respect to upstream antiplatelet agents, and collagen and thrombin pathway inhibitors. We searched PubMed databases for English language articles using keywords: antiplatelet agents, thrombin pathway inhibitors, collagen receptors, arterial disease. EXPERT OPINION Despite implementation of potent P2Y12 inhibitors, there are numerous unmet needs in the treatment of arterial diseases including ceiling effect of currently available antiplatelet agents along with and an elevated risk of bleeding. The latter observations encouraged investigators to explore new targets that can attenuate the generation of platelet-fibrin clot formation and subsequent ischemic event occurrences with minimal effect on bleeding. These targets include collagen receptors on platelets and thrombin generation including FXa, FXIa, and FXIIa. In addition, investigators are studying novel antiplatelet agents/strategies to facilitate upstream therapy in high-risk patients.
Collapse
Affiliation(s)
- Udaya S Tantry
- Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Sanchit Duhan
- Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Eliano Navarese
- Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Bogumil Ramotowski
- Department of Cardiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Parshotam Kundan
- Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Kevin P Bliden
- Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Paul Gurbel
- Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, Baltimore, MD, USA
| |
Collapse
|
10
|
Rikken SAOF, Selvarajah A, Hermanides RS, Coller BS, Gibson CM, Granger CB, Lapostolle F, Postma S, van de Wetering H, van Vliet RCW, Montalescot G, Ten Berg JM, van 't Hof AWJ. Prehospital treatment with zalunfiban (RUC-4) in patients with ST- elevation myocardial infarction undergoing primary percutaneous coronary intervention: Rationale and design of the CELEBRATE trial. Am Heart J 2023; 258:119-128. [PMID: 36592878 DOI: 10.1016/j.ahj.2022.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/21/2022] [Accepted: 12/17/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Early and complete restoration of target vessel patency in ST-elevation myocardial infarction (STEMI) is associated with improved outcomes. Oral P2Y12 inhibitors have failed to demonstrate either improved patency or reduced mortality when administered in the prehospital setting. Thus, there is a need for antiplatelet agents that achieve prompt and potent platelet inhibition, and that restore patency in the prehospital setting. Zalunfiban, a novel subcutaneously administered glycoprotein IIb/IIIa inhibitor designed for prehospital administration, has shown to achieve rapid, high-grade platelet inhibition that exceeds that of P2Y12 inhibitors. Whether prehospital administration of zalunfiban can improve clinical outcome is unknown. HYPOTHESIS The present study is designed to assess the hypothesis that a single, prehospital injection of zalunfiban given in the ambulance, in addition to standard-of-care in patients with STEMI with intent to undergo primary percutaneous coronary intervention (PCI) will improve clinical outcome compared to standard-of-care with placebo. STUDY DESIGN The ongoing CELEBRATE trial (NCT04825743) is a phase 3, randomized, double-blinded, placebo-controlled, international trial. Patients with STEMI intended to undergo primary PCI will receive treatment with a single subcutaneous injection containing either zalunfiban dose 1 (0.110 mg/kg), zalunfiban dose 2 (0.130 mg/kg) or placebo, and the study drug will be administered in the ambulance before transportation to the hospital. A target of 2499 patients will be randomly assigned to one of the treatment groups in a 1:1:1 ratio, ie, to have approximately 833 evaluable patients per group. The primary efficacy outcome is a ranked 7-point scale on clinical outcomes. The primary safety outcome is severe or life-threatening bleeding according to the Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO) criteria. SUMMARY The CELEBRATE trial will assess whether a single prehospital subcutaneous injection of zalunfiban in addition to standard-of-care in patients with STEMI with intent to undergo primary PCI will result in improved clinical outcome.
Collapse
Affiliation(s)
- Sem A O F Rikken
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands; Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Abi Selvarajah
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| | | | - Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, New York, NY, United States of America
| | - C Michael Gibson
- Boston Clinical Research Institute, Boston, MA, United States of America
| | - Christopher B Granger
- Department of Cardiology, Duke University School of Medicine, Durham, NC, United States of America
| | | | | | - Henri van de Wetering
- Diagram Research, Zwolle, The Netherlands; Regional Emergency Medical Service Ijsselland, The Netherlands
| | | | - Gilles Montalescot
- Sorbonne Université, ACTION Study Group, Department of Cardiology, Hôpital Pitié-Salpêtrière (AP-HP), Paris, France
| | - Jurriën M Ten Berg
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands; Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands; Department of Cardiology, University Medical Center Maastricht, Maastricht, The Netherlands
| | - Arnoud W J van 't Hof
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands; Department of Cardiology, Zuyderland Hospital, Heerlen, The Netherlands; Department of Cardiology, University Medical Center Maastricht, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Rikken SAOF, Storey RF, Andreotti F, Clemmensen P, Ten Berg JM. Parenteral Antiplatelet Drugs in ST-Elevation Myocardial Infarction: Current Status and Future Directions. Thromb Haemost 2023; 123:150-158. [PMID: 36075236 DOI: 10.1055/s-0042-1753479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Oral inhibitors of the platelet P2Y12 receptor are indispensable in the treatment of ST-elevation myocardial infarction (STEMI), improving outcomes and even reducing mortality in some studies. However, these drugs are limited by delayed absorption and suboptimal platelet inhibition at the time of primary percutaneous coronary intervention. Despite efforts to achieve faster and more sustained platelet inhibition, strategies such as prehospital administration, higher loading doses, and crushed formulations have not led to improved coronary reperfusion. Parenteral glycoprotein IIb/IIIa inhibitors act sooner and are more potent than oral P2Y12 inhibitors, but their use has been limited by the increased risk of major bleeding and thrombocytopenia. Hence, there is a clinical need to refine drugs that deliver rapid, effective, yet safe platelet inhibition in the setting of STEMI. Novel parenteral antiplatelet drugs, such as cangrelor, selatogrel, and zalunfiban, have been recently developed to achieve rapid, potent antiplatelet effects while preserving hemostasis. We provide a description of currently available parenteral antiplatelet agents and of those in clinical development for prehospital administration in STEMI patients.
Collapse
Affiliation(s)
- Sem A O F Rikken
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands.,School for Cardiovascular Diseases, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Robert F Storey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Felicita Andreotti
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Peter Clemmensen
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany.,Department of Medicine, Nykøbing F Hospital, Nykøbing Falster, Denmark
| | - Jurriën M Ten Berg
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands.,School for Cardiovascular Diseases, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
12
|
Kumar K, Singh N, Yadav HN, Maslov L, Jaggi AS. Endless Journey of Adenosine Signaling in Cardioprotective Mechanism of Conditioning Techniques: Clinical Evidence. Curr Cardiol Rev 2023; 19:56-71. [PMID: 37309766 PMCID: PMC10636797 DOI: 10.2174/1573403x19666230612112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
Myocardial ischemic injury is a primary cause of death among various cardiovascular disorders. The condition occurs due to an interrupted supply of blood and vital nutrients (necessary for normal cellular activities and viability) to the myocardium, eventually leading to damage. Restoration of blood supply to ischemic tissue is noted to cause even more lethal reperfusion injury. Various strategies, including some conditioning techniques, like preconditioning and postconditioning, have been developed to check the detrimental effects of reperfusion injury. Many endogenous substances have been proposed to act as initiators, mediators, and end effectors of these conditioning techniques. Substances, like adenosine, bradykinin, acetylcholine, angiotensin, norepinephrine, opioids, etc., have been reported to mediate cardioprotective activity. Among these agents, adenosine has been widely studied and suggested to have the most pronounced cardioprotective effects. The current review article highlights the role of adenosine signaling in the cardioprotective mechanism of conditioning techniques. The article also provides an insight into various clinical studies that substantiate the applicability of adenosine as a cardioprotective agent in myocardial reperfusion injury.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leonid Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| |
Collapse
|
13
|
Siasos G, Tsigkou V, Bletsa E, Stampouloglou PK, Oikonomou E, Kalogeras K, Katsarou O, Pesiridis T, Vavuranakis M, Tousoulis D. Antithrombotic Treatment in Coronary Artery Disease. Curr Pharm Des 2023; 29:2764-2779. [PMID: 37644793 DOI: 10.2174/1381612829666230830105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023]
Abstract
Coronary artery disease exhibits growing mortality and morbidity worldwide despite the advances in pharmacotherapy and coronary intervention. Coronary artery disease is classified in the acute coronary syndromes and chronic coronary syndromes according to the most recent guidelines of the European Society of Cardiology. Antithrombotic treatment is the cornerstone of therapy in coronary artery disease due to the involvement of atherothrombosis in the pathophysiology of the disease. Administration of antiplatelet agents, anticoagulants and fibrinolytics reduce ischemic risk, which is amplified early post-acute coronary syndromes or post percutaneous coronary intervention; though, antithrombotic treatment increases the risk for bleeding. The balance between ischemic and bleeding risk is difficult to achieve and is affected by patient characteristics, procedural parameters, concomitant medications and pharmacologic characteristics of the antithrombotic agents. Several pharmacological strategies have been evaluated in patients with coronary artery disease, such as the effectiveness and safety of antithrombotic agents, optimal dual antiplatelet treatment schemes and duration, aspirin de-escalation strategies of dual antiplatelet regimens, dual inhibition pathway strategies as well as triple antithrombotic therapy. Future studies are needed in order to investigate the gaps in our knowledge, including special populations.
Collapse
Affiliation(s)
- Gerasimos Siasos
- Department of Cardiology, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
- Cardiovascular Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Vasiliki Tsigkou
- Department of Cardiology, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Evanthia Bletsa
- Department of Cardiology, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagiota K Stampouloglou
- Department of Cardiology, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Evangelos Oikonomou
- Department of Cardiology, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Konstantinos Kalogeras
- Department of Cardiology, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Ourania Katsarou
- Department of Cardiology, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Theodoros Pesiridis
- Department of Cardiology, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Manolis Vavuranakis
- Department of Cardiology, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Dimitris Tousoulis
- Department of Cardiology, School of Medicine, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Novel approaches to antiplatelet therapy. Biochem Pharmacol 2022; 206:115297. [DOI: 10.1016/j.bcp.2022.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022]
|
15
|
Sen S, Spasic A, Sinha A, Wang J, Bush M, Li J, Nešić D, Zhou Y, Angiulli G, Morgan P, Salas-Estrada L, Takagi J, Walz T, Coller BS, Filizola M. Structure-Based Discovery of a Novel Class of Small-Molecule Pure Antagonists of Integrin αVβ3. J Chem Inf Model 2022; 62:5607-5621. [PMID: 36279366 PMCID: PMC9767310 DOI: 10.1021/acs.jcim.2c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibitors of integrin αVβ3 have therapeutic promise for a variety of diseases. Most αVβ3-targeting small molecules patterned after the RGD motif are partial agonists because they induce a high-affinity, ligand-binding conformation and prime the receptor to bind the ligand without an activating stimulus, in part via a charge-charge interaction between their aspartic acid carboxyl group and the metal ion in the metal-ion-dependent adhesion site (MIDAS). Building upon our previous studies on the related integrin αIIbβ3, we searched for pure αVβ3 antagonists that lack this typical aspartic acid carboxyl group and instead engage through direct binding to one of the coordinating residues of the MIDAS metal ion, specifically β3 E220. By in silico screening of two large chemical libraries for compounds interacting with β3 E220, we indeed discovered a novel molecule that does not contain an acidic carboxyl group and does not induce the high-affinity, ligand-binding state of the receptor. Functional and structural characterization of a chemically optimized version of this compound led to the discovery of a novel small-molecule pure αVβ3 antagonist that (i) does not prime the receptor to bind the ligand and does not induce hybrid domain swing-out or receptor extension as judged by antibody binding and negative-stain electron microscopy, (ii) binds at the RGD-binding site as predicted by metadynamics rescoring of induced-fit docking poses and confirmed by a cryo-electron microscopy structure of the compound-bound integrin, and (iii) coordinates the MIDAS metal ion via a quinoline moiety instead of an acidic carboxyl group.
Collapse
Affiliation(s)
- Soumyo Sen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Aleksandar Spasic
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Anjana Sinha
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Jialing Wang
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Martin Bush
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Jihong Li
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Dragana Nešić
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Yuchen Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Gabriella Angiulli
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Paul Morgan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| |
Collapse
|
16
|
Barriuso I, Worner F, Vilahur G. Novel Antithrombotic Agents in Ischemic Cardiovascular Disease: Progress in the Search for the Optimal Treatment. J Cardiovasc Dev Dis 2022; 9:397. [PMID: 36421932 PMCID: PMC9699470 DOI: 10.3390/jcdd9110397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 09/10/2024] Open
Abstract
Ischemic cardiovascular diseases have a high incidence and high mortality worldwide. Therapeutic advances in the last decades have reduced cardiovascular mortality, with antithrombotic therapy being the cornerstone of medical treatment. Yet, currently used antithrombotic agents carry an inherent risk of bleeding associated with adverse cardiovascular outcomes and mortality. Advances in understanding the pathophysiology of thrombus formation have led to the discovery of new targets and the development of new anticoagulants and antiplatelet agents aimed at preventing thrombus stabilization and growth while preserving hemostasis. In the following review, we will comment on the key limitation of the currently used antithrombotic regimes in ischemic heart disease and ischemic stroke and provide an in-depth and state-of-the-art overview of the emerging anticoagulant and antiplatelet agents in the pipeline with the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Ignacio Barriuso
- Hospital Universitario Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, 25198 Lleida, Spain
- Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Fernando Worner
- Hospital Universitario Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, 25198 Lleida, Spain
| | - Gemma Vilahur
- Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
- Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares (CiberCV), 28029 Madrid, Spain
| |
Collapse
|
17
|
Current and Future Insights for Optimizing Antithrombotic Therapy to Reduce the Burden of Cardiovascular Ischemic Events in Patients with Acute Coronary Syndrome. J Clin Med 2022; 11:jcm11195605. [PMID: 36233469 PMCID: PMC9573364 DOI: 10.3390/jcm11195605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The pharmacological treatment strategies for acute coronary syndrome (ACS) in recent years are constantly evolving to develop more potent antithrombotic agents, as reflected by the introduction of more novel P2Y12 receptor inhibitors and anticoagulants to reduce the ischemic risk among ACS patients. Despite the substantial improvements in the current antithrombotic regimen, a noticeable number of ACS patients continue to experience ischemic events. Providing effective ischemic risk reduction while balancing bleeding risk remains a clinical challenge. This updated review discusses the currently approved and widely used antithrombotic agents and explores newer antithrombotic treatment strategies under development for the initial phase of ACS.
Collapse
|
18
|
Lin FY, Li J, Xie Y, Zhu J, Huong Nguyen TT, Zhang Y, Zhu J, Springer TA. A general chemical principle for creating closure-stabilizing integrin inhibitors. Cell 2022; 185:3533-3550.e27. [PMID: 36113427 PMCID: PMC9494814 DOI: 10.1016/j.cell.2022.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 01/26/2023]
Abstract
Integrins are validated drug targets with six approved therapeutics. However, small-molecule inhibitors to three integrins failed in late-stage clinical trials for chronic indications. Such unfavorable outcomes may in part be caused by partial agonism, i.e., the stabilization of the high-affinity, extended-open integrin conformation. Here, we show that the failed, small-molecule inhibitors of integrins αIIbβ3 and α4β1 stabilize the high-affinity conformation. Furthermore, we discovered a simple chemical feature present in multiple αIIbβ3 antagonists that stabilizes integrins in their bent-closed conformation. Closing inhibitors contain a polar nitrogen atom that stabilizes, via hydrogen bonds, a water molecule that intervenes between a serine residue and the metal in the metal-ion-dependent adhesion site (MIDAS). Expulsion of this water is a requisite for transition to the open conformation. This change in metal coordination is general to integrins, suggesting broad applicability of the drug-design principle to the integrin family, as validated with a distantly related integrin, α4β1.
Collapse
Affiliation(s)
- Fu-Yang Lin
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Li
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yonghua Xie
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PRC
| | - Jianghai Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thi Thu Huong Nguyen
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PRC.
| | - Jieqing Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Coller BS. It's the water! The open and shut case of drug-induced integrin activation. Cell 2022; 185:3463-3466. [PMID: 36113425 PMCID: PMC9769361 DOI: 10.1016/j.cell.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 01/26/2023]
Abstract
Integrin receptors are established drug targets, but many of the drugs that have been developed act as partial agonists, inducing the receptor into a high-affinity, ligand-binding state. Lin et al. discovered a general mechanism to circumvent this problem-stabilizing a key water molecule that prevents receptor activation. Their findings are likely to impact future therapeutic development.
Collapse
Affiliation(s)
- Barry S. Coller
- Allen and Frances Adler Laboratory of Blood and Vascular
Biology, Rockefeller University, New York, NY 10065, USA,Correspondence:
| |
Collapse
|
20
|
Vogel RF, Delewi R, Badimon L, Angiolillo DJ, Vlachojannis GJ. Current Status and Future Direction of Antithrombotic Therapy for Patients with STEMI Undergoing Primary PCI. Rev Cardiovasc Med 2022; 23:297. [PMID: 39077705 PMCID: PMC11262351 DOI: 10.31083/j.rcm2309297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 07/31/2024] Open
Abstract
Since the introduction of the first pharmacological therapy for the treatment of patients with acute myocardial infarction in the early 20th century, treatment of myocardial infarction has evolved extensively throughout the years. Mechanical revascularization therapies such as the percutaneous transluminal coronary angioplasty, combined with the ongoing development of pharmacological therapies have successfully improved the survival of patients with acute myocardial infarction. To date, antiplatelet therapy (consisting of aspirin and an oral P2Y 12 inhibitor) and anticoagulation therapy represent the main stay of pharmacological treatment in patients with ST-segment elevation myocardial infarction (STEMI) undergoing percutaneous coronary intervention (PCI). The routine use of clopidogrel as antiplatelet agent has been largely replaced by the use of the more potent P2Y 12 inhibitors ticagrelor and prasugrel. Unfractionated heparin remains the preferred anticoagulant therapy, despite the development of other anticoagulants, including enoxaparin and bivalirudin. To date, limited evidence exists supporting a pre-hospital initiation of antiplatelet and anticoagulant therapy in STEMI patients. The use of potent intravenous antiplatelet agents, including the glycoprotein IIb/IIIa inhibitors and the intravenous P2Y 12 inhibitor cangrelor, is currently restricted to specific clinical settings. While several potent antithrombotic agents already exist, the search for novel potent antithrombotic agents continues, with a focus on balancing antithrombotic properties with an improved safety profile to reduce excess bleeding. This review provides an overview of currently available pharmacological therapies for the treatment of STEMI patients undergoing primary PCI, and an outlook for the ongoing development of novel agents in this field.
Collapse
Affiliation(s)
- Rosanne F. Vogel
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, The Netherlands
- Department of Cardiology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Ronak Delewi
- Department of Cardiology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Lina Badimon
- Cardiovascular Science Program (ICCC), IR-Hospital de la Santa Creu I Santa Pau-IIBSantPau, CiberCV, Autonomous University of Barcelona, 08025 Barcelona, Spain
| | - Dominick J. Angiolillo
- Department of Cardiology, University of Florida College of Medicine, Jacksonville, FL 32209, USA
| | - Georgios J. Vlachojannis
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, The Netherlands
| |
Collapse
|
21
|
Ideal P2Y12 Inhibitor in Acute Coronary Syndrome: A Review and Current Status. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19158977. [PMID: 35897347 PMCID: PMC9331944 DOI: 10.3390/ijerph19158977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023]
Abstract
Dual antiplatelet therapy (DAPT) has remained the cornerstone for management of acute coronary syndrome (ACS) over the years. Clopidogrel has been the quintessential P2Y12 receptor (platelet receptor for Adenosine 5′ diphosphate) inhibitor for the past two decades. With the demonstration of unequivocal superior efficacy of prasugrel/ticagrelor over clopidogrel, guidelines now recommend these agents in priority over clopidogrel in current management of ACS. Cangrelor has revived the interest in injectable antiplatelet therapy too. Albeit the increased efficacy of these newer agents comes at the cost of increased bleeding and this becomes more of a concern when combined with aspirin. Which P2Y12i is superior over another has been intensely debated over last few years after the ISAR-REACT 5 study with inconclusive data. Three novel antiplatelet agents are already in the pipeline for ACS with all of them succeeding in phase II studies. The search for an ideal antiplatelet remains a need of the hour for optimal reduction of ischemic events in ACS.
Collapse
|
22
|
Challa AP, Hu X, Zhang YQ, Hymes J, Wallace BD, Karavadhi S, Sun H, Patnaik S, Hall MD, Shen M. Virtual Screening for the Discovery of Microbiome β-Glucuronidase Inhibitors to Alleviate Cancer Drug Toxicity. J Chem Inf Model 2022; 62:1783-1793. [PMID: 35357819 PMCID: PMC9853918 DOI: 10.1021/acs.jcim.1c01414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite the potency of most first-line anti-cancer drugs, nonadherence to these drug regimens remains high and is attributable to the prevalence of "off-target" drug effects that result in serious adverse events (SAEs) like hair loss, nausea, vomiting, and diarrhea. Some anti-cancer drugs are converted by liver uridine 5'-diphospho-glucuronosyltransferases through homeostatic host metabolism to form drug-glucuronide conjugates. These sugar-conjugated metabolites are generally inactive and can be safely excreted via the biliary system into the gastrointestinal tract. However, β-glucuronidase (βGUS) enzymes expressed by commensal gut bacteria can remove the glucuronic acid moiety, producing the reactivated drug and triggering dose-limiting side effects. Small-molecule βGUS inhibitors may reduce this drug-induced gut toxicity, allowing patients to complete their full course of treatment. Herein, we report the discovery of novel chemical series of βGUS inhibitors by structure-based virtual high-throughput screening (vHTS). We developed homology models for βGUS and applied them to large-scale vHTS against nearly 400,000 compounds within the chemical libraries of the National Center for Advancing Translational Sciences at the National Institutes of Health. From the vHTS results, we cherry-picked 291 compounds via a multifactor prioritization procedure, providing 69 diverse compounds that exhibited positive inhibitory activity in a follow-up βGUS biochemical assay in vitro. Our findings correspond to a hit rate of 24% and could inform the successful downstream development of a therapeutic adjunct that targets the human microbiome to prevent SAEs associated with first-line, standard-of-care anti-cancer drugs.
Collapse
Affiliation(s)
- Anup P. Challa
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA 37212
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA 37203
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Ya-Qin Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Jeffrey Hymes
- Symberix, Inc., 4819 Emperor Blvd., Suite 400, Durham, NC, USA 27703
| | - Bret D. Wallace
- Symberix, Inc., 4819 Emperor Blvd., Suite 400, Durham, NC, USA 27703
| | - Surendra Karavadhi
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Hongmao Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA 20850
| |
Collapse
|
23
|
Angiolillo DJ, Galli M, Collet JP, Kastrati A, O'Donoghue ML. Antiplatelet therapy after percutaneous coronary intervention. EUROINTERVENTION 2022; 17:e1371-e1396. [PMID: 35354550 PMCID: PMC9896394 DOI: 10.4244/eij-d-21-00904] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022]
Abstract
Antiplatelet therapy is key to reducing local thrombotic complications and systemic ischaemic events among patients undergoing percutaneous coronary interventions (PCI), but it is inevitably associated with increased bleeding. The continuous refinement in stent technologies, together with the high incidence of ischaemic recurrences after PCI and the understanding of prognostic implications associated with bleeding, have led to a substantial evolution in antiplatelet treatment regimens over the past decades. Numerous investigations have been conducted to better stratify patients undergoing PCI according to their ischaemic and bleeding risks and to implement antithrombotic regimens accordingly. Evidence from these investigations have resulted in a number of antithrombotic treatment options as recommended by recent guidelines. In this State-of-the-Art review we provide the rationale, summarise the evidence, and discuss current and future directions of antiplatelet treatment regimens after PCI.
Collapse
Affiliation(s)
- Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Mattia Galli
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, FL, USA
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Jean-Philippe Collet
- ACTION Study Group, Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Adnan Kastrati
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Michelle L O'Donoghue
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
24
|
Jourdi G, Lordkipanidzé M, Philippe A, Bachelot-Loza C, Gaussem P. Current and Novel Antiplatelet Therapies for the Treatment of Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms222313079. [PMID: 34884884 PMCID: PMC8658271 DOI: 10.3390/ijms222313079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, antiplatelet agents, mainly aspirin and P2Y12 receptor antagonists, have significantly reduced morbidity and mortality associated with arterial thrombosis. Their pharmacological characteristics, including pharmacokinetic/pharmacodynamics profiles, have been extensively studied, and a significant number of clinical trials assessing their efficacy and safety in various clinical settings have established antithrombotic efficacy. Notwithstanding, antiplatelet agents carry an inherent risk of bleeding. Given that bleeding is associated with adverse cardiovascular outcomes and mortality, there is an unmet clinical need to develop novel antiplatelet therapies that inhibit thrombosis while maintaining hemostasis. In this review, we present the currently available antiplatelet agents, with a particular focus on their targets, pharmacological characteristics, and patterns of use. We will further discuss the novel antiplatelet therapies in the pipeline, with the goal of improved clinical outcomes among patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Georges Jourdi
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: (G.J.); (P.G.)
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Aurélien Philippe
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
- Service d’Hématologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Christilla Bachelot-Loza
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
| | - Pascale Gaussem
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
- Service d’Hématologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
- Correspondence: (G.J.); (P.G.)
| |
Collapse
|
25
|
Fabris E, Korjian S, Coller BS, Ten Berg JM, Granger CB, Gibson CM, van 't Hof AWJ. Pre-Hospital Antiplatelet Therapy for STEMI Patients Undergoing Primary Percutaneous Coronary Intervention: What We Know and What Lies Ahead. Thromb Haemost 2021; 121:1562-1573. [PMID: 33677829 PMCID: PMC8604087 DOI: 10.1055/a-1414-5009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Early recanalization of the infarct-related artery to achieve myocardial reperfusion is the primary therapeutic goal in patients with ST-elevation myocardial infarction (STEMI). To decrease the duration of ischaemia, continuous efforts have been made to improve pre-hospital treatment and to target the early period after symptom onset. In this period the platelet content of the fresh coronary thrombus is maximal and the thrombi are dynamic, and thus more susceptible to powerful antiplatelet agents. There have been substantial advances in antiplatelet therapy in the last three decades with several classes of oral and intravenous antiplatelet agents with different therapeutic targets, pharmacokinetics, and pharmacodynamic properties. New parenteral drugs achieve immediate inhibition of platelet aggregation, and fast and easy methods of administration may create the opportunity to bridge the initial gap in platelet inhibition observed with oral P2Y12 inhibitors. Moreover, potential future management of STEMI could directly involve patients in the process of care with self-administered antiplatelet agents designed to achieve rapid reperfusion. However, the potential anti-ischaemic benefits of potent antiplatelet agents will need to be balanced against their risk of increased bleeding. This study presents a comprehensive and updated review of pre-hospital antiplatelet therapy among STEMI patients undergoing primary percutaneous intervention and explores new therapies under development.
Collapse
Affiliation(s)
- Enrico Fabris
- Cardiovascular Department, University of Trieste, Trieste, Italy
| | - Serge Korjian
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, New York, United States
| | - Jurrien M Ten Berg
- Department of Cardiology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Christopher B Granger
- Duke Clinical Research Institute and the Division of Cardiology, Duke University Medical Center, Durham, North Carolina, United States
| | - C Michael Gibson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Arnoud W J van 't Hof
- Department of Cardiology, Zuyderland Medical Centre, Heerlen, The Netherlands
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| |
Collapse
|
26
|
Bentur OS, Li J, Jiang CS, Martin LH, Kereiakes DJ, Coller BS. Application of Auxiliary VerifyNow Point-of-Care Assays to Assess the Pharmacodynamics of RUC-4, a Novel αIIbβ3 Receptor Antagonist. TH OPEN 2021; 5:e449-e460. [PMID: 34604694 PMCID: PMC8478527 DOI: 10.1055/s-0041-1732343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/16/2021] [Indexed: 12/01/2022] Open
Abstract
Introduction
Prehospital therapy of ST-elevation myocardial infarction (STEMI) with αIIbβ3 antagonists improves clinical outcomes, but they are difficult to use in prehospital settings. RUC-4 is a novel αIIbβ3 antagonist being developed for prehospital therapy of STEMI that rapidly achieves high-grade platelet inhibition after subcutaneous administration. Standard light transmission aggregometry (LTA) is difficult to perform during STEMI, so we applied VerifyNow (VN) assays to assess the pharmacodynamics of RUC-4 relative to aspirin and ticagrelor.
Methods
Blood from healthy volunteers was anticoagulated with phenylalanyl-prolyl-arginyl chloromethyl ketone (PPACK) or sodium citrate, treated in vitro with RUC-4, aspirin, and/or ticagrelor, and tested with the VN ADP + PGE
1
, iso-TRAP, and base channel (high concentration iso-TRAP + PAR-4 agonist) assays. The results were correlated with both ADP (20 µM)-induced LTA and flow cytometry measurement of receptor occupancy and data from individuals treated in vivo with RUC-4.
Results
RUC-4 inhibited all three VN assays, aspirin did not affect the assays, and ticagrelor markedly inhibited the ADP + PGE
1
assay, slightly inhibited the iso-TRAP assay, and did not inhibit the base channel assay. RUC-4's antiplatelet effects were potentiated in citrate compared with PPACK. Cut-off values were determined to correlate the results of the VN iso-TRAP and base channel assays with 80% inhibition of LTA.
Conclusion
The VN assays can differentiate the early potent anti-αIIbβ3 effects of RUC-4 from delayed effects of P2Y12 antagonists in the presence of aspirin. These pharmacodynamic assays can help guide the clinical development of RUC-4 and potentially be used to monitor RUC-4's effects in clinical practice.
Collapse
Affiliation(s)
- Ohad S Bentur
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, New York, United States
| | - Jihong Li
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, New York, United States
| | - Caroline S Jiang
- The Rockefeller University Hospital, New York, New York, United States
| | - Linda H Martin
- The Carl and Edyth Lindner Center for Research and Education at the Christ Hospital, Cincinnati, Ohio, United States
| | - Dean J Kereiakes
- The Carl and Edyth Lindner Center for Research and Education at the Christ Hospital, Cincinnati, Ohio, United States
| | - Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, New York, United States
| |
Collapse
|
27
|
Slack RJ, Macdonald SJF, Roper JA, Jenkins RG, Hatley RJD. Emerging therapeutic opportunities for integrin inhibitors. Nat Rev Drug Discov 2021; 21:60-78. [PMID: 34535788 PMCID: PMC8446727 DOI: 10.1038/s41573-021-00284-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Integrins are cell adhesion and signalling proteins crucial to a wide range of biological functions. Effective marketed treatments have successfully targeted integrins αIIbβ3, α4β7/α4β1 and αLβ2 for cardiovascular diseases, inflammatory bowel disease/multiple sclerosis and dry eye disease, respectively. Yet, clinical development of others, notably within the RGD-binding subfamily of αv integrins, including αvβ3, have faced significant challenges in the fields of cancer, ophthalmology and osteoporosis. New inhibitors of the related integrins αvβ6 and αvβ1 have recently come to the fore and are being investigated clinically for the treatment of fibrotic diseases, including idiopathic pulmonary fibrosis and nonalcoholic steatohepatitis. The design of integrin drugs may now be at a turning point, with opportunities to learn from previous clinical trials, to explore new modalities and to incorporate new findings in pharmacological and structural biology. This Review intertwines research from biological, clinical and medicinal chemistry disciplines to discuss historical and current RGD-binding integrin drug discovery, with an emphasis on small-molecule inhibitors of the αv integrins. Integrins are key signalling molecules that are present on the surface of subsets of cells and are therefore good potential therapeutic targets. In this Review, Hatley and colleagues discuss the development of integrin inhibitors, particularly the challenges in developing inhibitors for integrins that contain an αv-subunit, and suggest how these challenges could be addressed.
Collapse
Affiliation(s)
| | | | | | - R G Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
28
|
Bor WL, Zheng KL, Tavenier AH, Gibson CM, Granger CB, Bentur O, Lobatto R, Postma S, Coller BS, van 't Hof AWJ, Ten Berg JM. Pharmacokinetics, pharmacodynamics, and tolerability of subcutaneous administration of a novel glycoprotein IIb/IIIa inhibitor, RUC-4, in patients with ST-segment elevation myocardial infarction. EUROINTERVENTION 2021; 17:e401-e410. [PMID: 34031019 PMCID: PMC9464482 DOI: 10.4244/eij-d-21-00287] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Pre-hospital platelet inhibition in patients with ST-segment elevation myocardial infarction (STEMI) may improve outcomes. RUC-4 is a novel, second-generation glycoprotein IIb/IIIa inhibitor designed for first-point-of-medical-contact treatment for STEMI by subcutaneous injection. AIMS The open-label, phase 2A, CEL-02 trial aimed to assess the pharmacodynamics (PD), pharmacokinetics (PK), and tolerability of RUC-4 in STEMI patients undergoing primary PCI (pPCI). METHODS A total of 27 STEMI patients received a weight-adjusted subcutaneous injection of RUC-4 before pPCI in escalating doses (0.075 mg/kg [n=8], 0.090 mg/kg [n=9], or 0.110 mg/kg [n=10]). RESULTS The primary PD endpoint of high-grade (≥77%) inhibition of the VerifyNow iso-TRAP assay at 15 minutes was met in 3/8, 7/8, and 7/8 patients in the three cohorts with a dose-response relationship (mean inhibition [min - max] of 77.5% [65.7%-90.6%], 87.5% [73.8%-93.1%], and 91.7% [76.4%-99.3%], respectively; ptrend=0.002). Fifty percent (50%) inhibition remained after 89.1 (38.0-129.7), 104.2 (17.6-190.8), and 112.4 (19.7-205.0) minutes. Injection site reactions or bruising were observed in 1 (4%) and 11 (41%) patients, respectively. Mild access-site haematomas occurred in 6 (22%), and severe access-site haematomas occurred in 2 patients (7%). No thrombocytopaenia was observed within 72 hours post dose. CONCLUSIONS In patients with STEMI, a single subcutaneous dose of RUC-4 at 0.075, 0.090, and 0.110 mg/kg showed dose-response high-grade inhibition of platelet function within 15 minutes.
Collapse
Affiliation(s)
- Willem L Bor
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vogel RF, Delewi R, Angiolillo DJ, Wilschut JM, Lemmert ME, Diletti R, van Vliet R, van der Waarden NWPL, Nuis RJ, Paradies V, Alexopoulos D, Zijlstra F, Montalescot G, Krucoff MW, van Mieghem NM, Smits PC, Vlachojannis GJ. Pharmacodynamic Effects of Pre-Hospital Administered Crushed Prasugrel in Patients With ST-Segment Elevation Myocardial Infarction. JACC Cardiovasc Interv 2021; 14:1323-1333. [PMID: 34167672 DOI: 10.1016/j.jcin.2021.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVES This study sought to compare the pharmacodynamic effects of pre-hospitally administered P2Y12 inhibitor prasugrel in crushed versus integral tablet formulation in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (pPCI). BACKGROUND Early dual antiplatelet therapy is recommended in STEMI patients. Yet, onset of oral P2Y12 inhibitor effect is delayed and varies according to formulation administered. METHODS The COMPARE CRUSH (Comparison of Pre-hospital Crushed Versus Uncrushed Prasugrel Tablets in Patients With STEMI Undergoing Primary Percutaneous Coronary Interventions) trial randomized patients with suspected STEMI to crushed or integral prasugrel 60-mg loading dose in the ambulance. Pharmacodynamic measurements were performed at 4 time points: before antiplatelet treatment, at the beginning and end of pPCI, and 4 h after study treatment onset. The primary endpoint was high platelet reactivity at the end of pPCI. The secondary endpoint was impact of platelet reactivity status on markers of coronary reperfusion. RESULTS A total of 441 patients were included. In patients with crushed prasugrel, the occurrence of high platelet reactivity at the end of pPCI was reduced by almost one-half (crushed 34.7% vs. uncrushed 61.6%; odds ratio [OR] = 0.33; 95% confidence interval [CI] = 0.22 to 0.50; p < 0.01). Platelet reactivity <150 P2Y12 reactivity units at the beginning of coronary angiography correlated with improved Thrombolysis In Myocardial Infarction flow grade 3 in the infarct artery pre-pPCI (OR: 1.78; 95% CI: 1.08 to 2.94; p = 0.02) but not ST-segment resolution (OR: 0.80; 95% CI: 0.48 to 1.34; p = 0.40). CONCLUSIONS Oral administration of crushed compared with integral prasugrel significantly improves platelet inhibition during the acute phase in STEMI patients undergoing pPCI. However, a considerable number of patients still exhibit inadequate platelet inhibition at the end of pPCI, suggesting the need for alternative agents to bridge the gap in platelet inhibition.
Collapse
Affiliation(s)
- Rosanne F Vogel
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ronak Delewi
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Dominick J Angiolillo
- Department of Cardiology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Jeroen M Wilschut
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Miguel E Lemmert
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Cardiology, Isala Hospital, Zwolle, the Netherlands
| | - Roberto Diletti
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ria van Vliet
- Department of Cardiology, Maasstad Hospital, Rotterdam, the Netherlands
| | | | - Rutger-Jan Nuis
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Valeria Paradies
- Department of Cardiology, Maasstad Hospital, Rotterdam, the Netherlands
| | - Dimitrios Alexopoulos
- Department of Cardiology, National and Kapodistrian University of Athens Medical School, Attikon University Hospital, Athens, Greece
| | - Felix Zijlstra
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gilles Montalescot
- Department of Cardiology, ACTION Group, Groupe Hospitalier Pitié-Salpêtrière Hospital (Assistance Publique-Hôpitaux de Paris), Sorbonne University, Paris, France
| | - Mitchell W Krucoff
- Department of Cardiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Pieter C Smits
- Department of Cardiology, Maasstad Hospital, Rotterdam, the Netherlands
| | - Georgios J Vlachojannis
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Cardiology, Maasstad Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
30
|
Tavenier AH, Hermanides RS, Fabris E, Angiolillo DJ, van 't Hof AWJ. Bridging the gap: Current and future insights for improving suboptimal platelet inhibition in STEMI. Int J Cardiol 2020; 328:40-45. [PMID: 33242504 DOI: 10.1016/j.ijcard.2020.11.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/31/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023]
Abstract
Antiplatelet therapy is one of the cornerstones in the acute treatment of patients with ST-elevation myocardial infarction (STEMI) who undergo primary percutaneous coronary intervention (PCI). However, hemodynamic changes and delayed intestinal absorption of P2Y12 inhibitors leads to a delay in the onset of antiplatelet effects resulting in a gap of platelet inhibition. Several strategies have been proposed to bridge this gap, such as pre-hospital administration of antiplatelet therapy, higher loading doses of P2Y12 inhibitors, crushing or chewing tablets, subcutaneous or intravenous administration of platelet inhibitors, or use of pain relievers alternative to opioids that do not delay intestinal absorption of oral platelet inhibitors. These strategies may improve platelet inhibition with the goal of optimizing clinical outcomes in the acute phase of STEMI. In this review we present current and future insights for bridging the gap in platelet inhibition in STEMI patients undergoing primary PCI.
Collapse
Affiliation(s)
| | | | - Enrico Fabris
- Cardiovascular Department, University of Trieste, Trieste, Italy
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, FL, United States
| | - Arnoud W J van 't Hof
- Department of Cardiology, Isala, Zwolle, the Netherlands; Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands; Department of Cardiology, Zuyderland Medical Centre, Heerlen, the Netherlands
| |
Collapse
|
31
|
Intravital Assessment of Blood Platelet Function. A Review of the Methodological Approaches with Examples of Studies of Selected Aspects of Blood Platelet Function. Int J Mol Sci 2020; 21:ijms21218334. [PMID: 33172065 PMCID: PMC7664321 DOI: 10.3390/ijms21218334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 01/14/2023] Open
Abstract
Platelet biology owes to intravital studies not only a better understanding of platelets’ role in primary hemostasis but also findings that platelets are important factors in inflammation and atherosclerosis. Researchers who enter the field of intravital platelet studies may be confused by the heterogeneity of experimental protocols utilized. On the one hand, there are a variety of stimuli used to activate platelet response, and on the other hand there are several approaches to measure the outcome of the activation. A number of possible combinations of activation factors with measurement approaches result in the aforementioned heterogeneity. The aim of this review is to present the most often used protocols in a systematic way depending on the stimulus used to activate platelets. By providing examples of studies performed with each of the protocols, we attempt to explain why a particular combination of stimuli and measurement method was applied to study a given aspect of platelet biology.
Collapse
|
32
|
Lichota A, Szewczyk EM, Gwozdzinski K. Factors Affecting the Formation and Treatment of Thrombosis by Natural and Synthetic Compounds. Int J Mol Sci 2020; 21:E7975. [PMID: 33121005 PMCID: PMC7663413 DOI: 10.3390/ijms21217975] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Venous thromboembolism (VTE) refers to deep vein thrombosis (DVT), whose consequence may be a pulmonary embolism (PE). Thrombosis is associated with significant morbidity and mortality and is the third most common cardiovascular disease after myocardial infarction and stroke. DVT is associated with the formation of a blood clot in a deep vein in the body. Thrombosis promotes slowed blood flow, hypoxia, cell activation, and the associated release of many active substances involved in blood clot formation. All thrombi which adhere to endothelium consist of fibrin, platelets, and trapped red and white blood cells. In this review, we summarise the impact of various factors affecting haemostatic disorders leading to blood clot formation. The paper discusses the causes of thrombosis, the mechanism of blood clot formation, and factors such as hypoxia, the involvement of endothelial cells (ECs), and the activation of platelets and neutrophils along with the effects of bacteria and reactive oxygen species (ROS). Mechanisms related to the action of anticoagulants affecting coagulation factors including antiplatelet drugs have also been discussed. However, many aspects related to the pathogenesis of thrombosis still need to be clarified. A review of the drugs used to treat and prevent thrombosis and natural anticoagulants that occur in the plant world and are traditionally used in Far Eastern medicine has also been carried out.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Faculty of Pharmacy, Medical University of Lodz, 90-235 Lodz, Poland; (A.L.); (E.M.S.)
| | - Eligia M. Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Faculty of Pharmacy, Medical University of Lodz, 90-235 Lodz, Poland; (A.L.); (E.M.S.)
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
33
|
Kereiakes DJ, Henry TD, DeMaria AN, Bentur O, Carlson M, Seng Yue C, Martin LH, Midkiff J, Mueller M, Meek T, Garza D, Gibson CM, Coller BS. First Human Use of RUC-4: A Nonactivating Second-Generation Small-Molecule Platelet Glycoprotein IIb/IIIa (Integrin αIIbβ3) Inhibitor Designed for Subcutaneous Point-of-Care Treatment of ST-Segment-Elevation Myocardial Infarction. J Am Heart Assoc 2020; 9:e016552. [PMID: 32844723 PMCID: PMC7660780 DOI: 10.1161/jaha.120.016552] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/08/2020] [Indexed: 01/14/2023]
Abstract
Background Despite reductions in door-to-balloon times for primary coronary intervention, mortality from ST-segment-elevation myocardial infarction has plateaued. Early pre-primary coronary intervention treatment of ST-segment-elevation myocardial infarction with glycoprotein IIb/IIIa inhibitors improves pre-primary coronary intervention coronary flow, limits infarct size, and improves survival. We report the first human use of a novel glycoprotein IIb/IIIa inhibitor designed for subcutaneous first point-of-care ST-segment-elevation myocardial infarction treatment. Methods and Results Healthy volunteers and patients with stable coronary artery disease receiving aspirin received escalating doses of RUC-4 or placebo in a sentinel-dose, randomized, blinded fashion. Inhibition of platelet aggregation (IPA) to ADP (20 μmol/L), RUC-4 blood levels, laboratory evaluations, and clinical assessments were made through 24 hours and at 7 days. Doses were increased until reaching the biologically effective dose (the dose producing ≥80% IPA within 15 minutes, with return toward baseline within 4 hours). In healthy volunteers, 15 minutes after subcutaneous injection, mean±SD IPA was 6.9%+7.1% after placebo and 71.8%±15.0% at 0.05 mg/kg (n=6) and 84.7%±16.7% at 0.075 mg/kg (n=6) after RUC-4. IPA diminished over 90 to 120 minutes. In patients with coronary artery disease, 15 minutes after subcutaneous injection of placebo or 0.04 mg/kg (n=2), 0.05 mg/kg (n=6), and 0.075 mg/kg (n=18) of RUC-4, IPA was 14.6%±11.7%, 53.6%±17.0%, 76.9%±10.6%, and 88.9%±12.7%, respectively. RUC-4 blood levels correlated with IPA. Aspirin did not affect IPA or RUC-4 blood levels. Platelet counts were stable and no serious adverse events, bleeding, or injection site reactions were observed. Conclusions RUC-4 provides rapid, high-grade, limited-duration platelet inhibition following subcutaneous administration that appears to be safe and well tolerated. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NTC03844191.
Collapse
Affiliation(s)
- Dean J. Kereiakes
- The Carl and Edyth Lindner Center for Research and Education at The Christ HospitalCincinnatiOH
| | - Tim D. Henry
- The Carl and Edyth Lindner Center for Research and Education at The Christ HospitalCincinnatiOH
| | | | - Ohad Bentur
- Allen and Frances Adler Laboratory of Blood and Vascular BiologyRockefeller UniversityNew YorkNY
| | | | | | - Linda H. Martin
- The Carl and Edyth Lindner Center for Research and Education at The Christ HospitalCincinnatiOH
| | - Jeff Midkiff
- The Carl and Edyth Lindner Center for Research and Education at The Christ HospitalCincinnatiOH
| | - Michele Mueller
- The Carl and Edyth Lindner Center for Research and Education at The Christ HospitalCincinnatiOH
| | - Terah Meek
- The Carl and Edyth Lindner Center for Research and Education at The Christ HospitalCincinnatiOH
| | - Deborah Garza
- The Carl and Edyth Lindner Center for Research and Education at The Christ HospitalCincinnatiOH
| | | | - Barry S. Coller
- Allen and Frances Adler Laboratory of Blood and Vascular BiologyRockefeller UniversityNew YorkNY
| |
Collapse
|
34
|
Buitrago L, Zafar H, Zhang Y, Li J, Walz T, Coller BS. Dominant role of αIIbβ3 in platelet interactions with cross-linked fibrin fragment D-dimer. Blood Adv 2020; 4:2939-2949. [PMID: 32603423 PMCID: PMC7362365 DOI: 10.1182/bloodadvances.2020001545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022] Open
Abstract
Although much is known about the interaction of fibrinogen with αIIbβ3, much less is known about the interaction of platelets with cross-linked fibrin. Fibrinogen residue Lys406 plays a vital role in the interaction of fibrinogen with αIIbβ3, but because it participates in fibrin cross-linking, it is not available for interacting with αIIbβ3. We studied the adhesion of platelets and HEK cells expressing normal and constitutively active αIIbβ3 to both immobilized fibrinogen and D-dimer, a proteolytic fragment of cross-linked fibrin, as well as platelet-mediated clot retraction. Nonactivated platelets and HEK cells expressing normal αIIbβ3 adhered to fibrinogen but not D-dimer, whereas activated platelets as well as HEK cells expressing activated αIIbβ3 both bound to D-dimer. Small-molecule antagonists of the αIIbβ3 RGD (Arg-Gly-Asp) binding pocket inhibited adhesion to D-dimer, and an Asp119Ala mutation that disrupts the β3 metal ion-dependent adhesion site inhibited αIIbβ3-mediated adhesion to D-dimer. D-dimer and a polyclonal antibody against D-dimer inhibited clot retraction. The monoclonal antibody (mAb) 10E5, directed at αIIb and a potent inhibitor of platelet interactions with fibrinogen, did not inhibit the interaction of activated platelets with D-dimer or clot retraction, whereas the mAb 7E3, directed at β3, inhibited both phenomena. We conclude that activated, but not nonactivated, αIIbβ3 mediates interactions between platelets and D-dimer, and by extrapolation, to cross-linked fibrin. Although the interaction of αIIbβ3 with D-dimer differs from that with fibrinogen, it probably involves contributions from regions on β3 that are close to, or that are affected by, changes in the RGD binding pocket.
Collapse
Affiliation(s)
| | - Hina Zafar
- Laboratory of Blood and Vascular Biology and
| | - Yixiao Zhang
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY
| | - Jihong Li
- Laboratory of Blood and Vascular Biology and
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY
| | | |
Collapse
|
35
|
Improved Antithrombotic Activity and Diminished Bleeding Side Effect of a PEGylated α IIbβ 3 Antagonist, Disintegrin. Toxins (Basel) 2020; 12:toxins12070426. [PMID: 32605221 PMCID: PMC7404706 DOI: 10.3390/toxins12070426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/28/2023] Open
Abstract
Polymer polyethylene glycol (PEG), or PEGylation of polypeptides improves protein drug stability by decreasing degradation and reducing renal clearance. To produce a pharmaceutical disintegrin derivative, the N-terminal PEGylation technique was used to modify the disintegrin derivative [KGDRR]trimucrin for favorable safety, pharmacokinetic profiles, and antithrombotic efficacy. We compared intact [KGDRR]trimucrin (RR) and PEGylated KGDRR (PEG-RR) by in vitro and in vivo systems for their antithrombotic activities. The activity of platelet aggregation inhibition and the bleeding tendency side effect were also investigated. PEG-RR exhibited optimal potency in inhibiting platelet aggregation of human/mouse platelet-rich plasma activated by collagen or ADP with a lower IC50 than the intact derivative RR. In the illumination-induced mesenteric venous thrombosis model, RR and PEG-RR efficaciously prevented occlusive thrombosis in a dose-dependent manner. In rotational thromboelastometry assay, PEG-RR did not induce hypocoagulation in human whole blood even given at a higher concentration (30 μg/mL), while RR slightly prolonged clotting time. However, RR and PEG-RR were not associated with severe thrombocytopenia or bleeding in FcγRIIa-transgenic mice at equally efficacious antithrombotic dosages. We also found the in vivo half-life of PEGylation was longer than RR (RR: 15.65 h vs. PEG-RR: 20.45 h). In conclusion, injectable PEG-RR with prolonged half-life and decreased bleeding risk is a safer anti-thrombotic agent for long-acting treatment of thrombus diseases.
Collapse
|
36
|
Chen Y, Ju LA. Biomechanical thrombosis: the dark side of force and dawn of mechano-medicine. Stroke Vasc Neurol 2020; 5:185-197. [PMID: 32606086 PMCID: PMC7337368 DOI: 10.1136/svn-2019-000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Arterial thrombosis is in part contributed by excessive platelet aggregation, which can lead to blood clotting and subsequent heart attack and stroke. Platelets are sensitive to the haemodynamic environment. Rapid haemodynamcis and disturbed blood flow, which occur in vessels with growing thrombi and atherosclerotic plaques or is caused by medical device implantation and intervention, promotes platelet aggregation and thrombus formation. In such situations, conventional antiplatelet drugs often have suboptimal efficacy and a serious side effect of excessive bleeding. Investigating the mechanisms of platelet biomechanical activation provides insights distinct from the classic views of agonist-stimulated platelet thrombus formation. In this work, we review the recent discoveries underlying haemodynamic force-reinforced platelet binding and mechanosensing primarily mediated by three platelet receptors: glycoprotein Ib (GPIb), glycoprotein IIb/IIIa (GPIIb/IIIa) and glycoprotein VI (GPVI), and their implications for development of antithrombotic 'mechano-medicine' .
Collapse
Affiliation(s)
- Yunfeng Chen
- Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Lining Arnold Ju
- School of Biomedical Engineering, Heart Research Institute and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
37
|
Tscharre M, Michelson AD, Gremmel T. Novel Antiplatelet Agents in Cardiovascular Disease. J Cardiovasc Pharmacol Ther 2020; 25:191-200. [DOI: 10.1177/1074248419899314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antiplatelet therapy reduces atherothrombotic risk and has therefore become a cornerstone in the treatment of cardiovascular disease. Aspirin, adenosine diphosphate P2Y12 receptor antagonists, glycoprotein IIb/IIIa inhibitors, and the thrombin receptor blocker vorapaxar are effective antiplatelet agents but significantly increase the risk of bleeding. Moreover, atherothrombotic events still impair the prognosis of many patients with cardiovascular disease despite established antiplatelet therapy. Over the last years, advances in the understanding of thrombus formation and hemostasis led to the discovery of various new receptors and signaling pathways of platelet activation. As a consequence, many new antiplatelet agents with high antithrombotic efficacy and supposedly only moderate effects on regular hemostasis have been developed and yielded promising results in preclinical and early clinical studies. Although their long journey from animal studies to randomized clinical trials and finally administration in daily clinical routine has just begun, some of the new agents may in the future become meaningful additions to the pharmacological armamentarium in cardiovascular disease.
Collapse
Affiliation(s)
- Maximilian Tscharre
- Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
- Institute of Vascular Medicine and Cardiac Electrophysiology, Karl Landsteiner Society, St Poelten, Austria
| | - Alan D. Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Thomas Gremmel
- Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
- Institute of Vascular Medicine and Cardiac Electrophysiology, Karl Landsteiner Society, St Poelten, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Structure-guided design of pure orthosteric inhibitors of αIIbβ3 that prevent thrombosis but preserve hemostasis. Nat Commun 2020; 11:398. [PMID: 31964886 PMCID: PMC6972956 DOI: 10.1038/s41467-019-13928-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
A prevailing dogma is that inhibition of vascular thrombosis by antagonizing platelet integrin αIIbβ3 cannot be achieved without compromising hemostasis, thus causing serious bleeding and increased morbidity and mortality. It is speculated that these adverse outcomes result from drug-induced activating conformational changes in αIIbβ3 but direct proof is lacking. Here, we report the structure-guided design of peptide Hr10 and a modified form of the partial agonist drug tirofiban that act as "pure" antagonists of αIIbβ3, i.e., they no longer induce the conformational changes in αIIbβ3. Both agents inhibit human platelet aggregation but preserve clot retraction. Hr10 and modified tirofiban are as effective as partial agonist drugs in inhibiting vascular thrombosis in humanized mice, but neither causes serious bleeding, establishing a causal link between partial agonism and impaired hemostasis. Pure orthosteric inhibitors of αIIbβ3 may thus provide safer alternatives for human therapy, and valuable tools to probe structure-activity relationships in integrins.
Collapse
|
39
|
Xiang Q, Pang X, Liu Z, Yang G, Tao W, Pei Q, Cui Y. Progress in the development of antiplatelet agents: Focus on the targeted molecular pathway from bench to clinic. Pharmacol Ther 2019; 203:107393. [PMID: 31356909 DOI: 10.1016/j.pharmthera.2019.107393] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 07/10/2019] [Indexed: 12/22/2022]
Abstract
Antiplatelet drugs serve as a first-line antithrombotic therapy for the management of acute ischemic events and the prevention of secondary complications in vascular diseases. Numerous antiplatelet therapies have been developed; however, currently available agents are still associated with inadequate efficacy, risk of bleeding, and variability in individual response. Understanding the mechanisms of platelet involvement in thrombosis and the clinical development process of antiplatelet agents is critical for the discovery of novel agents. The functions of platelets in thrombosis are regulated by two major mechanisms: the interaction between surface receptors and their ligands, and the downstream intracellular signaling pathways. Recently, most of the progress made in antiplatelet drug development has been achieved with P2Y receptor antagonists. Additionally, the usage of GP IIb/IIIa receptor antagonists has decreased, because it is associated with a higher risk of bleeding and thrombocytopenia. Agents targeting other platelet surface receptors such as PARs, TP receptor, EP3 receptor, GPIb-IX-V receptor, P-selectin, as well as intracellular signaling factors, such as PI3Kβ, have been evaluated in an attempt to develop the next generation of antiplatelet drugs, reduce or eliminate interpatient variability of drug efficacy and significantly lower the risk of drug-induced bleeding. The aim of this review is to describe the pathways of platelet activation in thrombosis, and summarize the development process of antiplatelet agents, as well as the preclinical and clinical evaluations performed on these agents.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing 100034, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing 100034, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Research Center of Drug Clinical Evaluation of Central South University, 138 TongZiPo Road, Changsha, Hunan 410013, China
| | - Weikang Tao
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Research Center of Drug Clinical Evaluation of Central South University, 138 TongZiPo Road, Changsha, Hunan 410013, China
| | - Qi Pei
- Shanghai Hengrui Pharmaceuticals Co., 279 Wenjing Road, Shanghai, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing 100034, China.
| |
Collapse
|
40
|
Developments in inhibiting platelet aggregation based on different design strategies. Future Med Chem 2019; 11:1757-1775. [PMID: 31288579 DOI: 10.4155/fmc-2018-0345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Platelet aggregation is the central event in hemostasis and thrombosis. Up to now, many agents inhibiting platelet aggregation have been approved for the treatment of thrombotic disorders. In this review, we mainly summarized the progress in the research of platelet aggregation inhibitors based on different design strategies. The advantage and challenge of corresponding targets are also discussed in this article. We hope more platelet aggregation inhibitors with efficacy and safety will be discovered in the future.
Collapse
|
41
|
Preclinical Studies of RUC-4, a Novel Platelet αIIbβ3 Antagonist, in Non-Human Primates and With Human Platelets. J Clin Transl Sci 2019; 3:65-74. [PMID: 31544007 PMCID: PMC6753935 DOI: 10.1017/cts.2019.382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction We are developing the novel αIIbβ3 antagonist, RUC-4, for subcutaneously (SC)-administered first-point-of-medical-contact treatment for ST Segment Elevated Myocardial Infarction (STEMI). Methods We studied the: 1. pharmacokinetics (PK) of RUC-4 at 1.0, 1.93, and 3.86 mg/kg IV, IM, and SC in non-human primates (NHPs); 2. impact of aspirin on RUC-4 IC50 in human platelet-rich plasma (PRP); 3. effect of different anticoagulants on the RUC-4 IC50 in human PRP; and 4. relationship between αIIbβ3 receptor blockade by RUC-4 and inhibition of ADP-induced platelet aggregation. Results 1. All doses of RUC-4 were well tolerated, but animals demonstrated variable temporary bruising. IM and SC RUC-4 reached dose-dependent peak levels within 5-15 min, with T½ s between 0.28 and 0.56 hrs. Platelet aggregation studies in NHPs receiving IM RUC-4 demonstrated >80% inhibition of the initial slope of ADP-induced aggregation with all 3 doses 30 minutes post-dosing, with subsequent dose-dependent loss of inhibition over 4-5 hours. 2. The RUC-4 IC50 for ADP-induced platelet aggregation was unaffected by aspirin treatment (40±9 nM vs. 37±5 nM; p=0.39). 3. The RUC-4 IC50 was significantly higher in PRP prepared from PPACK-anticoagulated blood compared to citrate-anticoagulated blood using either TRAP (122±17 vs. 66±25 nM; p=0.05; n=4) or ADP (102±22 vs. 54±13; p<0.001; n=5). 4. There was a close correspondence between receptor blockade and inhibition of ADP-induced platelet aggregation, with aggregation inhibition beginning with ~40% receptor blockade and becoming nearly complete at >80% receptor blockade. Discussion Based on these results and others, RUC-4 has now progressed to formal preclinical toxicology studies.
Collapse
|
42
|
Majithia A, Bhatt DL. Novel Antiplatelet Therapies for Atherothrombotic Diseases. Arterioscler Thromb Vasc Biol 2019; 39:546-557. [PMID: 30760019 PMCID: PMC6445601 DOI: 10.1161/atvbaha.118.310955] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/20/2019] [Indexed: 01/03/2023]
Abstract
Antiplatelet therapies are an essential tool to reduce the risk of developing clinically apparent atherothrombotic disease and are a mainstay in the therapy of patients who have established cardiovascular, cerebrovascular, and peripheral artery disease. Strategies to intensify antiplatelet regimens are limited by concomitant increases in clinically significant bleeding. The development of novel antiplatelet therapies targeting additional receptor and signaling pathways, with a focus on maintaining antiplatelet efficacy while preserving hemostasis, holds tremendous potential to improve outcomes among patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Arjun Majithia
- From the Brigham and Women’s Hospital Heart and Vascular Center and Harvard Medical School, Boston, MA
| | - Deepak L. Bhatt
- From the Brigham and Women’s Hospital Heart and Vascular Center and Harvard Medical School, Boston, MA
| |
Collapse
|
43
|
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, Zhou Y, Mao J, Long Z, Ma Z, Ye W, Pan J, Xi X, Jin J. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12:26. [PMID: 30845955 PMCID: PMC6407232 DOI: 10.1186/s13045-019-0709-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mark Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
44
|
Coller BS. Foreword: A Brief History of Ideas About Platelets in Health and Disease. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.09988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Knowles RB, Warner TD. Anti-platelet drugs and their necessary interaction with endothelial mediators and platelet cyclic nucleotides for therapeutic efficacy. Pharmacol Ther 2018; 193:83-90. [PMID: 30081048 PMCID: PMC6325790 DOI: 10.1016/j.pharmthera.2018.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For many millions of patients at secondary risk of coronary thrombosis pharmaceutical protection is supplied by dual anti-platelet therapy. Despite substantial therapeutic developments over the last decade recurrent thrombotic events occur, highlighting the need for further optimisation of therapies. Importantly, but often ignored, anti-platelet drugs interact with cyclic nucleotide systems in platelets and these are the same systems that mediate key endogenous pathways of platelet regulation, notably those dependent upon the vascular endothelium. The aim of this review is to highlight interactions between the anti-platelet drugs, aspirin and P2Y12 receptor antagonists and endogenous pathways of platelet regulation at the level of cyclic nucleotides. These considerations are key to concepts such as anti-platelet drug resistance and individualized anti-platelet therapy which cannot be understood by study of platelets in isolation from the circulatory environment. We also explore novel and emerging therapies that focus on preserving haemostasis and how the concepts outlined in this review could be exploited therapeutically to improve anti-thrombotic efficacy whilst reducing bleeding risk.
Collapse
Affiliation(s)
- Rebecca B Knowles
- The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Timothy D Warner
- The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
46
|
Ghanakota P, van Vlijmen H, Sherman W, Beuming T. Large-Scale Validation of Mixed-Solvent Simulations to Assess Hotspots at Protein–Protein Interaction Interfaces. J Chem Inf Model 2018; 58:784-793. [PMID: 29617116 DOI: 10.1021/acs.jcim.7b00487] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Phani Ghanakota
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | | | - Woody Sherman
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Thijs Beuming
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| |
Collapse
|
47
|
Morphometric analysis of spread platelets identifies integrin α IIbβ 3-specific contractile phenotype. Sci Rep 2018; 8:5428. [PMID: 29615672 PMCID: PMC5882949 DOI: 10.1038/s41598-018-23684-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/13/2018] [Indexed: 11/17/2022] Open
Abstract
Haemostatic platelet function is intimately linked to cellular mechanics and cytoskeletal morphology. How cytoskeletal reorganizations give rise to a highly contractile phenotype that is necessary for clot contraction remains poorly understood. To elucidate this process in vitro, we developed a morphometric screen to quantify the spatial organization of actin fibres and vinculin adhesion sites in single spread platelets. Platelets from healthy donors predominantly adopted a bipolar morphology on fibrinogen and fibronectin, whereas distinguishable, more isotropic phenotypes on collagen type I or laminin. Specific integrin αIIbβ3 inhibitors induced an isotropic cytoskeletal organization in a dose-dependent manner. The same trend was observed with decreasing matrix stiffness. Circular F-actin arrangements in platelets from a patient with type II Glanzmann thrombasthenia (GT) were consistent with the residual activity of a small number of αIIbβ3 integrins. Cytoskeletal morphologies in vitro thus inform about platelet adhesion receptor identity and functionality, and integrin αIIbβ3 mechanotransduction fundamentally determines the adoption of a bipolar phenotype associated with contraction. Super-resolution microscopy and electron microscopies further confirmed the stress fibre-like contractile actin architecture. For the first time, our assay allows the unbiased and quantitative assessment of platelet morphologies and could help to identify defective platelet behaviour contributing to elusive bleeding phenotypes.
Collapse
|
48
|
Buranda T, Gineste C, Wu Y, Bondu V, Perez D, Lake KR, Edwards BS, Sklar LA. A High-Throughput Flow Cytometry Screen Identifies Molecules That Inhibit Hantavirus Cell Entry. SLAS DISCOVERY 2018; 23:634-645. [PMID: 29608398 DOI: 10.1177/2472555218766623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), which infects more than 200,000 people worldwide. Sin Nombre virus (SNV) and Andes virus (ANDV) cause the most severe form of HCPS, with case fatality ratios of 30%-40%. There are no specific therapies or vaccines for SNV. Using high-throughput flow cytometry, we screened the Prestwick Chemical Library for small-molecule inhibitors of the binding interaction between UV-inactivated and fluorescently labeled SNVR18 particles, and decay-accelerating factor (DAF) expressed on Tanoue B cells. Eight confirmed hit compounds from the primary screen were investigated further in secondary screens that included infection inhibition, cytotoxicity, and probe interference. Antimycin emerged as a bona fide hit compound that inhibited cellular infection of the major HCPS (SNV)- and HCPS (Hantaan)-causing viruses. Confirming our assay's ability to detect active compounds, orthogonal testing of the hit compound showed that antimycin binds directly to the virus particle and blocks recapitulation of physiologic integrin activation caused by SNV binding to the integrin PSI domain.
Collapse
Affiliation(s)
- Tione Buranda
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018.,2 Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Catherine Gineste
- 3 University of New Mexico Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Yang Wu
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018
| | - Virginie Bondu
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018
| | - Dominique Perez
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018.,4 Department of Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Kaylin R Lake
- 5 Department of Biochemistry, University of New Mexico, Albuquerque, NM, USA
| | - Bruce S Edwards
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018.,3 University of New Mexico Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA.,4 Department of Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Larry A Sklar
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018.,3 University of New Mexico Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA.,4 Department of Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
49
|
Hatley RJD, Macdonald SJF, Slack RJ, Le J, Ludbrook SB, Lukey PT. An αv-RGD Integrin Inhibitor Toolbox: Drug Discovery Insight, Challenges and Opportunities. Angew Chem Int Ed Engl 2018; 57:3298-3321. [DOI: 10.1002/anie.201707948] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Richard J. D. Hatley
- Fibrosis DPU; Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| | - Simon J. F. Macdonald
- Fibrosis DPU; Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| | - Robert J. Slack
- Fibrosis DPU; Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| | - Joelle Le
- Fibrosis DPU; Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| | - Steven B. Ludbrook
- Fibrosis DPU; Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| | - Pauline T. Lukey
- Fibrosis DPU; Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY UK
| |
Collapse
|
50
|
Hatley RJD, Macdonald SJF, Slack RJ, Le J, Ludbrook SB, Lukey PT. Ein Instrumentarium von αv-RGD-Integrin-Inhibitoren: Wirkstoffsuche, Herausforderungen und Möglichkeiten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201707948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Richard J. D. Hatley
- Fibrosis and Lung Injury DPU, Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY Großbritannien
| | - Simon J. F. Macdonald
- Fibrosis and Lung Injury DPU, Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY Großbritannien
| | - Robert J. Slack
- Fibrosis and Lung Injury DPU, Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY Großbritannien
| | - Joelle Le
- Fibrosis and Lung Injury DPU, Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY Großbritannien
| | - Steven B. Ludbrook
- Fibrosis and Lung Injury DPU, Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY Großbritannien
| | - Pauline T. Lukey
- Fibrosis and Lung Injury DPU, Respiratory Therapeutic Area; GlaxoSmithKline Medicines Research Centre; Gunnels Wood Road Stevenage SG1 2NY Großbritannien
| |
Collapse
|