1
|
Ngwenya T, Grundlingh D, Ngoepe MN. Influence of vortical structures on fibrin clot formation in cerebral aneurysms: A two-dimensional computational study. J Biomech 2024; 165:111994. [PMID: 38394954 DOI: 10.1016/j.jbiomech.2024.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Thrombosis is an important contributor to cerebral aneurysm growth and progression. A number of sophisticated multiscale and multiphase in silico models have been developed with a view towards interventional planning. Many of these models are able to account for clotting outcomes, but do not provide detailed insight into the role of flow during clot development. In this study, we present idealised, two-dimensional in silico cerebral fibrin clot model based on computational fluid dynamics (CFD), biochemical modelling and variable porosity, permeability, and diffusivity. The model captures fibrin clot growth in cerebral aneurysms over a period at least 1000 s in five different geometries. The fibrin clot growth results were compared to an experiment presented in literature. The biochemistry was found to be more sensitive to mesh size compared to the haemodynamics, while larger timesteps overpredicted clot size in pulsatile flow. When variable diffusivity was used, the predicted clot size was 25.4% lesser than that with constant diffusivity. The predicted clot size in pulsatile flow was 14.6% greater than in plug flow. Different vortex modes were observed in plug and pulsatile flow; the latter presented smaller intermediate modes where the main vortex was smaller and less likely to disrupt the growing fibrin clot. Furthermore, smaller vortex modes were seen to support fibrin clot propagation across geometries. The model clearly demonstrates how the growing fibrin clot alters vortical structures within the aneurysm sac and how this changing flow, in turn, shapes the growing fibrin clot.
Collapse
Affiliation(s)
- Tinashe Ngwenya
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, South Africa; Department of Mechanical Engineering, University of Cape Town, South Africa
| | - Divan Grundlingh
- Department of Mechanical Engineering, University of Cape Town, South Africa
| | - Malebogo N Ngoepe
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, South Africa; Department of Mechanical Engineering, University of Cape Town, South Africa.
| |
Collapse
|
2
|
High fibrinogen γ' levels in patient plasma increase clot formation at arterial and venous shear. Blood Adv 2021; 5:3468-3477. [PMID: 34438442 DOI: 10.1182/bloodadvances.2020003346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022] Open
Abstract
Fibrinogen γ' accounts for 3% to 40% of plasma fibrinogen. Earlier studies indicated that fibrinogen γ' forms altered fibrin clots under static conditions, whereas clinically, altered plasma γ' levels are associated with arterial and venous thrombosis. However, the effects of static vs flow conditions on the role of γ' throughout the pathophysiological range is unknown. This study explores the effects of γ' levels on clot formation and structure in static and flow conditions. Coagulation of plasma samples with low (n = 41; 3%), normal (n = 45; 10%), or high (n = 33; 30%) γ' levels were compared with that of purified fibrinogen mixtures with increasing ratios of γ' (3%, 10%, 30%). Clots were analyzed by confocal microscopy, permeation, turbidity, and lysis techniques. In a novel 2-step flow-perfusion model, fibrinogen-deficient plasma repleted with increasing ratios of γ' (3%, 10%, 30%) or plasmas with low (n = 5, 3%) or high (n = 5, 30%) γ' were flowed over preformed platelet aggregates at arterial (500 s-1) and venous (150 s-1) shear rates. Increasing γ' percentages within the pathophysiological range (3%-30%) did not result in any change in clot-formation rates; however, it led to significantly higher clot density, thinner fibers, and slower lysis in static conditions. Under flow at arterial shear, high γ' (30%) led to faster (+44.1%-75.3%) and increased (+104%-123%) fibrin deposition, with clots exhibiting a larger volume (+253%-655%) and height (+130%-146%). These trends were magnified at venous shear. Overall, our findings demonstrate the significant impact of pathophysiological fibrinogen γ' levels on clot structure and provide new flow-dependent mechanisms to explain how γ' increases thrombosis risk.
Collapse
|
3
|
DeCortin ME, Brass LF, Diamond SL. Core and shell platelets of a thrombus: A new microfluidic assay to study mechanics and biochemistry. Res Pract Thromb Haemost 2020; 4:1158-1166. [PMID: 33134782 PMCID: PMC7590323 DOI: 10.1002/rth2.12405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/10/2020] [Accepted: 05/08/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Hemostatic clots have a P-selectin positive platelet core covered with a shell of P-selectin negative platelets. OBJECTIVE To develop a new human blood microfluidic assay to interrogate core/shell mechanics. METHODS A 2-stage assay perfused whole blood over collagen/± tissue factor (TF) for 180 seconds at 100 s-1 wall shear rate, followed by buffer perfusion at either 100 s-1 (venous) or 1000 s-1 (arterial). This microfluidic assay used an extended channel height (120 µm), allowing buffer perfusion well before occlusion. RESULTS Clot growth on collagen stopped immediately with buffer exchange, revealing ~10% reduction in platelet fluorescence intensity (at 100 s-1) and ~30% (at 1000 s-1) by 1200 seconds. Thrombin generation (on collagen/TF) reduced erosion at either buffer flow rate. P-selectin-positive platelets were stable (no erosion) against 1000 s-1, in contrast to P-selectin negative platelets. Thrombin inhibition (with D-Phe-Pro-Arg-CMK) reduced the number of P-selectin-positive platelets and lowered thrombus stability through the reduction of P-selectin-positive platelets. Interestingly, fibrin inhibition (with H-Gly-Pro-Arg-Pro-OH acetate salt) increased the number of P-selectin-positive platelets but did not lower stability, suggesting that fibrin was only in the core region. Thromboxane inhibition reduced P-selectin-positive platelets and caused a nearly 60% reduction of the clot at arterial buffer flow. P2Y1 antagonism reduced clot size and the number of P-selectin-positive platelets and reduced the stability of P-selectin-negative platelets. CONCLUSION The 2-stage assay (extended channel height plus buffer exchange) interrogated platelet stability using human blood. Under all conditions, P-selectin-positive platelets never left the clot.
Collapse
Affiliation(s)
- Michael E. DeCortin
- Department of Chemical and Biomolecular EngineeringInstitute for Medicine and EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lawrence F. Brass
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Scott L. Diamond
- Department of Chemical and Biomolecular EngineeringInstitute for Medicine and EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Abstract
Fibrinogen is one of the first factors to fall to critically low levels in the blood in many coagulopathic events. Patients with hypofibrinogenemia are at a significantly greater risk of major hemorrhage and death. The rapid replacement of fibrinogen early on in hypofibrinogenemia may significantly improve outcomes for patients. Fibrinogen is present at concentrations between 2 and 4 g/L in the plasma of healthy people. However, hypofibrinogenemia is diagnosed when the fibrinogen level drops below 1.5-2 g/L. This review analyses different types of fibrinogen assays that can be used for diagnosing hypofibrinogenemia. The scientific mechanisms and limitations behind these tests are then presented. Additionally, the current state of clinical major hemorrhage protocols (MHPs) is presented and the structure, function and physiological role of fibrinogen is summarized.
Collapse
Affiliation(s)
- Marek Bialkower
- BioPRIA and Department of Chemical Engineering, Monash University, Clayton, Australia
| | - Gil Garnier
- BioPRIA and Department of Chemical Engineering, Monash University, Clayton, Australia
| |
Collapse
|
5
|
Zhang Y, Diamond SL. Src family kinases inhibition by dasatinib blocks initial and subsequent platelet deposition on collagen under flow, but lacks efficacy with thrombin generation. Thromb Res 2020; 192:141-151. [PMID: 32480168 DOI: 10.1016/j.thromres.2020.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Kinase inhibitors can pose bleeding risks as platelet signaling evolves during clotting. Using microfluidics (200 s-1 wall shear rate) to perfuse Factor XIIa-inhibited or thrombin-inhibited whole blood (WB) over collagen ± tissue factor (TF), we explored the potency of the Src family kinase (SFK) inhibitor dasatinib or the spleen tyrosine kinase (Syk) inhibitor GS-9973 present at clot initiation or added after 90 s (via rapid switch to inhibitor-pretreated WB). When initially present, dasatinib potently inhibited platelet deposition on collagen (no TF). Furthermore, dasatinib immediately inhibited subsequent platelet deposition when introduced 90 s after clot initiation. However, when thrombin was generated, dasatinib was markedly less potent against platelet deposition on collagen/TF (but blocked fibrin deposition) and had no effect when added 90 s after clot initiation. Similarly, dasatinib added at 90 s had no effect on clotting on collagen/TF when fibrin was also blocked with Gly-Pro-Arg-Pro, indicating that strong thrombin-induced signaling (but not fibrin-induced signaling) can bypass the SFK inhibition at later times. The Syk inhibitor GS-9973 was less potent than dasatinib when present initially, but inhibited clot growth when added at 90 s, even in the presence of thrombin (±fibrin). Interestingly, the active form (R-406) of fostamatinib inhibits platelet function in only 2 0f 5 healthy blood samples. SFK-inhibitors may have reduced antithrombotic activity and reduced bleeding risks in settings of high TF and local thrombin generation. For oncology patients, SFK-inhibitors like dasatinib may have reduced antithrombotic activity and reduced bleeding risk in settings of local thrombin generation.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Esiaba I, Mousselli I, M. Faison G, M. Angeles D, S. Boskovic D. Platelets in the Newborn. NEONATAL MEDICINE 2019. [DOI: 10.5772/intechopen.86715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Kelley M, Leiderman K. A Mathematical Model of Bivalent Binding Suggests Physical Trapping of Thrombin within Fibrin Fibers. Biophys J 2019; 117:1442-1455. [PMID: 31586524 DOI: 10.1016/j.bpj.2019.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/14/2019] [Accepted: 09/06/2019] [Indexed: 01/21/2023] Open
Abstract
Thrombin is an enzyme that plays many important roles in the blood clotting process; it activates platelets, cleaves coagulation proteins within feedback loops, and cleaves fibrinogen into fibrin, which polymerizes into fibers to form a stabilizing gel matrix in and around growing clots. Thrombin also binds to the formed fibrin matrix, but this interaction is not well understood. Thrombin-fibrin binding is often described as two independent, single-step binding events, one high-affinity and one low-affinity. However, kinetic schemes describing these single-step binding events do not explain experimentally-observed residency times of fibrin-bound thrombin. In this work, we study a bivalent, sequential-step binding scheme as an alternative to the high-affinity event and, in addition to the low-affinity one. We developed mathematical models for the single- and sequential-step schemes consisting of reaction-diffusion equations to compare to each other and to experimental data. We then used Bayesian inference, in the form of Markov chain Monte Carlo, to learn model parameter distributions from previously published experimental data. For the model to best fit the data, we made an additional assumption that thrombin was irreversibly sequestered; we hypothesized that this could be due to thrombin becoming physically trapped within fibrin fibers as they formed. We further estimated that ∼30% of thrombin in the experiments to which we compare our model output became physically trapped. The notion of physically trapped thrombin may provide new insights into conflicting observations regarding the speed of fibrinolysis. Finally, we show that our new model can be used to further probe scenarios dealing with thrombin allostery.
Collapse
Affiliation(s)
- Michael Kelley
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado
| | - Karin Leiderman
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado.
| |
Collapse
|
8
|
Chen J, Diamond SL. Reduced model to predict thrombin and fibrin during thrombosis on collagen/tissue factor under venous flow: Roles of γ'-fibrin and factor XIa. PLoS Comput Biol 2019; 15:e1007266. [PMID: 31381558 PMCID: PMC6695209 DOI: 10.1371/journal.pcbi.1007266] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/15/2019] [Accepted: 07/08/2019] [Indexed: 01/29/2023] Open
Abstract
During thrombosis, thrombin generates fibrin, however fibrin reversibly binds thrombin with low affinity E-domain sites (KD = 2.8 μM) and high affinity γ’-fibrin sites (KD = 0.1 μM). For blood clotting on collagen/tissue factor (1 TF-molecule/μm2) at 200 s-1 wall shear rate, high μM-levels of intraclot thrombin suggest robust prothrombin penetration into clots. Setting intraclot zymogen concentrations to plasma levels (and neglecting cofactor rate limitations) allowed the linearization of 7 Michaelis-Menton reactions between 6 species to simulate intraclot generation of: Factors FXa (via TF/VIIa or FIXa), FIXa (via TF/FVIIa or FXIa), thrombin, fibrin, and FXIa. This reduced model [7 rates, 2 KD’s, enzyme half-lives~1 min] predicted the measured clot elution rate of thrombin-antithrombin (TAT) and fragment F1.2 in the presence and absence of the fibrin inhibitor Gly-Pro-Arg-Pro. To predict intraclot fibrin reaching 30 mg/mL by 15 min, the model required fibrinogen penetration into the clot to be strongly diffusion-limited (actual rate/ideal rate = 0.05). The model required free thrombin in the clot (~100 nM) to have an elution half-life of ~2 sec, consistent with measured albumin elution, with most thrombin (>99%) being fibrin-bound. Thrombin-feedback activation of FXIa became prominent and reached 5 pM FXIa at >500 sec in the simulation, consistent with anti-FXIa experiments. In predicting intrathrombus thrombin and fibrin during 15-min microfluidic experiments, the model revealed “cascade amplification” from 30 pM levels of intrinsic tenase to 15 nM prothrombinase to 15 μM thrombin to 90 μM fibrin. Especially useful for multiscale simulation, this reduced model predicts thrombin and fibrin co-regulation during thrombosis under flow. During blood clotting events, a complex series of reaction are involved. Simulation gives insights to the concentration of different enzymes which are at too low of concentration to be detected. However, the models are often large and difficult to solve for clotting under flow conditions. With a thin film approximation, we were able to simplify clotting under flow with parameters from literature, with only 3 adjusted in order to fit the experimental data. This model gave insights into the dynamics of the species involved, and the roles of γ’-fibrin and thrombin feedback activation. This reduced model may be useful in further multiscale simulations.
Collapse
Affiliation(s)
- Jason Chen
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Kattula S, Byrnes JR, Wolberg AS. Fibrinogen and Fibrin in Hemostasis and Thrombosis. Arterioscler Thromb Vasc Biol 2019; 37:e13-e21. [PMID: 28228446 DOI: 10.1161/atvbaha.117.308564] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sravya Kattula
- From the Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - James R Byrnes
- From the Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Alisa S Wolberg
- From the Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill.
| |
Collapse
|
10
|
Microfluidic and computational study of structural properties and resistance to flow of blood clots under arterial shear. Biomech Model Mechanobiol 2019; 18:1461-1474. [PMID: 31055691 PMCID: PMC6748893 DOI: 10.1007/s10237-019-01154-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/20/2019] [Indexed: 01/01/2023]
Abstract
The ability of a blood clot to modulate blood flow is determined by the clot’s resistance, which depends on its structural features. For a flow with arterial shear, we investigated the characteristic patterns relating to clot shape, size, and composition on the one hand, and its viscous resistance, intraclot axial flow velocity, and shear distributions on the other. We used microfluidic technology to measure the kinetics of platelet, thrombin, and fibrin accumulation at a thrombogenic surface coated with collagen and tissue factor (TF), the key clot-formation trigger. We subsequently utilized the obtained data to perform additional calibration and validation of a detailed computational fluid dynamics model of spatial clot growth under flow. We then ran model simulations to gain insights into the resistance of clots formed under our experimental conditions. We found that increased thrombogenic surface length and TF surface density enhanced the bulk thrombin and fibrin generation in a nonadditive, synergistic way. The height of the platelet deposition domain—and, therefore, clot occlusivity—was rather robust to thrombogenic surface length and TF density variations, but consistently increased with time. Clot viscous resistance was non-uniform and tended to be higher in the fibrin-rich, inner “core” region of the clot. Interestingly, despite intraclot structure and viscous resistance variations, intraclot flow velocity variations were minor compared to the abrupt decrease in flow velocity around the platelet deposition region. Our results shed new light on the connection between the structure of clots under arterial shear and spatiotemporal variations in their resistance to flow.
Collapse
|
11
|
Govindarajan V, Zhu S, Li R, Lu Y, Diamond SL, Reifman J, Mitrophanov AY. Impact of Tissue Factor Localization on Blood Clot Structure and Resistance under Venous Shear. Biophys J 2019; 114:978-991. [PMID: 29490257 PMCID: PMC5984989 DOI: 10.1016/j.bpj.2017.12.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/14/2017] [Accepted: 12/27/2017] [Indexed: 01/20/2023] Open
Abstract
The structure and growth of a blood clot depend on the localization of tissue factor (TF), which can trigger clotting during the hemostatic process or promote thrombosis when exposed to blood under pathological conditions. We sought to understand how the growth, structure, and mechanical properties of clots under flow are shaped by the simultaneously varying TF surface density and its exposure area. We used an eight-channel microfluidic device equipped with a 20- or 100-μm-long collagen surface patterned with lipidated TF of surface densities ∼0.1 and ∼2 molecules/μm2. Human whole blood was perfused at venous shear, and clot growth was continually measured. Using our recently developed computational model of clot formation, we performed simulations to gain insights into the clot’s structure and its resistance to blood flow. An increase in TF exposure area resulted not only in accelerated bulk platelet, thrombin, and fibrin accumulation, but also in increased height of the platelet mass and increased clot resistance to flow. Moreover, increasing the TF surface density or exposure area enhanced platelet deposition by approximately twofold, and thrombin and fibrin generation by greater than threefold, thereby increasing both clot size and its viscous resistance. Finally, TF effects on blood flow occlusion were more pronounced for the longer thrombogenic surface than for the shorter one. Our results suggest that TF surface density and its exposure area can independently enhance both the clot’s occlusivity and its resistance to blood flow. These findings provide, to our knowledge, new insights into how TF affects thrombus growth in time and space under flow.
Collapse
Affiliation(s)
- Vijay Govindarajan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Shu Zhu
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruizhi Li
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yichen Lu
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott L Diamond
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland.
| | - Alexander Y Mitrophanov
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| |
Collapse
|
12
|
Brass LF, Tomaiuolo M, Welsh J, Poventud-Fuentes I, Zhu L, Diamond SL, Stalker TJ. Hemostatic Thrombus Formation in Flowing Blood. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00020-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Zhu S, Herbig BA, Yu X, Chen J, Diamond SL. Contact Pathway Function During Human Whole Blood Clotting on Procoagulant Surfaces. Front Med (Lausanne) 2018; 5:209. [PMID: 30083534 PMCID: PMC6064720 DOI: 10.3389/fmed.2018.00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/02/2018] [Indexed: 11/13/2022] Open
Abstract
Microfluidic thrombosis assays allow the control of anticoagulation, hemodynamics, pharmacology, and procoagulant surfaces containing collagen ± tissue factor (TF). With corn trypsin inhibitor (CTI) ranging from low (1–4 μg/mL) to high levels (40–60 μg/mL), the function of Factor XIIa (FXIIa) can be modulated in the presence of low or high surface TF. With high CTI and no collagen/TF in the assay, no thrombin is generated during 15-min microfluidic perfusion. At low CTI (no TF), the generation of FXIa leads to fibrin polymerization at ~300 s after the initiation of flow over collagen, an onset time shortened at zero CTI and prolonged at high CTI. The engagement of FXIa was difficult to observe for clotting on high TF surfaces due to the dominance of the extrinsic pathway. Low TF surfaces allowed observable crosstalk between extrinsic pathway generation of thrombin and thrombin-mediated activation of FXIa, a feedback detected at >5 min and attenuated with polyphosphate inhibitor. From thrombin-antithrombin immunoassay of the effluent of blood flowing over collagen/TF, the majority of thrombin was found captured on intrathrombus fibrin. Additionally, extreme shear rates (>10,000 s−1) can generate massive von Willebrand Factor fibers that capture FXIIa and FXIa to drive fibrin generation, an event that facilitates VWF fiber dissolution under fibrinolytic conditions. Finally, we found that occlusive sterile thrombi subjected to pressure drops >70 mm-Hg/mm-clots have interstitial stresses sufficient to drive NETosis. These microfluidic studies highlight the interaction of contact pathway factors with the extrinsic pathway, platelet polyphosphate, VWF fibers, and potentially shear-induced NETs.
Collapse
Affiliation(s)
- Shu Zhu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Bradley A Herbig
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Xinren Yu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Jason Chen
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Zhu S, Chen J, Diamond SL. Establishing the Transient Mass Balance of Thrombosis: From Tissue Factor to Thrombin to Fibrin Under Venous Flow. Arterioscler Thromb Vasc Biol 2018; 38:1528-1536. [PMID: 29724819 PMCID: PMC6023760 DOI: 10.1161/atvbaha.118.310906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— We investigated the coregulation of thrombin and fibrin as blood flows over a procoagulant surface. Approach and Results— Using microfluidic perfusion of factor XIIa-inhibited human whole blood (200 s−1 wall shear rate) over a 250-μm long patch of collagen/TF (tissue factor; ≈1 molecule per μm2) and immunoassays of the effluent for F1.2 (prothrombin fragment 1.2), TAT (thrombin–antithrombin complex), and D-dimer (post–end point plasmin digest), we sought to establish the transient mass balance for clotting under venous flow. F1.2 (but almost no free thrombin detected via TAT assay) continually eluted from clots when fibrin was allowed to form. Low-dose fluorescein-Phe-Pro-Arg-chloromethylketone stained fibrin-bound thrombin—a staining ablated by anti–γ′-fibrinogen or the fibrin inhibitor glypro-arg-pro but highly resistant to 7-minute buffer rinse, demonstrating tight binding of thrombin to γ′-fibrin. With fibrin polymerizing for 500 seconds, 92 000 thrombin molecules and 203 000 clot-associated fibrin monomer equivalents were generated per TF molecule (or per μm2). Fibrin reached 15 mg/mL in the pore space (porosity ≈0.5) of a 15-μm-thick thrombus core by 500 seconds and 30 mg/mL by 800 seconds. For a known rate of ≈60 FPA (fibrinopeptide-A) per thrombin per second, each thrombin molecule generated only 3 fibrin monomer equivalents during 500 seconds, indicating an intraclot thrombin half-life of ≈70 ms, much shorter than its diffusional escape time (≈10 seconds). By 800 seconds, gly-pro-arg-pro allowed 4-fold more F1.2 generation, consistent with gly-pro-arg-pro ablating fibrin’s antithrombin-I activity and facilitating thrombin-mediated FXIa activation. Conclusions— Under flow, fibrinogen continually penetrates the clot, and γ′-fibrin regulates thrombin.
Collapse
Affiliation(s)
- Shu Zhu
- From the Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia
| | - Jason Chen
- From the Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia
| | - Scott L Diamond
- From the Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia.
| |
Collapse
|
15
|
Haynes LM, Orfeo T, Mann KG, Everse SJ, Brummel-Ziedins KE. Probing the Dynamics of Clot-Bound Thrombin at Venous Shear Rates. Biophys J 2017; 112:1634-1644. [PMID: 28445754 DOI: 10.1016/j.bpj.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
In closed system models of fibrin formation, exosite-mediated thrombin binding to fibrin contributes to clot stability and is resistant to inhibition by antithrombin/heparin while still susceptible to small, active-site inhibitors. Each molecule of fibrin can bind ∼1.6 thrombin molecules at low-affinity binding sites (Kd = 2.8 μM) and ∼0.3 molecules of thrombin at high-affinity binding sites (Kd = 0.15 μM). The goal of this study is to assess the stability of fibrin-bound thrombin under venous flow conditions and to determine both its accessibility and susceptibility to inhibition. A parallel-plate flow chamber (7 × 50 × 0.25 mm) for studying the stability of thrombin (0-1400 nM) adhered to a fibrin matrix (0.1-0.4 mg/mL fibrinogen, 10 nM thrombin) under a variety of venous flow conditions was developed using the thrombin-specific, fluorogenic substrate SN-59 (100 μM). The flow within this system is laminar (Re < 1) and reaction rates are driven by enzyme kinetics (Pe = 100, Da = 7000). A subpopulation of active thrombin remains stably adhered to a fibrin matrix over a range of venous shear rates (46-184 s-1) for upwards of 30 min, and this population is saturable at loads >500 nM and sensitive to the initial fibrinogen concentration. These observations were also supported by a mathematical model of thrombin adhesion to fibrin, which demonstrates that thrombin initially binds to the low-affinity thrombin binding sites before preferentially equilibrating to higher affinity sites. Antithrombin (2.6 μM) plus heparin (4 U/mL) inhibits 72% of the active clot-bound thrombin after ∼10 min at 92 s-1, while no inhibition is observed in the absence of heparin. Dabigatran (20 and 200 nM) inhibits (50 and 93%) clot-bound thrombin reversibly (87 and 66% recovery). This model illustrates that clot-bound thrombin stability is the result of a constant rearrangement of thrombin molecules within a dense matrix of binding sites.
Collapse
Affiliation(s)
- Laura M Haynes
- Department of Biochemistry, Robert Larner M.D. College of Medicine, University of Vermont, Colchester, Vermont
| | - Thomas Orfeo
- Department of Biochemistry, Robert Larner M.D. College of Medicine, University of Vermont, Colchester, Vermont
| | | | - Stephen J Everse
- Department of Biochemistry, Robert Larner M.D. College of Medicine, University of Vermont, Colchester, Vermont
| | - Kathleen E Brummel-Ziedins
- Department of Biochemistry, Robert Larner M.D. College of Medicine, University of Vermont, Colchester, Vermont.
| |
Collapse
|
16
|
Nagy M, Heemskerk JWM, Swieringa F. Use of microfluidics to assess the platelet-based control of coagulation. Platelets 2017; 28:441-448. [PMID: 28358995 DOI: 10.1080/09537104.2017.1293809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper provides an overview of the various types of microfluidic devices that are employed to study the complex processes of platelet activation and blood coagulation in whole blood under flow conditions. We elaborate on how these devices are used to detect impaired platelet-dependent fibrin formation in blood from mice or patients with specific bleeding disorders. We provide a practical guide on how to assess formation of a platelet-fibrin thrombus under flow, using equipment that is present in most laboratories. In addition, we describe current insights on how blood flow and shear rate alter the location of platelet populations, von Willebrand factor, coagulation factors, and fibrin in a growing thrombus. Finally, we discuss possibilities and limitations for the clinical use of microfluidic devices to evaluate a hemostatic or prothrombotic tendency in patient blood samples.
Collapse
Affiliation(s)
- Magdolna Nagy
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands
| | - Johan W M Heemskerk
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands
| | - Frauke Swieringa
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands.,b Department of Bioanalytics , Leibniz Institute for Analytical Sciences - ISAS- e.V. , Dortmund , Germany
| |
Collapse
|
17
|
Pujadas-Mestres L, Lopez-Vilchez I, Arellano-Rodrigo E, Reverter JC, Lopez-Farre A, Diaz-Ricart M, Badimon JJ, Escolar G. Differential inhibitory action of apixaban on platelet and fibrin components of forming thrombi: Studies with circulating blood and in a platelet-based model of thrombin generation. PLoS One 2017; 12:e0171486. [PMID: 28192448 PMCID: PMC5305231 DOI: 10.1371/journal.pone.0171486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
Introduction Mechanisms of action of direct oral anticoagulants (DOAC) suggest a potential therapeutic use in the prevention of thrombotic complications in arterial territories. However, effects of DOACs on platelet activation and aggregation have not been explored in detail. We have investigated the effects of apixaban on platelet and fibrin components of thrombus formation under static and flow conditions. Methods We assessed the effects of apixaban (10, 40 and 160 ng/mL) on: 1) platelet deposition and fibrin formation onto a thrombogenic surface, with blood circulating at arterial shear-rates; 2) viscoelastic properties of forming clots, and 3) thrombin generation in a cell-model of coagulation primed by platelets. Results In studies with flowing blood, only the highest concentration of apixaban, equivalent to the therapeutic Cmax, was capable to significantly reduce thrombus formation, fibrin association and platelet-aggregate formation. Apixaban significantly prolonged thromboelastometry parameters, but did not affect clot firmness. Interestingly, results in a platelet-based model of thrombin generation under more static conditions, revealed a dose dependent persistent inhibitory action by apixaban, with concentrations 4 to 16 times below the therapeutic Cmax significantly prolonging kinetic parameters and reducing the total amount of thrombin generated. Conclusions Our studies demonstrate the critical impact of rheological conditions on the antithrombotic effects of apixaban. Studies under flow conditions combined with modified thrombin generation assays could help discriminating concentrations of apixaban that prevent excessive platelet accumulation, from those that deeply impair fibrin formation and may unnecessarily compromise hemostasis.
Collapse
Affiliation(s)
- Lluis Pujadas-Mestres
- Department of Hemotherapy and Hemostasis, Hospital Clinic of Barcelona, Centre of Biomedical Diagnosis (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Irene Lopez-Vilchez
- Department of Hemotherapy and Hemostasis, Hospital Clinic of Barcelona, Centre of Biomedical Diagnosis (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Eduardo Arellano-Rodrigo
- Department of Hemotherapy and Hemostasis, Hospital Clinic of Barcelona, Centre of Biomedical Diagnosis (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Joan Carles Reverter
- Department of Hemotherapy and Hemostasis, Hospital Clinic of Barcelona, Centre of Biomedical Diagnosis (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Antonio Lopez-Farre
- Department of Medicine, School of Medicine, Complutense University, Madrid, Spain
| | - Maribel Diaz-Ricart
- Department of Hemotherapy and Hemostasis, Hospital Clinic of Barcelona, Centre of Biomedical Diagnosis (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Juan Jose Badimon
- Atherothrombosis Research Unit, Cardiovascular Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Gines Escolar
- Department of Hemotherapy and Hemostasis, Hospital Clinic of Barcelona, Centre of Biomedical Diagnosis (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
18
|
Abstract
Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin.
Collapse
Affiliation(s)
- John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
19
|
Zhu S, Herbig BA, Li R, Colace TV, Muthard RW, Neeves KB, Diamond SL. In microfluidico: Recreating in vivo hemodynamics using miniaturized devices. Biorheology 2016; 52:303-18. [PMID: 26600269 DOI: 10.3233/bir-15065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Microfluidic devices create precisely controlled reactive blood flows and typically involve: (i) validated anticoagulation/pharmacology protocols, (ii) defined reactive surfaces, (iii) defined flow-transport regimes, and (iv) optical imaging. An 8-channel device can be run at constant flow rate or constant pressure drop for blood perfusion over a patterned collagen, collagen/kaolin, or collagen/tissue factor (TF) to measure platelet, thrombin, and fibrin dynamics during clot growth. A membrane-flow device delivers a constant flux of platelet agonists or coagulation enzymes into flowing blood. A trifurcated device sheaths a central blood flow on both sides with buffer, an ideal approach for on-chip recalcification of citrated blood or drug delivery. A side-view device allows clotting on a porous collagen/TF plug at constant pressure differential across the developing clot. The core-shell architecture of clots made in mouse models can be replicated in this device using human blood. For pathological flows, a stenosis device achieves shear rates of >100,000 s(-1) to drive plasma von Willebrand factor (VWF) to form thick long fibers on collagen. Similarly, a micropost-impingement device creates extreme elongational and shear flows for VWF fiber formation without collagen. Overall, microfluidics are ideal for studies of clotting, bleeding, fibrin polymerization/fibrinolysis, cell/clot mechanics, adhesion, mechanobiology, and reaction-transport dynamics.
Collapse
Affiliation(s)
- Shu Zhu
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradley A Herbig
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruizhi Li
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas V Colace
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan W Muthard
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Keith B Neeves
- Department of Chemical and Biomolecular Engineering, Colorado School of Mines, Golden, CO, USA
| | - Scott L Diamond
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Zhu S, Lu Y, Sinno T, Diamond SL. Dynamics of Thrombin Generation and Flux from Clots during Whole Human Blood Flow over Collagen/Tissue Factor Surfaces. J Biol Chem 2016; 291:23027-23035. [PMID: 27605669 DOI: 10.1074/jbc.m116.754671] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
Coagulation kinetics are well established for purified blood proteases or human plasma clotting isotropically. However, less is known about thrombin generation kinetics and transport within blood clots formed under hemodynamic flow. Using microfluidic perfusion (wall shear rate, 200 s-1) of corn trypsin inhibitor-treated whole blood over a 250-μm long patch of type I fibrillar collagen/lipidated tissue factor (TF; ∼1 TF molecule/μm2), we measured thrombin released from clots using thrombin-antithrombin immunoassay. The majority (>85%) of generated thrombin was captured by intrathrombus fibrin as thrombin-antithrombin was largely undetectable in the effluent unless Gly-Pro-Arg-Pro (GPRP) was added to block fibrin polymerization. With GPRP present, the flux of thrombin increased to ∼0.5 × 10-12 nmol/μm2-s over the first 500 s of perfusion and then further increased by ∼2-3-fold over the next 300 s. The increased thrombin flux after 500 s was blocked by anti-FXIa antibody (O1A6), consistent with thrombin-feedback activation of FXI. Over the first 500 s, ∼92,000 molecules of thrombin were generated per surface TF molecule for the 250-μm-long coating. A single layer of platelets (obtained with αIIbβ3 antagonism preventing continued platelet deposition) was largely sufficient for thrombin production. Also, the overall thrombin-generating potential of a 1000-μm-long coating became less efficient on a per μm2 basis, likely due to distal boundary layer depletion of platelets. Overall, thrombin is robustly generated within clots by the extrinsic pathway followed by late-stage FXIa contributions, with fibrin localizing thrombin via its antithrombin-I activity as a potentially self-limiting hemostatic mechanism.
Collapse
Affiliation(s)
- Shu Zhu
- From the Department of Chemical and Biomolecular Engineering, Institute of Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yichen Lu
- From the Department of Chemical and Biomolecular Engineering, Institute of Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Talid Sinno
- From the Department of Chemical and Biomolecular Engineering, Institute of Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Scott L Diamond
- From the Department of Chemical and Biomolecular Engineering, Institute of Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
21
|
Affiliation(s)
- Alinaghi Salari
- Department of Chemical Engineering; University of Toronto; 200 College Street Toronto Ontario M5S 3E5 Canada
| | - Eugenia Kumacheva
- Department of Chemical Engineering; University of Toronto; 200 College Street Toronto Ontario M5S 3E5 Canada
- Department of Chemistry; University of Toronto; 80 Saint George Street Toronto Ontario M5S 3H6 Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; 164 College Street Toronto Ontario M5S 3G9 Canada
| |
Collapse
|
22
|
Flow and delta-P dictate where thrombin, fibrin, and von Willebrand Factor will be found. Thromb Res 2016; 141 Suppl 2:S22-4. [DOI: 10.1016/s0049-3848(16)30357-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Brass LF, Diamond SL. Transport physics and biorheology in the setting of hemostasis and thrombosis. J Thromb Haemost 2016; 14:906-17. [PMID: 26848552 PMCID: PMC4870125 DOI: 10.1111/jth.13280] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 02/02/2023]
Abstract
The biophysics of blood flow can dictate the function of molecules and cells in the vasculature with consequent effects on hemostasis, thrombosis, embolism, and fibrinolysis. Flow and transport dynamics are distinct for (i) hemostasis vs. thrombosis and (ii) venous vs. arterial episodes. Intraclot transport changes dramatically the moment hemostasis is achieved or the moment a thrombus becomes fully occlusive. With platelet concentrations that are 50- to 200-fold greater than platelet-rich plasma, clots formed under flow have a different composition and structure compared with blood clotted statically in a tube. The platelet-rich, core/shell architecture is a prominent feature of self-limiting hemostatic clots formed under flow. Importantly, a critical threshold concentration of surface tissue factor is required for fibrin generation under flow. Once initiated by wall-derived tissue factor, thrombin generation and its spatial propagation within a clot can be modulated by γ'-fibrinogen incorporated into fibrin, engageability of activated factor (FIXa)/activated FVIIIa tenase within the clot, platelet-derived polyphosphate, transclot permeation, and reduction of porosity via platelet retraction. Fibrin imparts tremendous strength to a thrombus to resist embolism up to wall shear stresses of 2400 dyne cm(-2) . Extreme flows, as found in severe vessel stenosis or in mechanical assist devices, can cause von Willebrand factor self-association into massive fibers along with shear-induced platelet activation. Pathological von Willebrand factor fibers are A Disintegrin And Metalloprotease with ThromboSpondin-1 domain 13 resistant but are a substrate for fibrin generation due to FXIIa capture. Recently, microfluidic technologies have enhanced the ability to interrogate blood in the context of stenotic flows, acquired von Willebrand disease, hemophilia, traumatic bleeding, and drug action.
Collapse
Affiliation(s)
- Lawrence F. Brass
- Departments of Medicine and Systems Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott L. Diamond
- Departments of Medicine and Systems Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Medicine and Engineering, Department of Chemical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Wolberg AS. Primed to Understand Fibrinogen in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2016; 36:4-6. [PMID: 26700134 DOI: 10.1161/atvbaha.115.306754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alisa S Wolberg
- From the Department of Pathology and Laboratory Medicine and McAllister Heart Institute, University of North Carolina, Chapel Hill.
| |
Collapse
|