1
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2024; 104:101306. [PMID: 39433211 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Nakamura S, Yamamoto R, Matsuda T, Yasuda H, Nishinaka A, Takahashi K, Inoue Y, Kuromitsu S, Shimazawa M, Goto M, Narumiya S, Hara H. Sphingosine-1-phosphate receptor 1/5 selective agonist alleviates ocular vascular pathologies. Sci Rep 2024; 14:9700. [PMID: 38678148 PMCID: PMC11055896 DOI: 10.1038/s41598-024-60540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Ocular abnormal angiogenesis and edema are featured in several ocular diseases. S1P signaling via S1P1 likely is part of the negative feedback mechanism necessary to maintain vascular health. In this study, we conducted pharmacological experiments to determine whether ASP4058, a sphingosine 1-phosphate receptor 1/5 (S1P1/5) agonist, is useful in abnormal vascular pathology in the eye. First, human retinal microvascular endothelial cells (HRMECs) were examined using vascular endothelial growth factor (VEGF)-induced cell proliferation and hyperpermeability. ASP4058 showed high affinity and inhibited VEGF-induced proliferation and hyperpermeability of HRMECs. Furthermore, S1P1 expression and localization changes were examined in the murine laser-induced choroidal neovascularization (CNV) model, a mouse model of exudative age-related macular degeneration, and the efficacy of ASP4058 was verified. In the CNV model mice, S1P1 tended to decrease in expression immediately after laser irradiation and colocalized with endothelial cells and Müller glial cells. Oral administration of ASP4058 also suppressed vascular hyperpermeability and CNV, and the effect was comparable to that of the intravitreal administration of aflibercept, an anti-VEGF drug. Next, efficacy was also examined in a retinal vein occlusion (RVO) model in which retinal vascular permeability was increased. ASP4058 dose-dependently suppressed the intraretinal edema. In addition, it suppressed the expansion of the perfusion area observed in the RVO model. ASP4058 also suppressed the production of VEGF in the eye. Collectively, ASP4058 can be a potential therapeutic agent that normalizes abnormal vascular pathology, such as age-related macular degeneration and RVO, through its direct action on endothelial cells.
Collapse
Affiliation(s)
- Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Rie Yamamoto
- Discovery Accelerator, Astellas Pharma Inc., Tsukuba, Japan
- Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaya Matsuda
- Pharmaceutical Research and Technology Labs, Astellas Pharma Inc., Yaizu, Japan
| | - Hiroto Yasuda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Anri Nishinaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Kei Takahashi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yuki Inoue
- Astellas Institute for Regenerative Medicine, Marlborough, MA, USA
| | - Sadao Kuromitsu
- Discovery Accelerator, Astellas Pharma Inc., Tsukuba, Japan
- Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masahide Goto
- Astellas Institute for Regenerative Medicine, Marlborough, MA, USA
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
3
|
Kim S, Yoon NG, Im JY, Lee JH, Kim J, Jeon Y, Choi YJ, Lee J, Uemura A, Park DH, Kang BH. Targeting the Mitochondrial Chaperone TRAP1 Alleviates Vascular Pathologies in Ischemic Retinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302776. [PMID: 37983591 PMCID: PMC10787068 DOI: 10.1002/advs.202302776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Activation of hypoxia-inducible factor 1α (HIF1α) contributes to blood-retinal barrier (BRB) breakdown and pathological neovascularization responsible for vision loss in ischemic retinal diseases. During disease progression, mitochondrial biology is altered to adapt to the ischemic environment created by initial vascular dysfunction, but the mitochondrial adaptive mechanisms, which ultimately contribute to the pathogenesis of ischemic retinopathy, remain incompletely understood. In the present study, it is identified that expression of mitochondrial chaperone tumor necrosis factor receptor-associated protein 1 (TRAP1) is essential for BRB breakdown and pathologic retinal neovascularization in mouse models mimicking ischemic retinopathies. Genetic Trap1 ablation or treatment with small molecule TRAP1 inhibitors, such as mitoquinone (MitoQ) and SB-U015, alleviate retinal pathologies via proteolytic HIF1α degradation, which is mediated by opening of the mitochondrial permeability transition pore and activation of calcium-dependent protease calpain-1. These findings suggest that TRAP1 can be a promising target for the development of new treatments against ischemic retinopathy, such as retinopathy of prematurity and proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- So‐Yeon Kim
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Nam Gu Yoon
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | | | - Ji Hye Lee
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Juhee Kim
- Department of Ophthalmology, School of MedicineKyungpook National University, Kyungpook National University HospitalDaegu41944Republic of Korea
- Cell & Matrix Research InstituteKyungpook National UniversityDaegu41944Republic of Korea
| | - Yujin Jeon
- Department of Ophthalmology, School of MedicineKyungpook National University, Kyungpook National University HospitalDaegu41944Republic of Korea
- Cell & Matrix Research InstituteKyungpook National UniversityDaegu41944Republic of Korea
| | - Young Jae Choi
- Bioanalysis and Pharmacokinetics Research GroupKorea Institute of ToxicologyDaejeon34114Republic of Korea
| | - Jong‐Hwa Lee
- Bioanalysis and Pharmacokinetics Research GroupKorea Institute of ToxicologyDaejeon34114Republic of Korea
- Department of Human and Environment ToxicologyUniversity of Science & TechnologyDaejeon34113Republic of Korea
| | - Akiyoshi Uemura
- Department of Ophthalmology and Visual ScienceNagoya City University Graduate School of Medical SciencesNagoya467‐8601Japan
| | - Dong Ho Park
- Department of Ophthalmology, School of MedicineKyungpook National University, Kyungpook National University HospitalDaegu41944Republic of Korea
- Cell & Matrix Research InstituteKyungpook National UniversityDaegu41944Republic of Korea
| | - Byoung Heon Kang
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
- SmartinBio Inc.Cheongju28160Republic of Korea
| |
Collapse
|
4
|
Yu H, Zhong Z, Zhao Y, Luo H, Sun J, Wang R, Zhang X, Sun X. Insights into myopic choroidal neovascularization based on quantitative proteomics analysis of the aqueous humor. BMC Genomics 2023; 24:767. [PMID: 38087190 PMCID: PMC10714574 DOI: 10.1186/s12864-023-09761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Previous studies on the biomarkers of pathologic myopia choroidal neovascularization (pmCNV) development merely detected limited types of proteins and provide a meagre illustration of the underlying pathways. Hence, a landscape of protein changes in the aqueous humor (AH) of pmCNV patients is lacking. Here, to explore the potential mechanisms and biomarkers of pmCNV, we analyzed the clinical data and protein profile among atrophic (A) lesions, tractional lesions (T) and neovascular (N) lesions in myopic patients based on the ATN grading system for myopic maculopathy (MM). RESULTS After investigating demographic data of our patients, a correlation was found between A and N lesions (R = 0.5753, P < 0.0001). Accordingly, groups were divided into patients without MM, patients with myopic atrophic maculopathy (MAM), and patients with pmCNV (N2a lesion). In proteomics analysis, the increased protein level of GFAP and complement-associated molecules in AH samples of the 3 groups also indicated that MAM and pmCNV shared similar characteristics. The GO enrichment and KEGG pathway analysis were performed, which mapped that differential expressed proteins mainly engaged in JAK-STAT pathway between the pmCNV group and two controls. Furthermore, we identified several potential biomarkers for pmCNV, including FCN3, GFAP, EGFR, SFRP3, PPP2R1A, SLIT2, and CD248. CONCLUSIONS Atrophic lesions under pathologic myopic conditions demonstrated similarities to neovascularization development. Potential biomarkers including GFAP were associated with the pathogenesis of pmCNV. In summary, our study provides new insights for further research on pmCNV development.
Collapse
Affiliation(s)
- Huimin Yu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zheng Zhong
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China
| | - Huan Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China
| | - Jinfu Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China
| | - Ruohong Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China
| | - Xian Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China.
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Road, Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Danielsson H, Tebani A, Zhong W, Fagerberg L, Brusselaers N, Hård AL, Uhlén M, Hellström A. Blood protein profiles related to preterm birth and retinopathy of prematurity. Pediatr Res 2022; 91:937-946. [PMID: 33895781 PMCID: PMC9064798 DOI: 10.1038/s41390-021-01528-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Nearly one in ten children is born preterm. The degree of immaturity is a determinant of the infant's health. Extremely preterm infants have higher morbidity and mortality than term infants. One disease affecting extremely preterm infants is retinopathy of prematurity (ROP), a multifactorial neurovascular disease that can lead to retinal detachment and blindness. The advances in omics technology have opened up possibilities to study protein expressions thoroughly with clinical accuracy, here used to increase the understanding of protein expression in relation to immaturity and ROP. METHODS Longitudinal serum protein profiles the first months after birth in 14 extremely preterm infants were integrated with perinatal and ROP data. In total, 448 unique protein targets were analyzed using Proximity Extension Assays. RESULTS We found 20 serum proteins associated with gestational age and/or ROP functioning within mainly angiogenesis, hematopoiesis, bone regulation, immune function, and lipid metabolism. Infants with severe ROP had persistent lower levels of several identified proteins during the first postnatal months. CONCLUSIONS The study contributes to the understanding of the relationship between longitudinal serum protein levels and immaturity and abnormal retinal neurovascular development. This is essential for understanding pathophysiological mechanisms and to optimize diagnosis, treatment and prevention for ROP. IMPACT Longitudinal protein profiles of 14 extremely preterm infants were analyzed using a novel multiplex protein analysis platform combined with perinatal data. Proteins associated with gestational age at birth and the neurovascular disease ROP were identified. Among infants with ROP, longitudinal levels of the identified proteins remained largely unchanged during the first postnatal months. The main functions of the proteins identified were angiogenesis, hematopoiesis, immune function, bone regulation, lipid metabolism, and central nervous system development. The study contributes to the understanding of longitudinal serum protein patterns related to gestational age and their association with abnormal retinal neuro-vascular development.
Collapse
Affiliation(s)
- Hanna Danielsson
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.416648.90000 0000 8986 2221Sach’s Children’s and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Abdellah Tebani
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden ,grid.41724.340000 0001 2296 5231Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France ,grid.41724.340000 0001 2296 5231Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Rouen, France
| | - Wen Zhong
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Linn Fagerberg
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Nele Brusselaers
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.5284.b0000 0001 0790 3681Global Health Institute, Antwerp University, Antwerp, Belgium ,grid.5342.00000 0001 2069 7798Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Anna-Lena Hård
- grid.1649.a000000009445082XThe Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlén
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Ann Hellström
- The Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
6
|
Caban M, Lewandowska U. Inhibiting effects of polyphenols on angiogenesis and epithelial-mesenchymal transition in anterior segment eye diseases. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
7
|
Dabiri H, Soltani BM, Dokanehiifard S, Jahanbakhshi A, Khaleghi M. Up-Regulation of Hsa-miR-11181 in Glioblastoma Multiforme as A Regulator of AKT2 and TGFBR1 Signalling. CELL JOURNAL 2021; 23:421-428. [PMID: 34455717 PMCID: PMC8405078 DOI: 10.22074/cellj.2021.7734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/27/2020] [Indexed: 11/16/2022]
Abstract
Objective MicroRNAs (miRNAs) are short non-coding RNAs that play a role in post-transcriptional regulation of gene
expression. Hsa-miR-11181 was originally introduced as a regulator of genes involved in some brain tumours. Due to the
high expression of Hsa-miR-11181 in limited glioblastoma brain tumours, in this study we intend to assess the expressions of
Hsa-miR-11181 and Has-miR11181-3p in brain tumour tissues and attribute new target genes to these miRNAs. Materials and Methods In this experimental study, total RNA from brain tissue samples was extracted for real-time
quantitative polymerase chain reaction (RT-qPCR) analysis after cDNA synthesis. In order to confirm a direct interaction
of Hsa-miR-11181 with two target genes, the 3ˊ UTR of AKT2 and transforming growth factor-beta receptor 1 (TGFBR1)
were cloned separately for assessment by the dual luciferase assay.
Results RT-qPCR analysis indicated that both Hsa-miR-11181-5p and Hsa-miR-11181-3p specifically up-regulated
in higher grades of glioma tumours versus other brain tumour types. Consistently, lower expression levels of AKT2
and TGFBR1 were detected in higher grade gliomas compared to other types of brain tumours, which was inverse to
the level of expression detected for the heparin-binding EGF-like growth factor (HBEGF) gene. The results of the dual
luciferase assay supported a direct interaction of Hsa-miR-11181 with the 3ˊ UTR sequences of the AKT2 and TGFBR1
genes.
Conclusion Overall, our data suggest that miR-1118 is a potential molecular biomarker for discrimination of glioma
brain tumours from other brain tumour types.
Collapse
Affiliation(s)
- Hamed Dabiri
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Mohammad Soltani
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sadat Dokanehiifard
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Jahanbakhshi
- Stem Cell and Regenerative Medicine Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehdi Khaleghi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Science (TUMS), Tehran, Iran
| |
Collapse
|
8
|
Nishinaka A, Nakamura S, Tanaka M, Masuda T, Inoue Y, Yamamoto T, Imai T, Hidaka Y, Shimazawa M, Hara H. Excess adiponectin in eyes with progressive ocular vascular diseases. FASEB J 2021; 35:e21313. [PMID: 33484194 DOI: 10.1096/fj.202001740rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/11/2022]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapies are now the first-line treatment for many ocular diseases, but some patients are non-responders to these therapies. The purpose of this study was to determine whether the level of adiponectin increased the pathogenesis of retinal edema and neovascularization in the retina of progressive ocular vascular diseases. We examined the role played by adiponectin in two types of cells and animal models which are retinal vein occlusion (RVO) and oxygen-induced retinopathy (OIR) mice. Our results showed that an injection of anti-adiponectin antibody ameliorated the retinal edema and ischemia through the depression of the expression level of VEGF-related factors and tight junction-related proteins in the retina of RVO mice. The intravitreal injection of anti-adiponectin antibody also decreased the degree of retinal neovascularization in an OIR mice. In addition, exposure of human retinal microvascular endothelial cells and human brain microvascular pericytes in culture to adiponectin increased both the vascular permeability and neovascularization through the increase of inflammatory factor and the dropout of the pericytes. These findings indicate that adiponectin plays a critical role in retinal edema and neovascularization, and adiponectin is a potential therapeutic target for the treatment of diabetic macular edema, proliferative diabetic retinopathy, and RVO.
Collapse
Affiliation(s)
- Anri Nishinaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Miruto Tanaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomomi Masuda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Inoue
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Takumi Yamamoto
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Takahiko Imai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yae Hidaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
9
|
Armant DR, Aberdeen GW, Kilburn BA, Pepe GJ, Albrecht ED. Baboon placental heparin-binding epidermal growth factor-like growth factor. Reproduction 2021; 160:31-37. [PMID: 32272450 DOI: 10.1530/rep-19-0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/09/2020] [Indexed: 11/08/2022]
Abstract
Placental extravillous trophoblast remodeling of the uterine spiral arteries is important for promoting blood flow to the placenta and fetal development. Heparin-binding EGF-like growth factor (HB-EGF), an EGF family member, stimulates differentiation and invasive capacity of extravillous trophoblasts in vitro. Trophoblast expression and maternal levels of HB-EGF are reduced at term in women with preeclampsia, but it is uncertain whether HB-EGF is downregulated earlier when it may contribute to placental insufficiency. A nonhuman primate model has been established in which trophoblast remodeling of the uterine spiral arteries is suppressed by shifting the rise in estrogen from the second to the first trimester of baboon pregnancy. In the present study, we used this model to determine if placental HB-EGF is altered by prematurely elevating estrogen early in baboon gestation. Uterine spiral artery remodeling and placental expression of HB-EGF and other EGF family members were assessed on day 60 of gestation in baboons treated with estradiol (E2) daily between days 25 and 59 of gestation (term = 184 days). The percentages of spiral artery remodeling were 90, 84 and 70% lower (P < 0.01), respectively, for vessels of 26-50, 51-100 and >100 µm diameter in E2-treated compared with untreated baboons. HB-EGF protein quantified by immunocytochemical staining/image analysis was decreased three-fold (P < 0.01) in the placenta of E2-treated versus untreated baboons, while amphiregulin (AREG) and EGF expression was unaltered. Therefore, we propose that HB-EGF modulates the estrogen-sensitive remodeling of the uterine spiral arteries by the extravillous trophoblast in early baboon pregnancy.
Collapse
Affiliation(s)
- D Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Graham W Aberdeen
- Departments of Obstetrics, Gynecology and Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brian A Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Eugene D Albrecht
- Departments of Obstetrics, Gynecology and Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Gu J, Qiu Z, Li L, Qin B, Zhou Y, Liu Y, Liu X, Zhu M, Sang A. Geniposide alleviates choroidal neovascularization by downregulating HB-EGF release from RPE cells by downregulating the miR-145-5p/NF-κB axis. Exp Eye Res 2021; 208:108624. [PMID: 34022175 DOI: 10.1016/j.exer.2021.108624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD), mainly wet AMD, is the major reason for nonreversible vision loss worldwide. Choroidal neovascularization (CNV) is a characteristic pathological manifestation of wet AMD. Stress or injury to the retinal pigment epithelium (RPE) induces proangiogenic factors that drive CNV. An iridoid glycoside extracted from the fruit of gardenia, geniposide (GEN) plays an antiangiogenic role. In this study, GEN inhibited the transcription and expression of heparin-binding epidermal growth factor (HB-EGF), a proangiogenic factor, in hypoxic RPE cells and a mouse laser-induced CNV model. Inhibition of glucagon-like peptide-1 receptor (GLP-1R), a GEN receptor blocker, eliminated the protective effect of GEN. Additionally, GEN decreased the transcription and expression of HB-EGF in hypoxia-exposed RPE cells by downregulating the miR-145-5p/NF-κB axis. Therefore, our research provides a promising novel strategy for wet AMD therapy.
Collapse
Affiliation(s)
- Jiayi Gu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhaoxian Qiu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lele Li
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Bai Qin
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yamei Zhou
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, China
| | - Yu Liu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, China.
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
11
|
Huang Z, Ng TK, Chen W, Sun X, Huang D, Zheng D, Yi J, Xu Y, Zhuang X, Chen S. Nattokinase Attenuates Retinal Neovascularization Via Modulation of Nrf2/HO-1 and Glial Activation. Invest Ophthalmol Vis Sci 2021; 62:25. [PMID: 34036312 PMCID: PMC8164371 DOI: 10.1167/iovs.62.6.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Nattokinase (NK), an active ingredient extracted from traditional food Natto, has been studied for prevention and treatment of cardiovascular diseases due to various vasoprotective effects, including fibrinolytic, antihypertensive, anti-atherosclerotic, antiplatelet, and anti-inflammatory activities. Here, we reported an antineovascular effect of NK against experimental retinal neovascularization. METHODS The inhibitory effect of NK against retinal neovascularization was evaluated using an oxygen-induced retinopathy murine model. Expressions of Nrf2/HO-1 signaling and glial activation in the NK-treated retinae were measured. We also investigated cell proliferation and migration of human umbilical vein endothelial cells (HUVECs) after NK administration. RESULTS NK treatment significantly attenuated retinal neovascularization in the OIR retinae. Consistently, NK suppressed VEGF-induced cell proliferation and migration in a concentration-dependent manner in cultured vascular endothelial cells. NK ameliorated ischemic retinopathy partially via activating Nrf2/HO-1. In addition, NK orchestrated reactive gliosis and promoted microglial activation toward a reparative phenotype in ischemic retina. Treatment of NK exhibited no cell toxicity or anti-angiogenic effects in the normal retina. CONCLUSIONS Our results revealed the anti-angiogenic effect of NK against retinal neovascularization via modulating Nrf2/HO-1, glial activation and neuroinflammation, suggesting a promising alternative treatment strategy for retinal neovascularization.
Collapse
Affiliation(s)
- Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Weiqi Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xiaowei Sun
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Dingguo Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Dezhi Zheng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jingsheng Yi
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xi Zhuang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shaolang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
12
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
CX3CR1 Depletion Promotes the Formation of Platelet-Neutrophil Complexes and Aggravates Acute Peritonitis. Shock 2021; 56:287-297. [PMID: 33481549 DOI: 10.1097/shk.0000000000001733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Peritonitis is a life-threatening condition on intensive care units. Inflammatory cytokines and their receptors drive inflammation, cause the formation of platelet-neutrophil complexes (PNCs) and therefore the migration of polymorphonuclear neutrophils (PMNs) into the inflamed tissue. CX3CL1 and its receptor CX3CR1 are expressed in various cells, and promote inflammation. The shedding of CX3CL1 is mediated by a disintegrin and metalloprotease (ADAM) 17. The role of the CX3CL1-CX3CR1 axis in acute peritonitis remains elusive. METHODS In zymosan-induced peritonitis, we determined the formation of PNCs in the blood and the expression of PNC-related molecules on PNCs. PMN migration into the peritoneal lavage was evaluated in wild-type (WT) and CX3CR1-/- animals by flow cytometry. CX3CL1, ADAM17, and the expression of various inflammatory cytokines were detected. Further, we determined the inflammation-associated activation of the intracellular transcription factor extracellular signal-regulated kinase 1/2 (ERK1/2) by Western blot. RESULTS The PMN accumulation in the peritoneal lavage and the PNC formation in the circulation were significantly raised in CX3CR1-/- compared with WT animals. The expression of PNC-related selectins on PNCs was significantly increased in the blood of CX3CR1-/- animals, as well as cytokine levels. Further, we observed an increased activation of ERK1/2 and elevated ADAM17 expression in CX3CR1-/- during acute inflammation. Selective ERK1/2 inhibition ameliorated inflammation-related increased ADAM17 expression. CONCLUSIONS A CX3CR1 deficiency raised the release of inflammatory cytokines and increased the PNC formation respectively PMN migration via an elevated ERK1/2 activation during acute peritonitis. Further, we observed a link between the ERK1/2 activation and an elevated ADAM17 expression on PNC-related platelets and PMNs during inflammation. Our data thus illustrate a crucial role of CX3CR1 on the formation of PNCs and regulating inflammation in acute peritonitis.
Collapse
|
14
|
Tanaka M, Nakamura S, Maekawa M, Higashiyama S, Hara H. ANKFY1 is essential for retinal endothelial cell proliferation and migration via VEGFR2/Akt/eNOS pathway. Biochem Biophys Res Commun 2020; 533:1406-1412. [PMID: 33092793 DOI: 10.1016/j.bbrc.2020.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022]
Abstract
Dysregulation of endothelial cell proliferation and migration are hallmarks of angiogenic diseases. Among them, excessive ocular angiogenesis is a major cause of blindness. Vascular endothelial growth factor (VEGF)-VEGF receptor 2 (VEGFR2) signaling plays crucial roles in angiogenesis, endothelial cell proliferation and migration. Here, we showed that ankyrin repeat and FYVE domain containing 1 (ANKFY1), a Rab5-GTP-interacting protein, is required for retinal endothelial cell proliferation and migration. ANKFY1 knockdown significantly suppressed cell growth of human retinal microvascular endothelial cells (HRMECs) in the presence or absence of VEGF. HRMEC migration was also inhibited by depletion of ANKFY1. Western blot analysis showed that ANKFY1 knockdown reduced cell surface VEGFR2 level. In contrast, qRT-PCR analysis indicated that ANKFY1 knockdown had no effect on VEGFR2 mRNA levels. We also found that the attenuation of the protein kinase B/endothelial nitric oxide synthase (Akt/eNOS) pathway in ANKFY1 knockdown HRMECs. In conclusion, our findings revealed novel functions of ANKFY1 in cell growth and migration of retinal endothelial cells.
Collapse
Affiliation(s)
- Miruto Tanaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Matsuyama, 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Matsuyama, 791-0295, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Matsuyama, 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Matsuyama, 791-0295, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
15
|
Peña JS, Vazquez M. VEGF Upregulates EGFR Expression to Stimulate Chemotactic Behaviors in the rMC-1 Model of Müller Glia. Brain Sci 2020; 10:E330. [PMID: 32485834 PMCID: PMC7348795 DOI: 10.3390/brainsci10060330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/28/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Progressive vision loss in adults has become increasingly prevalent worldwide due to retinopathies associated with aging, genetics, and epigenetic factors that damage the retinal microvasculature. Insufficient supply of oxygen and/or nutrients upregulates factors such as vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF), which can induce abnormal angiogenesis and damage the structural arrangement of the retinal blood barrier (BRB). Müller glia (MG) regulate the diffusion of essential compounds across the BRB and respond to retinal insults via reactive gliosis, which includes cell hypertrophy, migration, and/or proliferation near areas of elevated VEGF concentration. Increasing concentrations of exogenous VEGF, upregulated by retinal pigmented epithelium cells, and endogenous epidermal growth factor receptor (EGF-R) stimulation in MG, implicated in MG proliferative and migratory behavior, often lead to progressive and permanent vision loss. Our project examined the chemotactic responses of the rMC-1 cell line, a mammalian MG model, toward VEGF and EGF signaling fields in transwell assays, and within respective concentration gradient fields produced in the glia line (gLL) microfluidic system previously described by our group. rMC-1 receptor expression in defined ligand fields was also evaluated using quantitative polymerase chain reaction (qPCR) and immunocytochemical staining. Results illustrate dramatic increases in rMC-1 chemotactic responses towards EGF gradient fields after pre-treatment with VEGF. In addition, qPCR illustrated significant upregulation of EGF-R upon VEGF pre-treatment, which was higher than that induced by its cognate ligand, EGF. These results suggest interplay of molecular pathways between VEGF and EGF-R that have remained understudied in MG but are significant to the development of effective anti-VEGF treatments needed for a variety of retinopathies.
Collapse
Affiliation(s)
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| |
Collapse
|
16
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Annual Report on Sex in Preclinical Studies: Arteriosclerosis, Thrombosis, and Vascular Biology Publications in 2018. Arterioscler Thromb Vasc Biol 2019; 40:e1-e9. [PMID: 31869272 DOI: 10.1161/atvbaha.119.313556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.M.)
| | - Daniel J Rader
- Departments of Medicine and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
17
|
Nakamura S, Noguchi T, Inoue Y, Sakurai S, Nishinaka A, Hida Y, Masuda T, Nakagami Y, Horai N, Tsusaki H, Hara H, Shimazawa M. Nrf2 Activator RS9 Suppresses Pathological Ocular Angiogenesis and Hyperpermeability. ACTA ACUST UNITED AC 2019; 60:1943-1952. [DOI: 10.1167/iovs.18-25745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuro Noguchi
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
- Shin Nippon Biomedical Laboratories Ltd. Drug Safety Research Laboratories (SNBL DSR), Kagoshima, Japan
| | - Yuki Inoue
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shuji Sakurai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Anri Nishinaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshifumi Hida
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomomi Masuda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | | | - Naoto Horai
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
- Shin Nippon Biomedical Laboratories Ltd. Drug Safety Research Laboratories (SNBL DSR), Kagoshima, Japan
| | - Hideshi Tsusaki
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
18
|
Shimazawa M, Hara H. [Establishment of retinal disease models using non-human primates and its strategy for drug discovery]. Nihon Yakurigaku Zasshi 2018; 152:139-146. [PMID: 30185732 DOI: 10.1254/fpj.152.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Retinal diseases such as glaucoma, diabetic retinopathy, age-related macular degeneration and retinitis pigmentosa are the major causes of blindness. However, these pathological mechanisms remain to be elucidated, and development of new therapeutic agents has been desired. A large number of experimental animal models using rodents (rats and mice) have been used for the evaluations of the pathogenesis and novel therapeutic candidates in retinal diseases. However, the anatomy of the retina in rodents is different from that in humans, as rodents have no macular. Conversely, non-human primates have macular similar to humans, and therefore rhesus and cynomolgus monkeys are widely used as experimental animal models of retinal diseases. Here, we will introduce non-human primate models of retinal diseases and their pharmacological approaches, with a focus on our research findings.
Collapse
Affiliation(s)
- Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University
| |
Collapse
|
19
|
Ai S, Zhen S, Liu Z, Sun F, He X, Chu F, Guan W, Wang J. An iRGD peptide conjugated heparin nanocarrier for gastric cancer therapy. RSC Adv 2018; 8:30012-30020. [PMID: 35547284 PMCID: PMC9085286 DOI: 10.1039/c8ra05071f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/16/2018] [Indexed: 11/21/2022] Open
Abstract
The cis-diamminedichloroplatinum(ii) (DDP, cisplatin) is an important antitumor drug for the therapy of gastric cancer in clinics, but it is limited by its nonspecific tissue distribution and severe side effects. Here, an integrin targeted drug delivery system iRGD-heparin nanocarrier (iHP) was successfully synthesized. The iHP has several unique properties. First, this nanocarrier has excellent biodegradation due to its heparin biopolymer frame. Second, it is biocompatible because succinic anhydride-modified heparin has no anticoagulant activity and cell toxicity. We proved that from anticoagulant function evaluation and a cytotoxicity test. Third, iRGD was conjugated to the nanoparticles as an integrin-targeting ligand. Our results showed that iHP has precise targeting to integrin-overexpressed human gastric cancer cells MKN-45P in vitro and tumor tissues in vivo. Hence, we synthesized targeted nanoparticles iHP-DDP (iHDDP) and untargeted nanoparticles HP-DDP (HDDP). In our result, iHDDP showed higher antitumor efficacy than HDDP in vitro and in vivo. And in comparison with free DDP, the iHDDP nanoparticle delivery system showed satisfactory antitumor activity of DDP without weight loss or liver and kidney damage in nude mice bearing MKN-45P tumors. A nontoxic, low immunogenic and high specific drug delivery system for gastric cancer.![]()
Collapse
Affiliation(s)
- Shichao Ai
- Department of General Surgery
- Drum Tower Hospital
- Medical School of Nanjing University
- Nanjing
- China
| | - Shuang Zhen
- Department of General Surgery
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- China
| | - Zhijian Liu
- Department of General Surgery
- Drum Tower Hospital
- Medical School of Nanjing University
- Nanjing
- China
| | - Feng Sun
- Department of General Surgery
- Drum Tower Hospital
- Medical School of Nanjing University
- Nanjing
- China
| | - Xingchen He
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Nanjing University
- Nanjing
- China
| | - Feng Chu
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Nanjing University
- Nanjing
- China
| | - Wenxian Guan
- Department of General Surgery
- Drum Tower Hospital
- Medical School of Nanjing University
- Nanjing
- China
| | - Jianquan Wang
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Nanjing University
- Nanjing
- China
| |
Collapse
|