1
|
Holm A, Mulliken JB, Bischoff J. Infantile hemangioma: the common and enigmatic vascular tumor. J Clin Invest 2024; 134:e172836. [PMID: 38618963 PMCID: PMC11014660 DOI: 10.1172/jci172836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Infantile hemangioma (IH) is a benign vascular tumor that occurs in 5% of newborns. The tumor follows a life cycle of rapid proliferation in infancy, followed by slow involution in childhood. This unique life cycle has attracted the interest of basic and clinical scientists alike as a paradigm for vasculogenesis, angiogenesis, and vascular regression. Unanswered questions persist about the genetic and molecular drivers of the proliferating and involuting phases. The beta blocker propranolol usually accelerates regression of problematic IHs, yet its mechanism of action on vascular proliferation and differentiation is unclear. Some IHs fail to respond to beta blockers and regrow after discontinuation. Side effects occur and long-term sequelae of propranolol treatment are unknown. This poses clinical challenges and raises novel questions about the mechanisms of vascular overgrowth in IH.
Collapse
Affiliation(s)
- Annegret Holm
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Freiburg, VASCERN-VASCA European Reference Center, Freiburg, Germany
| | - John B. Mulliken
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Wickramage I, VanWye J, Max K, Lockhart JH, Hortu I, Mong EF, Canfield J, Lamabadu Warnakulasuriya Patabendige HM, Guzeloglu-Kayisli O, Inoue K, Ogura A, Lockwood CJ, Akat KM, Tuschl T, Kayisli UA, Totary-Jain H. SINE RNA of the imprinted miRNA clusters mediates constitutive type III interferon expression and antiviral protection in hemochorial placentas. Cell Host Microbe 2023; 31:1185-1199.e10. [PMID: 37315561 PMCID: PMC10524649 DOI: 10.1016/j.chom.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/23/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Hemochorial placentas have evolved defense mechanisms to prevent the vertical transmission of viruses to the immunologically underdeveloped fetus. Unlike somatic cells that require pathogen-associated molecular patterns to stimulate interferon production, placental trophoblasts constitutively produce type III interferons (IFNL) through an unknown mechanism. We demonstrate that transcripts of short interspersed nuclear elements (SINEs) embedded in miRNA clusters within the placenta trigger a viral mimicry response that induces IFNL and confers antiviral protection. Alu SINEs within primate-specific chromosome 19 (C19MC) and B1 SINEs within rodent-specific microRNA cluster on chromosome 2 (C2MC) produce dsRNAs that activate RIG-I-like receptors (RLRs) and downstream IFNL production. Homozygous C2MC knockout mouse trophoblast stem (mTS) cells and placentas lose intrinsic IFN expression and antiviral protection, whereas B1 RNA overexpression restores C2MCΔ/Δ mTS cell viral resistance. Our results uncover a convergently evolved mechanism whereby SINE RNAs drive antiviral resistance in hemochorial placentas, placing SINEs as integral players in innate immunity.
Collapse
Affiliation(s)
- Ishani Wickramage
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jeffrey VanWye
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Klaas Max
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - John H Lockhart
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ismet Hortu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ezinne F Mong
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - John Canfield
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kimiko Inoue
- Bioresource Engineering Division, BioResource Research Center, RIKEN, Tsukuba 305-0074, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, BioResource Research Center, RIKEN, Tsukuba 305-0074, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kemal M Akat
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA; Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas Tuschl
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Hana Totary-Jain
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Heart Institute, University of South Florida, Tampa, FL 33602, USA.
| |
Collapse
|
3
|
Moustafa NA, El-Sayed MA, Abdallah SH, Hazem NM, Aidaros MA, Abdelmoety DA. Effect of Letrozole on hippocampal Let-7 microRNAs and their correlation with working memory and phosphorylated Tau protein in an Alzheimer's disease-like rat model. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Let-7 microRNAs (miRNAs) may contribute to neurodegeneration, including Alzheimer's disease (AD), but, they were not investigated in Streptozotocin (STZ)-induced AD. Letrozole increases the expression of Let-7 in cell lines, with conflicting evidence regarding its effects on memory. This study examined Let-7 miRNAs in STZ-induced AD, their correlation with memory and hyperphosphorylated Tau (p-Tau) and the effects of Letrozole on them.
Methods
Seven groups of adult Sprague Dawley rats were used: Negative control, Letrozole, Letrozole Vehicle, STZ (with AD induced by intracerebroventricular injection of STZ in artificial cerebrospinal fluid (aCSF)), CSF Control, STZ + Letrozole (STZ-L), and CSF + Letrozole Vehicle. Alternation percentage in T-maze was used as a measure of working memory. Let-7a, b and e and p-Tau levels in the hippocampus were estimated using quantitative real-time reverse transcription–polymerase chain reaction (qRT–PCR) and enzyme-linked immunosorbent assay (ELISA), respectively.
Results
Significant decreases in alternation percentage and increase in p-Tau concentration were found in the STZ, Letrozole and STZ-L groups. Expression levels of all studied microRNAs were significantly elevated in the Letrozole and the STZ-L groups, with no difference between the two, suggesting that this elevation might be linked to Letrozole administration. Negative correlations were found between alternation percentage and the levels of all studied microRNAs, while positive ones were found between p-Tau concentration and the levels of studied microRNAs.
Conclusions
This study shows changes in the expression of Let-7a, b and e miRNAs in association with Letrozole administration, and correlations between the expression of the studied Let-7 miRNAs and both the status of working memory and the hippocampal p-Tau levels. These findings might support the theory suggesting that Letrozole aggravates pre-existing lesions. They also add to the possibility of Let-7’s neurotoxicity.
Collapse
|
4
|
Peng K, Xia RP, Zhao F, Xiao Y, Ma TD, Li M, Feng Y, Zhou CG. ALKBH5 promotes the progression of infantile hemangioma through regulating the NEAT1/miR-378b/FOSL1 axis. Mol Cell Biochem 2022; 477:1527-1540. [PMID: 35182329 DOI: 10.1007/s11010-022-04388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/02/2022] [Indexed: 11/27/2022]
Abstract
Our work aims to investigate long non-coding RNA (lncRNA) N6-methyladenosine (m6A) modification and its role in infantile hemangioma (IH). The mRNA and protein expression levels were assessed using quantitative real-time polymerase chain reaction, western blot and immunohistochemistry. Me-RIP assay was performed to evaluate lncRNA NEAT1 m6A levels. Cell proliferation, migration and invasion were evaluated using cell counting kit-8 assay, transwell migration and invasion assay, respectively. Photo-activatable ribonucleoside-enhanced crosslinking and immunoprecipitation assay was conducted to verify the binding relationship between lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) and ALKBH5 (an RNA demethylase). The binding relationship between lncRNA NEAT1, microRNA (miR)-378b and FOS-like antigen 1 (FOSL1) was verified using dual-luciferase reporter gene assay and/or RNA immunoprecipitation assay. ALKBH5, lncRNA NEAT1 and FOLS1 expression was elevated in IH tissues, while miR-378b was downregulated. ALKBH5 knockdown suppressed cell proliferation, migration and invasion of IH cells, while promoting cell apoptosis. ALKBH5 promoted lncRNA NEAT1 expression by reducing the m6A modification of lncRNA NEAT1. In addition, miR-378b was the target of lncRNA NEAT1, and its overexpression reversed the promotion effect of lncRNA NEAT1 overexpression on IH cell tumor-like behaviors. Moreover, FOLS1 was the target of miR-378b, and its overexpression reversed the inhibitory effect of miR-378b overexpression on IH cell tumor-like behaviors in vitro. ALKBH5 might have great potential as therapeutic target for IH, since ALKBH5 silencing suppressed IH progression by regulation of the NEAT1/miR-378b/FOSL1 axis.
Collapse
Affiliation(s)
- Kun Peng
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Ren-Peng Xia
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Fan Zhao
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Yong Xiao
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Ti-Dong Ma
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Ming Li
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Yong Feng
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Chong-Gao Zhou
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Propranolol Suppresses Proliferation and Migration of HUVECs through Regulation of the miR-206/VEGFA Axis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7629176. [PMID: 34697590 PMCID: PMC8541866 DOI: 10.1155/2021/7629176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
Propranolol has been used in the first-line therapy of infantile hemangioma (IH) for a number of years; however, the mechanisms through which propranolol regulates IH are not yet fully understood. In the present study, microRNA (miRNA/miR) sequencing analysis was performed to identify differentially expressed miRNAs in human umbilical vascular endothelial cells (HUVECs) treated with propranolol. Cell viability and apoptosis were detected using CCK-8 assay and flow cytometry, respectively. Cell migration was assessed using wound healing, Transwell, and tube formation assays. Methylation-specific PCR was then used to investigate the promoter methylation status. The levels of oxidative stress indicators, including superoxide dismutase, glutathione, and malondialdehyde were also detected. Finally, cell cycle analysis was performed using flow cytometry and western blotting. It was observed that propranolol induced the upregulation of miR-206 in HUVECs, which was caused by demethylation of the miR-206 promoter. Moreover, propranolol significantly inhibited the proliferation of HUVECs by inducing apoptosis, while these phenomena were reversed by miR-206 antagomir. VEGFA was found to be a target gene of miR-206. In addition, propranolol notably inhibited the migration and induced G1 arrest of the HUVECs, whereas these results were eliminated by miR-206 antagomir. Collectively, the findings of the present study demonstrated that propranolol may inhibit the proliferation and migration in HUVECs via modulating the miR-206/VEGFA axis. These findings suggest a novel mechanism through which propranolol suppresses the progression of IH.
Collapse
|
6
|
Self-assembled miRNA-switch nanoparticles target denuded regions and prevent restenosis. Mol Ther 2021; 29:1744-1757. [PMID: 33545360 DOI: 10.1016/j.ymthe.2021.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease is the leading cause of death and disability worldwide. Effective delivery of cell-selective therapies that target atherosclerotic plaques and neointimal growth while sparing the endothelium remains the Achilles heel of percutaneous interventions. The current study utilizes synthetic microRNA switch therapy that self-assembles to form a compacted, nuclease-resistant nanoparticle <200 nM in size when mixed with cationic amphipathic cell-penetrating peptide (p5RHH). These nanoparticles possess intrinsic endosomolytic activity that requires endosomal acidification. When administered in a femoral artery wire injury mouse model in vivo, the mRNA-p5RHH nanoparticles deliver their payload specifically to the regions of endothelial denudation and not to the lungs, liver, kidney, or spleen. Moreover, repeated administration of nanoparticles containing a microRNA switch, consisting of synthetically modified mRNA encoding for the cyclin-dependent kinase inhibitor p27Kip1 that contains one complementary target sequence of the endothelial cell-specific miR-126 at its 5' UTR, drastically reduced neointima formation after wire injury and allowed for vessel reendothelialization. This cell-selective nanotherapy is a valuable tool that has the potential to advance the fight against neointimal hyperplasia and atherosclerosis.
Collapse
|
7
|
Zhao ZL, Liu C, Wang QZ, Wu HW, Zheng JW. Oral atenolol treatment for infantile hemangiomas: clinical analysis of 133 consecutive patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:116. [PMID: 33569418 PMCID: PMC7867894 DOI: 10.21037/atm-20-5359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Infantile hemangiomas (IHs) are the most frequently occurring pediatric lesions. Oral propranolol has been shown to be safe and effective in infants with IHs. Side effects such as sleep disturbances have been associated with propranolol. Atenolol is a hydrophilic, selective β1-blocker and therefore may be not associated with side effects attributable to β2-adrenergic receptor blockade and lipophilicity. However, the efficacy of atenolol in the treatment of IHs is poorly understood. The aim of this study was to evaluate the efficacy of atenolol in the treatment of proliferating IHs in a clinical cohort including 133 consecutive patients. Methods In this study, we enrolled 133 patients diagnosed as proliferating IHs from the routine clinical and referral practices of the authors. The procedures followed were in accordance with the ethical standards of the Institute Review Board of Shanghai Ninth People's Hospital and Helsinki Declaration. Clinical characteristics, including demographic data and clinical morphology, were collated. Responses to oral atenolol therapy were graded as: excellent, good, fair and poor. According to the reaction to atenolol treatment, additional medications or therapy were used for IH patients to achieve satisfactory clinical results. Results In this study, 128 (96.2%) of 133 IH patients responded to oral atenolol, and the response rate (RR) was significantly different for different ages of patients (P<0.05), with the youngest patients having the highest RR. The mean time of treatment was 4.9 months. Forty-one patients who exhibited residual hyperpigmentation or telangiectasia were further treated with timolol maleate cream (n=32) or pulsed dye laser (n=9). All the 41 patients showed positive response. No life-threatening complications were noted during and after oral atenolol. Only 4 (3.0%) of 133 patients developed minor complications including diarrhea. No agitation and bronchospasm were noted in our study. Conclusions This study demonstrated that atenolol was effective in the treatment of IHs. Compared to propranolol, atenolol seems to have a similar effect on IHs. Furthermore, atenolol seems to be less frequently associated with potentially life-threatening side effects.
Collapse
Affiliation(s)
- Ze-Liang Zhao
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Liu
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Zhang Wang
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Wei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jia-Wei Zheng
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Wang L, Yuan W, Huang J. Identification of Myocardial Infarction-Associated Genes Using Integrative microRNA-Gene Expression Network Analysis. DNA Cell Biol 2020; 40:348-358. [PMID: 33395357 DOI: 10.1089/dna.2020.6222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is crucial to identify potential molecular targets and their interaction involved in myocardial infarction (MI). In our study, we obtained microarray data of MI from GEO database and identify differentially expressed mRNAs and microRNAs (miRNAs). Compared with normal tissues, 686 mRNAs and 16 miRNAs were differentially expressed in MI. Subsequently, function enrichment analysis was performed to further investigate their biological functions. Also, gene set enrichment analysis indicated they were enriched into Pathway in cancer. Besides, protein-protein interaction analysis was performed to assess the interactions of the differentially expressed mRNAs. Finally, we constructed an mRNA-miRNA interaction network based on the overlapping genes between the differentially expressed mRNAs and predicted target genes of dysregulated miRNAs. The network demonstrated three MI-associated miRNAs, miR-498, miR-181a, and miR-612, and 45 novel target genes, as well as their interaction involved in MI. What is more, in vitro and in vivo quantitative real-time PCR confirmed our results were consistent. In conclusion, miR-498, miR-181a, and miR-612 may participate in the pathogenesis of MI and may serve as the potential therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Long Wang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yuan
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Jinyu Huang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Nanayakkara J, Tyryshkin K, Yang X, Wong JJM, Vanderbeck K, Ginter PS, Scognamiglio T, Chen YT, Panarelli N, Cheung NK, Dijk F, Ben-Dov IZ, Kim MK, Singh S, Morozov P, Max KEA, Tuschl T, Renwick N. Characterizing and classifying neuroendocrine neoplasms through microRNA sequencing and data mining. NAR Cancer 2020; 2:zcaa009. [PMID: 32743554 PMCID: PMC7380486 DOI: 10.1093/narcan/zcaa009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/22/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are clinically diverse and incompletely characterized cancers that are challenging to classify. MicroRNAs (miRNAs) are small regulatory RNAs that can be used to classify cancers. Recently, a morphology-based classification framework for evaluating NENs from different anatomical sites was proposed by experts, with the requirement of improved molecular data integration. Here, we compiled 378 miRNA expression profiles to examine NEN classification through comprehensive miRNA profiling and data mining. Following data preprocessing, our final study cohort included 221 NEN and 114 non-NEN samples, representing 15 NEN pathological types and 5 site-matched non-NEN control groups. Unsupervised hierarchical clustering of miRNA expression profiles clearly separated NENs from non-NENs. Comparative analyses showed that miR-375 and miR-7 expression is substantially higher in NEN cases than non-NEN controls. Correlation analyses showed that NENs from diverse anatomical sites have convergent miRNA expression programs, likely reflecting morphological and functional similarities. Using machine learning approaches, we identified 17 miRNAs to discriminate 15 NEN pathological types and subsequently constructed a multilayer classifier, correctly identifying 217 (98%) of 221 samples and overturning one histological diagnosis. Through our research, we have identified common and type-specific miRNA tissue markers and constructed an accurate miRNA-based classifier, advancing our understanding of NEN diversity.
Collapse
Affiliation(s)
- Jina Nanayakkara
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Kathrin Tyryshkin
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Xiaojing Yang
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Justin J M Wong
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Kaitlin Vanderbeck
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Paula S Ginter
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Theresa Scognamiglio
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Yao-Tseng Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Nicole Panarelli
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nai-Kong Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Frederike Dijk
- Department of Pathology, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Iddo Z Ben-Dov
- Department of Nephrology and Hypertension, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Michelle Kang Kim
- Center for Carcinoid and Neuroendocrine Tumors of Mount Sinai, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Simron Singh
- Odette Cancer Center, Sunnybrook Health Sciences Center, Toronto, ON M4N 3M5, Canada
| | - Pavel Morozov
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Klaas E A Max
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Neil Renwick
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
10
|
Propranolol Is Associated with Lower Risk of Incidence of Hepatocellular Carcinoma in Patients with Alcoholic Cirrhosis: A Tertiary-Center Study and Indirect Comparison with Meta-Analysis. Gastroenterol Res Pract 2020; 2020:1892584. [PMID: 32454812 PMCID: PMC7238337 DOI: 10.1155/2020/1892584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Alcoholic cirrhosis (AC) leads to enormous disease burden and occupies a substantial proportion in the etiology of hepatocellular carcinoma (HCC), but scarce attention has been paid to this topic. Besides, propranolol has been reported to decrease the rate of HCC in viral hepatitis. We conducted a retrospective tertiary-center cohort study to identify the HCC incidence in AC patients with or without propranolol. A total of 1,046 AC patients with hospitalization had been screened, and those with regular follow-up for three years or otherwise until the date of malignancy diagnosis without meeting exclusion criteria were enrolled; finally, 23 AC patients with propranolol and 46 AC patients without propranolol were analyzed after twofold propensity-score matching. The cumulative incidence of HCC was lower in the propranolol group (log-rank test, P = 0.046). Furthermore, we undertook the meta-analysis of annual incidence of HCC in AC patients, and 1,949 publications were screened, within which eight studies were analyzed; the pooled annual incidence was 2.41%, which was higher than the calculated annual incidence of HCC in our AC cohort with propranolol (1.45%). In conclusion, propranolol is associated with decreased risk of HCC incidence in patients with AC.
Collapse
|
11
|
Wu M, Tang Y, Hu G, Yang C, Ye K, Liu X. miR-4458 directly targets IGF1R to inhibit cell proliferation and promote apoptosis in hemangioma. Exp Ther Med 2020; 19:3017-3023. [PMID: 32256788 PMCID: PMC7086214 DOI: 10.3892/etm.2020.8546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Hemangiomas (HAs) are benign neoplasms of the vasculature. MicroRNA-4458 (miR-4458) has been reported to function as a tumor suppressor in multiple malignancies, but its biological function in HAs remains unknown. In the present study, the potential role of miR-4458 in HA-derived endothelial cells (HDECs) was investigated. Firstly, reverse-transcription-quantitative PCR analysis was used to confirm the expression of miR-4458 in HDECs following transfection with miR-4458 mimics or inhibitor. Subsequently, MTT and EdU assays were performed and subsequently determined that miR-4458 overexpression significantly inhibited proliferation, and knockdown promoted cell proliferation in HDECs. Flow cytometry analysis revealed that miR-4458 overexpression induced cell cycle arrest, whereas knockdown reversed G0/G1 phase arrest and apoptosis. Furthermore, insulin-like growth factor 1 receptor (IGF1R) was identified as a target of miR-4458. IGF1R knockdown enhanced the effects of miR-4458 on cell proliferation, cell cycle G0/G1 phase arrest and apoptosis in HDECs. Taken together, the results revealed that miR-4458 targeting of IGF1R may serve as a novel therapeutic strategy for treating patients with HAs.
Collapse
Affiliation(s)
- Maosong Wu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Yongsheng Tang
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Gang Hu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Chunjian Yang
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Kaichuang Ye
- Department of Vascular Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 230011, P.R. China
| | - Xianluo Liu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| |
Collapse
|
12
|
Mong EF, Yang Y, Akat KM, Canfield J, VanWye J, Lockhart J, Tsibris JCM, Schatz F, Lockwood CJ, Tuschl T, Kayisli UA, Totary-Jain H. Chromosome 19 microRNA cluster enhances cell reprogramming by inhibiting epithelial-to-mesenchymal transition. Sci Rep 2020; 10:3029. [PMID: 32080251 PMCID: PMC7033247 DOI: 10.1038/s41598-020-59812-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
During implantation, cytotrophoblasts undergo epithelial-to-mesenchymal transition (EMT) as they differentiate into invasive extravillous trophoblasts (EVTs). The primate-specific microRNA cluster on chromosome 19 (C19MC) is exclusively expressed in the placenta, embryonic stem cells and certain cancers however, its role in EMT gene regulation is unknown. In situ hybridization for miR-517a/c, a C19MC cistron microRNA, in first trimester human placentas displayed strong expression in villous trophoblasts and a gradual decrease from proximal to distal cell columns as cytotrophoblasts differentiate into invasive EVTs. To investigate the role of C19MC in the regulation of EMT genes, we employed the CRISPR/dCas9 Synergistic Activation Mediator (SAM) system, which induced robust transcriptional activation of the entire C19MC cistron and resulted in suppression of EMT associated genes. Exposure of human iPSCs to hypoxia or differentiation of iPSCs into either cytotrophoblast-stem-like cells or EVT-like cells under hypoxia reduced C19MC expression and increased EMT genes. Furthermore, transcriptional activation of the C19MC cistron induced the expression of OCT4 and FGF4 and accelerated cellular reprogramming. This study establishes the CRISPR/dCas9 SAM as a powerful tool that enables activation of the entire C19MC cistron and uncovers its novel role in suppressing EMT genes critical for maintaining the epithelial cytotrophoblasts stem cell phenotype.
Collapse
Affiliation(s)
- Ezinne F Mong
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Kemal M Akat
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - John Canfield
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Jeffrey VanWye
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - John Lockhart
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - John C M Tsibris
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Hana Totary-Jain
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
13
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Annual Report on Sex in Preclinical Studies: Arteriosclerosis, Thrombosis, and Vascular Biology Publications in 2018. Arterioscler Thromb Vasc Biol 2019; 40:e1-e9. [PMID: 31869272 DOI: 10.1161/atvbaha.119.313556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.M.)
| | - Daniel J Rader
- Departments of Medicine and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
14
|
Zhu Y, Wan X, Abliz P. Effects of laser irradiation on growth factors and cell apoptosis of in vitro cultured infant hemangioma endothelial cells. Life Sci 2019; 233:116685. [PMID: 31348947 DOI: 10.1016/j.lfs.2019.116685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023]
Abstract
AIMS The present study aimed to investigate the effects of laser irradiation on the growth factors and cell apoptosis of in vitro cultured infant hemangioma endothelial cells. MAIN METHODS Endothelial cells of infant hemangioma were cultured in vitro and irradiated using a variable pulse width 1064 nm Nd:YAG laser and intense pulsed light (IPL), the expression of VEGF, VEGFR-2, bFGF and their mRNAs before and after irradiation were measured by ELISA, western blot, RT-PCR and flow cytometry, and changes in the apoptotic rate of endothelial cells in hemangioma were monitored. KEY FINDINGS The mRNA and protein expressions of VEGF, VEGFR-2, bFGF in hemangioma endothelial cells were inhibited by both Nd:YAG laser and ILP compared to the control cells. The apoptotic rates of hemangioma endothelial cells were also decreased after both laser irradiation treatments in comparison to the blank group. The differences were statistically significant. SIGNIFICANCE Laser irradiation treats hemangioma not only through a selective photothermal mechanism, but also through cytokine signaling pathways.
Collapse
Affiliation(s)
- Yalin Zhu
- Department of Dermatology, The first affiliated hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Xuefeng Wan
- Department of Dermatology, The first affiliated hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Palidae Abliz
- Department of Dermatology, The first affiliated hospital of Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
15
|
Wu C, Guo L, Wang L, Li J, Wang C, Song D. Associations between short-term efficacy and clinical characteristics of infantile hemangioma treated by propranolol. Medicine (Baltimore) 2019; 98:e14346. [PMID: 30732164 PMCID: PMC6380816 DOI: 10.1097/md.0000000000014346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Propranolol is the mainstay of treatment for infantile hemangiomas (IHs) benefited from its low complication in the present study. However, it has an uncertainty treating period with cumbersome methods which may be related to clinical features. This study sought to considered possible influences of short-term efficacy to medication.Retrospective analysis of 82 patients with IHs treated by propranolol was performed. The patients were grouped according to effect (excellent, good and fair/poor). ANOVA or t test was used to assess the relationships between effect and clinical features of IHs.Twenty-seven patients were males and 55 were females. The median age of treatment initiation was 3.5 (±2.11) months. Mean follow-up time for the group was 6.2 months (1.5-16 months). There were no significant associations between short-term efficacy and gender, time points of treatment, diameter of tumor and multifocality. However, tumor thickness was associated with short-term efficacy (P = .013). Moreover, an obvious difference of short-term efficacy has been found when tumor thickness <1.2 cm.In the present study, tumor thickness was associated with the short-term efficacy in patients with IHs. Propranolol may be gets a better outcome when tumor thickness <1.2 cm at a short time.
Collapse
|
16
|
Brennan GP, Vitsios DM, Casey S, Looney AM, Hallberg B, Henshall DC, Boylan GB, Murray DM, Mooney C. RNA-sequencing analysis of umbilical cord plasma microRNAs from healthy newborns. PLoS One 2018; 13:e0207952. [PMID: 30507953 PMCID: PMC6277075 DOI: 10.1371/journal.pone.0207952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA that regulate gene expression at a post-transcriptional level. MicroRNAs have been identified in various body fluids under normal conditions and their stability as well as their dysregulation in disease has led to ongoing interest in their diagnostic and prognostic potential. Circulating microRNAs may be valuable predictors of early-life complications such as birth asphyxia or neonatal seizures but there are relatively few data on microRNA content in plasma from healthy babies. Here we performed small RNA-sequencing analysis of plasma processed from umbilical cord blood in a set of healthy newborns. MicroRNA levels in umbilical cord plasma of four male and four female healthy babies, from two different centres were profiled. A total of 1,004 individual microRNAs were identified, which ranged from 426 to 659 per sample, of which 269 microRNAs were common to all eight samples. Many of these microRNAs are highly expressed and consistent with previous studies using other high throughput platforms. While overall microRNA expression did not differ between male and female cord blood plasma, we did detect differentially edited microRNAs in female plasma compared to male. Of note, and consistent with other studies of this type, adenylation and uridylation were the two most prominent forms of editing. Six microRNAs, miR-128-3p, miR-29a-3p, miR-9-5p, miR-218-5p, 204-5p and miR-132-3p were consistently both uridylated and adenylated in female cord blood plasma. These results provide a benchmark for microRNA profiling and biomarker discovery using umbilical cord plasma and can be used as comparative data for future biomarker profiles from complicated births or those with early-life developmental disorders.
Collapse
Affiliation(s)
- Gary P. Brennan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dimitrios M. Vitsios
- European Molecular Biology Laboratory–European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sophie Casey
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | | | - Boubou Hallberg
- Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - David C. Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Geraldine B. Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Deirdre M. Murray
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Catherine Mooney
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
- * E-mail:
| |
Collapse
|
17
|
Canfield J, Arlier S, Mong EF, Lockhart J, VanWye J, Guzeloglu-Kayisli O, Schatz F, Magness RR, Lockwood CJ, Tsibris JCM, Kayisli UA, Totary-Jain H. Decreased LIN28B in preeclampsia impairs human trophoblast differentiation and migration. FASEB J 2018; 33:2759-2769. [PMID: 30307771 DOI: 10.1096/fj.201801163r] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preeclampsia (PE) is a common cause of maternal morbidity, characterized by impaired trophoblast invasion and spiral artery transformation resulting in progressive uteroplacental hypoxia. Given the primary role of LIN28A and LIN28B in modulating cell metabolism, differentiation, and invasion, we hypothesized that LIN28A and/or LIN28B regulates trophoblast differentiation and invasion, and that its dysregulation may contribute to PE. Here we show that LIN28B is expressed ∼1300-fold higher than LIN28A in human term placenta and is the predominant paralog expressed in primary human trophoblast cultures. The expression of LIN28B mRNA and protein levels are significantly reduced in gestational age-matched preeclamptic vs. normal placentas, whereas LIN28A expression is not different. First trimester human placental sections displayed stronger LIN28B immunoreactivity in extravillous (invasive) cytotrophoblasts and syncytial sprouts vs. villous trophoblasts. LIN28B overexpression increased HTR8 cell proliferation, migration, and invasion, whereas LIN28B knockdown in JEG3 cells reduced cell proliferation. Moreover, LIN28B knockdown in JEG3 cells suppressed syncytin 1 (SYN-1), apelin receptor early endogenous ligand (ELABELA), and the chromosome 19 microRNA cluster, and increased mRNA expression of ITGβ4 and TNF-α. Incubation of BeWo and JEG3 cells under hypoxia significantly decreased expression of LIN28B and LIN28A, SYN-1, and ELABELA, whereas TNF-α is increased. These results provide the first evidence that LIN28B is the predominant paralog in human placenta and that decreased LIN28B may play a role in PE by reducing trophoblast invasion and syncytialization, and by promoting inflammation.-Canfield, J., Arlier, S., Mong, E. F., Lockhart, J., VanWye, J., Guzeloglu-Kayisli, O., Schatz, F., Magness, R. R., Lockwood, C. J., Tsibris, J. C. M., Kayisli, U. A., Totary-Jain, H. Decreased LIN28B in preeclampsia impairs human trophoblast differentiation and migration.
Collapse
Affiliation(s)
- John Canfield
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, Florida, USA
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, Morsani College of Medicine, Tampa, Florida, USA
| | - Ezinne F Mong
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, Florida, USA
| | - John Lockhart
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, Florida, USA
| | - Jeffrey VanWye
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, Florida, USA
| | | | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, Tampa, Florida, USA
| | - Ronald R Magness
- Department of Obstetrics and Gynecology, Morsani College of Medicine, Tampa, Florida, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, Tampa, Florida, USA
| | - John C M Tsibris
- Department of Obstetrics and Gynecology, Morsani College of Medicine, Tampa, Florida, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, Tampa, Florida, USA
| | - Hana Totary-Jain
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|