1
|
Mu B, Zeng Y, Luo L, Wang K. Oxidative stress-mediated protein sulfenylation in human diseases: Past, present, and future. Redox Biol 2024; 76:103332. [PMID: 39217848 PMCID: PMC11402764 DOI: 10.1016/j.redox.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Reactive Oxygen Species (ROS) refer to a variety of derivatives of molecular oxygen that play crucial roles in regulating a wide range of physiological and pathological processes. Excessive ROS levels can cause oxidative stress, leading to cellular damage and even cell demise. However, moderately elevated levels of ROS can mediate the oxidative post-translational modifications (oxPTMs) of redox-sensitive proteins, thereby affecting protein functions and regulating various cellular signaling pathways. Among the oxPTMs, ROS-induced reversible protein sulfenylation represents the initial form of cysteine oxidation for sensing redox signaling. In this review, we will summarize the discovery, chemical formation, and detection approaches of protein sulfenylation. In addition, we will highlight recent findings for the roles of protein sulfenylation in various diseases, including thrombotic disorders, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Baoquan Mu
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Zeng
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Camargo LDL, Trevelin SC, da Silva GHG, Dos Santos Dias AA, Oliveira MA, Mikhaylichenko O, Androwiki ACD, Dos Santos CX, Holbrook LM, Ceravolo GS, Denadai-Souza A, Ribeiro IMR, Sartoretto S, Laurindo FRM, Coltri PP, Antunes VR, Touyz R, Miller FJ, Shah AM, Lopes LR. Protein disulfide isomerase-mediated transcriptional upregulation of Nox1 contributes to vascular dysfunction in hypertension. J Hypertens 2024; 42:984-999. [PMID: 38690903 DOI: 10.1097/hjh.0000000000003677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Nox1 signaling is a causal key element in arterial hypertension. Recently, we identified protein disulfide isomerase A1 (PDI) as a novel regulatory protein that regulates Nox1 signaling in VSMCs. Spontaneously hypertensive rats (SHR) have increased levels of PDI in mesenteric resistance arteries compared with Wistar controls; however, its consequences remain unclear. Herein, we investigated the role of PDI in mediating Nox1 transcriptional upregulation and its effects on vascular dysfunction in hypertension. We demonstrate that PDI contributes to the development of hypertension via enhanced transcriptional upregulation of Nox1 in vascular smooth muscle cells (VSMCs). We show for the first time that PDI sulfenylation by hydrogen peroxide contributes to EGFR activation in hypertension via increased shedding of epidermal growth factor-like ligands. PDI also increases intracellular calcium levels, and contractile responses induced by ANG II. PDI silencing or pharmacological inhibition in VSMCs significantly decreases EGFR activation and Nox1 transcription. Overexpression of PDI in VSMCs enhances ANG II-induced EGFR activation and ATF1 translocation to the nucleus. Mechanistically, PDI increases ATF1-induced Nox1 transcription and enhances the contractile responses to ANG II. Herein we show that ATF1 binding to Nox1 transcription putative regulatory regions is augmented by PDI. Altogether, we provide evidence that HB-EGF in SHR resistance vessels promotes the nuclear translocation of ATF1, under the control of PDI, and thereby induces Nox1 gene expression and increases vascular reactivity. Thus, PDI acts as a thiol redox-dependent enhancer of vascular dysfunction in hypertension and could represent a novel therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Livia De Lucca Camargo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
- University of Glasgow, Institute of Cardiovascular & Medical Sciences
| | - Silvia Cellone Trevelin
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | | | | | - Maria Aparecida Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Olga Mikhaylichenko
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | - Aline C D Androwiki
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Celio Xavier Dos Santos
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | | | | | | | | | - Simone Sartoretto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Patricia Pereira Coltri
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Rhian Touyz
- University of Glasgow, Institute of Cardiovascular & Medical Sciences
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Francis J Miller
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | - Lucia Rossetti Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| |
Collapse
|
3
|
Kij A, Bar A, Czyzynska-Cichon I, Przyborowski K, Proniewski B, Mateuszuk L, Kurylowicz Z, Jasztal A, Buczek E, Kurpinska A, Suraj-Prazmowska J, Marczyk B, Matyjaszczyk-Gwarda K, Daiber A, Oelze M, Walczak M, Chlopicki S. Vascular protein disulfide isomerase A1 mediates endothelial dysfunction induced by angiotensin II in mice. Acta Physiol (Oxf) 2024; 240:e14116. [PMID: 38400621 DOI: 10.1111/apha.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
AIM Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice. METHODS Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat. Endothelial function was assessed in vivo with magnetic resonance imaging and ex vivo with a myography, while arterial stiffness was measured as pulse wave velocity. Nitric oxide (NO) bioavailability was measured in the aorta (spin-trapping electron paramagnetic resonance) and plasma (NO2 - and NO3 - levels). Oxidative stress, eNOS uncoupling (DHE-based aorta staining), and thrombin activity (thrombin-antithrombin complex; calibrated automated thrombography) were evaluated. RESULTS The inhibition of PDIA1 by bepristat in Ang II-treated mice prevented the impairment of NO-dependent vasodilation in the aorta as evidenced by the response to acetylcholine in vivo, increased systemic NO bioavailability and the aortic NO production, and decreased vascular stiffness. Bepristat's effect on NO-dependent function was recapitulated ex vivo in Ang II-induced endothelial dysfunction in isolated aorta. Furthermore, bepristat diminished the Ang II-induced eNOS uncoupling and overproduction of ROS without affecting thrombin activity. CONCLUSION In Ang II-treated mice, the inhibition of PDIA1 normalized the NO-ROS balance, prevented endothelial eNOS uncoupling, and, thereby, improved vascular function. These results indicate the importance of vascular PDIA1 in regulating endothelial function, but further studies are needed to elucidate the details of the mechanisms involved.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | | | - Andreas Daiber
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
4
|
Lamb FS, Choi H, Miller MR, Stark RJ. Vascular Inflammation and Smooth Muscle Contractility: The Role of Nox1-Derived Superoxide and LRRC8 Anion Channels. Hypertension 2024; 81:752-763. [PMID: 38174563 PMCID: PMC10954410 DOI: 10.1161/hypertensionaha.123.19434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O2•-). The mechanisms of O2•- signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O2•- to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O2•- and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension.
Collapse
Affiliation(s)
- Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Michael R Miller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
5
|
Martinez PA, Zanata SM, Nakao LS. Caveolae-mediated endocytosis of extracellular QSOX1b modulates the migration of fibroblasts. Exp Cell Res 2024; 435:113906. [PMID: 38176465 DOI: 10.1016/j.yexcr.2023.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Quiescin/sulfhydryl oxidase (QSOX1) is a secreted flavoprotein that modulates cellular proliferation, migration and adhesion, roles attributed to its ability to organize the extracellular matrix. We previously showed that exogenously added QSOX1b induces smooth muscle cells migration in a process that depends on its enzymatic activity and that is mediated by hydrogen peroxide derived from Nox1, a catalytic subunit of NAD(P)H oxidases. Here, we report that exogenous QSOX1b also stimulates the migration of L929 fibroblasts and that this effect is regulated by its endocytosis. The use of endocytosis inhibitors and caveolin 1-knockdown demonstrated that this endocytic pathway is caveola-mediated. QSOX1b colocalized with Nox1 in intracellular vesicles, as detected by confocal fluorescence, suggesting that extracellular QSOX1b is endocytosed with the transmembrane Nox1. These results reveal that endosomal QSOX1b is a novel intracellular redox regulator of cell migration.
Collapse
Affiliation(s)
- Pierina A Martinez
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Lia S Nakao
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, Brazil.
| |
Collapse
|
6
|
Trostchansky A, Alarcon M. An Overview of Two Old Friends Associated with Platelet Redox Signaling, the Protein Disulfide Isomerase and NADPH Oxidase. Biomolecules 2023; 13:biom13050848. [PMID: 37238717 DOI: 10.3390/biom13050848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress participates at the baseline of different non-communicable pathologies such as cardiovascular diseases. Excessive formation of reactive oxygen species (ROS), above the signaling levels necessary for the correct function of organelles and cells, may contribute to the non-desired effects of oxidative stress. Platelets play a relevant role in arterial thrombosis, by aggregation triggered by different agonists, where excessive ROS formation induces mitochondrial dysfunction and stimulate platelet activation and aggregation. Platelet is both a source and a target of ROS, thus we aim to analyze both the platelet enzymes responsible for ROS generation and their involvement in intracellular signal transduction pathways. Among the proteins involved in these processes are Protein Disulphide Isomerase (PDI) and NADPH oxidase (NOX) isoforms. By using bioinformatic tools and information from available databases, a complete bioinformatic analysis of the role and interactions of PDI and NOX in platelets, as well as the signal transduction pathways involved in their effects was performed. We focused the study on analyzing whether these proteins collaborate to control platelet function. The data presented in the current manuscript support the role that PDI and NOX play on activation pathways necessary for platelet activation and aggregation, as well as on the platelet signaling imbalance produced by ROS production. Our data could be used to design specific enzyme inhibitors or a dual inhibition for these enzymes with an antiplatelet effect to design promising treatments for diseases involving platelet dysfunction.
Collapse
Affiliation(s)
- Andrés Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Marcelo Alarcon
- Thrombosis Research Center, Universidad de Talca, Talca 3460000, Chile
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
7
|
Liu Y, Liang S, Shi D, Zhang Y, Bai C, Ye RD. A predicted structure of NADPH Oxidase 1 identifies key components of ROS generation and strategies for inhibition. PLoS One 2023; 18:e0285206. [PMID: 37134122 PMCID: PMC10155968 DOI: 10.1371/journal.pone.0285206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
NADPH oxidase 1 (NOX1) is primarily expressed in epithelial cells and responsible for local generation of reactive oxygen species (ROS). By specifically manipulating the local redox microenvironment, NOX1 actively engages in epithelial immunity, especially in colorectal and pulmonary epithelia. To unravel the structural basis of NOX1 engaged epithelial immune processes, a predicted structure model was established using RaptorX deep learning models. The predicted structure model illustrates a 6-transmembrane domain structure, a FAD binding domain, and an NADPH binding/NOXO1 interacting region. The substrate/cofactor binding scheme with respect to this proposed model highly correlates with published reports and is verified in our site-directed mutagenesis assays. An electron transport chain, from NADPH to FAD and the two heme groups, was well supported by the predicted model. Through molecular docking analysis of various small molecule NOX1 inhibitors and subsequent experimental validation, we identified pronounced active sites for potent NOX1 inhibition. Specifically, LEU60, VAL71, MET181, LEU185, HIS208, PHE211, TYR214, and TYR280 in the transmembrane domain form an active pocket for insertion of the small molecule inhibitors to inhibit electron transfer between the heme groups, thus affecting extracellular ROS generation. Altogether, our study provides structural information to help elucidate the role of NOX1 in epithelial generation of ROS and sheds light on the development of therapeutics for NOX1 related illnesses.
Collapse
Affiliation(s)
- Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Shiyu Liang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Danfeng Shi
- Warshel Institute of Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yue Zhang
- Warshel Institute of Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Chen Bai
- Warshel Institute of Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China
| |
Collapse
|
8
|
Dupuy A, Ju LA, Chiu J, Passam FH. Mechano-Redox Control of Integrins in Thromboinflammation. Antioxid Redox Signal 2022; 37:1072-1093. [PMID: 35044225 DOI: 10.1089/ars.2021.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: How mechanical forces and biochemical cues are coupled remains a miracle for many biological processes. Integrins, well-known adhesion receptors, sense changes in mechanical forces and reduction-oxidation reactions (redox) in their environment to mediate their adhesive function. The coupling of mechanical and redox function is a new area of investigation. Disturbance of normal mechanical forces and the redox balance occurs in thromboinflammatory conditions; atherosclerotic plaques create changes to the mechanical forces in the circulation. Diabetes induces redox changes in the circulation by the production of reactive oxygen species and vascular inflammation. Recent Advances: Integrins sense changes in the blood flow shear stress at the level of focal adhesions and respond to flow and traction forces by increased signaling. Talin, the integrin-actin linker, is a traction force sensor and adaptor. Oxidation and reduction of integrin disulfide bonds regulate their adhesion. A conserved disulfide bond in integrin αlpha IIb beta 3 (αIIbβ3) is directly reduced by the thiol oxidoreductase endoplasmic reticulum protein 5 (ERp5) under shear stress. Critical Issues: The coordination of mechano-redox events between the extracellular and intracellular compartments is an active area of investigation. Another fundamental issue is to determine the spatiotemporal arrangement of key regulators of integrins' mechanical and redox interactions. How thromboinflammatory conditions lead to mechanoredox uncoupling is relatively unexplored. Future Directions: Integrated approaches, involving disulfide bond biochemistry, microfluidic assays, and dynamic force spectroscopy, will aid in showing that cell adhesion constitutes a crossroad of mechano- and redox biology, within the same molecule, the integrin. Antioxid. Redox Signal. 37, 1072-1093.
Collapse
Affiliation(s)
- Alexander Dupuy
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia
| | - Lining Arnold Ju
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia.,School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, Australia
| | - Joyce Chiu
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,ACRF Centenary Cancer Research Centre, The Centenary Institute, Camperdown, Australia
| | - Freda H Passam
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia
| |
Collapse
|
9
|
Miyano K, Okamoto S, Kajikawa M, Kiyohara T, Kawai C, Yamauchi A, Kuribayashi F. Regulation of Derlin-1-mediated degradation of NADPH oxidase partner p22 phox by thiol modification. Redox Biol 2022; 56:102479. [PMID: 36122532 PMCID: PMC9486109 DOI: 10.1016/j.redox.2022.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
The transmembrane protein p22phox heterodimerizes with NADPH oxidase (Nox) 1–4 and is essential for the reactive oxygen species-producing capacity of oxidases. Missense mutations in the p22phox gene prevent the formation of phagocytic Nox2-based oxidase, which contributes to host defense. This results in chronic granulomatous disease (CGD), a severe primary immunodeficiency syndrome. In this study, we characterized missense mutations in p22phox (L51Q, L52P, E53V, and P55R) in the A22° type (wherein the p22phox protein is undetectable) of CGD. We demonstrated that these substitutions enhanced the degradation of the p22phox protein in the endoplasmic reticulum (ER) and the binding of p22phox to Derlin-1, a key component of ER-associated degradation (ERAD). Therefore, the L51-L52-E53-P55 sequence is responsible for protein stability in the ER. We observed that the oxidation of the thiol group of Cys-50, which is adjacent to the L51-L52-E53-P55 sequence, suppressed p22phox degradation. However, the suppression effect was markedly attenuated by the serine substitution of Cys-50. Blocking the free thiol of Cys-50 by alkylation or C50S substitution promoted the association of p22phox with Derlin-1. Derlin-1 depletion partially suppressed the degradation of p22phox mutant proteins. Furthermore, heterodimerization with p22phox (C50S) induced rapid degradation of not only Nox2 but also nonphagocytic Nox4 protein, which is responsible for redox signaling. Thus, the redox-sensitive Cys-50 appears to determine whether p22phox becomes a target for degradation by the ERAD system through its interaction with Derlin-1. Missense mutations in exon 3 of p22phox enhance the binding of p22phox to Derlin-1. Oxidation of the thiol group of p22phox Cys50 suppresses p22phox degradation. Serine substitution of Cys-50 increases the affinity of p22phox for Derlin-1. Stability of the p22phox protein is regulated by redox-sensitive Cys-50.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Natural Sciences, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan; Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan.
| | - Shuichiro Okamoto
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Takuya Kiyohara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chikage Kawai
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
10
|
Wang L, Wang X, Lv X, Jin Q, Shang H, Wang CC, Wang L. The extracellular Ero1α/PDI electron transport system regulates platelet function by increasing glutathione reduction potential. Redox Biol 2022; 50:102244. [PMID: 35077997 PMCID: PMC8792282 DOI: 10.1016/j.redox.2022.102244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/18/2023] Open
Abstract
Protein disulfide isomerase (PDI), an oxidoreductase, possesses two vicinal cysteines in the -Cys-Gly-His-Cys-motif that either form a disulfide bridge (S–S) or exist in a sulfhydryl form (-SH), forming oxidized or reduced PDI, respectively. PDI has been proven to be critical for platelet aggregation, thrombosis, and hemostasis, and PDI inhibition is being evaluated as a novel antithrombotic strategy. The redox states of functional PDI during the regulation of platelet aggregation, however, remain to be elucidated. Endoplasmic reticulum (ER) oxidoreductin-1α (Ero1α) and PDI constitute the pivotal oxidative folding pathway in the ER and play an important role in ER redox homeostasis. Whether Ero1α and PDI constitute an extracellular electron transport pathway to mediate platelet aggregation is an open question. Here, we found that oxidized but not reduced PDI promotes platelet aggregation. On the platelet surface, Ero1α constitutively oxidizes PDI and further regulates platelet aggregation in a glutathione-dependent manner. The Ero1α/PDI system oxidizes reduced glutathione (GSH) and establishes a reduction potential optimal for platelet aggregation. Therefore, platelet aggregation is mediated by the Ero1α-PDI-GSH electron transport system on the platelet surface. We further showed that targeting the functional interplay between PDI and Ero1α by small molecule inhibitors may be a novel strategy for antithrombotic therapy. Oxidized but not reduced PDI promotes platelet aggregation. Ero1α and PDI constitute an electron transport pathway on platelet surface. Ero1α and PDI provide a redox environment optimal for platelet aggregation. The functional interplay between Ero1α and PDI can be a new target for antiplatelet therapy.
Collapse
Affiliation(s)
- Lu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiying Lv
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qiushuo Jin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Przyborowski K, Kurpinska A, Wojkowska D, Kaczara P, Suraj‐Prazmowska J, Karolczak K, Malinowska A, Pelesz A, Kij A, Kalvins I, Watala C, Chlopicki S. Protein disulfide isomerase-A1 regulates intraplatelet reactive oxygen species-thromboxane A 2 -dependent pathway in human platelets. J Thromb Haemost 2022; 20:157-169. [PMID: 34592041 PMCID: PMC9292974 DOI: 10.1111/jth.15539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Platelet-derived protein disulfide isomerase 1 (PDIA1) regulates thrombus formation, but its role in the regulation of platelet function is not fully understood. AIMS The aim of this study was to characterize the role of PDIA1 in human platelets. METHODS Proteomic analysis of PDI isoforms in platelets was performed using liquid chromatography tandem mass spectometry, and the expression of PDIs on platelets in response to collagen, TRAP-14, or ADP was measured with flow cytometry. The effects of bepristat, a selective PDIA1 inhibitor, on platelet aggregation, expression of platelet surface activation markers, thromboxane A2 (TxA2 ), and reactive oxygen species (ROS) generation were evaluated by optical aggregometry, flow cytometry, ELISA, and dihydrodichlorofluorescein diacetate-based fluorescent assay, respectively. RESULTS PDIA1 was less abundant compared with PDIA3 in resting platelets and platelets stimulated with TRAP-14, collagen, or ADP. Collagen, but not ADP, induced a significant increase in PDIA1 expression. Bepristat potently inhibited the aggregation of washed platelets induced by collagen or convulxin, but only weakly inhibited platelet aggregation induced by TRAP-14 or thrombin, and had the negligible effect on platelet aggregation induced by arachidonic acid. Inhibition of PDIA1 by bepristat resulted in the reduction of TxA2 and ROS production in collagen- or thrombin-stimulated platelets. Furthermore, bepristat reduced the activation of αIIbβ3 integrin and expression of P-selectin. CONCLUSIONS PDIA1 acts as an intraplatelet regulator of the ROS-TxA2 pathway in collagen-GP VI receptor-mediated platelet activation that is a mechanistically distinct pathway from extracellular regulation of αIIbβ3 integrin by PDIA3.
Collapse
Affiliation(s)
- Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Dagmara Wojkowska
- Department of Haemostasis and Haemostatic DisordersMedical University of LodzLodzPoland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | | | - Kamil Karolczak
- Department of Haemostasis and Haemostatic DisordersMedical University of LodzLodzPoland
| | - Agata Malinowska
- Mass Spectrometry LaboratoryInstitute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | - Agnieszka Pelesz
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Ivars Kalvins
- Laboratory of Carbocyclic CompoundsLatvian Institute of Organic SynthesisRigaLatvia
| | - Cezary Watala
- Department of Haemostasis and Haemostatic DisordersMedical University of LodzLodzPoland
- Chair of Biomedical SciencesMedical University of LodzLodzPoland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
- Chair of PharmacologyJagiellonian University Medical CollegeKrakowPoland
| |
Collapse
|
12
|
Yang M, Flaumenhaft R. Oxidative Cysteine Modification of Thiol Isomerases in Thrombotic Disease: A Hypothesis. Antioxid Redox Signal 2021; 35:1134-1155. [PMID: 34121445 PMCID: PMC8817710 DOI: 10.1089/ars.2021.0108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Oxidative stress is a characteristic of many systemic diseases associated with thrombosis. Thiol isomerases are a family of oxidoreductases important in protein folding and are exquisitely sensitive to the redox environment. They are essential for thrombus formation and represent a previously unrecognized layer of control of the thrombotic process. Yet, the mechanisms by which thiol isomerases function in thrombus formation are unknown. Recent Advances: The oxidoreductase activity of thiol isomerases in thrombus formation is controlled by the redox environment via oxidative changes to active site cysteines. Specific alterations can now be detected owing to advances in the chemical biology of oxidative cysteine modifications. Critical Issues: Understanding of the role of thiol isomerases in thrombus formation has focused largely on identifying single disulfide bond modifications in isolated proteins (e.g., αIIbβ3, tissue factor, vitronectin, or glycoprotein Ibα [GPIbα]). An alternative approach is to conceptualize thiol isomerases as effectors in redox signaling pathways that control thrombotic potential by modifying substrate networks. Future Directions: Cysteine-based chemical biology will be employed to study thiol-dependent dynamics mediated by the redox state of thiol isomerases at the systems level. This approach could identify thiol isomerase-dependent modifications of the disulfide landscape that are prothrombotic.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Abstract
Significance: Since protein disulfide isomerase (PDI) was first described in 1963, researchers have shown conclusively that PDI and sibling proteins are quintessential for thrombus formation. PDI, endoplasmic reticulum protein (ERp)5, ERp57, and ERp72 are released from platelets and vascular cells and interact with integrin αIIbβ3 on the outer surface of platelets. Recent Advances: At the cell surface they influence protein folding and function, propagating thrombosis and maintaining hemostasis. TMX1, which is a transmembrane thiol isomerase, is the first family member shown to negatively regulate platelets. Targets of thiol isomerases have been identified, including integrin α2β1, Von Willebrand Factor, GpIbα, nicotinamide adenine dinucleotide phosphate oxidase (Nox)-1, Nox-2, and tissue factor, all of which are pro-thrombotic, and several of which are on the cell surface. In spite of this, PDI can paradoxically catalyze the delivery of nitric oxide to platelets, which decrease thrombus formation. Critical Issues: Although the overall effect of PDI is to positively regulate platelet activation, it is still unclear how thiol isomerases function in pro-thrombotic states, such as obesity, diabetes, and cancer. In parallel, there has been a surge in the development of novel thiol isomerase inhibitors, which display selectivity, potency and modulate thrombosis and hemostasis. The availability of selective thiol isomerase inhibitors has culminated in clinical trials, with promising outcomes for the prevention of cancer-associated thrombosis. Future Directions: Altogether, thiol isomerases are perceived as an orchestrating force that regulates thrombus development. In the current review, we will explore the history of PDI in cardiovascular biology, detail known mechanisms of action, and summarize known thiol isomerase inhibitors.
Collapse
Affiliation(s)
- Renato Simões Gaspar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
14
|
Jha V, Kumari T, Manickam V, Assar Z, Olson KL, Min JK, Cho J. ERO1-PDI Redox Signaling in Health and Disease. Antioxid Redox Signal 2021; 35:1093-1115. [PMID: 34074138 PMCID: PMC8817699 DOI: 10.1089/ars.2021.0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Significance: Protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductase 1 (ERO1) are crucial for oxidative protein folding in the endoplasmic reticulum (ER). These enzymes are frequently overexpressed and secreted, and they contribute to the pathology of neurodegenerative, cardiovascular, and metabolic diseases. Recent Advances: Tissue-specific knockout mouse models and pharmacologic inhibitors have been developed to advance our understanding of the cell-specific functions of PDI and ERO1. In addition to their roles in protecting cells from the unfolded protein response and oxidative stress, recent studies have revealed that PDI and ERO1 also function outside of the cells. Critical Issues: Despite the well-known contributions of PDI and ERO1 to specific disease pathology, the detailed molecular and cellular mechanisms underlying these activities remain to be elucidated. Further, although PDI and ERO1 inhibitors have been identified, the results from previous studies require careful evaluation, as many of these agents are not selective and may have significant cytotoxicity. Future Directions: The functions of PDI and ERO1 in the ER have been extensively studied. Additional studies will be required to define their functions outside the ER.
Collapse
Affiliation(s)
- Vishwanath Jha
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tripti Kumari
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vijayprakash Manickam
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zahra Assar
- Cayman Chemical Company, Inc., Ann Arbor, Michigan, USA
| | - Kirk L Olson
- Cayman Chemical Company, Inc., Ann Arbor, Michigan, USA
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying unidirectional laminar shear stress-mediated Nrf2 activation in endothelial cells: Amplification of low shear stress signaling by primary cilia. Redox Biol 2021; 46:102103. [PMID: 34425388 PMCID: PMC8379703 DOI: 10.1016/j.redox.2021.102103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells are sensitive to mechanical stress and respond differently to oscillatory flow versus unidirectional flow. This review highlights the mechanisms by which a wide range of unidirectional laminar shear stress induces activation of the redox sensitive antioxidant transcription factor nuclear factor-E2-related factor 2 (Nrf2) in cultured endothelial cells. We propose that fibroblast growth factor-2 (FGF-2), brain-derived neurotrophic factor (BDNF) and 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) are potential Nrf2 activators induced by laminar shear stress. Shear stress-dependent secretion of FGF-2 and its receptor-mediated signaling is tightly controlled, requiring neutrophil elastase released by shear stress, αvβ3 integrin and the cell surface glycocalyx. We speculate that primary cilia respond to low laminar shear stress (<10 dyn/cm2), resulting in secretion of insulin-like growth factor 1 (IGF-1), which facilitates αvβ3 integrin-dependent FGF-2 secretion. Shear stress induces generation of heparan-binding epidermal growth factor-like growth factor (HB-EGF), which contributes to FGF-2 secretion and gene expression. Furthermore, HB-EGF signaling modulates FGF-2-mediated NADPH oxidase 1 activation that favors casein kinase 2 (CK2)-mediated phosphorylation/activation of Nrf2 associated with caveolin 1 in caveolae. Higher shear stress (>15 dyn/cm2) induces vesicular exocytosis of BDNF from endothelial cells, and we propose that BDNF via the p75NTR receptor could induce CK2-mediated Nrf2 activation. Unidirectional laminar shear stress upregulates gene expression of FGF-2 and BDNF and generation of 15d-PGJ2, which cooperate in sustaining Nrf2 activation to protect endothelial cells against oxidative damage.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
16
|
Gaspar RS, Mansilla S, Vieira VA, da Silva LB, Gibbins JM, Castro L, Trostchansky A, Paes AMDA. The protein disulphide isomerase inhibitor CxxCpep modulates oxidative burst and mitochondrial function in platelets. Free Radic Biol Med 2021; 172:668-674. [PMID: 34252541 DOI: 10.1016/j.freeradbiomed.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND We have previously described CxxCpep, a peptide with anti-platelet properties that inhibits peri/epicellular protein disulphide isomerase (pecPDI) by forming a mixed disulfide bond with Cys400 within the pecPDI active site. OBJECTIVES Here we sought to determine if pecPDI targeted by CxxCpep is relevant to redox mechanisms downstream of the collagen receptor GPVI in platelets. METHODS AND RESULTS Restriction of effects of CxxCpep to the platelet surface was confirmed by LC-MS/MS following cell fractionation. Platelet aggregation was measured in platelet-rich plasma (PRP) incubated with 30 μM CxxCpep or vehicle. CxxCpep inhibited collagen-induced platelet aggregation but exerted no effect in TRAP-6-stimulated platelets. PRP was incubated with DCFDA to measure oxidative burst upon platelet adhesion to collagen. Results showed that CxxCpep decreased oxidative burst in platelets adhered to immobilized collagen while the number of adherent cells was unaffected. Furthermore, flow cytometry studies using a FITC-maleimide showed that the GPVI agonist CRP stimulated an increase in free thiols on the platelet outer membrane, which was inhibited by CxxCpep. Finally, CxxCpep inhibited platelet mitochondrial respiration upon activation with collagen, but not with thrombin. CONCLUSIONS Our data suggest that pecPDI is a potential modulator of GPVI-mediated redox regulation mechanisms and that CxxCpep can be further exploited as a template for new antiplatelet compounds.
Collapse
Affiliation(s)
- Renato S Gaspar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK; Laboratory of Experimental Physiology, Department of Physiology, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil; Laboratory of Vascular Biology, Health Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Departamento de Bioquímica y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Victor A Vieira
- Laboratory of Experimental Physiology, Department of Physiology, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Ludmila B da Silva
- Laboratory of Experimental Physiology, Department of Physiology, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil; Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Laura Castro
- Departamento de Bioquímica y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Antonio Marcus de A Paes
- Laboratory of Experimental Physiology, Department of Physiology, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil; Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil.
| |
Collapse
|
17
|
Choi H, Rohrbough JC, Nguyen HN, Dikalova A, Lamb FS. Oxidant-resistant LRRC8A/C anion channels support superoxide production by NADPH oxidase 1. J Physiol 2021; 599:3013-3036. [PMID: 33932953 DOI: 10.1113/jp281577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS LRRC8A-containing anion channels associate with NADPH oxidase 1 (Nox1) and regulate superoxide production and tumour necrosis factor-α (TNFα) signalling. Here we show that LRRC8C and 8D also co-immunoprecipitate with Nox1 in vascular smooth muscle cells. LRRC8C knockdown inhibited TNFα-induced O2 •- production, receptor endocytosis, nuclear factor-κB (NF-κB) activation and proliferation while LRRC8D knockdown enhanced NF-κB activation. Significant changes in LRRC8 isoform expression in human atherosclerosis and psoriasis suggest compensation for increased inflammation. The oxidant chloramine-T (ChlorT, 1 mM) weakly (∼25%) inhibited LRRC8C currents but potently (∼80%) inhibited LRRC8D currents. Substitution of the extracellular loop (EL1, EL2) domains of 8D into 8C conferred significantly stronger (69%) ChlorT-dependent inhibition. ChlorT exposure impaired subsequent current block by DCPIB, which occurs through interaction with EL1, further implicating external oxidation sites. LRRC8A/C channels most effectively sustain Nox1 activity at the plasma membrane. This may result from their ability to remain active in an oxidized microenvironment. ABSTRACT Tumour necrosis factor-α (TNFα) activates NADPH oxidase 1 (Nox1) in vascular smooth muscle cells (VSMCs), producing superoxide (O2 •- ) required for subsequent signalling. LRRC8 family proteins A-E comprise volume-regulated anion channels (VRACs). The required subunit LRRC8A physically associates with Nox1, and VRAC activity is required for Nox activity and the inflammatory response to TNFα. VRAC currents are modulated by oxidants, suggesting that channel oxidant sensitivity and proximity to Nox1 may play a physiologically relevant role. In VSMCs, LRRC8C knockdown (siRNA) recapitulated the effects of siLRRC8A, inhibiting TNFα-induced extracellular and endosomal O2 •- production, receptor endocytosis, nuclear factor-κB (NF-κB) activation and proliferation. In contrast, siLRRC8D potentiated NF-κB activation. Nox1 co-immunoprecipitated with 8C and 8D, and colocalized with 8D at the plasma membrane and in vesicles. We compared VRAC currents mediated by homomeric and heteromeric LRRC8C and LRRC8D channels expressed in HEK293 cells. The oxidant chloramine T (ChlorT, 1 mM) weakly inhibited 8C, but potently inhibited 8D currents. ChlorT exposure also impaired subsequent current block by the VRAC blocker DCPIB, implicating external sites of oxidation. Substitution of the 8D extracellular loop domains (EL1, EL2) into 8C conferred significantly stronger ChlorT-mediated inhibition of 8C currents. Our results suggest that LRRC8A/C channel activity can be effectively maintained in the oxidized microenvironment expected to result from Nox1 activation at the plasma membrane. Increased ratios of 8D:8C expression may potentially depress inflammatory responses to TNFα. LRRC8A/C channel downregulation represents a novel strategy to reduce TNFα-induced inflammation.
Collapse
Affiliation(s)
- Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jeffrey C Rohrbough
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Hong N Nguyen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Anna Dikalova
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
18
|
Protein Disulphide Isomerase and NADPH Oxidase 1 Cooperate to Control Platelet Function and Are Associated with Cardiometabolic Disease Risk Factors. Antioxidants (Basel) 2021; 10:antiox10030497. [PMID: 33806982 PMCID: PMC8004975 DOI: 10.3390/antiox10030497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Protein disulphide isomerase (PDI) and NADPH oxidase 1 (Nox-1) regulate platelet function and reactive oxygen species (ROS) generation, suggesting potentially interdependent roles. Increased platelet reactivity and ROS production have been correlated with cardiometabolic disease risk factors. Objectives: To establish whether PDI and Nox-1 cooperate to control platelet function. Methods: Immunofluorescence microscopy was utilised to determine expression and localisation of PDI and Nox-1. Platelet aggregation, fibrinogen binding, P-selectin exposure, spreading and calcium mobilization were measured as markers of platelet function. A cross-sectional population study (n = 136) was conducted to assess the relationship between platelet PDI and Nox-1 levels and cardiometabolic risk factors. Results: PDI and Nox-1 co-localized upon activation induced by the collagen receptor GPVI. Co-inhibition of PDI and Nox-1 led to additive inhibition of GPVI-mediated platelet aggregation, activation and calcium flux. This was confirmed in murine Nox-1−/− platelets treated with PDI inhibitor bepristat, without affecting bleeding. PDI and Nox-1 together contributed to GPVI signalling that involved the phosphorylation of p38 MAPK, p47phox, PKC and Akt. Platelet PDI and Nox-1 levels were upregulated in obesity, with platelet Nox-1 also elevated in hypertensive individuals. Conclusions: We show that PDI and Nox-1 cooperate to control platelet function and are associated with cardiometabolic risk factors.
Collapse
|
19
|
Victor P, Sarada D, Ramkumar KM. Crosstalk between endoplasmic reticulum stress and oxidative stress: Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1. Eur J Pharmacol 2020; 892:173749. [PMID: 33245896 DOI: 10.1016/j.ejphar.2020.173749] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
Cellular stress and inflammation, establishing as disease pathology, have reached great heights in the last few decades. Stress conditions such as hyperglycemia, hyperlipidemia and lipoproteins are known to disturb proteostasis resulting in the accumulation of unfolded or misfolded proteins, alteration in calcium homeostasis culminating in unfolded protein response. Protein disulfide isomerase and endoplasmic reticulum oxidase-1 are the key players in protein folding. The protein folding process assisted by endoplasmic reticulum oxidase-1 results in the production of reactive oxygen species in the lumen of the endoplasmic reticulum. Production of reactive oxygen species beyond the quenching capacity of the antioxidant systems perturbs ER homeostasis. Endoplasmic reticulum stress also induces the production of cytokines leading to inflammatory responses. This has been proven to be the major causative factor for various pathophysiological states compared to other cellular triggers in diseases, which further manifests to increased oxidative stress, mitochondrial dysfunction, and altered inflammatory responses, deleterious to cellular physiology and homeostasis. Numerous studies have drawn correlations between the progression of several diseases in association with endoplasmic reticulum stress, redox protein folding, oxidative stress and inflammatory responses. This review aims to provide an insight into the role of protein disulfide isomerase and endoplasmic reticulum oxidase-1 in endoplasmic reticulum stress, unfolded protein response, mitochondrial dysfunction, and inflammatory responses, which exacerbate the progression of various diseases.
Collapse
Affiliation(s)
- Paul Victor
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India
| | - Dronamraju Sarada
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India; Life Science Division, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India.
| |
Collapse
|
20
|
Takaishi K, Kinoshita H, Feng GG, Azma T, Kawahito S, Kitahata H. Cytoskeleton-disrupting agent cytochalasin B reduces oxidative stress caused by high glucose in the human arterial smooth muscle. J Pharmacol Sci 2020; 144:197-203. [PMID: 33070838 DOI: 10.1016/j.jphs.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
The role of cytoskeleton dynamics in the oxidative stress toward human vasculature has been unclear. The current study examined whether the cytoskeleton-disrupting agent cytochalasin B reduces oxidative stress caused by high glucose in the human arterial smooth muscle. All experiments in the human omental arteries without endothelium or the cultured human coronary artery smooth muscle cells were performed in d-glucose (5.5 mmol/L). The exposure toward d-glucose (20 mmol/L) for 60 min reduced the relaxation or hyperpolarization to an ATP sensitive K+ channel (KATP) opener levcromakalim (10-8 to 3 × 10-6 mol/L and 3 × 10-6 mol/L, respectively). Cytochalasin B and a superoxide inhibitor Tiron, restored them similarly. Cytochalasin B reduced the NADPH oxidase activity, leading to a decrease in superoxide levels of the arteries treated with high d-glucose. Also, cytochalasin B impaired the F-actin constitution and the membrane translocation of an NADPH oxidase subunit p47phox in artery smooth muscle cells treated with high d-glucose. A clinical concentration of cytochalasin B prevented human vascular smooth muscle malfunction via the oxidative stress caused by high glucose. Regulation of the cytoskeleton may be essential to keep the normal vascular function in patients with hyperglycemia.
Collapse
Affiliation(s)
- Kazumi Takaishi
- Department of Dental Anesthesiology, Tokushima University Hospital, Tokushima, Japan
| | - Hiroyuki Kinoshita
- Department of Anesthesiology, Tokushima University Hospital, Tokushima, Japan; Department of Anesthesiology, Aichi Medical University School of Medicine, Aichi, Japan.
| | - Guo-Gang Feng
- Department of Anesthesiology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Toshiharu Azma
- Department of Anesthesiology & Pain Medicine, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Shinji Kawahito
- Department of Anesthesiology, Tokushima University Hospital, Tokushima, Japan
| | - Hiroshi Kitahata
- Department of Dental Anesthesiology, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
21
|
Beyond bacterial killing: NADPH oxidase 2 is an immunomodulator. Immunol Lett 2020; 221:39-48. [DOI: 10.1016/j.imlet.2020.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
|
22
|
Shergalis AG, Hu S, Bankhead A, Neamati N. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Pharmacol Ther 2020; 210:107525. [PMID: 32201313 DOI: 10.1016/j.pharmthera.2020.107525] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Protein folding in the endoplasmic reticulum is an oxidative process that relies on protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase 1 (ERO1). Over 30% of proteins require the chaperone PDI to promote disulfide bond formation. PDI oxidizes cysteines in nascent polypeptides to form disulfide bonds and can also reduce and isomerize disulfide bonds. ERO1 recycles reduced PDI family member PDIA1 using a FAD cofactor to transfer electrons to oxygen. ERO1 dysfunction critically affects several diseases states. Both ERO1 and PDIA1 are overexpressed in cancers and implicated in diabetes and neurodegenerative diseases. Cancer-associated ERO1 promotes cell migration and invasion. Furthermore, the ERO1-PDIA1 interaction is critical for epithelial-to-mesenchymal transition. Co-expression analysis of ERO1A gene expression in cancer patients demonstrated that ERO1A is significantly upregulated in lung adenocarcinoma (LUAD), glioblastoma and low-grade glioma (GBMLGG), pancreatic ductal adenocarcinoma (PAAD), and kidney renal papillary cell carcinoma (KIRP) cancers. ERO1Α knockdown gene signature correlates with knockdown of cancer signaling proteins including IGF1R, supporting the search for novel, selective ERO1 inhibitors for the treatment of cancer. In this review, we explore the functions of ERO1 and PDI to support inhibition of this interaction in cancer and other diseases.
Collapse
Affiliation(s)
- Andrea G Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States
| | - Shuai Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Armand Bankhead
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States.
| |
Collapse
|
23
|
Protein disulfide isomerase in cardiovascular disease. Exp Mol Med 2020; 52:390-399. [PMID: 32203104 PMCID: PMC7156431 DOI: 10.1038/s12276-020-0401-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 01/07/2023] Open
Abstract
Protein disulfide isomerase (PDI) participates in the pathogenesis of numerous diseases. Increasing evidence indicates that intravascular cell-derived PDI plays an important role in the initiation and progression of cardiovascular diseases, including thrombosis and vascular inflammation. Recent studies with PDI conditional knockout mice have advanced our understanding of the function of cell-specific PDI in disease processes. Furthermore, the identification and development of novel small-molecule PDI inhibitors has led into a new era of PDI research that transitioned from the bench to bedside. In this review, we will discuss recent findings on the regulatory role of PDI in cardiovascular disease. Efforts to untangle the functions of a large family of enzymes could lead researchers to new therapies for diverse cardiovascular diseases. Members of the protein disulfide isomerase (PDI) family chemically modify other proteins in ways that can alter both their structure and biological activity. Jaehyung Cho of the University of Illinois at Chicago, USA and coworkers have reviewed numerous studies linking PDI with cardiovascular diseases, including thrombosis, heart attack, vascular inflammation, and stroke. The authors also report progress in developing small-molecule PDI inhibitors that could yield the treatment for these conditions.
Collapse
|
24
|
França KC, Martinez PA, Prado ML, Lo SM, Borges BE, Zanata SM, San Martin A, Nakao LS. Quiescin/sulfhydryl oxidase 1b (QSOX1b) induces migration and proliferation of vascular smooth muscle cells by distinct redox pathways. Arch Biochem Biophys 2020; 679:108220. [PMID: 31812669 DOI: 10.1016/j.abb.2019.108220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/24/2023]
Abstract
Quiescent and contractile VSMC can switch to proliferative and migratory phenotype in response to growth factors and cytokines, an effect underscored by Nox family NADPH oxidases, particularly Nox1. We previously showed that quiescin/sulfhydryl oxidase 1 (QSOX1) has a role in neointima formation in balloon-injured rat carotid. Here, we investigated the intracellular redox mechanisms underlying these effects in primary VSMC. Our results show that exogenous incubation with wild type QSOX1b (wt QSOX), or with secreted QSOX1, but not with the inactive C452S QSOX 1b (C452S QSOX) or secreted inactive C455S QSOX1, induces VSMC migration and chemotaxis. PEG-catalase (PEG-CAT) prevented, while PEG-superoxide dismutase (PEG-SOD) increased migration induced by wt QSOX. Moreover, wt QSOX-induced migration was abrogated in NOX1-null VSMC. In contrast, both wt QSOX and C452S QSOX, and both secreted QSOX1 and C455S QSOX1, induce cell proliferation. Such effect was unaltered by PEG-CAT, while being inhibited by PEG-SOD. However, QSOX1-induced proliferation was not significantly affected in NOX1-null VSMC, compared with WT VSMC. These results indicate that hydrogen peroxide and superoxide mediate, respectively, migration and proliferation. However, Nox1 was required only for QSOX1-induced migration. In parallel, QSOX1-induced proliferation was independent of its redox activity, although mediated by intracellular superoxide.
Collapse
Affiliation(s)
- Karime C França
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Pierina A Martinez
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Maiara L Prado
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Sze M Lo
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Beatriz E Borges
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | | | - Lia S Nakao
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
25
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|