1
|
D'Italia G, Schroen B, Cosemans JMEM. Commonalities of platelet dysfunction in heart failure with preserved ejection fraction and underlying comorbidities. ESC Heart Fail 2024. [PMID: 39375979 DOI: 10.1002/ehf2.15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by a lack of a specific targeted treatment and a complex, partially unexplored pathophysiology. Common comorbidities associated with HFpEF are hypertension, atrial fibrillation, obesity and diabetes. These comorbidities, combined with advanced age, play a crucial role in the initiation and development of the disease through the promotion of systemic inflammation and consequent changes in cardiac phenotype. In this context, we suggest platelets as important players due to their emerging role in vascular inflammation. This review provides an overview of the role of platelets in HFpEF and its associated comorbidities, including hypertension, atrial fibrillation, obesity and diabetes mellitus, as well as the impact of age and sex on platelet function. These major HFpEF-associated comorbidities present alterations in platelet behaviour and in features linked to platelet size, content and reactivity. The resulting dysfunctional platelets can contribute to further increase inflammation, oxidative stress and endothelial dysfunction, suggesting an active role of these cells in the initiation and progression of HFpEF. Recent evidence shows that reduced platelet count and elevated mean platelet volume are associated with worsening heart failure in HFpEF patients. However, the specific mechanisms by which platelets contribute to HFpEF development and progression are still largely unexplored, with only a few studies investigating platelet function in HFpEF. We discuss the limited yet significant body of research investigating platelet function in HFpEF, emphasizing the need for more comprehensive studies. Additionally, we explore the potential mechanisms through which platelets may influence HFpEF, such as their interactions with the vascular endothelium and the secretion of bioactive molecules like cytokines, chemokines and RNA molecules. These interactions and secretions may play a role in modulating vascular inflammation and contributing to the pathophysiological landscape of HFpEF. The review underscores the necessity for future research to elucidate the precise contributions of platelets to HFpEF, aiming to potentially identify novel therapeutic targets and improve patient outcomes. The evidence presented herein supports the hypothesis that platelets are not merely passive bystanders but active participants in the pathophysiology of HFpEF and its comorbidities.
Collapse
Affiliation(s)
- Giorgia D'Italia
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Corken A, Wahl EC, Sikes JD, Thakali KM. Western Diet Modifies Platelet Activation Profiles in Male Mice. Int J Mol Sci 2024; 25:8019. [PMID: 39125586 PMCID: PMC11311362 DOI: 10.3390/ijms25158019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
The correlation between obesity and cardiovascular disease has long been understood, yet scant investigations endeavored to determine the impact of an obesogenic diet on platelet activation or function. As platelets drive clot formation, the terminus of cardiovascular events, we aimed to elucidate the longitudinal effect of an obesogenic diet on platelet phenotype by assessing markers of platelet activation using flow cytometry. Male, weanling mice were fed either a Western diet (30% kcal sucrose, 40% kcal fat, 8.0% sodium) or Control diet (7% kcal sucrose, 10% kcal fat, 0.24% sodium). At 12, 16 and 20 weeks on diets, platelets were collected and stained to visualize glycoprotein Ibα (GPIbα), P-selectin and the conformationally active state of αIIbβ3 (a platelet specific integrin) after collagen stimulation. At all time points, a Western diet reduced GPIbα and αIIbβ3 expression in platelets broadly while P-selectin levels were unaffected. However, P-selectin was diminished by a Western diet in the GPIbα- subpopulation. Thus, a Western diet persistently primed platelets towards a blunted activation response as indicated by reduced active αIIbβ3 and P-selectin surface expression. This study provides a first look at the influence of diet on platelet activation and revealed that platelet activation is susceptible to dietary intervention.
Collapse
Affiliation(s)
- Adam Corken
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.C.); (E.C.W.); (J.D.S.)
- Arkansas Children’s Nutrition Center, Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Elizabeth C. Wahl
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.C.); (E.C.W.); (J.D.S.)
| | - James D. Sikes
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.C.); (E.C.W.); (J.D.S.)
| | - Keshari M. Thakali
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.C.); (E.C.W.); (J.D.S.)
- Arkansas Children’s Nutrition Center, Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| |
Collapse
|
3
|
Vinković M, Hećimović A, Jukić I, Vuk T. Aggregates in apheresis-derived platelet concentrates: A 5-year single-centre experience. Vox Sang 2024; 119:686-692. [PMID: 38629266 DOI: 10.1111/vox.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND OBJECTIVES The phenomenon of aggregates in apheresis-derived platelet concentrates (APCs) has not yet been fully elucidated. Initially, visible aggregates (IVA) usually dissolve within 24 h after collection, but some persist till the end of the shelf life (persistent aggregates, PA). A study conducted at the Croatian Institute of Transfusion Medicine aimed to identify factors that influence the aggregate occurrence in APCs. MATERIALS AND METHODS We conducted a cross-sectional study for the 2018-2022 period and collected data on APCs with IVA. We analysed APCs discarded due to PA separately for two apheresis technologies and compared them to the control group. RESULTS Significantly more donations were discarded in the IVA group compared with the control group and total number of discarded APCs. A total of 205 APCs were discarded due to PA (14.7% of IVA APCs and 1.27% of all APCs collected). Amicus APCs with PA had a significantly lower platelet count and mean platelet volume. They were obtained by procedures with less anticoagulant used. In contrast to Amicus APCs, Haemonetics APCs with PA had a significantly higher platelet count. None of the donor-related factors examined was predictive of PA. CONCLUSION APCs with IVA are more often discarded, not only due to aggregates, but also for impairment of other quality control parameters. Type of apheresis technology, being one of the most common risk factors for IVA, was not confirmed as the main risk factor for PA. There seem to be some donor-related causal factors.
Collapse
Affiliation(s)
- Matea Vinković
- Research and Development Department, Croatian Institute of Transfusion Medicine, Zagreb, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ana Hećimović
- Medical Division, Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Irena Jukić
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Medical Division, Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Tomislav Vuk
- Quality Management Division, Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| |
Collapse
|
4
|
Scalise A, Aggarwal A, Sangwan N, Hamer A, Guntupalli S, Park HE, Aleman JO, Cameron SJ. A Divergent Platelet Transcriptome in Patients with Lipedema and Lymphedema. Genes (Basel) 2024; 15:737. [PMID: 38927673 PMCID: PMC11202821 DOI: 10.3390/genes15060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Lipedema and lymphedema are physically similar yet distinct diseases that are commonly misdiagnosed. We previously reported that lipedema and lymphedema are associated with increased risk for venous thromboembolism (VTE). The underlying etiology of the prothrombotic profile observed in lipedema and lymphedema is unclear, but may be related to alterations in platelets. Our objective was to analyze the platelet transcriptome to identify biological pathways that may provide insight into platelet activation and thrombosis. The platelet transcriptome was evaluated in patients with lymphedema and lipedema, then compared to control subjects with obesity. Patients with lipedema were found to have a divergent transcriptome from patients with lymphedema. The platelet transcriptome and impacted biological pathways in lipedema were surprisingly similar to weight-matched comparators, yet different when compared to overweight individuals with a lower body mass index (BMI). Differences in the platelet transcriptome for patients with lipedema and lymphedema were found in biological pathways required for protein synthesis and degradation, as well as metabolism. Key differences in the platelet transcriptome for patients with lipedema compared to BMI-matched subjects involved metabolism and glycosaminoglycan processing. These inherent differences in the platelet transcriptome warrant further investigation, and may contribute to the increased risk of thrombosis in patients with lipedema and lymphedema.
Collapse
Affiliation(s)
- Alliefair Scalise
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Anu Aggarwal
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Annelise Hamer
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Suman Guntupalli
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Huijun Edelyn Park
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Jose O. Aleman
- Holman Division of Endocrinology, New York University, New York, NY 10012, USA;
| | - Scott J. Cameron
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Hematology, Taussig Cancer Center, Cleveland, OH 44195, USA
| |
Collapse
|
5
|
García Á, Aslan JE. Special review series: provocative questions in platelet omics studies. Platelets 2023; 34:2259169. [PMID: 37726881 DOI: 10.1080/09537104.2023.2259169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Affiliation(s)
- Ángel García
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Joseph E Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Abstract
Proteomics tools provide a powerful means to identify, detect, and quantify protein-related details in studies of platelet phenotype and function. Here, we consider how historical and recent advances in proteomics approaches have informed our understanding of platelet biology, and, how proteomics tools can be used going forward to advance studies of platelets. It is now apparent that the platelet proteome is comprised of thousands of different proteins, where specific changes in platelet protein systems can accompany alterations in platelet function in health and disease. Going forward, many challenges remain in how to best carry out, validate and interpret platelet proteomics experiments. Future studies of platelet protein post-translational modifications such as glycosylation, or studies that take advantage of single cell proteomics and top-down proteomics methods all represent areas of interest to profiling and more richly understanding platelets in human wellness and disease.
Collapse
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Platelet Lipidome Fingerprint: New Assistance to Characterize Platelet Dysfunction in Obesity. Int J Mol Sci 2022; 23:ijms23158326. [PMID: 35955459 PMCID: PMC9369067 DOI: 10.3390/ijms23158326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
Obesity is associated with a pro-inflammatory and pro-thrombotic state that supports atherosclerosis progression and platelet hyper-reactivity. During the last decade, the platelet lipidome has been considered a treasure trove, as it is a source of biomarkers for preventing and treating different pathologies. The goal of the present study was to determine the lipid profile of platelets from non-diabetic, severely obese patients compared with their age- and sex-matched lean controls. Lipids from washed platelets were isolated and major phospholipids, sphingolipids and neutral lipids were analyzed either by gas chromatography or by liquid chromatography coupled to mass spectrometry. Despite a significant increase in obese patient’s plasma triglycerides, there were no significant differences in the levels of triglycerides in platelets among the two groups. In contrast, total platelet cholesterol was significantly decreased in the obese group. The profiling of phospholipids showed that phosphatidylcholine and phosphatidylethanolamine contents were significantly reduced in platelets from obese patients. On the other hand, no significant differences were found in the sphingomyelin and ceramide levels, although there was also a tendency for reduced levels in the obese group. The outline of the glycerophospholipid and sphingolipid molecular species (fatty-acyl profiles) was similar in the two groups. In summary, these lipidomics data indicate that platelets from obese patients have a unique lipid fingerprint that may guide further studies and provide mechanistic-driven perspectives related to the hyperactivate state of platelets in obesity.
Collapse
|
8
|
Krishnan A, Thomas S. Toward platelet transcriptomics in cancer diagnosis, prognosis and therapy. Br J Cancer 2022; 126:316-322. [PMID: 34811507 PMCID: PMC8810955 DOI: 10.1038/s41416-021-01627-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
Widespread adoption of next-generation techniques such as RNA-sequencing (RNA-seq) has enabled research examining the transcriptome of anucleate blood platelets in health and disease, thus revealing a rich platelet transcriptomic signature that is reprogrammed in response to disease. Platelet signatures not only capture information from parent megakaryocytes and progenitor hematopoietic stem cells but also the bone marrow microenvironment, and underlying disease states. In cancer, the substantive body of research in patients with solid tumours has identified distinct signatures in 'tumour-educated platelets', reflecting influences of the tumour, stroma and vasculature on splicing, sequestration of tumour-derived RNAs, and potentially cytokine and microvesicle influences on megakaryocytes. More recently, platelet RNA expression has emerged as a highly sensitive approach to profiling chronic progressive haematologic malignancies, where the combination of large data cohorts and machine-learning algorithms enables precise feature selection and potential prognostication. Despite these advances, however, our ability to translate platelet transcriptomics toward clinical diagnostic and prognostic efforts remains limited. In this Perspective, we present a few actionable steps for our basic, translational and clinical research communities in advancing the utility of the platelet transcriptome as a highly sensitive biomarker in cancer and collectively enable efforts toward clinical translation and patient benefit.
Collapse
Affiliation(s)
- Anandi Krishnan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Sally Thomas
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| |
Collapse
|
9
|
Duan R, Goldmann L, Li Y, Weber C, Siess W, von Hundelshausen P. Spontaneous Platelet Aggregation in Blood Is Mediated by FcγRIIA Stimulation of Bruton’s Tyrosine Kinase. Int J Mol Sci 2021; 23:ijms23010076. [PMID: 35008508 PMCID: PMC8744796 DOI: 10.3390/ijms23010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
High platelet reactivity leading to spontaneous platelet aggregation (SPA) is a hallmark of cardiovascular diseases; however, the mechanism underlying SPA remains obscure. Platelet aggregation in stirred hirudin-anticoagulated blood was measured by multiple electrode aggregometry (MEA) for 10 min. SPA started after a delay of 2–3 min. In our cohort of healthy blood donors (n = 118), nine donors (8%) with high SPA (>250 AU*min) were detected. Pre-incubation of blood with two different antibodies against the platelet Fc-receptor (anti-FcγRIIA, CD32a) significantly reduced high SPA by 86%. High but not normal SPA was dose-dependently and significantly reduced by blocking Fc of human IgG with a specific antibody. SPA was completely abrogated by blood pre-incubation with the reversible Btk-inhibitor (BTKi) fenebrutinib (50 nM), and 3 h after intake of the irreversible BTKi ibrutinib (280 mg) by healthy volunteers. Increased SPA was associated with higher platelet GPVI reactivity. Anti-platelet factor 4 (PF4)/polyanion IgG complexes were excluded as activators of the platelet Fc-receptor. Our results indicate that high SPA in blood is due to platelet FcγRIIA stimulation by unidentified IgG complexes and mediated by Btk activation. The relevance of our findings for SPA as possible risk factor of cardiovascular diseases and pathogenic factor contributing to certain autoimmune diseases is discussed.
Collapse
Affiliation(s)
- Rundan Duan
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; (R.D.); (L.G.); (Y.L.); (C.W.); (P.v.H.)
| | - Luise Goldmann
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; (R.D.); (L.G.); (Y.L.); (C.W.); (P.v.H.)
| | - Ya Li
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; (R.D.); (L.G.); (Y.L.); (C.W.); (P.v.H.)
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; (R.D.); (L.G.); (Y.L.); (C.W.); (P.v.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Wolfgang Siess
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; (R.D.); (L.G.); (Y.L.); (C.W.); (P.v.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Correspondence: ; Tel.: +49-89-4400-54351
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; (R.D.); (L.G.); (Y.L.); (C.W.); (P.v.H.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
10
|
Molecular Proteomics and Signalling of Human Platelets in Health and Disease. Int J Mol Sci 2021; 22:ijms22189860. [PMID: 34576024 PMCID: PMC8468031 DOI: 10.3390/ijms22189860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Platelets are small anucleate blood cells that play vital roles in haemostasis and thrombosis, besides other physiological and pathophysiological processes. These roles are tightly regulated by a complex network of signalling pathways. Mass spectrometry-based proteomic techniques are contributing not only to the identification and quantification of new platelet proteins, but also reveal post-translational modifications of these molecules, such as acetylation, glycosylation and phosphorylation. Moreover, target proteomic analysis of platelets can provide molecular biomarkers for genetic aberrations with established or non-established links to platelet dysfunctions. In this report, we review 67 reports regarding platelet proteomic analysis and signalling on a molecular base. Collectively, these provide detailed insight into the: (i) technical developments and limitations of the assessment of platelet (sub)proteomes; (ii) molecular protein changes upon ageing of platelets; (iii) complexity of platelet signalling pathways and functions in response to collagen, rhodocytin, thrombin, thromboxane A2 and ADP; (iv) proteomic effects of endothelial-derived mediators such as prostacyclin and the anti-platelet drug aspirin; and (v) molecular protein changes in platelets from patients with congenital disorders or cardiovascular disease. However, sample sizes are still low and the roles of differentially expressed proteins are often unknown. Based on the practical and technical possibilities and limitations, we provide a perspective for further improvements of the platelet proteomic field.
Collapse
|
11
|
Aslan JE. Platelet Proteomes, Pathways, and Phenotypes as Informants of Vascular Wellness and Disease. Arterioscler Thromb Vasc Biol 2021; 41:999-1011. [PMID: 33441027 PMCID: PMC7980774 DOI: 10.1161/atvbaha.120.314647] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets rapidly undergo responsive transitions in form and function to repair vascular endothelium and mediate hemostasis. In contrast, heterogeneous platelet subpopulations with a range of primed or refractory phenotypes gradually arise in chronic inflammatory and other conditions in a manner that may indicate or support disease. Qualitatively distinguishable platelet phenotypes are increasingly associated with a variety of physiological and pathological circumstances; however, the origins and significance of platelet phenotypic variation remain unclear and conceptually vague. As changes in platelet function in disease exhibit many similarities to platelets following the activation of platelet agonist receptors, the intracellular responses of platelets common to hemostasis and inflammation may provide insights to the molecular basis of platelet phenotype. Here, we review concepts around how protein-level relations-from platelet receptors through intracellular signaling events-may help to define platelet phenotypes in inflammation, immune responses, aging, and other conditions. We further discuss how representing systems-wide platelet proteomics data profiles as circuit-like networks of causally related intracellular events, or, pathway maps, may inform molecular definitions of platelet phenotype. In addition to offering insights into platelets as druggable targets, maps of causally arranged intracellular relations underlying platelet function can also advance precision and interceptive medicine efforts by leveraging platelets as accessible, dynamic, endogenous, circulating biomarkers of vascular wellness and disease. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry and School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|