1
|
Bywaters BC, Trache A, Rivera GM. Modulation of arterial intima stiffness by disturbed blood flow. Exp Biol Med (Maywood) 2024; 249:10090. [PMID: 39143955 PMCID: PMC11323813 DOI: 10.3389/ebm.2024.10090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
The intima, comprising the endothelium and the subendothelial matrix, plays a crucial role in atherosclerosis pathogenesis. The mechanical stress arising from disturbed blood flow (d-flow) and the stiffening of the arterial wall contributes to endothelial dysfunction. However, the specific impacts of these physical forces on the mechanical environment of the intima remain undetermined. Here, we investigated whether inhibiting collagen crosslinking could ameliorate the detrimental effects of persistent d-flow on the mechanical properties of the intima. Partial ligation of the left carotid artery (LCA) was performed in C57BL/6J mice, inducing d-flow. The right carotid artery (RCA) served as an internal control. Carotids were collected 2 days and 2 weeks after surgery to study acute and chronic effects of d-flow on the mechanical phenotype of the intima. The chronic effects of d-flow were decoupled from the ensuing arterial wall stiffening by administration of β-aminopropionitrile (BAPN), an inhibitor of collagen crosslinking by lysyl oxidase (LOX) enzymes. Atomic force microscopy (AFM) was used to determine stiffness of the endothelium and the denuded subendothelial matrix in en face carotid preparations. The stiffness of human aortic endothelial cells (HAEC) cultured on soft and stiff hydrogels was also determined. Acute exposure to d-flow caused a slight decrease in endothelial stiffness in male mice but had no effect on the stiffness of the subendothelial matrix in either sex. Regardless of sex, the intact endothelium was softer than the subendothelial matrix. In contrast, exposure to chronic d-flow led to a substantial increase in the endothelial and subendothelial stiffness in both sexes. The effects of chronic d-flow were largely prevented by concurrent BAPN administration. In addition, HAEC displayed reduced stiffness when cultured on soft vs. stiff hydrogels. We conclude that chronic d-flow results in marked stiffening of the arterial intima, which can be effectively prevented by inhibition of collagen crosslinking.
Collapse
Affiliation(s)
- Briana C. Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Gonzalo M. Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Li S, Xu Z, Wang Y, Chen L, Wang X, Zhou Y, Lei D, Zang G, Wang G. Recent advances of mechanosensitive genes in vascular endothelial cells for the formation and treatment of atherosclerosis. Genes Dis 2024; 11:101046. [PMID: 38292174 PMCID: PMC10825297 DOI: 10.1016/j.gendis.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/09/2023] [Accepted: 06/06/2023] [Indexed: 02/01/2024] Open
Abstract
Atherosclerotic cardiovascular disease and its complications are a high-incidence disease worldwide. Numerous studies have shown that blood flow shear has a huge impact on the function of vascular endothelial cells, and it plays an important role in gene regulation of pro-inflammatory, pro-thrombotic, pro-oxidative stress, and cell permeability. Many important endothelial cell mechanosensitive genes have been discovered, including KLK10, CCN gene family, NRP2, YAP, TAZ, HIF-1α, NF-κB, FOS, JUN, TFEB, KLF2/KLF4, NRF2, and ID1. Some of them have been intensively studied, whereas the relevant regulatory mechanism of other genes remains unclear. Focusing on these mechanosensitive genes will provide new strategies for therapeutic intervention in atherosclerotic vascular disease. Thus, this article reviews the mechanosensitive genes affecting vascular endothelial cells, including classical pathways and some newly screened genes, and summarizes the latest research progress on their roles in the pathogenesis of atherosclerosis to reveal effective therapeutic targets of drugs and provide new insights for anti-atherosclerosis.
Collapse
Affiliation(s)
- Shuyu Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Zichen Xu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Lizhao Chen
- Department of Neurosurgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing 400042, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yanghao Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Daoxi Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guangchao Zang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
3
|
Li S, Xin Q, Fang G, Deng Y, Yang F, Qiu C, Yang Y, Lan C. Upregulation of mitochondrial telomerase reverse transcriptase mediates the preventive effect of physical exercise on pathological cardiac hypertrophy via improving mitochondrial function and inhibiting oxidative stress. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166859. [PMID: 37643691 DOI: 10.1016/j.bbadis.2023.166859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Physical exercise is a non-pharmacological intervention that helps prevent pathological cardiac hypertrophy. However, the underlying molecular mechanisms remain unclear. Telomerase reverse transcriptase (TERT) has non-telomeric functions such as protection against mitochondrial dysfunction and oxidative stress, and its myocardial expression is upregulated by physical exercise. Here, we found that physical exercise caused myocardial upregulation of mitochondrial TERT and sustenance during transverse aortic constriction (TAC)-induced cardiac hypertrophy. Overexpression of mitochondrial-targeted TERT (mito-TERT) via adeno-associated virus serotype 9 carrying the TERT-coding sequence fused with N-terminal mitochondrial-targeting sequence improved cardiac function and attenuated cardiac hypertrophy. Mechanistically, mito-TERT ameliorated mitochondrial dysfunction and oxidative stress, which were associated with improving the activity and subunit composition of complex I. Remarkably, the telomerase activator TA-65 also exhibited an antihypertrophic effect. Collectively, our results reveal a significant role for mito-TERT in mediating the antihypertrophic effect of physical exercise and demonstrate that TERT is a potential drug target for treating cardiac hypertrophy.
Collapse
Affiliation(s)
- Shuang Li
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China; School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Qian Xin
- Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Guangyao Fang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China; School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Yi Deng
- Department of General Practice, General Hospital of Western Theater Command, Chengdu, PR China
| | - Fengyuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, PR China
| | - Chenming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, PR China
| | - Yongjian Yang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China; School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China.
| | - Cong Lan
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China; School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China.
| |
Collapse
|
4
|
Divakaran S, Krawisz AK, Secemsky EA, Kant S. Sex and Racial Disparities in Peripheral Artery Disease. Arterioscler Thromb Vasc Biol 2023; 43:2099-2114. [PMID: 37706319 PMCID: PMC10615869 DOI: 10.1161/atvbaha.123.319399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Several studies have shown that women and racial and ethnic minority patients are at increased risk of developing lower extremity peripheral artery disease and suffering adverse outcomes from it, but a knowledge gap remains regarding the underlying causes of these increased risks. Both groups are more likely to be underdiagnosed, have poorly managed contributory comorbidities, and incur disparities in treatment and management postdiagnosis. Opportunities for improvement in the care of women and racial and ethnic minorities with peripheral artery disease include increased rates of screening, higher rates of clinical suspicion (particularly in the absence of typical symptoms of intermittent claudication), and more aggressive risk factor management before and after the diagnosis of peripheral artery disease.
Collapse
Affiliation(s)
- Sanjay Divakaran
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna K Krawisz
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eric A Secemsky
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Zhang F, Wu J, Shen Q, Chen Z, Qiao Z. Investigating the mechanism of Tongqiao Huoxue decotion in the treatment of allergic rhinitis based on network pharmacology and molecular docking: A review. Medicine (Baltimore) 2023; 102:e33190. [PMID: 36897696 PMCID: PMC9997813 DOI: 10.1097/md.0000000000033190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Allergic rhinitis is prone to recurrence, and clinical treatments focus on control symptoms; however there is no radical cure. Our aim was to use network pharmacology and molecular docking to reveal the hub genes, biological functions, and signaling pathways of Tongqiao Huoxue decoction against allergic rhinitis. First, the chemical components and target genes of Tongqiao Huoxue decoction were obtained from the Traditional Chinese Medicine Systems Pharmacology database. Similarly, allergic rhinitis targets were screened using online Mendelian Inheritance In Man and GeneCards database. Then, all potential targets of Tongqiao Huoxue decoction in the treatment of allergic rhinitis were identified, the Venn diagram was portrayed using R software, and protein-protein interaction network was built using String. The hub genes were analyzed using enrichment analyses. Finally, molecular docking was used to verify the reliability of the key gene prediction. The core targets for Tongqiao Huoxue decoction to improve allergic rhinitis were AKT1, TP53, IL6, and so on. The enrichment analysis results showed that Tongqiao Huoxue decoction treatment in allergic rhinitis might be involved in the AGE-RAGE signaling pathway and fluid shear stress and atherosclerosis pathway. The molecular docking verification indicated that its ingredients bound well to the core targets of allergic rhinitis, and stigmasterol's docking ability with TNF (-12.73 kcal/mol) is particularly prominent. Based on these findings, it may be deduced that stigmasterol treated allergic rhinitis by acting on TNF targets. But, this conclusion needs to be confirmed by further in vitro and in vivo trials.
Collapse
Affiliation(s)
- Fang Zhang
- The First Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jiani Wu
- Department of Otorhinolaryngology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Qu Shen
- The First Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Zhiling Chen
- Department of Otorhinolaryngology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Zukang Qiao
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
6
|
Fossel M, Bean J, Khera N, Kolonin MG. A Unified Model of Age-Related Cardiovascular Disease. BIOLOGY 2022; 11:1768. [PMID: 36552277 PMCID: PMC9775230 DOI: 10.3390/biology11121768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Despite progress in biomedical technologies, cardiovascular disease remains the main cause of mortality. This is at least in part because current clinical interventions do not adequately take into account aging as a driver and are hence aimed at suboptimal targets. To achieve progress, consideration needs to be given to the role of cell aging in disease pathogenesis. We propose a model unifying the fundamental processes underlying most age-associated cardiovascular pathologies. According to this model, cell aging, leading to cell senescence, is responsible for tissue changes leading to age-related cardiovascular disease. This process, occurring due to telomerase inactivation and telomere attrition, affects all components of the cardiovascular system, including cardiomyocytes, vascular endothelial cells, smooth muscle cells, cardiac fibroblasts, and immune cells. The unified model offers insights into the relationship between upstream risk factors and downstream clinical outcomes and explains why interventions aimed at either of these components have limited success. Potential therapeutic approaches are considered based on this model. Because telomerase activity can prevent and reverse cell senescence, telomerase gene therapy is discussed as a promising intervention. Telomerase gene therapy and similar systems interventions based on the unified model are expected to be transformational in cardiovascular medicine.
Collapse
Affiliation(s)
| | - Joe Bean
- University of Missouri School of Medicine, Kansas City, MO 65211, USA
| | - Nina Khera
- Buckingham Browne and Nichols School, Wellesley, MA 02138, USA
| | - Mikhail G. Kolonin
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Li YJ, Jin X, Li D, Lu J, Zhang XN, Yang SJ, Zhao YX, Wu M. New insights into vascular aging: Emerging role of mitochondria function. Biomed Pharmacother 2022; 156:113954. [DOI: 10.1016/j.biopha.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
8
|
Coon BG, Timalsina S, Astone M, Zhuang ZW, Fang J, Han J, Themen J, Chung M, Yang-Klingler YJ, Jain M, Hirschi KK, Yamamato A, Trudeau LE, Santoro M, Schwartz MA. A mitochondrial contribution to anti-inflammatory shear stress signaling in vascular endothelial cells. J Cell Biol 2022; 221:e202109144. [PMID: 35695893 PMCID: PMC9198948 DOI: 10.1083/jcb.202109144] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis, the major cause of myocardial infarction and stroke, results from converging inflammatory, metabolic, and biomechanical factors. Arterial lesions form at sites of low and disturbed blood flow but are suppressed by high laminar shear stress (LSS) mainly via transcriptional induction of the anti-inflammatory transcription factor, Kruppel-like factor 2 (Klf2). We therefore performed a whole genome CRISPR-Cas9 screen to identify genes required for LSS induction of Klf2. Subsequent mechanistic investigation revealed that LSS induces Klf2 via activation of both a MEKK2/3-MEK5-ERK5 kinase module and mitochondrial metabolism. Mitochondrial calcium and ROS signaling regulate assembly of a mitophagy- and p62-dependent scaffolding complex that amplifies MEKK-MEK5-ERK5 signaling. Blocking the mitochondrial pathway in vivo reduces expression of KLF2-dependent genes such as eNOS and inhibits vascular remodeling. Failure to activate the mitochondrial pathway limits Klf2 expression in regions of disturbed flow. This work thus defines a connection between metabolism and vascular inflammation that provides a new framework for understanding and developing treatments for vascular disease.
Collapse
Affiliation(s)
- Brian G. Coon
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Sushma Timalsina
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Matteo Astone
- Department of Biology, University of Padua, Padua, Italy
| | - Zhen W. Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Jennifer Fang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Jinah Han
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Jurgen Themen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Minhwan Chung
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | | | - Mukesh Jain
- Department of Medicine, Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH
| | - Karen K. Hirschi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Ai Yamamato
- Department of Neurology, Columbia University Medical Center, New York, NY
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, CNS Research Group, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
- Department of Cell Biology, Yale University, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT
| |
Collapse
|
9
|
Jauhiainen S, Kiema M, Hedman M, Laakkonen JP. Large Vessel Cell Heterogeneity and Plasticity: Focus in Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2022; 42:811-818. [PMID: 35587695 DOI: 10.1161/atvbaha.121.316237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Smooth muscle cells and endothelial cells have a remarkable level of plasticity in vascular pathologies. In thoracic and abdominal aortic aneurysms, smooth muscle cells have been suggested to undergo phenotypic switching and to contribute to degradation of the aortic wall structure in response to, for example, inflammatory mediators, dysregulation of growth factor signaling or oxidative stress. Recently, endothelial-to-mesenchymal transition, and a clonal expansion of degradative smooth muscle cells and immune cells, as well as mesenchymal stem-like cells have been suggested to contribute to the progression of aortic aneurysms. What are the factors driving the aortic cell phenotype changes and how vascular flow, known to affect aortic wall structure and to be altered in aortic aneurysms, could affect aortic cell remodeling? In this review, we summarize the current literature on aortic cell heterogeneity and phenotypic switching in relation to changes in vascular flow and aortic wall structure in aortic aneurysms in clinical samples with special focus on smooth muscle and endothelial cells. The differences between thoracic and abdominal aortic aneurysms are discussed.
Collapse
Affiliation(s)
- Suvi Jauhiainen
- A.I. Virtanen Institute for Molecular Sciences (S.J., M.K., J.P.L.), University of Eastern Finland, Kuopio
| | - Miika Kiema
- A.I. Virtanen Institute for Molecular Sciences (S.J., M.K., J.P.L.), University of Eastern Finland, Kuopio
| | - Marja Hedman
- Institute of Clinical Medicine (M.H.), University of Eastern Finland, Kuopio
- Department of Clinical Radiology, Kuopio University Hospital, Finland (M.H.)
- Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland (M.H.)
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences (S.J., M.K., J.P.L.), University of Eastern Finland, Kuopio
| |
Collapse
|