1
|
van Leent MMT, Duivenvoorden R. TGF-β: A Wrench in the Gears of Arteriovenous Fistula Maturation. Arterioscler Thromb Vasc Biol 2024. [PMID: 39445425 DOI: 10.1161/atvbaha.124.321827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Affiliation(s)
- Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY. (M.M.T.v.L., R.D.)
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY. (M.M.T.v.L.)
| | - Raphaël Duivenvoorden
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY. (M.M.T.v.L., R.D.)
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands (R.D.)
| |
Collapse
|
2
|
Yan R, Song A, Zhang C. The Pathological Mechanisms and Therapeutic Molecular Targets in Arteriovenous Fistula Dysfunction. Int J Mol Sci 2024; 25:9519. [PMID: 39273465 PMCID: PMC11395150 DOI: 10.3390/ijms25179519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The number of patients with end-stage renal disease (ESRD) requiring hemodialysis is increasing worldwide. Although arteriovenous fistula (AVF) is the best and most important vascular access (VA) for hemodialysis, its primary maturation failure rate is as high as 60%, which seriously endangers the prognosis of hemodialysis patients. After AVF establishment, the venous outflow tract undergoes hemodynamic changes, which are translated into intracellular signaling pathway cascades, resulting in an outward and inward remodeling of the vessel wall. Outward remodeling refers to the thickening of the vessel wall and the dilation of the lumen to accommodate the high blood flow in the AVF, while inward remodeling is mainly characterized by intimal hyperplasia. More and more studies have shown that the two types of remodeling are closely related in the occurrence and development of, and jointly determining the final fate of, AVF. Therefore, it is essential to investigate the underlying mechanisms involved in outward and inward remodeling for identifying the key targets in alleviating AVF dysfunction. In this review, we summarize the current clinical diagnosis, monitoring, and treatment techniques for AVF dysfunction and discuss the possible pathological mechanisms related to improper outward and inward remodeling in AVF dysfunction, as well as summarize the similarities and differences between the two remodeling types in molecular mechanisms. Finally, the representative therapeutic targets of potential clinical values are summarized.
Collapse
Affiliation(s)
- Ruiwei Yan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Bai H, Li Z, Zhang W, Thaxton C, Ohashi Y, Gonzalez L, Kano M, Yatsula B, Hwa J, Dardik A. Early thrombus formation is required for eccentric and heterogeneous neointimal hyperplasia under disturbed flow. J Thromb Haemost 2024:S1538-7836(24)00481-1. [PMID: 39173878 DOI: 10.1016/j.jtha.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Anticoagulation and antiplatelet therapy effectively inhibit neointimal hyperplasia (NIH) in both arterial and venous systems but not in arteriovenous fistulae (AVF). The main site of AVF failure is the juxta-anastomotic area that is characterized by disturbed flow compared with laminar flow in the arterial inflow and the venous outflow. OBJECTIVES We hypothesized that early thrombus formation is required for eccentric and heterogeneous NIH in the presence of disturbed flow. METHODS Needle puncture and sutured AVF were created in C57BL/6 mice, in PF4-Cre × mT/mG reporter mice, and in Wistar rats. Human AVF samples were second-stage basilic vein transpositions. The tissues were examined by histology, immunofluorescence, immunohistochemistry, and en face staining. RESULTS In the presence of disturbed flow, both mouse and human AVF showed eccentric and heterogeneous NIH. Maladapted vein wall was characterized by eccentric and heterogeneous neointima that was composed of a different abundance of thrombus and smooth muscle cells. PF4-cre × mT/mG reporter mice AVF showed that green fluorescent protein-labeled platelets deposit on the wall directly facing the fistula exit with endothelial cell loss and continue to accumulate in the presence of disturbed flow. Neither disturbed flow with limited endothelial cell loss nor nondisturbed flow induced heterogeneous neointima in different animal models. CONCLUSION Early thrombus contributes to late heterogeneous NIH in the presence of disturbed flow. Disturbed flow, large area of endothelial cell loss, and thrombus formation are critical to form eccentric and heterogeneous NIH. Categorization of adapted or maladapted walls may be helpful for therapy targeting heterogeneous NIH.
Collapse
Affiliation(s)
- Hualong Bai
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA; Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Zhuo Li
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA; Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Weichang Zhang
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA; Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carly Thaxton
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA; Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yuichi Ohashi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA; Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Luis Gonzalez
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA; Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Masaki Kano
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA; Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA; Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA; Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA; Department of Surgery, Veteran Affairs Connecticut Healthcare Systems, West Haven, Connecticut, USA.
| |
Collapse
|
4
|
Xu Y, Korayem A, Cruz-Solbes AS, Chandel N, Sakata T, Mazurek R, Mavropoulos SA, Kariya T, Aikawa T, Yamada KP, D'Escamard V, V'Gangula B, Baker AH, Ma L, Björkegren JLM, Fuster V, Boehm M, Fish KM, Tadros R, Ishikawa K, Kovacic JC. Inhibition of endothelial to mesenchymal transition in a large animal preclinical arterio-venous fistula model leads to improved remodeling and reduced stenosis. Cardiovasc Res 2024:cvae157. [PMID: 39056563 DOI: 10.1093/cvr/cvae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
AIMS Vein grafts are used for many indications, including bypass graft surgery and arterio-venous fistula (AVF) formation. However, patency following vein grafting or AVF formation is suboptimal for various reasons, including thrombosis, neointimal hyperplasia and adverse remodeling. Recently, endothelial to mesenchymal transition (EndMT) was found to contribute to neointimal hyperplasia in mouse vein grafts. We aimed to evaluate the clinical potential of inhibiting EndMT, and developed the first dedicated preclinical model to study the efficacy of local EndMT inhibition immediately prior to AVF creation. METHODS AND RESULTS We first undertook pilot studies to optimize the creation of a femoral AVF in pigs and verify that EndMT contributes to neointimal formation. We then developed a method to achieve local in vivo SMAD3 knockdown by dwelling a lentiviral construct containing SMAD3 shRNA in the femoral vein prior to AVF creation. Next, in Phase 1, 6 pigs were randomized to SMAD3 knockdown or control lentivirus to evaluate the effectiveness of SMAD3 knockdown and EndMT inhibition 8 days after AVF creation. In Phase 2, 16 pigs were randomized to SMAD3 knockdown or control lentivirus and were evaluated to assess longer-term effects on AVF diameter, patency and related measures at 30 days after AVF creation.In Phase 1, compared to controls, SMAD3 knockdown achieved a 75% reduction in the proportion of CD31+ endothelial cells co-expressing SMAD3 (p<0.001), and also a significant reduction in the extent of EndMT (p<0.05). In Phase 2, compared to controls, SMAD3 knockdown was associated with an increase in the minimum diameter of the venous limb of the AVF (1.56±1.66 versus 4.26±1.71mm, p<0.01) and a reduced degree of stenosis (p<0.01). Consistent with this, neointimal thickness was reduced in the SMAD3 knockdown group (0.88±0.51 versus 0.45±0.19mm, p<0.05). Furthermore, endothelial integrity (the proportion of luminal cells expressing endothelial markers) was improved in the SMAD3 knockdown group (p<0.05). CONCLUSIONS EndMT inhibition in a preclinical AVF model by local SMAD3 knockdown using gene therapy led to reduced neointimal hyperplasia, increased endothelialization and a reduction in the degree of AVF stenosis. This provides important proof-of-concept to pursue this approach as a clinical strategy to improve the patency of AVFs and other vein grafts.
Collapse
Affiliation(s)
- Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Adam Korayem
- Division of Vascular Surgery, Department of Surgery, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ana S Cruz-Solbes
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Nirupama Chandel
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Tomoki Sakata
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Renata Mazurek
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Spyros A Mavropoulos
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Taro Kariya
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Tadao Aikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kelly P Yamada
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Valentina D'Escamard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Bhargavi V'Gangula
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
- Department of Pathology, CARIM, Universiteitssingel 50, Maastricht, The Netherlands
| | - Lijiang Ma
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Johan L M Björkegren
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Medicine at Huddinge, Karolinska Institutet, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
- Clinical Gene Networks AB, Stockholm, Sweden
| | - Valentin Fuster
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Kenneth M Fish
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Rami Tadros
- Division of Vascular Surgery, Department of Surgery, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kiyotake Ishikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- St. Vincent's Clinical School, University of NSW, Sydney, Australia
| |
Collapse
|
5
|
Ohashi Y, Protack CD, Aoyagi Y, Gonzalez L, Thaxton C, Zhang W, Kano M, Bai H, Yatsula B, Alves R, Hoshina K, Schneider EB, Long X, Perry RJ, Dardik A. Heterogeneous gene expression during early arteriovenous fistula remodeling suggests that downregulation of metabolism predicts adaptive venous remodeling. Sci Rep 2024; 14:13287. [PMID: 38858395 PMCID: PMC11164895 DOI: 10.1038/s41598-024-64075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Clinical outcomes of arteriovenous fistulae (AVF) for hemodialysis remain inadequate since biological mechanisms of AVF maturation and failure are still poorly understood. Aortocaval fistula creation (AVF group) or a sham operation (sham group) was performed in C57BL/6 mice. Venous limbs were collected on postoperative day 7 and total RNA was extracted for high throughput RNA sequencing and bioinformatic analysis. Genes in metabolic pathways were significantly downregulated in the AVF, whereas significant sex differences were not detected. Since gene expression patterns among the AVF group were heterogenous, the AVF group was divided into a 'normal' AVF (nAVF) group and an 'outliers' (OUT) group. The gene expression patterns of the nAVF and OUT groups were consistent with previously published data showing venous adaptive remodeling, whereas enrichment analyses showed significant upregulation of metabolism, inflammation and coagulation in the OUT group compared to the nAVF group, suggesting the heterogeneity during venous remodeling reflects early gene expression changes that may correlate with AVF maturation or failure. Early detection of these processes may be a translational strategy to predict fistula failure and reduce patient morbidity.
Collapse
Affiliation(s)
- Yuichi Ohashi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Clinton D Protack
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Yukihiko Aoyagi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Luis Gonzalez
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Carly Thaxton
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Weichang Zhang
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Masaki Kano
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| | - Hualong Bai
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Rafael Alves
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Katsuyuki Hoshina
- Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Eric B Schneider
- Department of Surgery, Center for Health Services and Outcomes Research, Yale School of Medicine, New Haven, CT, USA
| | - Xiaochun Long
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
- Surgical Service, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Yale School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT, 06520-8089, USA.
| |
Collapse
|
6
|
Bai H, Varsanik MA, Thaxton C, Ohashi Y, Gonzalez L, Zhang W, Aoyagi Y, Kano M, Yatsula B, Li Z, Pocivavsek L, Dardik A. Disturbed flow in the juxta-anastomotic area of an arteriovenous fistula correlates with endothelial loss, acute thrombus formation, and neointimal hyperplasia. Am J Physiol Heart Circ Physiol 2024; 326:H1446-H1461. [PMID: 38578237 PMCID: PMC11380968 DOI: 10.1152/ajpheart.00054.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Clinical failure of arteriovenous neointimal hyperplasia (NIH) fistulae (AVF) is frequently due to juxta-anastomotic NIH (JANIH). Although the mouse AVF model recapitulates human AVF maturation, previous studies focused on the outflow vein distal to the anastomosis. We hypothesized that the juxta-anastomotic area (JAA) has increased NIH compared with the outflow vein. AVF was created in C57BL/6 mice without or with chronic kidney disease (CKD). Temporal and spatial changes of the JAA were examined using histology and immunofluorescence. Computational techniques were used to model the AVF. RNA-seq and bioinformatic analyses were performed to compare the JAA with the outflow vein. The jugular vein to carotid artery AVF model was created in Wistar rats. The neointima in the JAA shows increased volume compared with the outflow vein. Computational modeling shows an increased volume of disturbed flow at the JAA compared with the outflow vein. Endothelial cells are immediately lost from the wall contralateral to the fistula exit, followed by thrombus formation and JANIH. Gene Ontology (GO) enrichment analysis of the 1,862 differentially expressed genes (DEG) between the JANIH and the outflow vein identified 525 overexpressed genes. The rat jugular vein to carotid artery AVF showed changes similar to the mouse AVF. Disturbed flow through the JAA correlates with rapid endothelial cell loss, thrombus formation, and JANIH; late endothelialization of the JAA channel correlates with late AVF patency. Early thrombus formation in the JAA may influence the later development of JANIH.NEW & NOTEWORTHY Disturbed flow and focal endothelial cell loss in the juxta-anastomotic area of the mouse AVF colocalizes with acute thrombus formation followed by late neointimal hyperplasia. Differential flow patterns between the juxta-anastomotic area and the outflow vein correlate with differential expression of genes regulating coagulation, proliferation, collagen metabolism, and the immune response. The rat jugular vein to carotid artery AVF model shows changes similar to the mouse AVF model.
Collapse
MESH Headings
- Animals
- Neointima
- Hyperplasia
- Arteriovenous Shunt, Surgical
- Thrombosis/physiopathology
- Thrombosis/pathology
- Thrombosis/genetics
- Thrombosis/etiology
- Thrombosis/metabolism
- Mice, Inbred C57BL
- Rats, Wistar
- Male
- Jugular Veins/metabolism
- Jugular Veins/pathology
- Jugular Veins/physiopathology
- Disease Models, Animal
- Carotid Arteries/pathology
- Carotid Arteries/physiopathology
- Carotid Arteries/metabolism
- Carotid Arteries/surgery
- Mice
- Rats
- Regional Blood Flow
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/pathology
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
Collapse
Affiliation(s)
- Hualong Bai
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - M Alyssa Varsanik
- Section of Vascular Surgery, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, United States
| | - Carly Thaxton
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Yuichi Ohashi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Luis Gonzalez
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Weichang Zhang
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Yukihiko Aoyagi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Masaki Kano
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Zhuo Li
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Luka Pocivavsek
- Section of Vascular Surgery, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, United States
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Cellular and Molecular Physiology, Yale University; New Haven, Connecticut, United States
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut, United States
| |
Collapse
|
7
|
Dardik A. A surgeon-scientist's approach to improving arteriovenous fistula patency. JVS Vasc Sci 2024; 5:100207. [PMID: 38975292 PMCID: PMC11225657 DOI: 10.1016/j.jvssci.2024.100207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 07/09/2024] Open
Affiliation(s)
- Alan Dardik
- Vascular Biology and Therapeutics Program, Division of Vascular Surgery and Endovascular Therapy, Yale School of Medicine, New Haven, CT
- Department of Surgery, Yale School of Medicine, New Haven, CT
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
- Department of Surgery, VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
8
|
Li Z, Zhao Y, Pan Z, Cai B, Zhang C, Jiao J. LncRNA-LncDACH1 mediated phenotypic switching of smooth muscle cells during neointimal hyperplasia in male arteriovenous fistulas. Nat Commun 2024; 15:3743. [PMID: 38702316 PMCID: PMC11068796 DOI: 10.1038/s41467-024-48019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Arteriovenous fistulas (AVFs) are the most common vascular access points for hemodialysis (HD), but they have a high incidence of postoperative dysfunction, mainly due to excessive neointimal hyperplasia (NIH). Our previous studies have revealed a highly conserved LncRNA-LncDACH1 as an important regulator of cardiomyocyte and fibroblast proliferation. Herein, we find that LncDACH1 regulates NIH in AVF in male mice with conditional knockout of smooth muscle cell-specific LncDACH1 and in male mice model of AVF with LncDACH1 overexpression by adeno-associated virus. Mechanistically, silence of LncDACH1 activates p-AKT through promoting the expression of heat shock protein 90 (HSP90) and serine/arginine-rich splicing factor protein kinase 1 (SRPK1). Moreover, LncDACH1 is transcriptionally activated by transcription factor KLF9 that binds directly to the promoter region of the LncDACH1 gene. In this work, during AVF NIH, LncDACH1 is downregulated by KLF9 and promotes NIH through the HSP90/ SRPK1/ AKT signaling axis.
Collapse
Affiliation(s)
- Zhaozheng Li
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China
| | - Yao Zhao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacy at The Second Affiliated Hospital, Harbin Medical University, 150086, Harbin, China
- Department of Pharmacology (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, 150086, Harbin, China
| | - Benzhi Cai
- Department of Pharmacy at The Second Affiliated Hospital, Harbin Medical University, 150086, Harbin, China
- Department of Pharmacology (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, 150086, Harbin, China
- Department of Clinical Pharmacology (the Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, 150086, Harbin, China
| | - Chengwei Zhang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China.
| | - Jundong Jiao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China.
| |
Collapse
|
9
|
Li Y, Hu K, Li Y, Lu C, Guo Y, Wang W. The rodent models of arteriovenous fistula. Front Cardiovasc Med 2024; 11:1293568. [PMID: 38304139 PMCID: PMC10830807 DOI: 10.3389/fcvm.2024.1293568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Arteriovenous fistulas (AVFs) have long been used as dialysis access in patients with end-stage renal disease; however, their maturation and long-term patency still fall short of clinical needs. Rodent models are irreplaceable to facilitate the study of mechanisms and provide reliable insights into clinical problems. The ideal rodent AVF model recapitulates the major features and pathology of human disease as closely as possible, and pre-induction of the uremic milieu is an important addition to AVF failure studies. Herein, we review different surgical methods used so far to create AVF in rodents, including surgical suturing, needle puncture, and the cuff technique. We also summarize commonly used evaluations after AVF placement. The aim was to provide recent advances and ideas for better selection and induction of rodent AVF models. At the same time, further improvements in the models and a deeper understanding of AVF failure mechanisms are expected.
Collapse
Affiliation(s)
- Yuxuan Li
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Hu
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Li
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjun Lu
- Department of General Vascular Surgery, Wuhan No.1 Hospital & Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Yi Guo
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weici Wang
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Wang S, Deng X, Wu Y, Wu Y, Zhou S, Yang J, Huang Y. Understanding the pathogenesis of brain arteriovenous malformation: genetic variations, epigenetics, signaling pathways, and immune inflammation. Hum Genet 2023; 142:1633-1649. [PMID: 37768356 DOI: 10.1007/s00439-023-02605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Brain arteriovenous malformation (BAVM) is a rare but serious cerebrovascular disease whose pathogenesis has not been fully elucidated. Studies have found that epigenetic regulation, genetic variation and their signaling pathways, immune inflammation, may be the cause of BAVM the main reason. This review comprehensively analyzes the key pathways and inflammatory factors related to BAVMs, and explores their interplay with epigenetic regulation and genetics. Studies have found that epigenetic regulation such as DNA methylation, non-coding RNAs and m6A RNA modification can regulate endothelial cell proliferation, apoptosis, migration and damage repair of vascular malformations through different target gene pathways. Gene defects such as KRAS, ACVRL1 and EPHB4 lead to a disordered vascular environment, which may promote abnormal proliferation of blood vessels through ERK, NOTCH, mTOR, Wnt and other pathways. PDGF-B and PDGFR-β were responsible for the recruitment of vascular adventitial cells and smooth muscle cells in the extracellular matrix environment of blood vessels, and played an important role in the pathological process of BAVM. Recent single-cell sequencing data revealed the diversity of various cell types within BAVM, as well as the heterogeneous expression of vascular-associated antigens, while neutrophils, macrophages and cytokines such as IL-6, IL-1, TNF-α, and IL-17A in BAVM tissue were significantly increased. Currently, there are no specific drugs targeting BAVMs, and biomarkers for BAVM formation, bleeding, and recurrence are lacking clinically. Therefore, further studies on molecular biological mechanisms will help to gain insight into the pathogenesis of BAVM and develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Yuefei Wu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Jianhong Yang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
11
|
Liu L, Gao J, Tang Y, Guo G, Gan H. Increased expression of the P2Y 12 receptor is involved in the failure of autogenous arteriovenous fistula caused by stenosis. Ren Fail 2023; 45:2278314. [PMID: 38532720 PMCID: PMC11073481 DOI: 10.1080/0886022x.2023.2278314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/27/2023] [Indexed: 03/28/2024] Open
Abstract
OBJECTIVE This study investigated the role of the P2Y12 receptor in autogenous arteriovenous fistula (AVF) failure resulting from stenosis. METHODS Stenotic venous tissues and blood samples were obtained from patients with end-stage renal disease (ESRD) together with AVF stenosis, while venous tissues and blood samples were collected from patients with ESRD undergoing initial AVF surgery as controls. Immunohistochemistry and/or immunofluorescence techniques were utilized to assess the expression of P2Y12, transforming growth factor-β1 (TGF-β1), monocyte chemotactic protein 1 (MCP-1), and CD68 in the venous tissues. The expression levels of P2Y12, TGFβ1, and MCP-1 were quantified using quantitative reverse transcription-polymerase chain reaction and western blot analyses. Double and triple immunofluorescence staining was performed to precisely localize the cellular localization of P2Y12 expression. RESULTS Expression levels of P2Y12, TGFβ1, MCP-1, and CD68 were significantly higher in stenotic AVF venous tissues than in the control group tissues. Double and triple immunofluorescence staining of stenotic AVF venous tissues indicated that P2Y12 was predominantly expressed in α-SMA-positive vascular smooth muscle cells (VSMCs) and, to a lesser extent, in CD68-positive macrophages, with limited expression in CD31-positive endothelial cells. Moreover, a subset of macrophage-like VSMCs expressing P2Y12 were observed in both stenotic AVF venous tissues and control venous tissues. Additionally, a higher number of P2Y12+/TGF-β1+ double-positive cells were identified in stenotic AVF venous tissues than in the control group tissues. CONCLUSION Increased expression of P2Y12 in stenotic AVF venous tissues of patients with ESRD suggests its potential involvement in the pathogenesis of venous stenosis within AVFs.
Collapse
Affiliation(s)
- Lei Liu
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Jianya Gao
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Yuewu Tang
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Guangfeng Guo
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Laboyrie SL, de Vries MR, Bijkerk R, Rotmans JI. Building a Scaffold for Arteriovenous Fistula Maturation: Unravelling the Role of the Extracellular Matrix. Int J Mol Sci 2023; 24:10825. [PMID: 37446003 DOI: 10.3390/ijms241310825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Vascular access is the lifeline for patients receiving haemodialysis as kidney replacement therapy. As a surgically created arteriovenous fistula (AVF) provides a high-flow conduit suitable for cannulation, it remains the vascular access of choice. In order to use an AVF successfully, the luminal diameter and the vessel wall of the venous outflow tract have to increase. This process is referred to as AVF maturation. AVF non-maturation is an important limitation of AVFs that contributes to their poor primary patency rates. To date, there is no clear overview of the overall role of the extracellular matrix (ECM) in AVF maturation. The ECM is essential for vascular functioning, as it provides structural and mechanical strength and communicates with vascular cells to regulate their differentiation and proliferation. Thus, the ECM is involved in multiple processes that regulate AVF maturation, and it is essential to study its anatomy and vascular response to AVF surgery to define therapeutic targets to improve AVF maturation. In this review, we discuss the composition of both the arterial and venous ECM and its incorporation in the three vessel layers: the tunica intima, media, and adventitia. Furthermore, we examine the effect of chronic kidney failure on the vasculature, the timing of ECM remodelling post-AVF surgery, and current ECM interventions to improve AVF maturation. Lastly, the suitability of ECM interventions as a therapeutic target for AVF maturation will be discussed.
Collapse
Affiliation(s)
- Suzanne L Laboyrie
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Vascular Surgery, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
13
|
Applewhite B, Gupta A, Wei Y, Yang X, Martinez L, Rojas MG, Andreopoulos F, Vazquez-Padron RI. Periadventitial β-aminopropionitrile-loaded nanofibers reduce fibrosis and improve arteriovenous fistula remodeling in rats. Front Cardiovasc Med 2023; 10:1124106. [PMID: 36926045 PMCID: PMC10011136 DOI: 10.3389/fcvm.2023.1124106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
Background Arteriovenous fistula (AVF) postoperative stenosis is a persistent healthcare problem for hemodialysis patients. We have previously demonstrated that fibrotic remodeling contributes to AVF non-maturation and lysyl oxidase (LOX) is upregulated in failed AVFs compared to matured. Herein, we developed a nanofiber scaffold for the periadventitial delivery of β-aminopropionitrile (BAPN) to determine whether unidirectional periadventitial LOX inhibition is a suitable strategy to promote adaptive AVF remodeling in a rat model of AVF remodeling. Methods Bilayer poly (lactic acid) ([PLA)-]- poly (lactic-co-glycolic acid) ([PLGA)] scaffolds were fabricated with using a two-step electrospinning process to confer directionality. BAPN-loaded and vehicle control scaffolds were wrapped around the venous limb of a rat femoral-epigastric AVF during surgery. AVF patency and lumen diameter were followed monitored using Doppler ultrasound surveillance and flow was measured before euthanasia. AVFs were harvested after 21 days for histomorphometry and immunohistochemistry. AVF compliance was measured using pressure myography. RNA from AVF veins was sequenced to analyze changes in gene expression due to LOX inhibition. Results Bilayer periadventitial nanofiber scaffolds extended BAPN release compared to the monolayer design (p < 0.005) and only released BAPN in one direction. Periadventitial LOX inhibition led to significant increases in AVF dilation and flow after 21 days. Histologically, BAPN trended toward increased lumen and significantly reduced fibrosis compared to control scaffolds (p < 0.01). Periadventitial BAPN reduced downregulated markers associated with myofibroblast differentiation including SMA, FSP-1, LOX, and TGF-β while increasing the contractile marker MYH11. RNA sequencing revealed differential expression of matrisome genes. Conclusion Periadventitial BAPN treatment reduces fibrosis and promotes AVF compliance. Interestingly, the inhibition of LOX leads to increased accumulation of contractile VSMC while reducing myofibroblast-like cells. Periadventitial LOX inhibition alters the matrisome to improve AVF vascular remodeling.
Collapse
Affiliation(s)
- Brandon Applewhite
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Aavni Gupta
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yuntao Wei
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiaofeng Yang
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Miguel G. Rojas
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Fotios Andreopoulos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | | |
Collapse
|
14
|
Hu M, Kassiri Z. Function of TGFβ (Transforming Growth Factor-β) Receptor in the Vein Is Not in Vain. Arterioscler Thromb Vasc Biol 2022; 42:884-885. [PMID: 35616032 DOI: 10.1161/atvbaha.122.317861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mei Hu
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Canada
| |
Collapse
|