1
|
Oropeza-Almazán Y, Blatter LA. Role of Mitochondrial ROS for Calcium Alternans in Atrial Myocytes. Biomolecules 2024; 14:144. [PMID: 38397381 PMCID: PMC10887423 DOI: 10.3390/biom14020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Atrial calcium transient (CaT) alternans is defined as beat-to-beat alternations in CaT amplitude and is causally linked to atrial fibrillation (AF). Mitochondria play a significant role in cardiac excitation-contraction coupling and Ca signaling through redox environment regulation. In isolated rabbit atrial myocytes, ROS production is enhanced during CaT alternans, measured by fluorescence microscopy. Exogenous ROS (tert-butyl hydroperoxide) enhanced CaT alternans, whereas ROS scavengers (dithiothreitol, MnTBAP, quercetin, tempol) alleviated CaT alternans. While the inhibition of cellular NADPH oxidases had no effect on CaT alternans, interference with mitochondrial ROS (ROSm) production had profound effects: (1) the superoxide dismutase mimetic MitoTempo diminished CaT alternans and shifted the pacing threshold to higher frequencies; (2) the inhibition of cyt c peroxidase by SS-31, and inhibitors of ROSm production by complexes of the electron transport chain S1QEL1.1 and S3QEL2, decreased the severity of CaT alternans; however (3) the impairment of mitochondrial antioxidant defense by the inhibition of nicotinamide nucleotide transhydrogenase with NBD-Cl and thioredoxin reductase-2 with auranofin enhanced CaT alternans. Our results suggest that intact mitochondrial antioxidant defense provides crucial protection against pro-arrhythmic CaT alternans. Thus, modulating the mitochondrial redox state represents a potential therapeutic approach for alternans-associated arrhythmias, including AF.
Collapse
Affiliation(s)
| | - Lothar A. Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA;
| |
Collapse
|
2
|
Belenichev IF, Abramov AV, Puzyrenko A, Bukhtiyarova NV, Gorchakova NO, Bak PG. Molecular mechanisms of myocardial damage in the hypertensive rats and hypertensive rats with metabolic disorders (diabetes mellitus, atherosclerosis). RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.78534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Introduction: Despite the success which was achieved in the treatment of arterial hypertension, for optimization of the treatment, it is necessary to study the pathogenesis of primary arterial hypertension and target organ damage on the molecular level.
Materials and methods: Our team studied the molecular mechanisms of myocardial damage during arterial hypertension and metabolic disorders. We used the spontaneously hypertensive rats (SHR) as an experimental model, and, additionally, we modeled diabetes mellitus and atherosclerosis in these rats.
Results and discussion: Our study obtained evidence of a much higher level of the energy imbalance in the cardiomyocytes and more intensive production of reactive oxygen species in the SHRs with diabetes mellitus and atherosclerosis compared with the healthy animals and the animals with only hypertension. The indicated defections create an environment for further cellular damage – mitochondrial dysfunction, depletion in the thiol-disulfide system, and formation of highly reactive NO products. At the same time, we have noticed a higher activity of the Hsp70 in the hypertensive groups compared with the normotensive animals. The source of these deviations is in the formation of mitochondrial dysfunction of cardiocytes, the cause of which is oxidative modification of the protein structures of mitochondria under conditions of activation of oxidative stress reactions, insufficiency of mPT pores, and impaired mitochondrial chaperone function. The presented data give reason to believe that mitochondrial dysfunction, which develops against the background of deficient HSP70, is an integral aspect of arterial hypertension, contributes to its aggravation, and triggers a cascade of molecular and biochemical mechanisms of myocardial damage. These mechanisms include disturbances in the L-arginine-NO-synthase-NO system, production of mitochondrial iNOS oxygen radicals, neutralization of the vasorelaxant effect of NO and its transformation into an active participant in nitrous stress due to reduced intermediates of the thiol-disulfide system. The question of cause-and-effect relationships of oxidative stress remains open for discussion.
Conclusion: We envisage that studies in this direction may lead to a better insight into a pathogenetic therapy of essential hypertension, diabetes mellitus, and atherosclerosis.
Graphical abstract:
Collapse
|
3
|
Wang Q, Ma E, Wo D, Chen J, He J, Peng J, Zhu W, Ren DN. Huoxin pill prevents acute myocardial ischaemia injury via inhibition of Wnt/β-catenin signaling. J Cell Mol Med 2021; 25:11053-11062. [PMID: 34786834 PMCID: PMC8650034 DOI: 10.1111/jcmm.17028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide, and due to the widespread and irreversible damage caused, new therapeutic treatments are urgently needed in order to limit the degree of ischaemic damage following MI. Aberrant activation of Wnt/β‐catenin signalling pathway often occurs during cardiovascular diseases including MI, which results in excess production of reactive oxygen species (ROS) and further promotes myocardial dysfunction. Huoxin pill (HXP) is a Traditional Chinese Medicine formula that has been widely used in the treatment of coronary heart disease and angina; however, its mechanisms remain unclear. Here, we performed mouse models of MI and examined the effects and mechanisms of HXP in protecting against MI‐induced ischaemic damage. Our study showed that administration with HXP robustly protected against MI‐induced cardiac injuries, decreased infarct size and improved cardiac function. Moreover, HXP attenuated ischaemia‐induced DNA damage occurrence in vivo and H2O2‐induced DNA damage occurrence in vitro, via potent inhibition of adverse Wnt/β‑catenin signalling activation. Our study thus elucidated the role and mechanism of HXP in protecting against MI and oxidative stress‐induced injuries and suggests new therapeutic strategies in ischaemic heart disease via inhibition of Wnt/β‐catenin signalling pathway.
Collapse
Affiliation(s)
- Qing Wang
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - En Ma
- Clinical and Translational Research Center, Key Laboratory of Arrhythmias of Ministry of Education, Research Institute of Heart Failure Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Da Wo
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jinxiao Chen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jia He
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Weidong Zhu
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| |
Collapse
|
4
|
Sadredini M, Haugsten Hansen M, Frisk M, Louch WE, Lehnart SE, Sjaastad I, Stokke MK. CaMKII inhibition has dual effects on spontaneous Ca 2+ release and Ca 2+ alternans in ventricular cardiomyocytes from mice with a gain-of-function RyR2 mutation. Am J Physiol Heart Circ Physiol 2021; 321:H446-H460. [PMID: 34270372 DOI: 10.1152/ajpheart.00011.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In conditions with abnormally increased activity of the cardiac ryanodine receptor (RyR2), Ca2+/calmodulin-dependent protein kinase II (CaMKII) can contribute to a further destabilization of RyR2 that results in triggered arrhythmias. Therefore, inhibition of CaMKII in such conditions has been suggested as a strategy to suppress RyR2 activity and arrhythmias. However, suppression of RyR2 activity can lead to the development of arrhythmogenic Ca2+ alternans. The aim of this study was to test whether the suppression of RyR2 activity caused by inhibition of CaMKII increases propensity for Ca2+ alternans. We studied spontaneous Ca2+ release events and Ca2+ alternans in isolated left ventricular cardiomyocytes from mice carrying the gain-of-function RyR2 mutation RyR2-R2474S and from wild-type mice. CaMKII inhibition by KN-93 effectively decreased the frequency of spontaneous Ca2+ release events in RyR2-R2474S cardiomyocytes exposed to the β-adrenoceptor agonist isoprenaline. However, KN-93-treated RyR2-R2474S cardiomyocytes also showed increased propensity for Ca2+ alternans and increased Ca2+ alternans ratio compared with both an inactive analog of KN-93 and with vehicle-treated controls. This increased propensity for Ca2+ alternans was explained by prolongation of Ca2+ release refractoriness. Importantly, the increased propensity for Ca2+ alternans in KN-93-treated RyR2-R2474S cardiomyocytes did not surpass that of wild type. In conclusion, inhibition of CaMKII efficiently reduces spontaneous Ca2+ release but promotes Ca2+ alternans in RyR2-R2474S cardiomyocytes with a gain-of-function RyR2 mutation. The dominant effect in RyR2-R2474S is to reduce spontaneous Ca2+ release, which supports this intervention as a therapeutic strategy in this specific condition. However, future studies on CaMKII inhibition in conditions with increased propensity for Ca2+ alternans should include investigation of both phenomena.NEW & NOTEWORTHY Genetically increased RyR2 activity promotes arrhythmogenic Ca2+ release. Inhibition of CaMKII suppresses RyR2 activity and arrhythmogenic Ca2+ release. Suppression of RyR2 activity prolongs refractoriness of Ca2+ release. Prolonged refractoriness of Ca2+ release leads to arrhythmogenic Ca2+ alternans. CaMKII inhibition promotes Ca2+ alternans by prolonging Ca2+ release refractoriness.
Collapse
Affiliation(s)
- Mani Sadredini
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Marie Haugsten Hansen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Stephan E Lehnart
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Mathis Korseberg Stokke
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
5
|
Integrating Literature-Based Knowledge Database and Expression Data to Explore Molecular Pathways Connecting PPARG and Myocardial Infarction. PPAR Res 2020; 2020:1892375. [PMID: 32565767 PMCID: PMC7284928 DOI: 10.1155/2020/1892375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/11/2020] [Indexed: 12/04/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARG) might play a protective role in the development of myocardial infarction (MI) with limited mechanisms identified. Genes associated with both PPARG and MI were extracted from Elsevier Pathway Studio to construct the initial network. The gene expression activity within the network was estimated through a mega-analysis with eight independent expression datasets derived from Gene Expression Omnibus (GEO) to build PPARG and MI connecting pathways. After that, gene set enrichment analysis (GSEA) was conducted to explore the functional profile of the genes involved in the PPARG-driven network. PPARG demonstrated a significantly low expression in MI patients (LFC = −0.52; p < 1.84e − 9). Consequently, PPARG could indicatively be promoting three MI inhibitors (e.g., SOD1, CAV1, and POU5F1) and three MI-downregulated markers (e.g., ALB, ACADM, and ADIPOR2), which were deactivated in MI cases (p < 0.05), and inhibit two MI-upregulated markers (RELA and MYD88), which showed increased expression levels in MI cases (p = 0.0077 and 0.047, respectively). These eight genes were mainly enriched in nutrient- and cell metabolic-related pathways and functionally linked by GSEA and PPCN. Our results suggest that PPARG could protect the heart against both the development and progress of MI through the regulation of nutrient- and metabolic-related pathways.
Collapse
|
6
|
Kulkarni K, Merchant FM, Kassab MB, Sana F, Moazzami K, Sayadi O, Singh JP, Heist EK, Armoundas AA. Cardiac Alternans: Mechanisms and Clinical Utility in Arrhythmia Prevention. J Am Heart Assoc 2019; 8:e013750. [PMID: 31617437 PMCID: PMC6898836 DOI: 10.1161/jaha.119.013750] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kanchan Kulkarni
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | | | - Mohamad B. Kassab
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Furrukh Sana
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Kasra Moazzami
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Omid Sayadi
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Jagmeet P. Singh
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - E. Kevin Heist
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - Antonis A. Armoundas
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA
| |
Collapse
|
7
|
Mallet RT, Olivencia-Yurvati AH, Bünger R. Pyruvate enhancement of cardiac performance: Cellular mechanisms and clinical application. Exp Biol Med (Maywood) 2017; 243:198-210. [PMID: 29154687 DOI: 10.1177/1535370217743919] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiac contractile function is adenosine-5'-triphosphate (ATP)-intensive, and the myocardium's high demand for oxygen and energy substrates leaves it acutely vulnerable to interruptions in its blood supply. The myriad cardioprotective properties of the natural intermediary metabolite pyruvate make it a potentially powerful intervention against the complex injury cascade ignited by myocardial ischemia-reperfusion. A readily oxidized metabolic substrate, pyruvate augments myocardial free energy of ATP hydrolysis to a greater extent than the physiological fuels glucose, lactate and fatty acids, particularly when it is provided at supra-physiological plasma concentrations. Pyruvate also exerts antioxidant effects by detoxifying reactive oxygen and nitrogen intermediates, and by increasing nicotinamide adenine dinucleotide phosphate reduced form (NADPH) production to maintain glutathione redox state. These enhancements of free energy and antioxidant defenses combine to augment sarcoplasmic reticular Ca2+ release and re-uptake central to cardiac mechanical performance and to restore β-adrenergic signaling of ischemically stunned myocardium. By minimizing Ca2+ mismanagement and oxidative stress, pyruvate suppresses inflammation in post-ischemic myocardium. Thus, pyruvate administration stabilized cardiac performance, augmented free energy of ATP hydrolysis and glutathione redox systems, and/or quelled inflammation in a porcine model of cardiopulmonary bypass, a canine model of cardiac arrest-resuscitation, and a caprine model of hypovolemia and hindlimb ischemia-reperfusion. Pyruvate's myriad benefits in preclinical models provide the mechanistic framework for its clinical application as metabolic support for myocardium at risk. Phase one trials have demonstrated pyruvate's safety and efficacy for intravenous resuscitation for septic shock, intracoronary infusion for heart failure and as a component of cardioplegia for cardiopulmonary bypass. The favorable outcomes of these trials, which argue for expanded, phase three investigations of pyruvate therapy, mirror findings in isolated, perfused hearts, underscoring the pivotal role of preclinical research in identifying clinical interventions for cardiovascular diseases. Impact statement This article reviews pyruvate's cardioprotective properties as an energy-yielding metabolic fuel, antioxidant and anti-inflammatory agent in mammalian myocardium. Preclinical research has shown these properties make pyruvate a powerful intervention to curb the complex injury cascade ignited by ischemia and reperfusion. In ischemically stunned isolated hearts and in large mammal models of cardiopulmonary bypass, cardiac arrest-resuscitation and hypovolemia, intracoronary pyruvate supports recovery of myocardial contractile function, intracellular Ca2+ homeostasis and free energy of ATP hydrolysis, and its antioxidant actions restore β-adrenergic signaling and suppress inflammation. The first clinical trials of pyruvate for cardiopulmonary bypass, fluid resuscitation and intracoronary intervention for congestive heart failure have been reported. Receiver operating characteristic analyses show remarkable concordance between pyruvate's beneficial functional and metabolic effects in isolated, perfused hearts and in patients recovering from cardiopulmonary bypass in which they received pyruvate- vs. L-lactate-fortified cardioplegia. This research exemplifies the translation of mechanism-oriented preclinical studies to clinical application and outcomes.
Collapse
Affiliation(s)
- Robert T Mallet
- 1 Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Albert H Olivencia-Yurvati
- 1 Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA.,2 Department of Medical Education, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Rolf Bünger
- 3 Emeritus Member of the American Physiological Society, McLean, VA 22101, USA
| |
Collapse
|
8
|
Yang G, Weng X, Zhao Y, Zhang X, Hu Y, Dai X, Liang P, Wang P, Ma L, Sun X, Hou L, Xu H, Fang M, Li Y, Jenuwein T, Xu Y, Sun A. The histone H3K9 methyltransferase SUV39H links SIRT1 repression to myocardial infarction. Nat Commun 2017; 8:14941. [PMID: 28361889 PMCID: PMC5381011 DOI: 10.1038/ncomms14941] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 02/15/2017] [Indexed: 12/27/2022] Open
Abstract
Myocardial infarction (MI) dampens heart function and poses a great health risk. The class III deacetylase sirtuin 1 (SIRT1) is known to confer cardioprotection. SIRT1 expression is downregulated in the heart by a number of stress stimuli that collectively drive the pathogenesis of MI, although the underlying mechanism remains largely obscure. Here we show that in primary rat neonatal ventricular myocytes (NRVMs), ischaemic or oxidative stress leads to a rapid upregulation of SUV39H, the mammalian histone H3K9 methyltransferase, paralleling SIRT1 downregulation. Compared to wild-type littermates, SUV39H knockout mice are protected from MI. Likewise, suppression of SUV39H activity with chaetocin attenuates cardiac injury following MI. Mechanistically, SUV39H cooperates with heterochromatin protein 1 gamma (HP1γ) to catalyse H3K9 trimethylation on the SIRT1 promoter and represses SIRT1 transcription. SUV39H augments intracellular ROS levels in a SIRT1-dependent manner. Our data identify a previously unrecognized role for SUV39H linking SIRT1 trans-repression to myocardial infarction. The molecular pathways regulating the cardioprotective activity of deacetylase sirtuin-1 are unknown. Here, Yang et al. show that histone H3K9 methyltransferase SUV39H and HP1gamma cooperatively methylate H3K9 on the sirtuin-1 promoter and inhibit sirtuin-1 transcription, and show that inhibition of SUV39H in mice is cardioprotective.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Xinyu Weng
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China.,Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuhao Zhao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Xinjian Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Yuanping Hu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Xin Dai
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Peng Liang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Peng Wang
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - LeiLei Ma
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaolei Sun
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Hou
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Fang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China.,Department of Nursing, Jiangsu Jiankang Vocational College, Nanjing 210029, china
| | - Yuehua Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Thomas Jenuwein
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Dou MM, Zhang ZH, Li ZB, Zhang J, Zhao XY. Cardioprotective potential of Dendrobium officinale Kimura et Migo against myocardial ischemia in mice. Mol Med Rep 2016; 14:4407-4414. [DOI: 10.3892/mmr.2016.5789] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 09/14/2016] [Indexed: 11/06/2022] Open
|
10
|
Becerra R, Román B, Di Carlo MN, Mariangelo JI, Salas M, Sanchez G, Donoso P, Schinella GR, Vittone L, Wehrens XH, Mundiña-Weilenmann C, Said M. Reversible redox modifications of ryanodine receptor ameliorate ventricular arrhythmias in the ischemic-reperfused heart. Am J Physiol Heart Circ Physiol 2016; 311:H713-24. [PMID: 27422983 DOI: 10.1152/ajpheart.00142.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022]
Abstract
Previous results from our laboratory showed that phosphorylation of ryanodine receptor 2 (RyR2) by Ca(2+) calmodulin-dependent kinase II (CaMKII) was a critical but not the unique event responsible for the production of reperfusion-induced arrhythmogenesis, suggesting the existence of other mechanisms cooperating in an additive way to produce these rhythm alterations. Oxidative stress is a prominent feature of ischemia/reperfusion injury. Both CaMKII and RyR2 are proteins susceptible to alteration by redox modifications. This study was designed to elucidate whether CaMKII and RyR2 redox changes occur during reperfusion and whether these changes are involved in the genesis of arrhythmias. Langendorff-perfused hearts from rats or transgenic mice with genetic ablation of CaMKII phosphorylation site on RyR2 (S2814A) were subjected to ischemia-reperfusion in the presence or absence of a free radical scavenger (mercaptopropionylglycine, MPG) or inhibitors of NADPH oxidase and nitric oxide synthase. Left ventricular contractile parameters and monophasic action potentials were recorded. Oxidation and phosphorylation of CaMKII and RyR2 were assessed. Increased oxidation of CaMKII during reperfusion had no consequences on the level of RyR2 phosphorylation. Avoiding the reperfusion-induced thiol oxidation of RyR2 with MPG produced a reduction in the number of arrhythmias and did not modify the contractile recovery. Conversely, selective prevention of S-nitrosylation and S-glutathionylation of RyR2 was associated with higher numbers of arrhythmias and impaired contractility. In S2814A mice, treatment with MPG further reduced the incidence of arrhythmias. Taken together, the results suggest that redox modification of RyR2 synergistically with CaMKII phosphorylation modulates reperfusion arrhythmias.
Collapse
Affiliation(s)
- Romina Becerra
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Bárbara Román
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariano N Di Carlo
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Ignacio Mariangelo
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Margarita Salas
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gina Sanchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paulina Donoso
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Guillermo R Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CIC-PBA, La Plata, Argentina
| | - Leticia Vittone
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Xander H Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine (in Cardiology), Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Cecilia Mundiña-Weilenmann
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Matilde Said
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina;
| |
Collapse
|
11
|
Microvolt T-wave alternans amplifies spatial dispersion of repolarization in human subjects with ischemic cardiomyopathy. J Electrocardiol 2016; 49:733-9. [PMID: 27344495 DOI: 10.1016/j.jelectrocard.2016.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 11/23/2022]
Abstract
INTRODUCTION In experimental models, spatial dispersion of repolarization (DOR) due to discordant cellular alternans predisposes to ventricular fibrillation. To test the hypothesis that microvolt T-wave alternans (MTWA) in humans causes spatial DOR, we measured Tpeak-Tend interval (Tpe) and Tpe/QT ratio, electrocardiographic indices of spatial DOR. METHODS Mean Tpe and Tpe/QT were compared in ischemic cardiomyopathy patients with positive and negative MTWA studies. RESULTS MTWA was positive in 12 and negative in 24 patients. Tpe and Tpe/QT were higher in MTWA+ subjects compared to MTWA- subjects during exercise (64.5±6.8 vs. 54.9±8.7ms, p=0.001 and 0.218±0.03 vs. 0.177±0.02, p=0.001) but not at rest. CONCLUSION Ischemic cardiomyopathy patients have increased Tpe and Tpe/QT when MTWA is induced during exercise, suggesting that MTWA causes increased spatial DOR in humans. Future studies are needed to determine if Tpe and Tpe/QT during exercise might predict increased risk of SCD alone or in combination with measurement of MTWA.
Collapse
|
12
|
Mesenchymal stem cells suppress cardiac alternans by activation of PI3K mediated nitroso-redox pathway. J Mol Cell Cardiol 2016; 98:138-45. [PMID: 27238412 DOI: 10.1016/j.yjmcc.2016.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/03/2016] [Accepted: 05/25/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The paracrine action of non-cardiac progenitor cells is robust, but not well understood. Mesenchymal stem cells (MSC) have been shown to enhance calcium (Ca(++)) cycling in myocytes. Therefore, we hypothesized that MSCs can suppress cardiac alternans, an important arrhythmia substrate, by paracrine action on Ca(++) cycling. METHODS AND RESULTS Human cardiac myocyte monolayers derived from iPS cells (hCM) were cultured without or with human MSCs (hMSC) directly or plated on a transwell insert. Ca(++) transient alternans (Ca(++) ALT) and Ca(++) transient duration (CaD) were measured from hCM monolayers following application of 200μM H2O2. Ca(++) ALT in hCM was significantly decreased when cultured with hMSCs directly (97%, p<0.0001) and when cultured with hMSC in the transwell insert (80%, p<0.0001). When hCM with hMSCs were pretreated with PI3K or eNOS inhibitors, Ca(++) ALT was larger than baseline by 20% (p<0.0001) and 36% (p<0.0001), respectively. In contrast, Ca(++) ALT was reduced by 89% compared to baseline (p<0.0001) when hCM monolayers without hMSCs were pretreated with 20μM GSNO. In all experiments, changes in Ca(++) ALT were mirrored by changes in CaD. Finally, real time quantitative PCR revealed no significant differences in mRNA expression of RyR2, SERCA2a, and phospholamban between hCM cultured with or without hMSCs. CONCLUSION Ca(++) ALT is suppressed by hMSCs in a paracrine fashion due to activation of a PI3K-mediated nitroso-redox pathway. These findings demonstrate, for the first time, how stem cell therapy might be antiarrhythmic by suppressing cardiac alternans through paracrine action on Ca(++) cycling.
Collapse
|