1
|
Ciaccio EJ, Cedilnik N, Hsia HH, Biviano AB, Garan H, Yarmohammadi H. Wavefront curvature analysis derived from preprocedural imaging can identify the critical isthmus in patients with postinfarcted ventricular tachycardia. Heart Rhythm 2024:S1547-5271(24)02669-9. [PMID: 38848858 DOI: 10.1016/j.hrthm.2024.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Where activation wavefront curvature is convexly shaped, functional conduction block can occur. OBJECTIVE The purpose of this study was to determine whether left ventricular (LV) wall thickness determined from contrast-enhanced computed tomography (CT) is useful in localizing such areas in clinical postinfarction reentrant ventricular tachycardia (VT). METHODS We evaluated data from 6 patients who underwent catheter ablation for postinfarction VT. CT imaging with inHEART processing was conducted 1-3 days before electrophysiological (EP) study to determine LV wall thickness (T). Activation wavefront curvature was approximated as ΔT/T, where ΔT represents wall thickness change. During EP study, bipolar LV VT electrograms were acquired using a high-density mapping catheter, and activation times were determined. Maps of T, ΔT/T, and VT activation were subsequently compared using statistical analyses. RESULTS Two of 6 cases exhibited dual circuit morphologies, resulting in a total of 8 VT morphologies analyzed. The LV wall near the VT isthmus location tended to be thin, on the order of a few hundred micrometers. Regions of largest ΔT/T partially coincided with the lateral isthmus boundaries where electrical conduction block occurred during VT. ΔT/T at the boundaries, measured from imaging, was significantly larger compared to values at the isthmus midline and to the global LV mean value (P <.001). CONCLUSION Wavefront curvature measured by ΔT/T and caused by source-sink mismatch is dependent on ventricular wall thickness. Areas of high wavefront curvature partly coincide with and may be helpful in locating the VT isthmus in infarct border zones using preprocedural imaging analysis.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine, Division of Cardiology, College of Physicians and Surgeons, Columbia University, New York, New York.
| | - Nicolas Cedilnik
- inHEART Medical, IHU Liryc, Hopital Xavier Arnozan, Pessac, France
| | - Henry H Hsia
- Cardiac Electrophysiology and Arrhythmia Service, University of California San Francisco, San Francisco, California
| | - Angelo B Biviano
- Department of Medicine, Division of Cardiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Hasan Garan
- Department of Medicine, Division of Cardiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Hirad Yarmohammadi
- Department of Medicine, Division of Cardiology, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
2
|
Hawson J, Lee G. Electrical Discontinuities in Sinus Rhythm: Is the Isthmus Set? JACC Clin Electrophysiol 2023; 9:862-864. [PMID: 37380318 DOI: 10.1016/j.jacep.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/30/2023]
Affiliation(s)
- Joshua Hawson
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey Lee
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Ciaccio EJ, Coromilas J, Wan EY, Yarmohammadi H, Saluja DS, Peters NS, Garan H, Biviano AB. Lateral Boundaries of the Ventricular Tachycardia Circuit Align With Sinus Rhythm Discontinuities. JACC Clin Electrophysiol 2023; 9:851-861. [PMID: 37227361 DOI: 10.1016/j.jacep.2022.11.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Sinus rhythm electrical activation mapping can provide information regarding the ischemic re-entrant ventricular tachycardia (VT) circuit. The information gleaned may include the localization of sinus rhythm electrical discontinuities, which can be defined as arcs of disrupted electrical conduction with large activation time differences across the arc. OBJECTIVES This study sought to detect and localize sinus rhythm electrical discontinuities that might be present in activation maps constructed from infarct border zone electrograms. METHODS Monomorphic re-entrant VT with a double-loop circuit and central isthmus was repeatedly inducible by programmed electrical stimulation in the epicardial border zone of 23 postinfarction canine hearts. Sinus rhythm and VT activation maps were constructed from 196 to 312 bipolar electrograms acquired surgically at the epicardial surface and analyzed computationally. A complete re-entrant circuit was mappable from the epicardial electrograms of VT, and isthmus lateral boundary (ILB) locations were ascertained. The difference in sinus rhythm activation time across ILB locations, vs the central isthmus and vs the circuit periphery, was determined. RESULTS Sinus rhythm activation time differences averaged 14.4 milliseconds across the ILB vs 6.5 milliseconds at the central isthmus and 6.4 milliseconds at the periphery (ie, the outer circuit loop) (P ≤ 0.001). Locations with large sinus rhythm activation difference tended to overlap ILB (60.3% ± 23.2%) compared with their overlap with the entire grid (27.5% ± 18.5%) (P < 0.001). CONCLUSIONS Disrupted electrical conduction is evident as discontinuity in sinus rhythm activation maps, particularly at ILB locations. These areas may represent permanent fixtures relating to spatial differences in border zone electrical properties, caused in part by alterations in underlying infarct depth. The tissue properties producing sinus rhythm discontinuity at ILB may contribute to functional conduction block formation at VT onset.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York, USA; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom.
| | - James Coromilas
- Department of Medicine, Division of Cardiovascular Disease and Hypertension, Rutgers University, New Brunswick, New Jersey, USA
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Hirad Yarmohammadi
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Deepak S Saluja
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom
| | - Hasan Garan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Angelo B Biviano
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
4
|
Amoni M, Vermoortele D, Ekhteraei-Tousi S, Doñate Puertas R, Gilbert G, Youness M, Thienpont B, Willems R, Roderick HL, Claus P, Sipido KR. Heterogeneity of Repolarization and Cell-Cell Variability of Cardiomyocyte Remodeling Within the Myocardial Infarction Border Zone Contribute to Arrhythmia Susceptibility. Circ Arrhythm Electrophysiol 2023; 16:e011677. [PMID: 37128895 PMCID: PMC10187631 DOI: 10.1161/circep.122.011677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND After myocardial infarction, the infarct border zone (BZ) is the dominant source of life-threatening arrhythmias, where fibrosis and abnormal repolarization create a substrate for reentry. We examined whether repolarization abnormalities are heterogeneous within the BZ in vivo and could be related to heterogeneous cardiomyocyte remodeling. METHODS Myocardial infarction was induced in domestic pigs by 120-minute ischemia followed by reperfusion. After 1 month, remodeling was assessed by magnetic resonance imaging, and electroanatomical mapping was performed to determine the spatial distribution of activation-recovery intervals. Cardiomyocytes were isolated and tissue samples collected from the BZ and remote regions. Optical recording allowed assessment of action potential duration (di-8-ANEPPS, stimulation at 1 Hz, 37 °C) of large cardiomyocyte populations while gene expression in cardiomyocytes was determined by single nuclear RNA sequencing. RESULTS In vivo, activation-recovery intervals in the BZ tended to be longer than in remote with increased spatial heterogeneity evidenced by a greater local SD (3.5±1.3 ms versus remote: 2.0±0.5 ms, P=0.036, npigs=5). Increased activation-recovery interval heterogeneity correlated with enhanced arrhythmia susceptibility. Cellular population studies (ncells=635-862 cells per region) demonstrated greater heterogeneity of action potential duration in the BZ (SD, 105.9±17.0 ms versus remote: 73.9±8.6 ms; P=0.001; npigs=6), which correlated with heterogeneity of activation-recovery interval in vivo. Cell-cell gene expression heterogeneity in the BZ was evidenced by increased Euclidean distances between nuclei of the BZ (12.1 [9.2-15.0] versus 10.6 [7.5-11.6] in remote; P<0.0001). Differentially expressed genes characterizing BZ cardiomyocyte remodeling included hypertrophy-related and ion channel-related genes with high cell-cell variability of expression. These gene expression changes were driven by stress-responsive TFs (transcription factors). In addition, heterogeneity of left ventricular wall thickness was greater in the BZ than in remote. CONCLUSIONS Heterogeneous cardiomyocyte remodeling in the BZ is driven by uniquely altered gene expression, related to heterogeneity in the local microenvironment, and translates to heterogeneous repolarization and arrhythmia vulnerability in vivo.
Collapse
Affiliation(s)
- Matthew Amoni
- Department of Cardiovascular Sciences, Experimental Cardiology (M.A., S.E.-T., R.D.P., G.G., M.Y., R.W., H.L.R., K.R.S.), KU Leuven, Belgium
- Division of Cardiology, University Hospitals, Leuven, Belgium (M.A., R.W.)
| | - Dylan Vermoortele
- Imaging and Cardiovascular Dynamics, Department of Cardiovascular Sciences (D.V., P.C.), KU Leuven, Belgium
| | - Samaneh Ekhteraei-Tousi
- Department of Cardiovascular Sciences, Experimental Cardiology (M.A., S.E.-T., R.D.P., G.G., M.Y., R.W., H.L.R., K.R.S.), KU Leuven, Belgium
| | - Rosa Doñate Puertas
- Department of Cardiovascular Sciences, Experimental Cardiology (M.A., S.E.-T., R.D.P., G.G., M.Y., R.W., H.L.R., K.R.S.), KU Leuven, Belgium
| | - Guillaume Gilbert
- Department of Cardiovascular Sciences, Experimental Cardiology (M.A., S.E.-T., R.D.P., G.G., M.Y., R.W., H.L.R., K.R.S.), KU Leuven, Belgium
| | - Mohamad Youness
- Department of Cardiovascular Sciences, Experimental Cardiology (M.A., S.E.-T., R.D.P., G.G., M.Y., R.W., H.L.R., K.R.S.), KU Leuven, Belgium
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics (B.T.), KU Leuven, Belgium
| | - Rik Willems
- Department of Cardiovascular Sciences, Experimental Cardiology (M.A., S.E.-T., R.D.P., G.G., M.Y., R.W., H.L.R., K.R.S.), KU Leuven, Belgium
- Division of Cardiology, University Hospitals, Leuven, Belgium (M.A., R.W.)
| | - H. Llewelyn Roderick
- Department of Cardiovascular Sciences, Experimental Cardiology (M.A., S.E.-T., R.D.P., G.G., M.Y., R.W., H.L.R., K.R.S.), KU Leuven, Belgium
| | - Piet Claus
- Imaging and Cardiovascular Dynamics, Department of Cardiovascular Sciences (D.V., P.C.), KU Leuven, Belgium
| | - Karin R. Sipido
- Department of Cardiovascular Sciences, Experimental Cardiology (M.A., S.E.-T., R.D.P., G.G., M.Y., R.W., H.L.R., K.R.S.), KU Leuven, Belgium
| |
Collapse
|
5
|
Ciaccio EJ, Anter E, Coromilas J, Wan EY, Yarmohammadi H, Wit AL, Peters NS, Garan H. Structure and function of the ventricular tachycardia isthmus. Heart Rhythm 2022; 19:137-153. [PMID: 34371192 DOI: 10.1016/j.hrthm.2021.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022]
Abstract
Catheter ablation of postinfarction reentrant ventricular tachycardia (VT) has received renewed interest owing to the increased availability of high-resolution electroanatomic mapping systems that can describe the VT circuits in greater detail, and the emergence and need to target noninvasive external beam radioablation. These recent advancements provide optimism for improving the clinical outcome of VT ablation in patients with postinfarction and potentially other scar-related VTs. The combination of analyses gleaned from studies in swine and canine models of postinfarction reentrant VT, and in human studies, suggests the existence of common electroanatomic properties for reentrant VT circuits. Characterizing these properties may be useful for increasing the specificity of substrate mapping techniques and for noninvasive identification to guide ablation. Herein, we describe properties of reentrant VT circuits that may assist in elucidating the mechanisms of onset and maintenance, as well as a means to localize and delineate optimal catheter ablation targets.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom.
| | - Elad Anter
- Department of Cardiovascular Medicine, Cardiac Electrophysiology, Cleveland Clinic, Cleveland, Ohio
| | - James Coromilas
- Department of Medicine, Division of Cardiovascular Disease and Hypertension, Rutgers University, New Brunswick, New Jersey
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Hirad Yarmohammadi
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Andrew L Wit
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom
| | - Hasan Garan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
6
|
Tong L, Zhao C, Fu Z, Dong R, Wu Z, Wang Z, Zhang N, Wang X, Cao B, Sun Y, Zheng D, Xia L, Deng D. Preliminary Study: Learning the Impact of Simulation Time on Reentry Location and Morphology Induced by Personalized Cardiac Modeling. Front Physiol 2021; 12:733500. [PMID: 35002750 PMCID: PMC8739986 DOI: 10.3389/fphys.2021.733500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Personalized cardiac modeling is widely used for studying the mechanisms of cardiac arrythmias. Due to the high demanding of computational resource of modeling, the arrhythmias induced in the models are usually simulated for just a few seconds. In clinic, it is common that arrhythmias last for more than several minutes and the morphologies of reentries are not always stable, so it is not clear that whether the simulation of arrythmias for just a few seconds is long enough to match the arrhythmias detected in patients. This study aimed to observe how long simulation of the induced arrhythmias in the personalized cardiac models is sufficient to match the arrhythmias detected in patients. A total of 5 contrast enhanced MRI datasets of patient hearts with myocardial infarction were used in this study. Then, a classification method based on Gaussian mixture model was used to detect the infarct tissue. For each reentry, 3 s and 10 s were simulated. The characteristics of each reentry simulated for different duration were studied. Reentries were induced in all 5 ventricular models and sustained reentries were induced at 39 stimulation sites in the model. By analyzing the simulation results, we found that 41% of the sustained reentries in the 3 s simulation group terminated in the longer simulation groups (10 s). The second finding in our simulation was that only 23.1% of the sustained reentries in the 3 s simulation did not change location and morphology in the extended 10 s simulation. The third finding was that 35.9% reentries were stable in the 3 s simulation and should be extended for the simulation time. The fourth finding was that the simulation results in 10 s simulation matched better with the clinical measurements than the 3 s simulation. It was shown that 10 s simulation was sufficient to make simulation results stable. The findings of this study not only improve the simulation accuracy, but also reduce the unnecessary simulation time to achieve the optimal use of computer resources to improve the simulation efficiency and shorten the simulation time to meet the time node requirements of clinical operation on patients.
Collapse
Affiliation(s)
- Lv Tong
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Caiming Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyin Fu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Ruiqing Dong
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Zhenghong Wu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zefeng Wang
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xinlu Wang
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Boyang Cao
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Yutong Sun
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, Faculty of Health and Life Science, Coventry University, Coventry, United Kingdom
| | - Ling Xia
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Dongdong Deng
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
7
|
Amoni M, Dries E, Ingelaere S, Vermoortele D, Roderick HL, Claus P, Willems R, Sipido KR. Ventricular Arrhythmias in Ischemic Cardiomyopathy-New Avenues for Mechanism-Guided Treatment. Cells 2021; 10:2629. [PMID: 34685609 PMCID: PMC8534043 DOI: 10.3390/cells10102629] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic heart disease is the most common cause of lethal ventricular arrhythmias and sudden cardiac death (SCD). In patients who are at high risk after myocardial infarction, implantable cardioverter defibrillators are the most effective treatment to reduce incidence of SCD and ablation therapy can be effective for ventricular arrhythmias with identifiable culprit lesions. Yet, these approaches are not always successful and come with a considerable cost, while pharmacological management is often poor and ineffective, and occasionally proarrhythmic. Advances in mechanistic insights of arrhythmias and technological innovation have led to improved interventional approaches that are being evaluated clinically, yet pharmacological advancement has remained behind. We review the mechanistic basis for current management and provide a perspective for gaining new insights that centre on the complex tissue architecture of the arrhythmogenic infarct and border zone with surviving cardiac myocytes as the source of triggers and central players in re-entry circuits. Identification of the arrhythmia critical sites and characterisation of the molecular signature unique to these sites can open avenues for targeted therapy and reduce off-target effects that have hampered systemic pharmacotherapy. Such advances are in line with precision medicine and a patient-tailored therapy.
Collapse
Affiliation(s)
- Matthew Amoni
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
- Division of Cardiology, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Eef Dries
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
| | - Sebastian Ingelaere
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
- Division of Cardiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Dylan Vermoortele
- Imaging and Cardiovascular Dynamics, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (D.V.); (P.C.)
| | - H. Llewelyn Roderick
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
| | - Piet Claus
- Imaging and Cardiovascular Dynamics, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (D.V.); (P.C.)
| | - Rik Willems
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
- Division of Cardiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Karin R. Sipido
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
| |
Collapse
|
8
|
Su C, Xue Y, Li T, Liu M, Liu Y, Deng H, Li J, Jiang J, Ma Y, Feng C, Liu J, Tang A, Dong Y, He J, Wang L. Electrophysiological characteristics of epicardial to endocardial breakthrough in intractable cavotricuspid isthmus-dependent atrial flutter. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:462-471. [PMID: 33433929 DOI: 10.1111/pace.14164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epicardial to endocardial breakthrough (EEB) exists widely in atrial arrhythmia and is a cause for intractable cavotricuspid isthmus (CTI)-dependent atrial flutter (AFL). This study aimed to investigate the electrophysiological features of EEB in EEB-related CTI dependent AFL. METHODS Six patients with EEB-related CTI-dependent AFL were identified among 142 consecutive patients who underwent CTI-dependent AFL catheter ablation with an ultra-high-density, high-resolution mapping system in three institutions. Activation maps and ablation procedure were analyzed. RESULTS A total of seven EEBs were found in six patients. Four EEBs (including three at the right atrial septum and one in paraseptal isthmus) were recorded in three patients during tachycardia. The other three EEBs were identified at the inferolateral right atrium (RA) during pacing from the coronary sinus. The conduction characteristics through the EEB-mediated structures were evaluated in three patients. Two patients only showed unidirectional conduction. Activation maps indicated that CTI-dependent AFL with EEB at the atrial septum was actually bi-atrial macro-reentrant atrial tachycardia (BiAT). Intensive ablation at the central isthmus could block CTI bidirectionally in four cases. However, ablation targeted at the inferolateral RA EEB was required in two cases. Meanwhile, local potentials at the EEB location gradually split into two components with a change in activation sequence. CONCLUSIONS EEB is an underlying cause for intractable CTI-dependent AFL. EEB-mediated structure might show unidirectional conduction. CTI-dependent AFL with EEB at the atrial septum may represent BiAT. Intensive ablation targeting the central isthmus or EEB at the inferolateral RA could block the CTI bidirectionally.
Collapse
Affiliation(s)
- Chen Su
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yumei Xue
- Department of Cardiology, The People's Hospital of Guangdong Province, Guangzhou, Guangdong, People's Republic of China
| | - Teng Li
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Science (Shenzhen, Shenzhen, Guangdong, People's Republic of China
| | - Menghui Liu
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yang Liu
- Department of Cardiology, The People's Hospital of Guangdong Province, Guangzhou, Guangdong, People's Republic of China
| | - Hai Deng
- Department of Cardiology, The People's Hospital of Guangdong Province, Guangzhou, Guangdong, People's Republic of China
| | - Jie Li
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jingzhou Jiang
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yuedong Ma
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chong Feng
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jun Liu
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Anli Tang
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yugang Dong
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiangui He
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Lichun Wang
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
9
|
Tung R, Raiman M, Liao H, Zhan X, Chung FP, Nagel R, Hu H, Jian J, Shatz DY, Besser SA, Aziz ZA, Beaser AD, Upadhyay GA, Nayak HM, Nishimura T, Xue Y, Wu S. Simultaneous Endocardial and Epicardial Delineation of 3D Reentrant Ventricular Tachycardia. J Am Coll Cardiol 2020; 75:884-897. [PMID: 32130924 DOI: 10.1016/j.jacc.2019.12.044] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Mechanisms of scar-related ventricular tachycardia (VT) are largely based on computational and animal models that portray a 2-dimensional view. OBJECTIVES The authors sought to delineate the human VT circuit with a 3-dimensional perspective from recordings obtained by simultaneous endocardial and epicardial mapping. METHODS High-resolution mapping was performed during 97 procedures in 89 patients with structural heart disease. Circuits were characterized by systematic isochronal analysis to estimate the dimensions of the isthmus and extent of the exit region recorded on both myocardial surfaces. RESULTS A total of 151 VT morphologies were mapped, of which 83 underwent simultaneous endocardial and epicardial mapping; 17% of circuits activated in a 2-dimensional plane, restricted to 1 myocardial surface. Three-dimensional activation patterns with nonuniform transmural propagation were observed in 61% of circuits with only 4% showing transmurally uniform activation, and 18% exhibiting focal activation patterns consistent with mid-myocardial reentry. The dimensions of the central isthmus were 17 mm (12 to 28 mm) × 10 mm (9 to 19 mm) with 55% exhibiting a minimal dimension of <1.5 cm. QRS activation was transmural in 63% and located 43 mm (34 to 52 mm) from the central isthmus. On the basis of 6 proposed definitions for epicardial VT, the prevalence of an epicardial circuit ranged from 21% to 80% in ischemic cardiomyopathy and 28% to 77% in nonischemic cardiomyopathy. CONCLUSIONS A 2D perspective oversimplifies the electrophysiological circuit responsible for reentrant human VT and simultaneous endocardial and epicardial mapping facilitates inferences about mid-myocardial activation. Intricate activation patterns are frequently observed on both myocardial surfaces, and the epicardium is functionally involved in the majority of circuits. Human reentry may exist within isthmus dimensions smaller than 1 cm, whereas QRS activation is often transmural and remote from the critical isthmus target. A 3-dimensional perspective of the VT circuit may enhance the precision of ablative therapy and may support a greater role for adjunctive strategies and technology to address arrhythmogenic tissue harbored in the mid-myocardium and subepicardium.
Collapse
Affiliation(s)
- Roderick Tung
- University of Chicago Medicine, Center for Arrhythmia Care, Division of Cardiology, Department of Medicine, Pritzker School of Medicine, Chicago, Illinois; Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | | | - Hongtao Liao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xianzhang Zhan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fa Po Chung
- Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Hongde Hu
- West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Jian
- West China Hospital, Sichuan University, Chengdu, China
| | - Dalise Y Shatz
- University of Chicago Medicine, Center for Arrhythmia Care, Division of Cardiology, Department of Medicine, Pritzker School of Medicine, Chicago, Illinois
| | - Stephanie A Besser
- University of Chicago Medicine, Center for Arrhythmia Care, Division of Cardiology, Department of Medicine, Pritzker School of Medicine, Chicago, Illinois
| | - Zaid A Aziz
- University of Chicago Medicine, Center for Arrhythmia Care, Division of Cardiology, Department of Medicine, Pritzker School of Medicine, Chicago, Illinois
| | - Andrew D Beaser
- University of Chicago Medicine, Center for Arrhythmia Care, Division of Cardiology, Department of Medicine, Pritzker School of Medicine, Chicago, Illinois
| | - Gaurav A Upadhyay
- University of Chicago Medicine, Center for Arrhythmia Care, Division of Cardiology, Department of Medicine, Pritzker School of Medicine, Chicago, Illinois
| | - Hemal M Nayak
- University of Chicago Medicine, Center for Arrhythmia Care, Division of Cardiology, Department of Medicine, Pritzker School of Medicine, Chicago, Illinois
| | - Takuro Nishimura
- University of Chicago Medicine, Center for Arrhythmia Care, Division of Cardiology, Department of Medicine, Pritzker School of Medicine, Chicago, Illinois
| | - Yumei Xue
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shulin Wu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
10
|
Ciaccio EJ, Coromilas J, Wan EY, Yarmohammadi H, Saluja DS, Biviano AB, Wit AL, Peters NS, Garan H. Slow uniform electrical activation during sinus rhythm is an indicator of reentrant VT isthmus location and orientation in an experimental model of myocardial infarction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105666. [PMID: 32717622 DOI: 10.1016/j.cmpb.2020.105666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND To validate the predictability of reentrant circuit isthmus locations without ventricular tachycardia (VT) induction during high-definition mapping, we used computer methods to analyse sinus rhythm activation in experiments where isthmus location was subsequently verified by mapping reentrant VT circuits. METHOD In 21 experiments using a canine postinfarction model, bipolar electrograms were obtained from 196-312 recordings with 4mm spacing in the epicardial border zone during sinus rhythm and during VT. From computerized electrical activation maps of the reentrant circuit, areas of conduction block were determined and the isthmus was localized. A linear regression was computed at three different locations about the reentry isthmus using sinus rhythm electrogram activation data. From the regression analysis, the uniformity, a measure of the constancy at which the wavefront propagates, and the activation gradient, a measure that may approximate wavefront speed, were computed. The purpose was to test the hypothesis that the isthmus locates in a region of slow uniform activation bounded by areas of electrical discontinuity. RESULTS Based on the regression parameters, sinus rhythm activation along the isthmus near its exit proceeded uniformly (mean r2= 0.95±0.05) and with a low magnitude gradient (mean 0.37±0.10mm/ms). Perpendicular to the isthmus long-axis across its boundaries, the activation wavefront propagated much less uniformly (mean r2= 0.76±0.24) although of similar gradient (mean 0.38±0.23mm/ms). In the opposite direction from the exit, at the isthmus entrance, there was also less uniformity (mean r2= 0.80±0.22) but a larger magnitude gradient (mean 0.50±0.25mm/ms). A theoretical ablation line drawn perpendicular to the last sinus rhythm activation site along the isthmus long-axis was predicted to prevent VT reinduction. Anatomical conduction block occurred in 7/21 experiments, but comprised only small portions of the isthmus lateral boundaries; thus detection of sinus rhythm conduction block alone was insufficient to entirely define the VT isthmus. CONCLUSIONS Uniform activation with a low magnitude gradient during sinus rhythm is present at the VT isthmus exit location but there is less uniformity across the isthmus lateral boundaries and at isthmus entrance locations. These factors may be useful to verify any proposed VT isthmus location, reducing the need for VT induction to ablate the isthmus. Measured computerized values similar to those determined herein could therefore be assistive to sharpen specificity when applying sinus rhythm mapping to localize EP catheter ablation sites.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK.
| | - James Coromilas
- Department of Medicine - Division of Cardiovascular Disease and Hypertension, Rutgers University, New Brunswick, NJ, USA
| | - Elaine Y Wan
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Hirad Yarmohammadi
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Deepak S Saluja
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Angelo B Biviano
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Andrew L Wit
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Hasan Garan
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
11
|
Suszko A, Nayyar S, Labos C, Nanthakumar K, Pinter A, Crystal E, Chauhan VS. Microvolt QRS Alternans Without Microvolt T-Wave Alternans in Human Cardiomyopathy: A Novel Risk Marker of Late Ventricular Arrhythmias. J Am Heart Assoc 2020; 9:e016461. [PMID: 32806990 PMCID: PMC7660784 DOI: 10.1161/jaha.119.016461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Action potential alternans can induce ventricular tachyarrhythmias and manifest on the surface ECG as T‐wave alternans (TWA) and QRS alternans (QRSA). We sought to evaluate microvolt QRSA in cardiomyopathy patients in relation to TWA and ventricular tachyarrhythmia outcomes. Methods and Results Prospectively enrolled cardiomyopathy patients (n=100) with prophylactic defibrillators had 12‐lead ECGs recorded during ventricular pacing from 100 to 120 beats/min. QRSA and TWA were quantified in moving 128‐beat segments using the spectral method. Segments were categorized as QRSA positive (QRSA+) and/or TWA positive (TWA+) based on ≥2 precordial leads having alternans magnitude >0 and signal:noise >3. Patients were similarly categorized based on having ≥3 consecutive segments with alternans. TWA+ and QRSA+ occurred together in 31% of patients and alone in 18% and 14% of patients, respectively. Although TWA magnitude (1.4±0.4 versus 4.7±1.0 µV, P<0.01) and proportion of TWA+ studies (16% versus 46%, P<0.01) increased with rate, QRSA did not change. QRS duration was longer in QRSA+ than QRSA‐negative patients (138±23 versus 113±26 ms, P<0.01). At 3.5 years follow‐up, appropriate defibrillator therapy or sustained ventricular tachyarrhythmia was greater in QRSA+ than QRSA‐negative patients (30% versus 8%, P=0.02) but similar in TWA+ and TWA‐negative patients. Among QRSA+ patients, the event rate was greater in those without TWA (62% versus 21%, P=0.02). Multivariable Cox analysis revealed QRSA+ (hazard ratio [HR], 4.6; 95% CI, 1.5–14; P=0.009) and QRS duration >120 ms (HR, 4.1; 95% CI, 1.3–12; P=0.014) to predict events. Conclusions Microvolt QRSA is novel phenomenon in cardiomyopathy patients that can exist without TWA and is associated with QRS prolongation. QRSA increases the risk of ventricular tachyarrhythmia 4‐fold, which merits further study as a risk stratifier.
Collapse
Affiliation(s)
- Adrian Suszko
- Peter Munk Cardiac Center University Health Network Toronto Ontario Canada
| | - Sachin Nayyar
- Peter Munk Cardiac Center University Health Network Toronto Ontario Canada
| | | | | | - Arnold Pinter
- Division of Cardiology St. Michael's Hospital Toronto Ontario Canada
| | - Eugene Crystal
- Division of Cardiology Sunnybrook Health Sciences Center Toronto Ontario Canada
| | - Vijay S Chauhan
- Peter Munk Cardiac Center University Health Network Toronto Ontario Canada
| |
Collapse
|
12
|
Pandozi C, Lavalle C, Russo M, Galeazzi M, Ficili S, Malacrida M, Centurion Aznaran C, Colivicchi F. Mapping of ventricular tachycardia in patients with ischemic cardiomyopathy: Current approaches and future perspectives. Clin Cardiol 2019; 42:1041-1050. [PMID: 31411347 PMCID: PMC6788471 DOI: 10.1002/clc.23245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/12/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023] Open
Abstract
Despite the technical improvements made in recent years, the overall long-term success rate of ventricular tachycardia (VT) ablation in patients with ischemic cardiomyopathy remains disappointing. This unsatisfactory situation has persisted even though several approaches to VT substrate ablation allow mapping and ablation of noninducible/nontolerated arrhythmias. The current substrate mapping methods present some shortcomings regarding the accurate definition of the true scar, the modality of detection in sinus rhythm of abnormal electrograms that identify sites of critical channels during VT and the possibility to determine the boundaries of functional re-entrant circuits during sinus or paced rhythms. In this review, we focus on current and proposed ablation strategies for VT to provide an overview of the potential/real application (and results) of several ablation approaches and future perspectives.
Collapse
Affiliation(s)
- Claudio Pandozi
- Division of Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - Carlo Lavalle
- Division of Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - Maurizio Russo
- Division of Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - Marco Galeazzi
- Division of Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - Sabina Ficili
- Division of Cardiology, San Filippo Neri Hospital, Rome, Italy
| | | | | | | |
Collapse
|
13
|
Martin CA, Martin R, Maury P, Meyer C, Wong T, Dallet C, Shi R, Gajendragadkar P, Takigawa M, Frontera A, Cheniti G, Thompson N, Kitamura T, Vlachos K, Wolf M, Bourier F, Lam A, Duchâteau J, Massoullié G, Pambrun T, Denis A, Derval N, Dubois R, Hocini M, Haïssaguerre M, Jaïs P, Sacher F. Effect of Activation Wavefront on Electrogram Characteristics During Ventricular Tachycardia Ablation. Circ Arrhythm Electrophysiol 2019; 12:e007293. [DOI: 10.1161/circep.119.007293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Claire A. Martin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom (C.A.M., P.G.)
| | - Ruairidh Martin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
- Newcastle University, United Kingdom (R.M.)
| | | | | | - Tom Wong
- Brompton Hospital, London, United Kingdom (T.W., R.S.)
| | - Corentin Dallet
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Rui Shi
- Brompton Hospital, London, United Kingdom (T.W., R.S.)
| | - Parag Gajendragadkar
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom (C.A.M., P.G.)
| | - Masateru Takigawa
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Antonio Frontera
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Ghassen Cheniti
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Nathaniel Thompson
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Takeshi Kitamura
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Konstantinos Vlachos
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Michael Wolf
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Felix Bourier
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Anna Lam
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Josselin Duchâteau
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Grégoire Massoullié
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Thomas Pambrun
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Arnaud Denis
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Nicolas Derval
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Rémi Dubois
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Mélèze Hocini
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Michel Haïssaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Pierre Jaïs
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| | - Frédéric Sacher
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-/Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, University of Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, France/Pessac–Bordeaux, France (C.A.M., R.M., C.D., M.T., A.F., G.C., N.T., T.K., K.V., M.W., F.B., A.L., J.D., G.M., T.P., A.D., N.D., R.D., M. Hocini, M. Haïssaguerre, P.J., F.S.)
| |
Collapse
|
14
|
Raiman M, Tung R. Automated isochronal late activation mapping to identify deceleration zones: Rationale and methodology of a practical electroanatomic mapping approach for ventricular tachycardia ablation. Comput Biol Med 2018; 102:336-340. [PMID: 30033360 DOI: 10.1016/j.compbiomed.2018.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 11/28/2022]
Abstract
Sinus rhythm surrogates for critical isthmus sites are highly desirable because the vast majority of VT is hemodynamically unstable. While many ablation strategies to decrease the arrhythmogenicity of scar have been shown to be effective, the predominant method for electroanatomic mapping relies on a voltage-based depiction of scar and abnormal electrograms. A functional prioritization of slow conduction, distinct from late activation, is feasible in clinical practice with the creation of isochronal late activation maps. Regions of slow conduction are easily visualized with isochronal displays of baseline intrinsic rhythm activation and deceleration zones, where isochrones crowd, have been observed to have strong correlation with successful ablation sites. Automated annotation of the offset of local electrograms was developed to create the propagation maps to incorporate electrogram width and completion of local activation. Simple conduction velocity estimates where three isochrones are seen within a 1 cm radium confirm that deceleration zones harbor conduction velocity of <0.6 m/s. We present a practical methodology of analyzing electroanatomic substrate in a voltage-independent manner with correlation to reentrant VT. Non-linear 3D transmyocardial conduction limits the validity of conduction velocity estimates that assume planar and tangential conduction and we show an example of a patient with 3D isthmus boundaries with an activation gap on the epicardial surface during tachycardia.
Collapse
Affiliation(s)
| | - Roderick Tung
- The University of Chicago Medicine, Center for Arrhythmia Care
- Heart and Vascular Center, Pritzker School of Medicine, Chicago, IL, USA.
| |
Collapse
|
15
|
Ciaccio EJ, Peters NS, Garan H. Effects of refractory gradients and ablation on fibrillatory activity. Comput Biol Med 2018; 95:175-187. [PMID: 29501736 DOI: 10.1016/j.compbiomed.2018.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND The mechanisms involved in onset, maintenance, and termination of atrial fibrillation are not well understood. A biophysical model could be useful to determine how the events unfold. METHOD A two-dimensional cellular automaton consisting of 576 × 576 grid nodes was implemented to demonstrate the types of electrical activity that may occur in compromised atrial substrate. Electrical activation between nodes was made anisotropic (2:1), and the refractory period (RP) was adjusted from 74 to 192 ms in the spatial domain. Presence of collagen fibers were simulated as short lines of conduction block at many random grid sites, while ablation lesions were delineated as longer lines of block. An S1-S2 pulse from one grid corner was utilized to initiate simulated electrical activity. Simulations were done in which 1. no ablation lines, 2. random ablation lines, and 3. parallel ablation lines were added to the grid to determine how this affected the formation and annihilation of rotational activity after S1-S2 stimulation. RESULTS As the premature (S2) wavefront traversed the grid, rotational activity formed near boundaries where wavefronts propagated from shorter to longer refractory regions, causing unidirectional block, and were anchored by fiber clusters. Multiple wavelets appeared when wavefronts originating from different driving rotational features collided, and/or by their encounter with RP discontinuities. With the addition of randomly orientated simulated ablation lesions, followed by reinduction of fibrillatory activity, mean activation interval (AI) prolonged from a baseline level of 144.2 ms-160.3 ms (p < 0.001 in most comparisons). During fibrillatory activity, when parallel ablation lines were added to short RP regions, AI prolonged to 150.4 ms (p < 0.001), and when added to long RP regions, AI prolonged to 185.3 ms (p < 0.001). In all cases, AI prolongation after simulated ablation resulted from reduced number and/or from the isolation of local drivers, so that distant drivers in short RP regions activated long RP regions N:1, while distant drivers in long RP regions activated short RP regions at a relatively slow rate. CONCLUSIONS An automaton model was found useful to generate and test hypotheses concerning fibrillatory activity, which can then be validated in the clinical electrophysiology laboratory.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, United States; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK.
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Hasan Garan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
16
|
McGillivray MF, Cheng W, Peters NS, Christensen K. Machine learning methods for locating re-entrant drivers from electrograms in a model of atrial fibrillation. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172434. [PMID: 29765687 PMCID: PMC5936952 DOI: 10.1098/rsos.172434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/13/2018] [Indexed: 05/14/2023]
Abstract
Mapping resolution has recently been identified as a key limitation in successfully locating the drivers of atrial fibrillation (AF). Using a simple cellular automata model of AF, we demonstrate a method by which re-entrant drivers can be located quickly and accurately using a collection of indirect electrogram measurements. The method proposed employs simple, out-of-the-box machine learning algorithms to correlate characteristic electrogram gradients with the displacement of an electrogram recording from a re-entrant driver. Such a method is less sensitive to local fluctuations in electrical activity. As a result, the method successfully locates 95.4% of drivers in tissues containing a single driver, and 95.1% (92.6%) for the first (second) driver in tissues containing two drivers of AF. Additionally, we demonstrate how the technique can be applied to tissues with an arbitrary number of drivers. In its current form, the techniques presented are not refined enough for a clinical setting. However, the methods proposed offer a promising path for future investigations aimed at improving targeted ablation for AF.
Collapse
Affiliation(s)
- Max Falkenberg McGillivray
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - William Cheng
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London W12 0NN, UK
| | - Kim Christensen
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London W12 0NN, UK
| |
Collapse
|
17
|
Ciaccio EJ, Coromilas J, Wit AL, Peters NS, Garan H. Source-Sink Mismatch Causing Functional Conduction Block in Re-Entrant Ventricular Tachycardia. JACC Clin Electrophysiol 2017; 4:1-16. [PMID: 29600773 PMCID: PMC5874259 DOI: 10.1016/j.jacep.2017.08.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/14/2017] [Accepted: 08/31/2017] [Indexed: 12/04/2022]
Abstract
Ventricular tachycardia (VT) caused by a re-entrant circuit is a life-threatening arrhythmia that at present cannot always be treated adequately. A realistic model of re-entry would be helpful to accurately guide catheter ablation for interruption of the circuit. In this review, models of electrical activation wavefront propagation during onset and maintenance of re-entrant VT are discussed. In particular, the relationship between activation mapping and maps of transition in infarct border zone thickness, which results in source-sink mismatch, is considered in detail and supplemented with additional data. Based on source-sink mismatch, the re-entry isthmus can be modeled from its boundary properties. Isthmus boundary segments with large transitions in infarct border zone thickness have large source-sink mismatch, and functional block forms there during VT. These alternate with segments having lesser thickness change and therefore lesser source-sink mismatch, which act as gaps, or entrance and exit points, to the isthmus during VT. Besides post-infarction substrates, the source-sink model is likely applicable to other types of volumetric changes in the myocardial conducting medium, such as when there is presence of fibrosis or dissociation of muscle fibers.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom.
| | - James Coromilas
- Department of Medicine, Division of Cardiovascular Disease and Hypertension, Rutgers University, New Brunswick, New Jersey
| | - Andrew L Wit
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom
| | - Hasan Garan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
18
|
Tse G, Liu T, Li G, Keung W, Yeo JM, Fiona Chan YW, Yan BP, Chan YS, Wong SH, Li RA, Zhao J, Wu WKK, Wong WT. Effects of pharmacological gap junction and sodium channel blockade on S1S2 restitution properties in Langendorff-perfused mouse hearts. Oncotarget 2017; 8:85341-85352. [PMID: 29156723 PMCID: PMC5689613 DOI: 10.18632/oncotarget.19675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022] Open
Abstract
Gap junctions and sodium channels are the major molecular determinants of normal and abnormal electrical conduction through the myocardium, however, their exact contributions to arrhythmogenesis are unclear. We examined conduction and recovery properties of regular (S1) and extrasystolic (S2) action potentials (APs), S1S2 restitution and ventricular arrhythmogenicity using the gap junction and sodium channel inhibitor heptanol (2 mM) in Langendorff-perfused mouse hearts (n=10). Monophasic action potential recordings obtained during S1S2 pacing showed that heptanol increased the proportion of hearts showing inducible ventricular tachycardia (0/10 vs. 5/8 hearts (Fisher’s exact test, P < 0.05), prolonged activation latencies of S1 and S2 APs, thereby decreasing S2/S1 activation latency ratio (ANOVA, P < 0.05) despite prolonged ventricular effective refractory period (VERP). It did not alter S1 action potential duration at 90% repolarization (APD90) but prolonged S2 APD90 (P < 0.05), thereby increasing S2/S1 APD90 ratio (P < 0.05). It did not alter maximum conduction velocity (CV) restitution gradient or maximum CV reductions but decreased the restitution time constant (P < 0.05). It increased maximal APD90 restitution gradient (P < 0.05) without altering critical diastolic interval or maximum APD90 reductions. Pro-arrhythmic effects of 2 mM heptanol are explicable by delayed conduction and abnormal electrical restitution. We concluded that gap junctions modulated via heptanol (0.05 mM) increased arrhythmogenicity through a delay in conduction, while sodium channel inhibition by a higher concentration of heptanol (2 mM) increased arrhythmogenicity via additional mechanisms, such as abnormalities in APDs and CV restitution.
Collapse
Affiliation(s)
- Gary Tse
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - Jie Ming Yeo
- Faculty of Medicine, Imperial College London, London, UK
| | | | - Bryan P Yan
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Yat Sun Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Ronald A Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Solna, Sweden
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Tak Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Graham AJ, Orini M, Lambiase PD. Limitations and Challenges in Mapping Ventricular Tachycardia: New Technologies and Future Directions. Arrhythm Electrophysiol Rev 2017; 6:118-124. [PMID: 29018519 DOI: 10.15420/aer.2017.20.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recurrent episodes of ventricular tachycardia in patients with structural heart disease are associated with increased mortality and morbidity, despite the life-saving benefits of implantable cardiac defibrillators. Reducing implantable cardiac defibrillator therapies is important, as recurrent shocks can cause increased myocardial damage and stunning, despite the conversion of ventricular tachycardia/ventricular fibrillation. Catheter ablation has emerged as a potential therapeutic option either for primary or secondary prevention of these arrhythmias, particularly in post-myocardial infarction cases where the substrate is well defined. However, the outcomes of catheter ablation of ventricular tachycardia in structural heart disease remain unsatisfactory in comparison with other electrophysiological procedures. The disappointing efficacy of ventricular tachycardia ablation in structural heart disease is multifactorial. In this review, we discuss the issues surrounding this and examine the limitations of current mapping approaches, as well as newer technologies that might help address them.
Collapse
Affiliation(s)
| | - Michele Orini
- Barts Heart Centre, London.,Institute of Cardiovascular Science, UCL, London, United Kingdom
| | - Pier D Lambiase
- Barts Heart Centre, London.,Institute of Cardiovascular Science, UCL, London, United Kingdom
| |
Collapse
|
20
|
Trends in quantitative methods used for atrial fibrillation and ventricular tachycardia analyses. INFORMATICS IN MEDICINE UNLOCKED 2017. [DOI: 10.1016/j.imu.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|