1
|
Tahir UA, Kolm P, Kwong RY, Desai MY, Dolman SF, Deng S, Appelbaum E, Desvigne-Nickens P, DiMarco JP, Tiwari G, Friedrich MG, Zelaya-Portillo JH, Jerosch-Herold M, Kim DY, Maron MS, Piechnik SK, Schulz-Menger J, Watkins H, Weintraub WS, Neubauer S, Kramer CM, Jarolim P, Gerszten RE, Ho CY. Protein Biomarkers of Adverse Clinical Features and Events in Sarcomeric Hypertrophic Cardiomyopathy. Circ Heart Fail 2024; 17:e011707. [PMID: 39498543 DOI: 10.1161/circheartfailure.124.011707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/11/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a heterogeneous condition that can lead to atrial fibrillation, heart failure, and sudden cardiac death in many individuals but mild clinical impact in others. The mechanisms underlying this phenotypic heterogeneity are not well defined. The aim of this study was to use plasma proteomic profiling to help illuminate biomarkers that reflect or inform the heterogeneity observed in HCM. METHODS The Olink antibody-based proteomic platform was used to measure plasma proteins in patients with genotype positive (sarcomeric) HCM participating in the HCM Registry. We assessed associations between plasma protein levels with clinical features, cardiac magnetic resonance imaging metrics, and the development of atrial fibrillation. RESULTS We measured 275 proteins in 701 patients with sarcomeric HCM. There were associations between late gadolinium enhancement with proteins reflecting neurohormonal activation (NT-proBNP [N-terminal pro-B-type natriuretic peptide] and ACE2 [angiotensin-converting enzyme 2]). Metrics of left ventricular remodeling had novel associations with proteins involved in vascular development and homeostasis (vascular endothelial growth factor-D and TM [thrombomodulin]). Assessing clinical features, the European Society of Cardiology sudden cardiac death risk score was inversely associated with SCF (stem cell factor). Incident atrial fibrillation was associated with mediators of inflammation and fibrosis (MMP2 [matrix metalloproteinase 2] and SPON1 [spondin 1]). CONCLUSIONS Proteomic profiling of sarcomeric HCM identified biomarkers associated with adverse imaging and clinical phenotypes. These circulating proteins are part of both established pathways, including neurohormonal activation and fibrosis, and less familiar pathways, including endothelial function and inflammatory proteins less well characterized in HCM. These findings highlight the value of plasma profiling to identify biomarkers of risk and to gain further insights into the pathophysiology of HCM.
Collapse
Affiliation(s)
- Usman A Tahir
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA (U.A.T., S.D., E.A., G.T., R.E.G.)
| | - Paul Kolm
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (P.K., S.K.P., H.W., S.N.)
| | - Raymond Y Kwong
- Departments of Medicine, Radiology, and Pathology, Brigham and Women's Hospital, Boston, MA (R.Y.K., M.J.-H., P.J., C.Y.H.)
| | - Milind Y Desai
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, OH (M.Y.D)
| | - Sarahfaye F Dolman
- MedStar Heart and Vascular Institute, Washington, DC (S.F.D., J.H.Z.-P., W.S.W.)
| | - Shuliang Deng
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA (U.A.T., S.D., E.A., G.T., R.E.G.)
| | - Evan Appelbaum
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA (U.A.T., S.D., E.A., G.T., R.E.G.)
| | | | - John P DiMarco
- Cardiovascular Division, University of Virginia Health System, Charlottesville (J.P.D., C.M.K.)
| | - Gaurav Tiwari
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA (U.A.T., S.D., E.A., G.T., R.E.G.)
| | | | | | - Michael Jerosch-Herold
- Departments of Medicine, Radiology, and Pathology, Brigham and Women's Hospital, Boston, MA (R.Y.K., M.J.-H., P.J., C.Y.H.)
| | - Dong-Yun Kim
- National Heart, Lung, and Blood Institute, Bethesda, MD (P.D.-N., D.-Y.K.)
| | - Martin S Maron
- Lahey Hospital and Medical Center, Burlington, MA (M.S.M.)
| | - Stefan K Piechnik
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (P.K., S.K.P., H.W., S.N.)
| | - Jeanette Schulz-Menger
- Charité Experimental Clinical Research Center and Helios Clinics Berlin-Buch, Germany (J.S.-M.)
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (P.K., S.K.P., H.W., S.N.)
| | - William S Weintraub
- MedStar Heart and Vascular Institute, Washington, DC (S.F.D., J.H.Z.-P., W.S.W.)
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (P.K., S.K.P., H.W., S.N.)
| | - Christopher M Kramer
- Cardiovascular Division, University of Virginia Health System, Charlottesville (J.P.D., C.M.K.)
| | - Petr Jarolim
- Departments of Medicine, Radiology, and Pathology, Brigham and Women's Hospital, Boston, MA (R.Y.K., M.J.-H., P.J., C.Y.H.)
| | - Robert E Gerszten
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA (U.A.T., S.D., E.A., G.T., R.E.G.)
| | - Carolyn Y Ho
- Departments of Medicine, Radiology, and Pathology, Brigham and Women's Hospital, Boston, MA (R.Y.K., M.J.-H., P.J., C.Y.H.)
| |
Collapse
|
2
|
Lumish HS, Sherrid MV, Janssen PML, Ferrari G, Hasegawa K, Castillero E, Adlestein E, Swistel DG, Topkara VK, Maurer MS, Reilly MP, Shimada YJ. Comprehensive Proteomic Profiling of Human Myocardium Reveals Signaling Pathways Dysregulated in Hypertrophic Cardiomyopathy. J Am Coll Cardiol 2024; 84:1999-2011. [PMID: 39365226 DOI: 10.1016/j.jacc.2024.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease. Signaling pathways that link genetic sequence variants to clinically overt HCM and progression to severe forms of HCM remain unknown. OBJECTIVES The purpose of this study was to identify signaling pathways that are differentially regulated in HCM, using proteomic profiling of human myocardium, confirmed with transcriptomic profiling. METHODS In this multicenter case-control study, myocardial samples were obtained from cases with HCM and control subjects with nonfailing hearts. Proteomic profiling of 7,289 proteins from myocardial samples was performed using the SomaScan assay (SomaLogic). Pathway analysis of differentially expressed proteins was performed, using a false discovery rate <0.05. Pathway analysis of proteins whose concentrations correlated with clinical indicators of severe HCM (eg, reduced left ventricular ejection fraction, atrial fibrillation, and ventricular tachyarrhythmias) was also executed. Confirmatory analysis of differentially expressed genes was performed using myocardial transcriptomic profiling. RESULTS The study included 99 HCM cases and 15 control subjects. Pathway analysis of differentially expressed proteins revealed dysregulation of the Ras-mitogen-activated protein kinase, ubiquitin-mediated proteolysis, angiogenesis-related (eg, hypoxia-inducible factor-1, vascular endothelial growth factor), and Hippo pathways. Pathways known to be dysregulated in HCM, including metabolic, inflammatory, and extracellular matrix pathways, were also dysregulated. Pathway analysis of proteins associated with clinical indicators of severe HCM and of differentially expressed genes supported these findings. CONCLUSIONS The present study represents the most comprehensive (>7,000 proteins) and largest-scale (n = 99 HCM cases) proteomic profiling of human HCM myocardium to date. Proteomic profiling and confirmatory transcriptomic profiling elucidate dysregulation of both newly recognized (eg, Ras-mitogen-activated protein kinase) and known pathways associated with pathogenesis and progression to severe forms of HCM.
Collapse
Affiliation(s)
- Heidi S Lumish
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Mark V Sherrid
- Leon Charney Division of Cardiology, New York University Langone Health, New York, New York, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Giovanni Ferrari
- Division of Cardiothoracic and Vascular Surgery, Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA; Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Estibaliz Castillero
- Division of Cardiothoracic and Vascular Surgery, Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Elizabeth Adlestein
- Leon Charney Division of Cardiology, New York University Langone Health, New York, New York, USA
| | - Daniel G Swistel
- Department of Cardiothoracic Surgery, New York University Langone Health, New York, New York, USA
| | - Veli K Topkara
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Mathew S Maurer
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA; Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Yuichi J Shimada
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
3
|
Hu Y, Zou Y, Qiao L, Lin L. Integrative proteomic and metabolomic elucidation of cardiomyopathy with in vivo and in vitro models and clinical samples. Mol Ther 2024; 32:3288-3312. [PMID: 39233439 PMCID: PMC11489546 DOI: 10.1016/j.ymthe.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Cardiomyopathy is a prevalent cardiovascular disease that affects individuals of all ages and can lead to life-threatening heart failure. Despite its variety in types, each with distinct characteristics and causes, our understanding of cardiomyopathy at a systematic biology level remains incomplete. Mass spectrometry-based techniques have emerged as powerful tools, providing a comprehensive view of the molecular landscape and aiding in the discovery of biomarkers and elucidation of mechanisms. This review highlights the significant potential of integrating proteomic and metabolomic approaches with specialized databases to identify biomarkers and therapeutic targets across different types of cardiomyopathies. In vivo and in vitro models, such as genetically modified mice, patient-derived or induced pluripotent stem cells, and organ chips, are invaluable in exploring the pathophysiological complexities of this disease. By integrating omics approaches with these sophisticated modeling systems, our comprehension of the molecular underpinnings of cardiomyopathy can be greatly enhanced, facilitating the development of diagnostic markers and therapeutic strategies. Among the promising therapeutic targets are those involved in extracellular matrix remodeling, sarcomere damage, and metabolic remodeling. These targets hold the potential to advance precision therapy in cardiomyopathy, offering hope for more effective treatments tailored to the specific molecular profiles of patients.
Collapse
Affiliation(s)
- Yiwei Hu
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| | - Yunzeng Zou
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Liang Qiao
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Ling Lin
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| |
Collapse
|
4
|
Scolari FL, Brahmbhatt D, Abelson S, Lee D, Kim RH, Pedarzadeh A, Sakhnini A, Adler A, Chan RH, Dick JE, Rakowski H, Billia F. Clonal haematopoiesis is associated with major adverse cardiovascular events in patients with hypertrophic cardiomyopathy. Eur J Heart Fail 2024; 26:2193-2202. [PMID: 39091134 DOI: 10.1002/ejhf.3408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
AIMS The heterogeneous phenotype of hypertrophic cardiomyopathy (HCM) is still not fully understood. Clonal haematopoiesis (CH) is emerging as a cardiovascular risk factor potentially associated with adverse clinical events. The prevalence, phenotype and outcomes related to CH in HCM patients were evaluated. METHODS AND RESULTS Patients with HCM and available biospecimens from the Peter Munk Cardiac Centre Cardiovascular Biobank were subjected to targeted sequencing for 35 myeloid genes associated with CH. CH prevalence, clinical characteristics, morphological phenotypes assessed by echocardiogram and cardiac magnetic resonance and outcomes were assessed. All patients were evaluated for a 71-plex cytokines/chemokines, troponin I and B-type natriuretic peptide analysis. Major adverse cardiovascular events (MACE) were defined as appropriate implantable cardioverter-defibrillator shock, stroke, cardiac arrest, orthotopic heart transplant and death. Among the 799 patients, CH was found in 183 (22.9%) HCM patients with sarcomeric germline mutations. HCM patients with CH were more symptomatic and with a higher burden of fibrosis than those without CH. CH was associated with MACE in those HCM patients with sarcomeric germline mutations (adjusted hazard ratio [HR] 6.89, 95% confidence interval [CI] 1.78-26.6; p = 0.005), with the highest risk among those that had DNMT3A, TET2 and ASXL1 mutations (adjusted HR 5.76, 95% CI 1.51-21.94; p = 0.010). Several cytokines (IL-1ra, IL-6, IL-17F, TGFα, CCL21, CCL1, CCL8, and CCL17), and troponin I were upregulated in gene-positive HCM patients with CH. CONCLUSIONS These results indicate that CH in patients with HCM is associated with worse clinical outcomes. In the absence of CH, gene-positive patients with HCM have lower rates of MACE.
Collapse
Affiliation(s)
- Fernando L Scolari
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Darshan Brahmbhatt
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
- Mount Sinai Hospital, Toronto, ON, Canada
| | - Sagi Abelson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Deacon Lee
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Raymond H Kim
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada
| | - Ali Pedarzadeh
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Ali Sakhnini
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Arnon Adler
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Raymond H Chan
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Institute for Clinical Evaluation Sciences, Toronto, ON, Canada
| | - John E Dick
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Harry Rakowski
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Filio Billia
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Toronto, ON, Canada
| |
Collapse
|
5
|
Singh J, Jackson KL, Fang H, Gumanti A, Claridge B, Tang FS, Kiriazis H, Salimova E, Parker AM, Nowell C, Woodman OL, Greening DW, Ritchie RH, Head GA, Qin CX. Novel formylpeptide receptor 1/2 agonist limits hypertension-induced cardiovascular damage. Cardiovasc Res 2024; 120:1336-1350. [PMID: 38879891 PMCID: PMC11416058 DOI: 10.1093/cvr/cvae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/06/2024] [Accepted: 03/17/2024] [Indexed: 06/18/2024] Open
Abstract
AIMS Formylpeptide receptors (FPRs) play a critical role in the regulation of inflammation, an important driver of hypertension-induced end-organ damage. We have previously reported that the biased FPR small-molecule agonist, compound17b (Cmpd17b), is cardioprotective against acute, severe inflammatory insults. Here, we reveal the first compelling evidence of the therapeutic potential of this novel FPR agonist against a longer-term, sustained inflammatory insult, i.e. hypertension-induced end-organ damage. The parallels between the murine and human hypertensive proteome were also investigated. METHODS AND RESULTS The hypertensive response to angiotensin II (Ang II, 0.7 mg/kg/day, s.c.) was attenuated by Cmpd17b (50 mg/kg/day, i.p.). Impairments in cardiac and vascular function assessed via echocardiography were improved by Cmpd17b in hypertensive mice. This functional improvement was accompanied by reduced cardiac and aortic fibrosis and vascular calcification. Cmpd17b also attenuated Ang II-induced increased cardiac mitochondrial complex 2 respiration. Proteomic profiling of cardiac and aortic tissues and cells, using label-free nano-liquid chromatography with high-sensitivity mass spectrometry, detected and quantified ∼6000 proteins. We report hypertension-impacted protein clusters associated with dysregulation of inflammatory, mitochondrial, and calcium responses, as well as modified networks associated with cardiovascular remodelling, contractility, and structural/cytoskeletal organization. Cmpd17b attenuated hypertension-induced dysregulation of multiple proteins in mice, and of these, ∼110 proteins were identified as similarly dysregulated in humans suffering from adverse aortic remodelling and cardiac hypertrophy. CONCLUSION We have demonstrated, for the first time, that the FPR agonist Cmpd17b powerfully limits hypertension-induced end-organ damage, consistent with proteome networks, supporting development of pro-resolution FPR-based therapeutics for treatment of systemic hypertension complications.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Angiotensin II
- Anti-Inflammatory Agents/pharmacology
- Antihypertensive Agents/pharmacology
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Blood Pressure/drug effects
- Disease Models, Animal
- Fibrosis
- Hypertension/metabolism
- Hypertension/physiopathology
- Hypertension/drug therapy
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Proteomics
- Receptors, Formyl Peptide/metabolism
- Receptors, Formyl Peptide/agonists
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Jaideep Singh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Kristy L Jackson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Haoyun Fang
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Audrey Gumanti
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Bethany Claridge
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Feng Shii Tang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Helen Kiriazis
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, Melbourne, VIC, Australia
| | - Alex M Parker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Cameron Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - David W Greening
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Pharmacology, School of Pharmaceutical Sciences, Qilu College of Medicine, Shandong University, 44 Wenhua Xilu, Jinan, Shandong 250012, PR China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, Shandong 250012, PR China
| |
Collapse
|
6
|
Heywood WE, Searle J, Collis R, Doykov I, Ashworth M, Sebire N, Bamber A, Gautel M, Eaton S, Coats CJ, Elliott PM, Mills K. A Proof of Principle 2D Spatial Proteome Mapping Analysis Reveals Distinct Regional Differences in the Cardiac Proteome. Life (Basel) 2024; 14:970. [PMID: 39202712 PMCID: PMC11355120 DOI: 10.3390/life14080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Proteomics studies often explore phenotypic differences between whole organs and systems. Within the heart, more subtle variation exists. To date, differences in the underlying proteome are only described between whole cardiac chambers. This study, using the bovine heart as a model, investigates inter-regional differences and assesses the feasibility of measuring detailed, cross-tissue variance in the cardiac proteome. Using a bovine heart, we created a two-dimensional section through a plane going through two chambers. This plane was further sectioned into 4 × 4 mm cubes and analysed using label-free proteomics. We identified three distinct proteomes. When mapped to the extracted sections, the proteomes corresponded largely to the outer wall of the right ventricle and secondly to the outer wall of the left ventricle, right atrial appendage, tricuspid and mitral valves, modulator band, and parts of the left atrium. The third separate proteome corresponded to the inner walls of the left and right ventricles, septum, and left atrial appendage. Differential protein abundancies indicated differences in energy metabolism between regions. Data analyses of the mitochondrial proteins revealed a variable pattern of abundances of complexes I-V between the proteomes, indicating differences in the bioenergetics of the different cardiac sub-proteomes. Mapping of disease-associated proteins interestingly showed desmoglein-2, for which defects in this protein are known to cause Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy, which was present predominantly in the outer wall of the left ventricle. This study highlights that organs can have variable proteomes that do not necessarily correspond to anatomical features.
Collapse
Affiliation(s)
- Wendy E. Heywood
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Jon Searle
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Richard Collis
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
| | - Ivan Doykov
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Michael Ashworth
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Neil Sebire
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Andrew Bamber
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College, London WC2E 2LS, UK
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Caroline J. Coats
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
| | - Perry M. Elliott
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
- Barts Heart Centre, and the Inherited Cardiovascular Diseases Unit, St Bartholomew’s Hospital, West Smithfield, London EC1A 7BE, UK
| | - Kevin Mills
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| |
Collapse
|
7
|
Tonry C, Linden K, Collier P, Ledwidge M, McDonald K, Collins BC, Watson CJ. Proteomic Characterisation of Heart Failure Reveals a Unique Molecular Phenotype for Hypertrophic Cardiomyopathy. Biomedicines 2024; 12:1712. [PMID: 39200175 PMCID: PMC11351942 DOI: 10.3390/biomedicines12081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/02/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a disease, which is difficult to diagnose at an early stage and for which there is a pressing need for more effective treatment options. The purpose of this study was to compare the molecular profile of HCM to that of ischaemic cardiomyopathy (ISCM) and dilated cardiomyopathy (DCM) for identification of protein and pathway targets that could support the development of better diagnostic and treatment options for HCM. A high-throughput mass spectrometry workflow was applied to achieve deep quantitative coverage of left ventricular tissue from HCM, DCM, ISCM and non-heart-failure control patients. HCM had a diverse proteomic profile compared to that of DCM and ISCM. Differentially expressed proteins unique to HCM were identified based on an observed fold change of ≥1.5 or ≤0.67 and q-value ≤ 0.05. Candidate proteins of interest were found to be significantly associated with clinical features of HCM. The significant association between these proteins and HCM was validated in an independent dataset. This represents one of the largest and deepest proteomic datasets for myocardial tissue reported to date. The dataset highlights the diverse proteomic profile of HCM, relative to other cardiomyopathies, and reveals disease-relevant pathways and promising biomarker candidates that are uniquely associated with HCM.
Collapse
Affiliation(s)
- Claire Tonry
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.T.)
| | - Katie Linden
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.T.)
| | - Patrick Collier
- Department of Cardiovascular Medicine, Cleveland Clinic, OH 44195, USA
| | - Mark Ledwidge
- STOP-HF Unit, Department of Cardiology, St. Vincent’s University Hospital Healthcare Group, D04 T6F4 Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Ken McDonald
- STOP-HF Unit, Department of Cardiology, St. Vincent’s University Hospital Healthcare Group, D04 T6F4 Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Ben C. Collins
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| | - Chris J. Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.T.)
- STOP-HF Unit, Department of Cardiology, St. Vincent’s University Hospital Healthcare Group, D04 T6F4 Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
8
|
Nollet EE, Schuldt M, Sequeira V, Binek A, Pham TV, Schoonvelde SA, Jansen M, Schomakers BV, van Weeghel M, Vaz FM, Houtkooper RH, Van Eyk JE, Jimenez CR, Michels M, Bedi KC, Margulies KB, dos Remedios CG, Kuster DW, van der Velden J. Integrating Clinical Phenotype With Multiomics Analyses of Human Cardiac Tissue Unveils Divergent Metabolic Remodeling in Genotype-Positive and Genotype-Negative Patients With Hypertrophic Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004369. [PMID: 38853772 PMCID: PMC11188634 DOI: 10.1161/circgen.123.004369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/31/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is caused by sarcomere gene mutations (genotype-positive HCM) in ≈50% of patients and occurs in the absence of mutations (genotype-negative HCM) in the other half of patients. We explored how alterations in the metabolomic and lipidomic landscape are involved in cardiac remodeling in both patient groups. METHODS We performed proteomics, metabolomics, and lipidomics on myectomy samples (genotype-positive N=19; genotype-negative N=22; and genotype unknown N=6) from clinically well-phenotyped patients with HCM and on cardiac tissue samples from sex- and age-matched and body mass index-matched nonfailing donors (N=20). These data sets were integrated to comprehensively map changes in lipid-handling and energy metabolism pathways. By linking metabolomic and lipidomic data to variability in clinical data, we explored patient group-specific associations between cardiac and metabolic remodeling. RESULTS HCM myectomy samples exhibited (1) increased glucose and glycogen metabolism, (2) downregulation of fatty acid oxidation, and (3) reduced ceramide formation and lipid storage. In genotype-negative patients, septal hypertrophy and diastolic dysfunction correlated with lowering of acylcarnitines, redox metabolites, amino acids, pentose phosphate pathway intermediates, purines, and pyrimidines. In contrast, redox metabolites, amino acids, pentose phosphate pathway intermediates, purines, and pyrimidines were positively associated with septal hypertrophy and diastolic impairment in genotype-positive patients. CONCLUSIONS We provide novel insights into both general and genotype-specific metabolic changes in HCM. Distinct metabolic alterations underlie cardiac disease progression in genotype-negative and genotype-positive patients with HCM.
Collapse
Affiliation(s)
- Edgar E. Nollet
- Department of Physiology (E.E.N., M.S., D.W.D.K., J.v.d.V.), Amsterdam UMC, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.E.N., M.S., D.W.D.K., J.v.d.V.)
| | - Maike Schuldt
- Department of Physiology (E.E.N., M.S., D.W.D.K., J.v.d.V.), Amsterdam UMC, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.E.N., M.S., D.W.D.K., J.v.d.V.)
| | - Vasco Sequeira
- Department of Translational Science Universitätsklinikum, Deutsches Zentrum für Herzinsuffizienz, Würzburg, Germany (V.S.)
| | - Aleksandra Binek
- Advanced Clinical Biosystems Research Institute (A.B., J.E.V.E.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Thang V. Pham
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory (T.V.P., C.R.J.), Amsterdam UMC, the Netherlands
| | | | - Mark Jansen
- Division of Genetics and Department of Cardiology, UMC Utrecht, the Netherlands (M.J.)
| | - Bauke V. Schomakers
- Laboratory Genetic Metabolic Diseases (B.V.S., M.v.W., F.M.V., R.H.H.), Amsterdam UMC, the Netherlands
- Core Facility Metabolomics (B.V.S., M.v.W., F.M.V.), Amsterdam UMC, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases (B.V.S., M.v.W., F.M.V., R.H.H.), Amsterdam UMC, the Netherlands
- Core Facility Metabolomics (B.V.S., M.v.W., F.M.V.), Amsterdam UMC, the Netherlands
| | - Fred M. Vaz
- Laboratory Genetic Metabolic Diseases (B.V.S., M.v.W., F.M.V., R.H.H.), Amsterdam UMC, the Netherlands
- Core Facility Metabolomics (B.V.S., M.v.W., F.M.V.), Amsterdam UMC, the Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases (B.V.S., M.v.W., F.M.V., R.H.H.), Amsterdam UMC, the Netherlands
- Emma Center for Personalized Medicine (R.H.H.), Amsterdam UMC, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, the Netherlands (R.H.H.)
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute (A.B., J.E.V.E.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Smidt Heart Institute (J.E.V.E.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Connie R. Jimenez
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory (T.V.P., C.R.J.), Amsterdam UMC, the Netherlands
| | - Michelle Michels
- Department of Cardiology, Erasmus MC, Rotterdam, the Netherlands (S.A.C.S., M.M.)
| | - Kenneth C. Bedi
- Cardiovascular Institute, Perelman School of Medicine, Philadelphia, PA (K.C.B., K.B.M.)
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, Philadelphia, PA (K.C.B., K.B.M.)
| | - Cristobal G. dos Remedios
- Sydney Heart Bank, Discipline of Anatomy, Bosch Institute, University of Sydney, NSW, Australia (C.G.d.R.)
| | - Diederik W.D. Kuster
- Department of Physiology (E.E.N., M.S., D.W.D.K., J.v.d.V.), Amsterdam UMC, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.E.N., M.S., D.W.D.K., J.v.d.V.)
| | - Jolanda van der Velden
- Department of Physiology (E.E.N., M.S., D.W.D.K., J.v.d.V.), Amsterdam UMC, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.E.N., M.S., D.W.D.K., J.v.d.V.)
| |
Collapse
|
9
|
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, Zhang Z, Geng D, Sun W, Ouyang N, Zhang N, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol 2023; 118:48. [PMID: 37938421 PMCID: PMC10632287 DOI: 10.1007/s00395-023-01018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.
Collapse
Affiliation(s)
- Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Nanxiang Ouyang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
10
|
Garmany R, Bos JM, Dasari S, Johnson KL, Tester DJ, Giudicessi JR, Dos Remedios C, Maleszewski JJ, Ommen SR, Dearani JA, Ackerman MJ. Proteomic and phosphoproteomic analyses of myectomy tissue reveals difference between sarcomeric and genotype-negative hypertrophic cardiomyopathy. Sci Rep 2023; 13:14341. [PMID: 37658118 PMCID: PMC10474105 DOI: 10.1038/s41598-023-40795-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetically heterogenous condition with about half of cases remaining genetically elusive or non-genetic in origin. HCM patients with a positive genetic test (HCMSarc) present earlier and with more severe disease than those with a negative genetic test (HCMNeg). We hypothesized these differences may be due to and/or reflect proteomic and phosphoproteomic differences between the two groups. TMT-labeled mass spectrometry was performed on 15 HCMSarc, 8 HCMNeg, and 7 control samples. There were 243 proteins differentially expressed and 257 proteins differentially phosphorylated between HCMSarc and HCMNeg. About 90% of pathways altered between genotypes were in disease-related pathways and HCMSarc showed enhanced proteomic and phosphoproteomic alterations in these pathways. Thus, we show HCMSarc has enhanced proteomic and phosphoproteomic dysregulation observed which may contribute to the more severe disease phenotype.
Collapse
Affiliation(s)
- Ramin Garmany
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and the Mayo Clinic Medical Scientist Training Program, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Quantitative Health Sciences/Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | | | - David J Tester
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - John R Giudicessi
- Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Cristobal Dos Remedios
- Mechanobiology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Joseph J Maleszewski
- Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Steve R Ommen
- Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Joseph A Dearani
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA.
- Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA.
- Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Nordmeyer S, Kraus M, Ziehm M, Kirchner M, Schafstedde M, Kelm M, Niquet S, Stephen MM, Baczko I, Knosalla C, Schapranow MP, Dittmar G, Gotthardt M, Falcke M, Regitz-Zagrosek V, Kuehne T, Mertins P. Disease- and sex-specific differences in patients with heart valve disease: a proteome study. Life Sci Alliance 2023; 6:e202201411. [PMID: 36627164 PMCID: PMC9834574 DOI: 10.26508/lsa.202201411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Pressure overload in patients with aortic valve stenosis and volume overload in mitral valve regurgitation trigger specific forms of cardiac remodeling; however, little is known about similarities and differences in myocardial proteome regulation. We performed proteome profiling of 75 human left ventricular myocardial biopsies (aortic stenosis = 41, mitral regurgitation = 17, and controls = 17) using high-resolution tandem mass spectrometry next to clinical and hemodynamic parameter acquisition. In patients of both disease groups, proteins related to ECM and cytoskeleton were more abundant, whereas those related to energy metabolism and proteostasis were less abundant compared with controls. In addition, disease group-specific and sex-specific differences have been observed. Male patients with aortic stenosis showed more proteins related to fibrosis and less to energy metabolism, whereas female patients showed strong reduction in proteostasis-related proteins. Clinical imaging was in line with proteomic findings, showing elevation of fibrosis in both patient groups and sex differences. Disease- and sex-specific proteomic profiles provide insight into cardiac remodeling in patients with heart valve disease and might help improve the understanding of molecular mechanisms and the development of individualized treatment strategies.
Collapse
Affiliation(s)
- Sarah Nordmeyer
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Institute for Cardiovascular Computer-Assisted Medicine, Berlin, Germany
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Department of Congenital Heart Disease - Pediatric Cardiology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Milena Kraus
- Hasso Plattner Institute for Digital Engineering, Digital Health Center, University of Potsdam, Potsdam, Germany
| | - Matthias Ziehm
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Proteomics Platform, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Proteomics Platform, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Schafstedde
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Institute for Cardiovascular Computer-Assisted Medicine, Berlin, Germany
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Department of Congenital Heart Disease - Pediatric Cardiology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Kelm
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Institute for Cardiovascular Computer-Assisted Medicine, Berlin, Germany
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Department of Congenital Heart Disease - Pediatric Cardiology, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Niquet
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Proteomics Platform, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mariet Mathew Stephen
- Hasso Plattner Institute for Digital Engineering, Digital Health Center, University of Potsdam, Potsdam, Germany
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Christoph Knosalla
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthieu-P Schapranow
- Hasso Plattner Institute for Digital Engineering, Digital Health Center, University of Potsdam, Potsdam, Germany
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Michael Gotthardt
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine, Mathematical Cell Physiology, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Cardiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Titus Kuehne
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Institute for Cardiovascular Computer-Assisted Medicine, Berlin, Germany
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Department of Congenital Heart Disease - Pediatric Cardiology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Mertins
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Proteomics Platform, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Claridge B, Drack A, Pinto AR, Greening DW. Defining cardiac fibrosis complexity and regulation towards therapeutic development. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3. [DOI: 10.1002/ctd2.163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2025]
Abstract
AbstractCardiac fibrosis is insidious, accelerating cardiovascular diseases, heart failure, and death. With a notable lack of effective therapies, advances in both understanding and targeted treatment of fibrosis are urgently needed. Remodelling of the extracellular matrix alters the biomechanical and biochemical cardiac structure and function, disrupting cell‐matrix interactions and exacerbating pathogenesis to ultimately impair cardiac function. Attempts at clinical fibrotic reduction have been fruitless, constrained by an understanding which severely underestimates its dynamic complexity and regulation. Integration of single‐cell sequencing and quantitative proteomics has provided new insights into cardiac fibrosis, including reparative or maladaptive processes, spatiotemporal changes and fibroblast heterogeneity. Further studies have revealed microenvironmental and intercellular signalling mechanisms (including soluble mediators and extracellular vesicles), and intracellular regulators including post‐translational/epigenetic modifications, RNA binding proteins, and non‐coding RNAs. This understanding of novel disease processes and molecular targets has supported the development of innovative therapeutic strategies. Indeed, targeted modulation of cellular heterogeneity, microenvironmental signalling, and intracellular regulation offer promising pre‐clinical therapeutic leads. Clinical development will require further advances in our mechanistic understanding of cardiac fibrosis and dissection of the molecular basis for fibrotic remodelling. This review provides an overview of the complexities of cardiac fibrosis, emerging regulatory mechanisms and therapeutic strategies, and highlights knowledge gaps and opportunities for further investigation towards therapeutic/clinical translation.
Collapse
Affiliation(s)
- Bethany Claridge
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
| | - Auriane Drack
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
| | - Alexander R. Pinto
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
- Baker Department of Cardiometabolic Health University of Melbourne Melbourne Australia
- Central Clinical School Monash University Melbourne Australia
| |
Collapse
|
13
|
Toomey CE, Heywood WE, Evans JR, Lachica J, Pressey SN, Foti SC, Al Shahrani M, D’Sa K, Hargreaves IP, Heales S, Orford M, Troakes C, Attems J, Gelpi E, Palkovits M, Lashley T, Gentleman SM, Revesz T, Mills K, Gandhi S. Mitochondrial dysfunction is a key pathological driver of early stage Parkinson's. Acta Neuropathol Commun 2022; 10:134. [PMID: 36076304 PMCID: PMC9461181 DOI: 10.1186/s40478-022-01424-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The molecular drivers of early sporadic Parkinson's disease (PD) remain unclear, and the presence of widespread end stage pathology in late disease masks the distinction between primary or causal disease-specific events and late secondary consequences in stressed or dying cells. However, early and mid-stage Parkinson's brains (Braak stages 3 and 4) exhibit alpha-synuclein inclusions and neuronal loss along a regional gradient of severity, from unaffected-mild-moderate-severe. Here, we exploited this spatial pathological gradient to investigate the molecular drivers of sporadic PD. METHODS We combined high precision tissue sampling with unbiased large-scale profiling of protein expression across 9 brain regions in Braak stage 3 and 4 PD brains, and controls, and verified these results using targeted proteomic and functional analyses. RESULTS We demonstrate that the spatio-temporal pathology gradient in early-mid PD brains is mirrored by a biochemical gradient of a changing proteome. Importantly, we identify two key events that occur early in the disease, prior to the occurrence of alpha-synuclein inclusions and neuronal loss: (i) a metabolic switch in the utilisation of energy substrates and energy production in the brain, and (ii) perturbation of the mitochondrial redox state. These changes may contribute to the regional vulnerability of developing alpha-synuclein pathology. Later in the disease, mitochondrial function is affected more severely, whilst mitochondrial metabolism, fatty acid oxidation, and mitochondrial respiration are affected across all brain regions. CONCLUSIONS Our study provides an in-depth regional profile of the proteome at different stages of PD, and highlights that mitochondrial dysfunction is detectable prior to neuronal loss, and alpha-synuclein fibril deposition, suggesting that mitochondrial dysfunction is one of the key drivers of early disease.
Collapse
Affiliation(s)
- Christina E. Toomey
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Wendy E. Heywood
- Translational Mass Spectrometry Research Group, Genetic & Genomic Medicine, Institute of Child Health, UCL, London, UK
| | - James R. Evans
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Joanne Lachica
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Sarah N. Pressey
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Sandrine C. Foti
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mesfer Al Shahrani
- National Hospital for Neurology and Neurosurgery & Neurometabolic Unit, UCL Great Ormond Street Institute of Child Health, London, UK
- College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Karishma D’Sa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Iain P. Hargreaves
- National Hospital for Neurology and Neurosurgery & Neurometabolic Unit, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon Heales
- National Hospital for Neurology and Neurosurgery & Neurometabolic Unit, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michael Orford
- National Hospital for Neurology and Neurosurgery & Neurometabolic Unit, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Johannes Attems
- Newcastle Brain Tissue Resource, Institute of Neuroscience and Newcastle University Institute for Ageing, Newcastle upon Tyne, UK
| | - Ellen Gelpi
- Neurological Tissue Bank, University of Barcelona, Barcelona, Spain
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Miklos Palkovits
- Human Brain Tissue Bank, Budapest, Semmelweis University, Budapest, Hungary
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, Genetic & Genomic Medicine, Institute of Child Health, UCL, London, UK
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
14
|
Moore J, Emili A. Mass-Spectrometry-Based Functional Proteomic and Phosphoproteomic Technologies and Their Application for Analyzing Ex Vivo and In Vitro Models of Hypertrophic Cardiomyopathy. Int J Mol Sci 2021; 22:13644. [PMID: 34948439 PMCID: PMC8709159 DOI: 10.3390/ijms222413644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease thought to be principally caused by mutations in sarcomeric proteins. Despite extensive genetic analysis, there are no comprehensive molecular frameworks for how single mutations in contractile proteins result in the diverse assortment of cellular, phenotypic, and pathobiological cascades seen in HCM. Molecular profiling and system biology approaches are powerful tools for elucidating, quantifying, and interpreting dynamic signaling pathways and differential macromolecule expression profiles for a wide range of sample types, including cardiomyopathy. Cutting-edge approaches combine high-performance analytical instrumentation (e.g., mass spectrometry) with computational methods (e.g., bioinformatics) to study the comparative activity of biochemical pathways based on relative abundances of functionally linked proteins of interest. Cardiac research is poised to benefit enormously from the application of this toolkit to cardiac tissue models, which recapitulate key aspects of pathogenesis. In this review, we evaluate state-of-the-art mass-spectrometry-based proteomic and phosphoproteomic technologies and their application to in vitro and ex vivo models of HCM for global mapping of macromolecular alterations driving disease progression, emphasizing their potential for defining the components of basic biological systems, the fundamental mechanistic basis of HCM pathogenesis, and treating the ensuing varied clinical outcomes seen among affected patient cohorts.
Collapse
Affiliation(s)
- Jarrod Moore
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
- MD-PhD Program, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
15
|
Mulari S, Eskin A, Lampinen M, Nummi A, Nieminen T, Teittinen K, Ojala T, Kankainen M, Vento A, Laurikka J, Kupari M, Harjula A, Tuncbag N, Kankuri E. Ischemic Heart Disease Selectively Modifies the Right Atrial Appendage Transcriptome. Front Cardiovasc Med 2021; 8:728198. [PMID: 34926599 PMCID: PMC8674465 DOI: 10.3389/fcvm.2021.728198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Although many pathological changes have been associated with ischemic heart disease (IHD), molecular-level alterations specific to the ischemic myocardium and their potential to reflect disease severity or therapeutic outcome remain unclear. Currently, diagnosis occurs relatively late and evaluating disease severity is largely based on clinical symptoms, various imaging modalities, or the determination of risk factors. This study aims to identify IHD-associated signature RNAs from the atrial myocardium and evaluate their ability to reflect disease severity or cardiac surgery outcomes. Methods and Results: We collected right atrial appendage (RAA) biopsies from 40 patients with invasive coronary angiography (ICA)-positive IHD undergoing coronary artery bypass surgery and from 8 patients ICA-negative for IHD (non-IHD) undergoing valvular surgery. Following RNA sequencing, RAA transcriptomes were analyzed against 429 donors from the GTEx project without cardiac disease. The IHD transcriptome was characterized by repressed RNA expression in pathways for cell-cell contacts and mitochondrial dysfunction. Increased expressions of the CSRNP3, FUT10, SHD, NAV2-AS4, and hsa-mir-181 genes resulted in significance with the complexity of coronary artery obstructions or correlated with a functional cardiac benefit from bypass surgery. Conclusions: Our results provide an atrial myocardium-focused insight into IHD signature RNAs. The specific gene expression changes characterized here, pave the way for future disease mechanism-based identification of biomarkers for early detection and treatment of IHD.
Collapse
Affiliation(s)
- Severi Mulari
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arda Eskin
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University (METU), Ankara, Turkey
| | - Milla Lampinen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Annu Nummi
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomo Nieminen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari Teittinen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jari Laurikka
- Department of Cardiothoracic Surgery, Heart Center, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markku Kupari
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ari Harjula
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nurcan Tuncbag
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University (METU), Ankara, Turkey
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, Turkey
- School of Medicine, Koc University, Istanbul, Turkey
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Ranjbarvaziri S, Kooiker KB, Ellenberger M, Fajardo G, Zhao M, Vander Roest AS, Woldeyes RA, Koyano TT, Fong R, Ma N, Tian L, Traber GM, Chan F, Perrino J, Reddy S, Chiu W, Wu JC, Woo JY, Ruppel KM, Spudich JA, Snyder MP, Contrepois K, Bernstein D. Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy. Circulation 2021; 144:1714-1731. [PMID: 34672721 PMCID: PMC8608736 DOI: 10.1161/circulationaha.121.053575] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a complex disease partly explained by the effects of individual gene variants on sarcomeric protein biomechanics. At the cellular level, HCM mutations most commonly enhance force production, leading to higher energy demands. Despite significant advances in elucidating sarcomeric structure-function relationships, there is still much to be learned about the mechanisms that link altered cardiac energetics to HCM phenotypes. In this work, we test the hypothesis that changes in cardiac energetics represent a common pathophysiologic pathway in HCM. METHODS We performed a comprehensive multiomics profile of the molecular (transcripts, metabolites, and complex lipids), ultrastructural, and functional components of HCM energetics using myocardial samples from 27 HCM patients and 13 normal controls (donor hearts). RESULTS Integrated omics analysis revealed alterations in a wide array of biochemical pathways with major dysregulation in fatty acid metabolism, reduction of acylcarnitines, and accumulation of free fatty acids. HCM hearts showed evidence of global energetic decompensation manifested by a decrease in high energy phosphate metabolites (ATP, ADP, and phosphocreatine) and a reduction in mitochondrial genes involved in creatine kinase and ATP synthesis. Accompanying these metabolic derangements, electron microscopy showed an increased fraction of severely damaged mitochondria with reduced cristae density, coinciding with reduced citrate synthase activity and mitochondrial oxidative respiration. These mitochondrial abnormalities were associated with elevated reactive oxygen species and reduced antioxidant defenses. However, despite significant mitochondrial injury, HCM hearts failed to upregulate mitophagic clearance. CONCLUSIONS Overall, our findings suggest that perturbed metabolic signaling and mitochondrial dysfunction are common pathogenic mechanisms in patients with HCM. These results highlight potential new drug targets for attenuation of the clinical disease through improving metabolic function and reducing mitochondrial injury.
Collapse
Affiliation(s)
- Sara Ranjbarvaziri
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristina B. Kooiker
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Mathew Ellenberger
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanni Fajardo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mingming Zhao
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alison Schroer Vander Roest
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahel A. Woldeyes
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Robyn Fong
- Department of Cardiothoracic Surgery, Stanford University, CA, USA
| | - Ning Ma
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA, USA
| | - Lei Tian
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA, USA
| | - Gavin M. Traber
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Frandics Chan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - John Perrino
- Cell Sciences Imaging Facility, Stanford University, Stanford, CA, USA
| | - Sushma Reddy
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Division of Cryo-EM and Bioimaging, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Joseph C. Wu
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA, USA
| | - Joseph Y. Woo
- Department of Cardiothoracic Surgery, Stanford University, CA, USA
| | - Kathleen M. Ruppel
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
17
|
Distinct Metabolomic Signatures in Preclinical and Obstructive Hypertrophic Cardiomyopathy. Cells 2021; 10:cells10112950. [PMID: 34831173 PMCID: PMC8616419 DOI: 10.3390/cells10112950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Hypertrophic Cardiomyopathy (HCM) is a common inherited heart disease with poor risk prediction due to incomplete penetrance and a lack of clear genotype–phenotype correlations. Advanced imaging techniques have shown altered myocardial energetics already in preclinical gene variant carriers. To determine whether disturbed myocardial energetics with the potential to serve as biomarkers are also reflected in the serum metabolome, we analyzed the serum metabolome of asymptomatic carriers in comparison to healthy controls and obstructive HCM patients (HOCM). We performed non-quantitative direct-infusion high-resolution mass spectrometry-based untargeted metabolomics on serum from fasted asymptomatic gene variant carriers, symptomatic HOCM patients and healthy controls (n = 31, 14 and 9, respectively). Biomarker panels that discriminated the groups were identified by performing multivariate modeling with gradient-boosting classifiers. For all three group-wise comparisons we identified a panel of 30 serum metabolites that best discriminated the groups. These metabolite panels performed equally well as advanced cardiac imaging modalities in distinguishing the groups. Seven metabolites were found to be predictive in two different comparisons and may play an important role in defining the disease stage. This study reveals unique metabolic signatures in serum of preclinical carriers and HOCM patients that may potentially be used for HCM risk stratification and precision therapeutics.
Collapse
|
18
|
Mouat MA, Coleman JLJ, Wu J, Dos Remedios CG, Feneley MP, Graham RM, Smith NJ. Involvement of GPR37L1 in murine blood pressure regulation and human cardiac disease pathophysiology. Am J Physiol Heart Circ Physiol 2021; 321:H807-H817. [PMID: 34533400 DOI: 10.1152/ajpheart.00198.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 01/23/2023]
Abstract
Multiple mouse lines lacking the orphan G protein-coupled receptor, GPR37L1, have elicited disparate cardiovascular phenotypes. The first Gpr37l1 knockout mice study to be published reported a marked elevation in systolic blood pressure (SBP; ∼60 mmHg), revealing a potential therapeutic opportunity. The phenotype differed from our own independently generated knockout line, where male mice exhibited equivalent baseline blood pressure to wild type. Here, we attempted to reproduce the first study by characterizing the cardiovascular phenotype of both the original knockout and transgenic lines alongside a C57BL/6J control line, using the same method of blood pressure measurement. The present study supports the findings from our independently developed Gpr37l1 knockout line, finding that SBP and diastolic blood pressure (DBP) are not different in the original Gpr37l1 knockout male mice (SBP: 130.9 ± 5.3 mmHg; DBP: 90.7 ± 3.0 mmHg) compared with C57BL/6J mice (SBP: 123.1 ± 4.1 mmHg; DBP: 87.0 ± 2.7 mmHg). Instead, we attribute the apparent hypertension of the knockout line originally described to comparison with a seemingly hypotensive transgenic line (SBP 103.7 ± 5.0 mmHg; DBP 71.9 ± 3.7 mmHg). Additionally, we quantified myocardial GPR37L1 transcript in humans, which was suggested to be downregulated in cardiovascular disease. We found that GPR37L1 has very low native transcript levels in human myocardium and that expression is not different in tissue samples from patients with heart failure compared with sex-matched healthy control tissue. These findings indicate that cardiac GPR37L1 expression is unlikely to contribute to the pathophysiology of human heart failure.NEW & NOTEWORTHY This study characterizes systolic blood pressure (SBP) in a Gpr37l1 knockout mouse line, which was previously reported to have ∼60 mmHg higher SBP compared with a transgenic line. We observed only a ∼27 mmHg SBP difference between the lines. However, when compared with C57BL/6J mice, knockout mice showed no difference in SBP. We also investigated GPR37L1 mRNA abundance in human hearts and observed no difference between healthy and failing heart samples.
Collapse
Affiliation(s)
- Margaret A Mouat
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - James L J Coleman
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Jianxin Wu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Cristobal G Dos Remedios
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Michael P Feneley
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Robert M Graham
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Nicola J Smith
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Doran S, Arif M, Lam S, Bayraktar A, Turkez H, Uhlen M, Boren J, Mardinoglu A. Multi-omics approaches for revealing the complexity of cardiovascular disease. Brief Bioinform 2021; 22:bbab061. [PMID: 33725119 PMCID: PMC8425417 DOI: 10.1093/bib/bbab061] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
The development and progression of cardiovascular disease (CVD) can mainly be attributed to the narrowing of blood vessels caused by atherosclerosis and thrombosis, which induces organ damage that will result in end-organ dysfunction characterized by events such as myocardial infarction or stroke. It is also essential to consider other contributory factors to CVD, including cardiac remodelling caused by cardiomyopathies and co-morbidities with other diseases such as chronic kidney disease. Besides, there is a growing amount of evidence linking the gut microbiota to CVD through several metabolic pathways. Hence, it is of utmost importance to decipher the underlying molecular mechanisms associated with these disease states to elucidate the development and progression of CVD. A wide array of systems biology approaches incorporating multi-omics data have emerged as an invaluable tool in establishing alterations in specific cell types and identifying modifications in signalling events that promote disease development. Here, we review recent studies that apply multi-omics approaches to further understand the underlying causes of CVD and provide possible treatment strategies by identifying novel drug targets and biomarkers. We also discuss very recent advances in gut microbiota research with an emphasis on how diet and microbial composition can impact the development of CVD. Finally, we present various biological network analyses and other independent studies that have been employed for providing mechanistic explanation and developing treatment strategies for end-stage CVD, namely myocardial infarction and stroke.
Collapse
Affiliation(s)
- Stephen Doran
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Simon Lam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Abdulahad Bayraktar
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Boren
- Institute of Medicine, Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital Gothenburg, Sweden
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
20
|
Ma Z, Wang X, Lv Q, Gong Y, Xia M, Zhuang L, Lu X, Yang Y, Zhang W, Fu G, Ye Y, Lai D. Identification of Underlying Hub Genes Associated with Hypertrophic Cardiomyopathy by Integrated Bioinformatics Analysis. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:823-837. [PMID: 34285551 PMCID: PMC8285300 DOI: 10.2147/pgpm.s314880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022]
Abstract
Background Considered as one of the major reasons of sudden cardiac death, hypertrophic cardiomyopathy (HCM) is a common inherited cardiovascular disease. However, effective treatment for HCM is still lacking. Identification of hub gene may be a powerful tool for discovering potential therapeutic targets and candidate biomarkers. Methods We analysed three gene expression datasets for HCM from the Gene Expression Omnibus. Two of them were merged by “sva” package. The merged dataset was used for analysis while the other dataset was used for validation. Following this, a weighted gene coexpression network analysis (WGCNA) was performed, and the key module most related to HCM was identified. Based on the intramodular connectivity, we identified the potential hub genes. Then, a receiver operating characteristic curve analysis was performed to verify the diagnostic values of hub genes. Finally, we validated changes of hub genes, for genetic transcription and protein expression levels, in datasets of HCM patients and myocardium of transverse aortic constriction (TAC) mice. Results In the merged dataset, a total of 455 differentially expressed genes (DEGs) were identified from normal and hypertrophic myocardium. In WGCNA, the blue module was identified as the key module and the genes in this module showed a high positive correlation with HCM. Functional enrichment analysis of DEGs and key module revealed that the extracellular matrix, fibrosis, and neurohormone pathways played important roles in HCM. FRZB, COL14A1, CRISPLD1, LUM, and sFRP4 were identified as hub genes in the key module. These genes showed a good predictive value for HCM and were significantly up-regulated in HCM patients and TAC mice. We also found protein expression of LUM and sFRP4 increased in myocardium of TAC mice. Conclusion This study revealed that five hub genes are involved in the occurrence and development of HCM, and they are potentially to be used as therapeutic targets and biomarkers for HCM.
Collapse
Affiliation(s)
- Zetao Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China.,Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong Province, 528403, People's Republic of China
| | - Xizhi Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Yingchao Gong
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Minghong Xia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Lenan Zhuang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Xue Lu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Ying Yang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Wenbin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Yang Ye
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Dongwu Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| |
Collapse
|
21
|
Schuldt M, Dorsch LM, Knol JC, Pham TV, Schelfhorst T, Piersma SR, Dos Remedios C, Michels M, Jimenez CR, Kuster DWD, van der Velden J. Sex-Related Differences in Protein Expression in Sarcomere Mutation-Positive Hypertrophic Cardiomyopathy. Front Cardiovasc Med 2021; 8:612215. [PMID: 33732734 PMCID: PMC7956946 DOI: 10.3389/fcvm.2021.612215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Sex-differences in clinical presentation contribute to the phenotypic heterogeneity of hypertrophic cardiomyopathy (HCM) patients. While disease prevalence is higher in men, women present with more severe diastolic dysfunction and worse survival. Until today, little is known about the cellular differences underlying sex-differences in clinical presentation. Methods: To define sex-differences at the protein level, we performed a proteomic analysis in cardiac tissue obtained during myectomy surgery to relieve left ventricular outflow tract obstruction of age-matched female and male HCM patients harboring a sarcomere mutation (n = 13 in both groups). Furthermore, these samples were compared to 8 non-failing controls. Women presented with more severe diastolic dysfunction. Results: Out of 2099 quantified proteins, direct comparison of male, and female HCM samples revealed only 46 significantly differentially expressed proteins. Increased levels of tubulin and heat shock proteins were observed in female compared to male HCM patients. Western blot analyses confirmed higher levels of tubulin in female HCM samples. In addition, proteins involved in carbohydrate metabolism were significantly lower in female compared to male samples. Furthermore, we found lower levels of translational proteins specifically in male HCM samples. The disease-specificity of these changes were confirmed by a second analysis in which we compared female and male samples separately to non-failing control samples. Transcription factor analysis showed that sex hormone-dependent transcription factors may contribute to differential protein expression, but do not explain the majority of protein changes observed between male and female HCM samples. Conclusion: In conclusion, based on our proteomics analyses we propose that increased levels of tubulin partly underlie more severe diastolic dysfunction in women compared to men. Since heat shock proteins have cardioprotective effects, elevated levels of heat shock proteins in females may contribute to later disease onset in woman, while reduced protein turnover in men may lead to the accumulation of damaged proteins which in turn affects proper cellular function.
Collapse
Affiliation(s)
- Maike Schuldt
- Amsterdam UMC, Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Larissa M Dorsch
- Amsterdam UMC, Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jaco C Knol
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thang V Pham
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tim Schelfhorst
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander R Piersma
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cris Dos Remedios
- Victor Chang Cardiac Research Institute, Darlinghurst Sydney, Sydney, NSW, Australia.,Sydney Heart Bank, Discipline of Anatomy, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Michelle Michels
- Department of Cardiology, Thorax Center, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Connie R Jimenez
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC, Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jolanda van der Velden
- Amsterdam UMC, Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Sonnenschein K, Fiedler J, de Gonzalo-Calvo D, Xiao K, Pfanne A, Just A, Zwadlo C, Soltani S, Bavendiek U, Kraft T, Dos Remedios C, Cebotari S, Bauersachs J, Thum T. Blood-based protein profiling identifies serum protein c-KIT as a novel biomarker for hypertrophic cardiomyopathy. Sci Rep 2021; 11:1755. [PMID: 33469076 PMCID: PMC7815737 DOI: 10.1038/s41598-020-80868-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/28/2020] [Indexed: 01/02/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most common hereditary heart diseases and can be classified into an obstructive (HOCM) and non-obstructive (HNCM) form. Major characteristics for HCM are the hypertrophy of cardiomyocytes and development of cardiac fibrosis. Patients with HCM have a higher risk for sudden cardiac death compared to a healthy population. In the present study, we investigated the abundancy of selected proteins as potential biomarkers in patients with HCM. We included 60 patients with HCM and 28 healthy controls and quantitatively measured the rate of a set of 92 proteins already known to be associated with cardiometabolic processes via protein screening using the proximity extension assay technology in a subgroup of these patients (20 HCM and 10 healthy controls). After validation of four hits in the whole cohort of patients consisting of 88 individuals (60 HCM patients, 28 healthy controls) we found only one candidate, c-KIT, which was regulated significantly different between HCM patients and healthy controls and thus was chosen for further analyses. c-KIT is a tyrosine-protein kinase acting as receptor for the stem cell factor and activating several pathways essential for cell proliferation and survival, hematopoiesis, gametogenesis and melanogenesis. Serum protein levels of c-KIT were significantly lower in patients with HCM than in healthy controls, even after adjusting for confounding factors age and sex. In addition, c-KIT levels in human cardiac tissue of patients with HOCM were significant higher compared to controls indicating high levels of c-KIT in fibrotic myocardium. Furthermore, c-KIT concentration in serum significantly correlated with left ventricular end-diastolic diameter in HOCM, but not HCM patients. The present data suggest c-KIT as a novel biomarker differentiating between patients with HCM and healthy population and might provide further functional insights into fibrosis-related processes of HOCM.
Collapse
Affiliation(s)
- Kristina Sonnenschein
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - David de Gonzalo-Calvo
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Av. de Monforte de Lemos, 28029, Madrid, Spain.,Translational Research in Respiratory Medicine, IRBLleida, University Hospital Arnau de Vilanova and Santa Maria, Av. Alcalde Rovira Roure 80, 25198, Lleida, Spain
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Annette Just
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Carolin Zwadlo
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Samira Soltani
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Udo Bavendiek
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Cristobal Dos Remedios
- Anatomy and Histology, School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, Australia
| | - Serghei Cebotari
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany. .,Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany.
| |
Collapse
|
23
|
Schuldt M, Pei J, Harakalova M, Dorsch LM, Schlossarek S, Mokry M, Knol JC, Pham TV, Schelfhorst T, Piersma SR, Dos Remedios C, Dalinghaus M, Michels M, Asselbergs FW, Moutin MJ, Carrier L, Jimenez CR, van der Velden J, Kuster DWD. Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy. Circ Heart Fail 2021; 14:e007022. [PMID: 33430602 PMCID: PMC7819533 DOI: 10.1161/circheartfailure.120.007022] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supplemental Digital Content is available in the text. Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While ≈50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group.
Collapse
Affiliation(s)
- Maike Schuldt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| | - Jiayi Pei
- Division Heart and Lungs, Department of Cardiology (J.P., M.H., F.W.A.), University Medical Center Utrecht, The Netherlands
| | - Magdalena Harakalova
- Division Heart and Lungs, Department of Cardiology (J.P., M.H., F.W.A.), University Medical Center Utrecht, The Netherlands
| | - Larissa M Dorsch
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.).,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (S.S., L.C.)
| | - Michal Mokry
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital (M. Morky), University Medical Center Utrecht, The Netherlands
| | - Jaco C Knol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Thang V Pham
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Tim Schelfhorst
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Sander R Piersma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Cris Dos Remedios
- Sydney Heart Bank, Discipline of Anatomy, Bosch Institute, University of Sydney, Australia (C.d.R.)
| | - Michiel Dalinghaus
- Department of Pediatric Cardiology (M.D.), Erasmus Medical Center Rotterdam, The Netherlands
| | - Michelle Michels
- Department of Cardiology, Thorax Center (M. Michels), Erasmus Medical Center Rotterdam, The Netherlands
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology (J.P., M.H., F.W.A.), University Medical Center Utrecht, The Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.), University College London, United Kingdom.,Health Data Research UK and Institute of Health Informatics (F.W.A.), University College London, United Kingdom
| | - Marie-Jo Moutin
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, Grenoble, France (M.-J.M.)
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.).,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (S.S., L.C.)
| | - Connie R Jimenez
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| |
Collapse
|
24
|
Luo G, Wang R, Zhou H, Liu X. ALDOA protects cardiomyocytes against H/R-induced apoptosis and oxidative stress by regulating the VEGF/Notch 1/Jagged 1 pathway. Mol Cell Biochem 2020; 476:775-783. [PMID: 33089381 DOI: 10.1007/s11010-020-03943-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
Myocardial infarction (MI) is a myocardial necrosis disease caused by continuous ischemia and hypoxia. Abnormal expression of aldolase A (ALDOA) has been reported in cardiac hypertrophy, heart failure and other cardio-cerebrovascular diseases. The present study aims to explore the effects of ALDOA on hypoxia/reperfusion (H/R)-induced oxidative stress, and investigate the underlying mechanisms. ALDOA was expressed at a low level in blood samples from MI patients and H/R-induced H9C2 cardiomyocytes. Overexpression of ALDOA suppressed H/R-induced oxidative stress and apoptosis. Using co-immunoprecipitation and protein blots, we demonstrated that ALDOA modulates the Notch 1-Jagged 1 signalling pathway by upregulating VEGF. Taken together, our data reveal that ALDOA protects cardiomyocytes from H/R-induced oxidative stress through the VEGF/Notch 1/Jagged 1 axis, and should be investigated as a therapeutic target for the treatment of MI in future.
Collapse
Affiliation(s)
- Gaiying Luo
- Department of Clinical Laboratory, Xi'an No 5 Hospital, No. 112 West Main Street, Lianhu District, Xi'an, 710082, Shaanxi, China
| | - Rui Wang
- The Five Ward of Internal Medicine, Xi'an No 5 Hospital, Xi'an, 710082, Shaanxi, China
| | - Hui Zhou
- The Five Ward of Internal Medicine, Xi'an No 5 Hospital, Xi'an, 710082, Shaanxi, China
| | - Xiaoling Liu
- Department of Clinical Laboratory, Xi'an No 5 Hospital, No. 112 West Main Street, Lianhu District, Xi'an, 710082, Shaanxi, China.
| |
Collapse
|
25
|
Abstract
In 2011 the Netherlands Heart Foundation allocated funding (CVON, Cardiovasculair Onderzoek Nederland) to stimulate collaboration between clinical and preclinical researchers on specific areas of research. One of those areas involves genetic heart diseases, which are frequently caused by pathogenic variants in genes that encode sarcomere proteins. In 2014, the DOSIS (Determinants of susceptibility in inherited cardiomyopathy: towards novel therapeutic approaches) consortium was initiated, focusing their research on secondary disease hits involved in the onset and progression of cardiomyopathies. Here we highlight several recent observations from our consortium and collaborators which may ultimately be relevant for clinical practice.
Collapse
|
26
|
Islam M, Diwan A, Mani K. Come Together: Protein Assemblies, Aggregates and the Sarcostat at the Heart of Cardiac Myocyte Homeostasis. Front Physiol 2020; 11:586. [PMID: 32581848 PMCID: PMC7287178 DOI: 10.3389/fphys.2020.00586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Homeostasis in vertebrate systems is contingent on normal cardiac function. This, in turn, depends on intricate protein-based cellular machinery, both for contractile function, as well as, durability of cardiac myocytes. The cardiac small heat shock protein (csHsp) chaperone system, highlighted by αB-crystallin (CRYAB), a small heat shock protein (sHsp) that forms ∼3–5% of total cardiac mass, plays critical roles in maintaining proteostatic function via formation of self-assembled multimeric chaperones. In this work, we review these ancient proteins, from the evolutionarily preserved role of homologs in protists, fungi and invertebrate systems, as well as, the role of sHsps and chaperones in maintaining cardiac myocyte structure and function. We propose the concept of the “sarcostat” as a protein quality control mechanism in the sarcomere. The roles of the proteasomal and lysosomal proteostatic network, as well as, the roles of the aggresome, self-assembling protein complexes and protein aggregation are discussed in the context of cardiac myocyte homeostasis. Finally, we will review the potential for targeting the csHsp system as a novel therapeutic approach to prevent and treat cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Abhinav Diwan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| | - Kartik Mani
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
27
|
Li M, Parker BL, Pearson E, Hunter B, Cao J, Koay YC, Guneratne O, James DE, Yang J, Lal S, O'Sullivan JF. Core functional nodes and sex-specific pathways in human ischaemic and dilated cardiomyopathy. Nat Commun 2020; 11:2843. [PMID: 32487995 PMCID: PMC7266817 DOI: 10.1038/s41467-020-16584-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Poor access to human left ventricular myocardium is a significant limitation in the study of heart failure (HF). Here, we utilise a carefully procured large human heart biobank of cryopreserved left ventricular myocardium to obtain direct molecular insights into ischaemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM), the most common causes of HF worldwide. We perform unbiased, deep proteomic and metabolomic analyses of 51 left ventricular (LV) samples from 44 cryopreserved human ICM and DCM hearts, compared to age-, gender-, and BMI-matched, histopathologically normal, donor controls. We report a dramatic reduction in serum amyloid A1 protein in ICM hearts, perturbed thyroid hormone signalling pathways and significant reductions in oxidoreductase co-factor riboflavin-5-monophosphate and glycolytic intermediate fructose-6-phosphate in both; unveil gender-specific changes in HF, including nitric oxide-related arginine metabolism, mitochondrial substrates, and X chromosome-linked protein and metabolite changes; and provide an interactive online application as a publicly-available resource.
Collapse
Affiliation(s)
- Mengbo Li
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Evangeline Pearson
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin Hunter
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jacob Cao
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yen Chin Koay
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Oneka Guneratne
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Jean Yang
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sean Lal
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia. .,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia. .,Central Clinical School, Sydney Medical School, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia. .,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| | - John F O'Sullivan
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia. .,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia. .,Heart Research Institute, The University of Sydney, Sydney, NSW, Australia. .,Central Clinical School, Sydney Medical School, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia. .,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| |
Collapse
|
28
|
Toomey CE, Heywood W, Benson BC, Packham G, Mills K, Lashley T. Investigation of pathology, expression and proteomic profiles in human TREM2 variant postmortem brains with and without Alzheimer's disease. Brain Pathol 2020; 30:794-810. [PMID: 32267026 PMCID: PMC8018003 DOI: 10.1111/bpa.12842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 TREM2 was identified as a risk factor for late onset Alzheimer’s disease (AD). Here we compared TREM2 cases with a variant (TREM2+) and cases without a TREM2 variant (TREM2−), considering pathological burden, inflammatory response and altered canonical pathways and biochemical functions between the cohorts. We hypothesised that TREM2+ cases would have a loss of function, indicating an altered inflammatory profile compared to TREM2− cases. Immunohistochemistry was performed using antibodies against Aβ, tau and microglia markers in TREM2+ cases, with and without AD, which were compared to sporadic TREM2− AD, familial AD and neurologically normal control cases. Aβ and tau load were measured along with the composition of Aβ plaques, in addition to microglial load and circularity. Expression and proteomic profiles were determined from the frontal cortex of selected cases. TREM2+ control cases had no Aβ or tau deposition. No differences in the amount of Aβ or tau, or the composition of Aβ plaques were observed between TREM2+ and TREM2− SAD cases. There were no differences in microglial load observed between disease groups. However, the TREM2+ SAD cases showed more amoeboid microglia than the TREM2− SAD cases, although no differences in the spatial relationship of microglia and Aβ plaques were identified. Visualisation of the canonical pathways and biological functions showed differences between the disease groups and the normal controls, clearly showing a number of pathways upregulated in TREM2+ SAD, TREM2− SAD and FAD groups whilst, the TREM2+ controls cases showed a downregulation of the majority of the represented pathways. These findings suggest that the TREM2+ control group, although carrying the TREM2+ variant, have no pathological hallmarks of AD, have altered microglial and expression profiles compared to the TREM2+ SAD cases. This indicates that other unknown factors may initiate the onset of AD, with TREM2 influencing the microglial involvement in disease pathogenesis.
Collapse
Affiliation(s)
- Christina E Toomey
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Wendy Heywood
- Centre for Translational Omics, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Bridget C Benson
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Georgia Packham
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Kevin Mills
- Centre for Translational Omics, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
29
|
Captur G, Heywood WE, Coats C, Rosmini S, Patel V, Lopes LR, Collis R, Patel N, Syrris P, Bassett P, O'Brien B, Moon JC, Elliott PM, Mills K. Identification of a Multiplex Biomarker Panel for Hypertrophic Cardiomyopathy Using Quantitative Proteomics and Machine Learning. Mol Cell Proteomics 2020; 19:114-127. [PMID: 31243064 PMCID: PMC6944230 DOI: 10.1074/mcp.ra119.001586] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is defined by pathological left ventricular hypertrophy (LVH). It is the commonest inherited cardiac condition and a significant number of high risk cases still go undetected until a sudden cardiac death (SCD) event. Plasma biomarkers do not currently feature in the assessment of HCM disease progression, which is tracked by serial imaging, or in SCD risk stratification, which is based on imaging parameters and patient/family history. There is a need for new HCM plasma biomarkers to refine disease monitoring and improve patient risk stratification. To identify new plasma biomarkers for patients with HCM, we performed exploratory myocardial and plasma proteomics screens and subsequently developed a multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay to validate the 26 peptide biomarkers that were identified. The association of discovered biomarkers with clinical phenotypes was prospectively tested in plasma from 110 HCM patients with LVH (LVH+ HCM), 97 controls, and 16 HCM sarcomere gene mutation carriers before the development of LVH (subclinical HCM). Six peptides (aldolase fructose-bisphosphate A, complement C3, glutathione S-transferase omega 1, Ras suppressor protein 1, talin 1, and thrombospondin 1) were increased significantly in the plasma of LVH+ HCM compared with controls and correlated with imaging markers of phenotype severity: LV wall thickness, mass, and percentage myocardial scar on cardiovascular magnetic resonance imaging. Using supervised machine learning (ML), this six-biomarker panel differentiated between LVH+ HCM and controls, with an area under the curve of ≥ 0.87. Five of these peptides were also significantly increased in subclinical HCM compared with controls. In LVH+ HCM, the six-marker panel correlated with the presence of nonsustained ventricular tachycardia and the estimated five-year risk of sudden cardiac death. Using quantitative proteomic approaches, we have discovered six potentially useful circulating plasma biomarkers related to myocardial substrate changes in HCM, which correlate with the estimated sudden cardiac death risk.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, 1-19 Torrington Place, Fitzrovia, London WC1E 7HB, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Wendy E Heywood
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Caroline Coats
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Stefania Rosmini
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Vimal Patel
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Luis R Lopes
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Richard Collis
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Nina Patel
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Paul Bassett
- Biostatistics Joint Research Office, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ben O'Brien
- Department of Perioperative Medicine, St. Bartholomew's Hospital and Barts Heart Center, West Smithfield, London, EC1A 7BE, UK; William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - James C Moon
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Perry M Elliott
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Child Health, University College London, London, WC1N 1EH, UK.
| |
Collapse
|
30
|
Doykov ID, Heywood WE, Nikolaenko V, Śpiewak J, Hällqvist J, Clayton PT, Mills P, Warnock DG, Nowak A, Mills K. Rapid, proteomic urine assay for monitoring progressive organ disease in Fabry disease. J Med Genet 2019; 57:38-47. [PMID: 31519711 DOI: 10.1136/jmedgenet-2019-106030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Fabry disease is a progressive multisystemic disease, which affects the kidney and cardiovascular systems. Various treatments exist but decisions on how and when to treat are contentious. The current marker for monitoring treatment is plasma globotriaosylsphingosine (lyso-Gb3), but it is not informative about the underlying and developing disease pathology. METHODS We have created a urine proteomic assay containing a panel of biomarkers designed to measure disease-related pathology which include the inflammatory system, lysosome, heart, kidney, endothelium and cardiovascular system. Using a targeted proteomic-based approach, a series of 40 proteins for organ systems affected in Fabry disease were multiplexed into a single 10 min multiple reaction monitoring Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) assay and using only 1 mL of urine. RESULTS Six urinary proteins were elevated in the early-stage/asymptomatic Fabry group compared with controls including albumin, uromodulin, α1-antitrypsin, glycogen phosphorylase brain form, endothelial protein receptor C and intracellular adhesion molecule 1. Albumin demonstrated an increase in urine and could indicate presymptomatic disease. The only protein elevated in the early-stage/asymptomatic patients that continued to increase with progressive multiorgan involvement was glycogen phosphorylase brain form. Podocalyxin, fibroblast growth factor 23, cubulin and Alpha-1-Microglobulin/Bikunin Precursor (AMBP) were elevated only in disease groups involving kidney disease. Nephrin, a podocyte-specific protein, was elevated in all symptomatic groups. Prosaposin was increased in all symptomatic groups and showed greater specificity (p<0.025-0.0002) according to disease severity. CONCLUSION This work indicates that protein biomarkers could be helpful and used in conjunction with plasma lyso-Gb3 for monitoring of therapy or disease progression in patients with Fabry disease.
Collapse
Affiliation(s)
- Ivan D Doykov
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health Library, London, UK
| | - Wendy E Heywood
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health Library, London, UK.,NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Valeria Nikolaenko
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health Library, London, UK.,NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Justyna Śpiewak
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health Library, London, UK
| | - Jenny Hällqvist
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health Library, London, UK
| | - Peter Theodore Clayton
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health Library, London, UK
| | - Philippa Mills
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health Library, London, UK
| | - David G Warnock
- Division of Nephrology, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Albina Nowak
- Department of Endocrinology and Clinical Nutrition, University Hospital Zurich and University of Zurich, Raemistrasse, Zurich, Switzerland
| | - Kevin Mills
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health Library, London, UK .,NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
31
|
Dorsch LM, Schuldt M, dos Remedios CG, Schinkel AFL, de Jong PL, Michels M, Kuster DWD, Brundel BJJM, van der Velden J. Protein Quality Control Activation and Microtubule Remodeling in Hypertrophic Cardiomyopathy. Cells 2019; 8:E741. [PMID: 31323898 PMCID: PMC6678711 DOI: 10.3390/cells8070741] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disorder. It is mainly caused by mutations in genes encoding sarcomere proteins. Mutant forms of these highly abundant proteins likely stress the protein quality control (PQC) system of cardiomyocytes. The PQC system, together with a functional microtubule network, maintains proteostasis. We compared left ventricular (LV) tissue of nine donors (controls) with 38 sarcomere mutation-positive (HCMSMP) and 14 sarcomere mutation-negative (HCMSMN) patients to define HCM and mutation-specific changes in PQC. Mutations in HCMSMP result in poison polypeptides or reduced protein levels (haploinsufficiency, HI). The main findings were 1) several key PQC players were more abundant in HCM compared to controls, 2) after correction for sex and age, stabilizing heat shock protein (HSP)B1, and refolding, HSPD1 and HSPA2 were increased in HCMSMP compared to controls, 3) α-tubulin and acetylated α-tubulin levels were higher in HCM compared to controls, especially in HCMHI, 4) myosin-binding protein-C (cMyBP-C) levels were inversely correlated with α-tubulin, and 5) α-tubulin levels correlated with acetylated α-tubulin and HSPs. Overall, carrying a mutation affects PQC and α-tubulin acetylation. The haploinsufficiency of cMyBP-C may trigger HSPs and α-tubulin acetylation. Our study indicates that proliferation of the microtubular network may represent a novel pathomechanism in cMyBP-C haploinsufficiency-mediated HCM.
Collapse
Affiliation(s)
- Larissa M Dorsch
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| | - Maike Schuldt
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Cristobal G dos Remedios
- Sydney Heart Bank, Discipline of Anatomy, Bosch Institute, University of Sydney, Sydney 2006, Australia
| | - Arend F L Schinkel
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Peter L de Jong
- Department of Cardiothoracic Surgery, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Michelle Michels
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
- Netherlands Heart Institute, 3511 EP Utrecht, The Netherlands
| |
Collapse
|