1
|
Pan W, Huang Q, Zhou L, Lin J, Du X, Qian X, Jiang T, Chen W. Epigenetic age acceleration and risk of aortic valve stenosis: a bidirectional Mendelian randomization study. Clin Epigenetics 2024; 16:41. [PMID: 38475866 PMCID: PMC10936111 DOI: 10.1186/s13148-024-01647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Aortic valve stenosis (AVS) is the most prevalent cardiac valve lesion in developed countries, and pathogenesis is closely related to aging. DNA methylation-based epigenetic clock is now recognized as highly accurate predictor of the aging process and associated health outcomes. This study aimed to explore the causal relationship between epigenetic clock and AVS by conducting a bidirectional Mendelian randomization (MR) analysis. METHODS Summary genome-wide association study statistics of epigenetic clocks (HannumAge, HorvathAge, PhenoAge, and GrimAge) and AVS were obtained and assessed for significant instrumental variables from Edinburgh DataShare (n = 34,710) and FinnGen biobank (cases = 9870 and controls = 402,311). The causal association between epigenetic clock and AVS was evaluated using inverse variance weighted (IVW), weighted median (WM), and MR-Egger methods. Multiple analyses (heterogeneity analysis, pleiotropy analysis, and sensitivity analysis) were performed for quality control assessment. RESULTS The MR analysis showed that the epigenetic age acceleration of HorvathAge and PhenoAge was associated with an increased risk of AVS (HorvathAge: OR = 1.043, P = 0.016 by IVW, OR = 1.058, P = 0.018 by WM; PhenoAge: OR = 1.058, P = 0.005 by IVW, OR = 1.053, P = 0.039 by WM). Quality control assessment proved our findings were reliable and robust. However, there was a lack of evidence supporting a causal link from AVS to epigenetic aging. CONCLUSION The present MR analysis unveiled a causal association between epigenetic clocks, especially HorvathAge and PhenoAge, with AVS. Further research is required to elucidate the underlying mechanisms and develop strategies for potential interventions.
Collapse
Affiliation(s)
- Wanqian Pan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Qi Huang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Le Zhou
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, 215000, Jiangsu Province, People's Republic of China
| | - Jia Lin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Xiaojiao Du
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Xiaodong Qian
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.
| | - Weixiang Chen
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Kanwischer L, Xu X, Saifuddin AB, Maamari S, Tan X, Alnour F, Tampe B, Meyer T, Zeisberg M, Hasenfuss G, Puls M, Zeisberg EM. Low levels of circulating methylated IRX3 are related to worse outcome after transcatheter aortic valve implantation in patients with severe aortic stenosis. Clin Epigenetics 2023; 15:149. [PMID: 37697352 PMCID: PMC10496273 DOI: 10.1186/s13148-023-01561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Aortic stenosis (AS) is one of the most common cardiac diseases and major cause of morbidity and mortality in the elderly. Transcatheter aortic valve implantation (TAVI) is performed in such patients with symptomatic severe AS and reduces mortality for the majority of these patients. However, a significant percentage dies within the first two years after TAVI, such that there is an interest to identify parameters, which predict outcome and could guide pre-TAVI patient selection. High levels of cardiac fibrosis have been identified as such independent predictor of cardiovascular mortality after TAVI. Promoter hypermethylation commonly leads to gene downregulation, and the Iroquois homeobox 3 (IRX3) gene was identified in a genome-wide transcriptome and methylome to be hypermethylated and downregulated in AS patients. In a well-described cohort of 100 TAVI patients in which cardiac fibrosis levels were quantified histologically in cardiac biopsies, and which had a follow-up of up to two years, we investigated if circulating methylated DNA of IRX3 in the peripheral blood is associated with cardiac fibrosis and/or mortality in AS patients undergoing TAVI and thus could serve as a biomarker to add information on outcome after TAVI. RESULTS Patients with high levels of methylation in circulating IRX3 show a significantly increased survival as compared to patients with low levels of IRX3 methylation indicating that high peripheral IRX3 methylation is associated with an improved outcome. In the multivariable setting, peripheral IRX3 methylation acts as an independent predictor of all-cause mortality. While there is no significant correlation of levels of IRX3 methylation with cardiac death, there is a significant but very weak inverse correlation between circulating IRX3 promoter methylation level and the amount of cardiac fibrosis. Higher levels of peripheral IRX3 methylation further correlated with decreased cardiac IRX3 expression and vice versa. CONCLUSIONS High levels of IRX3 methylation in the blood of AS patients at the time of TAVI are associated with better overall survival after TAVI and at least partially reflect myocardial IRX3 expression. Circulating methylated IRX3 might aid as a potential biomarker to help guide both pre-TAVI patient selection and post-TAVI monitoring.
Collapse
Affiliation(s)
- Leon Kanwischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Afifa Binta Saifuddin
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Sabine Maamari
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Xiaoying Tan
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Fouzi Alnour
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Miriam Puls
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- DZHK German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Krolevets M, Cate VT, Prochaska JH, Schulz A, Rapp S, Tenzer S, Andrade-Navarro MA, Horvath S, Niehrs C, Wild PS. DNA methylation and cardiovascular disease in humans: a systematic review and database of known CpG methylation sites. Clin Epigenetics 2023; 15:56. [PMID: 36991458 PMCID: PMC10061871 DOI: 10.1186/s13148-023-01468-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide and considered one of the most environmentally driven diseases. The role of DNA methylation in response to the individual exposure for the development and progression of CVD is still poorly understood and a synthesis of the evidence is lacking. RESULTS A systematic review of articles examining measurements of DNA cytosine methylation in CVD was conducted in accordance with PRISMA (preferred reporting items for systematic reviews and meta-analyses) guidelines. The search yielded 5,563 articles from PubMed and CENTRAL databases. From 99 studies with a total of 87,827 individuals eligible for analysis, a database was created combining all CpG-, gene- and study-related information. It contains 74,580 unique CpG sites, of which 1452 CpG sites were mentioned in ≥ 2, and 441 CpG sites in ≥ 3 publications. Two sites were referenced in ≥ 6 publications: cg01656216 (near ZNF438) related to vascular disease and epigenetic age, and cg03636183 (near F2RL3) related to coronary heart disease, myocardial infarction, smoking and air pollution. Of 19,127 mapped genes, 5,807 were reported in ≥ 2 studies. Most frequently reported were TEAD1 (TEA Domain Transcription Factor 1) and PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) in association with outcomes ranging from vascular to cardiac disease. Gene set enrichment analysis of 4,532 overlapping genes revealed enrichment for Gene Ontology molecular function "DNA-binding transcription activator activity" (q = 1.65 × 10-11) and biological processes "skeletal system development" (q = 1.89 × 10-23). Gene enrichment demonstrated that general CVD-related terms are shared, while "heart" and "vasculature" specific genes have more disease-specific terms as PR interval for "heart" or platelet distribution width for "vasculature." STRING analysis revealed significant protein-protein interactions between the products of the differentially methylated genes (p = 0.003) suggesting that dysregulation of the protein interaction network could contribute to CVD. Overlaps with curated gene sets from the Molecular Signatures Database showed enrichment of genes in hemostasis (p = 2.9 × 10-6) and atherosclerosis (p = 4.9 × 10-4). CONCLUSION This review highlights the current state of knowledge on significant relationship between DNA methylation and CVD in humans. An open-access database has been compiled of reported CpG methylation sites, genes and pathways that may play an important role in this relationship.
Collapse
Affiliation(s)
- Mykhailo Krolevets
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Vincent Ten Cate
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Steffen Rapp
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
| | - Stefan Tenzer
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Ohmomo H, Komaki S, Ono K, Sutoh Y, Hachiya T, Arai E, Fujimoto H, Yoshida T, Kanai Y, Sasaki M, Shimizu A. Evaluation of clinical formalin-fixed paraffin-embedded tissue quality for targeted-bisulfite sequencing. Pathol Int 2020; 71:135-140. [PMID: 33333623 PMCID: PMC7898333 DOI: 10.1111/pin.13054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are promising biological resources for genetic research. Recent improvements in DNA extraction from FFPE samples allowed the use of these tissues for multiple sequencing methods. However, fundamental research addressing the application of FFPE-derived DNA for targeted-bisulfite sequencing (TB-seq) is lacking. Here, we evaluated the suitability of FFPE-derived DNA for TB-seq. We conducted TB-seq using FFPE-derived DNA and corresponding fresh frozen (FF) tissues of patients with kidney cancer and compared the quality of DNA, libraries, and TB-seq statistics between the two preservation methods. The approximately 600-bp average fragment size of the FFPE-derived DNA was significantly shorter than that of the FF-derived DNA. The sequencing libraries constructed using FFPE-derived DNA and the mapping ratio were approximately 10 times and 10% lower, respectively, than those constructed using FF-derived DNA. In the mapped data of FFPE-derived DNA, duplicated reads accounted for > 60% of the obtained sequence reads, with lower mean on-target coverage. Therefore, the standard TB-seq protocol is inadequate for obtaining high-quality data for epigenetic analysis from FFPE-derived DNA, and technical improvements are necessary for enabling the use of archived FFPE resources.
Collapse
Affiliation(s)
- Hideki Ohmomo
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Shohei Komaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Kanako Ono
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Yoichi Sutoh
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Tsuyoshi Hachiya
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Hiroyuki Fujimoto
- Department of Urology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Department of Clinical Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan.,Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| |
Collapse
|
5
|
Li N, Lin H, Zhou H, Zheng D, Xu G, Shi H, Zhu X, Gao J, Shao G, Sun L. Efficient detection of differentially methylated regions in the genome of patients with thoracic aortic dissection and association with MMP2 hypermethylation. Exp Ther Med 2020; 20:1073-1081. [PMID: 32765660 PMCID: PMC7388572 DOI: 10.3892/etm.2020.8753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is known to regulate the expression of numerous genes but its role in the pathogenesis of thoracic aortic dissection (TAD) has remained largely elusive. In the present study, the DNA methylome of patients with TAD was analyzed using a methylation microarray and bisulfite pyrosequencing was used to determine whether the hypermethylation of matrix metalloproteinase 2 (MMP2) specifically is associated with TAD. Chip-based whole-DNA methylome analysis was performed on 4 male patients with TAD and 4 male healthy controls using an Illumina HumanMethylation EPIC 850K BeadChip. The resulting data were analyzed by clustering and principal component analysis, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on the differentially methylated genes to interrogate their biological functions. Compared to the healthy controls, 3,362 loci were differentially methylated in the patients with TAD with a statistical significance of P<0.05, while 1,223 loci had a significance of P<0.01. Among these loci, 2,019 were hypermethylated and 1,343 were hypomethylated. From GO analysis within the biological process category, the MMP2, MMP14 and WNT2B genes were identified. enrichment was observed for loci involved in cellular component organization, enzyme-linked receptor protein signaling pathways (potentially having a key role in the development of cardiopulmonary function disorders) and vascular reconstruction. Bisulfite pyrosequencing of plasma samples indicated significantly increased methylation (P<0.01) of the CpG site at position 2 in the promoter of MMP2 in the TAD group relative to the healthy controls, and the mean methylation level of four CpG sites on the MMP2 gene in the TAD group was slightly higher than that in the control group, but not significantly. Hypermethylation of the MMP2 promoter may be a promising novel diagnostic and prognostic biomarker for TAD. Future studies on the epigenetics of biomarkers linked to vascular reconstruction and immune function may provide further insight into the pathogenesis and progression of TAD.
Collapse
Affiliation(s)
- Ni Li
- Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315041, P.R. China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Hangjuan Lin
- Department of Pharmacy, Ningbo Traditional Chinese Medicine Hospital, Ningbo, Zhejiang 315041, P.R. China
| | - Hua Zhou
- Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315041, P.R. China
| | - Dawei Zheng
- Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315041, P.R. China
| | - Guodong Xu
- Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315041, P.R. China
| | - Huoshun Shi
- Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315041, P.R. China
| | - Xiuying Zhu
- Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315041, P.R. China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315041, P.R. China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315041, P.R. China
| |
Collapse
|