1
|
Jager J, Ribeiro M, Furtado M, Carvalho T, Syrris P, Lopes LR, Elliott PM, Cabral JMS, Carmo-Fonseca M, da Rocha ST, Martins S. Patient-derived induced pluripotent stem cells to study non-canonical splicing variants associated with Hypertrophic Cardiomyopathy. Stem Cell Res 2024; 81:103582. [PMID: 39447317 DOI: 10.1016/j.scr.2024.103582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited cardiomyopathy and a leading cause of sudden death. Genetic testing and familial cascade screening play a pivotal role in the clinical management of HCM patients. However, conventional genetic tests primarily focus on the detection of exonic and canonical splice site variation. Oversighting intronic non-canonical splicing variants potentially contributes to a proportion of HCM patients remaining genetically undiagnosed. Here, using a non-integrative reprogramming strategy, we generated induced pluripotent stem cell (iPSC) lines from four individuals carrying one of two variants within intronic regions of MYBPC3: c.1224-52G > A and c.1898-23A > G. Upon differentiation to iPSC-derived cardiomyocytes (iPSC-CMs), mis-spliced mRNAs were identified in cells harbouring these variants. Both abnormal mRNAs contained a premature termination codon (PTC), fitting the criteria for activation of nonsense mediated decay (NMD). However, the c.1898-23A > G transcripts escaped this mRNA quality control mechanism, while the c.1224-52G > A transcripts were degraded. The newly generated iPSC lines represent valuable tools for studying the functional consequences of intronic variation and for translational research aimed at reversing splicing abnormalities to prevent disease progression.
Collapse
Affiliation(s)
- Joanna Jager
- University College London Institute of Cardiovascular Science, Rayne Institute, 5 University Street, London WC1E 6JF, United Kingdom
| | - Marta Ribeiro
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta Furtado
- Fundação GIMM - Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Teresa Carvalho
- Fundação GIMM - Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Petros Syrris
- University College London Institute of Cardiovascular Science, Rayne Institute, 5 University Street, London WC1E 6JF, United Kingdom
| | - Luis R Lopes
- University College London Institute of Cardiovascular Science, Rayne Institute, 5 University Street, London WC1E 6JF, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, W Smithfield, EC1A 7BE London, United Kingdom
| | - Perry M Elliott
- University College London Institute of Cardiovascular Science, Rayne Institute, 5 University Street, London WC1E 6JF, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, W Smithfield, EC1A 7BE London, United Kingdom
| | - Joaquim M S Cabral
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria Carmo-Fonseca
- Fundação GIMM - Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Simão Teixeira da Rocha
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Sandra Martins
- Fundação GIMM - Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
2
|
McBenedict B, Hauwanga WN, Amadi ES, Abraham AA, Sivakumar R, Okere MO, Yau MCY, Balla N, Rahumathulla T, Alphonse B, Lima Pessôa B. Impact of Genetic Testing on the Diagnosis, Management, and Prognosis of Hypertrophic Cardiomyopathy: A Systematic Review. Cureus 2024; 16:e70993. [PMID: 39507141 PMCID: PMC11539408 DOI: 10.7759/cureus.70993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a hereditary cardiovascular condition marked by heart muscle thickening, fibrosis, and myocardial disorders. It is often inherited in an autosomal dominant pattern. Symptoms include dyspnea, fatigue, palpitations, dizziness, syncope, and an increased risk of sudden cardiac death (SCD). Genetic studies have identified many asymptomatic carriers, indicating a higher prevalence of HCM. Advances in genetic testing (GT) and novel therapies, such as cardiac myosin inhibitors, have significantly impacted the diagnosis and management of HCM. This integrative review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and aimed to synthesize information regarding the impact of GT on the diagnosis and management of HCM patients. An electronic search was conducted on May 17, 2024, across PubMed, Embase, Scopus, Web of Science, and Cochrane databases, covering January 2020 to May 2024. Inclusion criteria were studies involving adult HCM patients who underwent GT and follow-up. Exclusion criteria included non-human studies, pediatric cases, non-HCM-related GT, non-peer-reviewed articles, systematic reviews, conference abstracts, and editorials. From 1,155 articles identified, 42 met the inclusion criteria after applying filters and removing duplicates. GT identified pathogenic variants in a significant proportion of HCM patients, enhancing diagnostic accuracy and management. Key mutations were found in myosin binding protein C3 and myosin heavy chain 7 genes. GT facilitated personalized management strategies, including risk stratification for SCD and family screening. Patients with identified mutations often required closer monitoring and tailored treatments. GT has revolutionized the diagnosis and management of HCM. The integration of genetic data has improved risk stratification, facilitated early intervention, and enhanced patient outcomes. Despite these advances, challenges remain in identifying genetic variants in some patients, emphasizing the need for continuous improvement in genetic panels and diagnostic methods. This review highlights the significant role of GT in optimizing HCM care through precise risk assessment and tailored treatment strategies.
Collapse
Affiliation(s)
| | - Wilhelmina N Hauwanga
- Family Medicine, Faculty of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | - Emmanuel S Amadi
- Internal Medicine, Hallel Hospital Port Harcourt, Port Harcourt, NGA
| | - Aaron A Abraham
- Internal Medicine, Christian Medical College Ludhiana, Ludhiana, IND
- Neurosurgery, Fluminense Federal University, Niterói, BRA
| | - Rithika Sivakumar
- College of Medicine, Government Medical College, Omandurar Government Estate, Chennai, IND
| | - Madeleine O Okere
- Internal Medicine, University of Port Harcourt Teaching Hospital, Port Harcourt, NGA
| | | | | | | | - Berley Alphonse
- Internal Medicine, University Notre Dame of Haiti, Port-au-Prince, HTI
| | | |
Collapse
|
3
|
Liu L, Yu L, Wang Y, Zhou L, Liu Y, Pan X, Huang J. Unravelling the impact of RNA methylation genetic and epigenetic machinery in the treatment of cardiomyopathy. Pharmacol Res 2024; 207:107305. [PMID: 39002868 DOI: 10.1016/j.phrs.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Cardiomyopathy (CM) represents a heterogeneous group of diseases primarily affecting cardiac structure and function, with genetic and epigenetic dysregulation playing a pivotal role in its pathogenesis. Emerging evidence from the burgeoning field of epitranscriptomics has brought to light the significant impact of various RNA modifications, notably N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N1-methyladenosine (m1A), 2'-O-methylation (Nm), and 6,2'-O-dimethyladenosine (m6Am), on cardiomyocyte function and the broader processes of cardiac and vascular remodelling. These modifications have been shown to influence key pathological mechanisms including mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis, inflammation, immune response, and myocardial fibrosis. Importantly, aberrations in the RNA methylation machinery have been observed in human CM cases and animal models, highlighting the critical role of RNA methylating enzymes and their potential as therapeutic targets or biomarkers for CM. This review underscores the necessity for a deeper understanding of RNA methylation processes in the context of CM, to illuminate novel therapeutic avenues and diagnostic tools, thereby addressing a significant gap in the current management strategies for this complex disease.
Collapse
Affiliation(s)
- Li Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Baise 533000, China; Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Linxing Yu
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yubo Wang
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Liufang Zhou
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yan Liu
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xingshou Pan
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Jianjun Huang
- Youjiang Medical University for Nationalities, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| |
Collapse
|
4
|
Ribeiro M, Jager J, Furtado M, Carvalho T, Cabral JMS, Brito D, Carmo-Fonseca M, Martins S, da Rocha ST. Generation of induced pluripotent stem cells from an individual with early onset and severe hypertrophic cardiomyopathy linked to MYBPC3: c.772G > A mutation. Hum Cell 2024; 37:1205-1214. [PMID: 38762696 PMCID: PMC11194200 DOI: 10.1007/s13577-024-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in the MYPBC3 gene, which encodes the cardiac myosin-binding protein C (cMyBP-C). Most pathogenic variants in MYPBC3 are either nonsense mutations or result in frameshifts, suggesting that the primary disease mechanism involves reduced functional cMyBP-C protein levels within sarcomeres. However, a subset of MYPBC3 variants are missense mutations, and the molecular mechanisms underlying their pathogenicity remain elusive. Upon in vitro differentiation into cardiomyocytes, induced pluripotent stem cells (iPSCs) derived from HCM patients represent a valuable resource for disease modeling. In this study, we generated two iPSC lines from peripheral blood mononuclear cells (PBMCs) of a female with early onset and severe HCM linked to the MYBPC3: c.772G > A variant. Although this variant was initially classified as a missense mutation, recent studies indicate that it interferes with splicing and results in a frameshift. The generated iPSC lines exhibit a normal karyotype and display hallmark characteristics of pluripotency, including the ability to undergo trilineage differentiation. These novel iPSCs expand the existing repertoire of MYPBC3-mutated cell lines, broadening the spectrum of resources for exploring how diverse mutations induce HCM. They additionally offer a platform to study potential secondary genetic elements contributing to the pronounced disease severity observed in this individual.
Collapse
Affiliation(s)
- Marta Ribeiro
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joanna Jager
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Marta Furtado
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Carvalho
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Dulce Brito
- Heart and Vessels Department, Cardiology Division, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra Martins
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.
| | - Simão Teixeira da Rocha
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
5
|
Dababneh S, Hamledari H, Maaref Y, Jayousi F, Hosseini DB, Khan A, Jannati S, Jabbari K, Arslanova A, Butt M, Roston TM, Sanatani S, Tibbits GF. Advances in Hypertrophic Cardiomyopathy Disease Modelling Using hiPSC-Derived Cardiomyocytes. Can J Cardiol 2024; 40:766-776. [PMID: 37952715 DOI: 10.1016/j.cjca.2023.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
The advent of human induced pluripotent stem cells (hiPSCs) and their capacity to be differentiated into beating human cardiomyocytes (CMs) in vitro has revolutionized human disease modelling, genotype-phenotype predictions, and therapeutic testing. Hypertrophic cardiomyopathy (HCM) is a common inherited cardiomyopathy and the leading known cause of sudden cardiac arrest in young adults and athletes. On a molecular level, HCM is often driven by single pathogenic genetic variants, usually in sarcomeric proteins, that can alter the mechanical, electrical, signalling, and transcriptional properties of the cell. A deeper knowledge of these alterations is critical to better understanding HCM manifestation, progression, and treatment. Leveraging hiPSC-CMs to investigate the molecular mechanisms driving HCM presents a unique opportunity to dissect the consequences of genetic variants in a sophisticated and controlled manner. In this review, we summarize the molecular underpinnings of HCM and the role of hiPSC-CM studies in advancing our understanding, and we highlight the advances in hiPSC-CM-based modelling of HCM, including maturation, contractility, multiomics, and genome editing, with the notable exception of electrophysiology, which has been previously covered.
Collapse
Affiliation(s)
- Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Homa Hamledari
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yasaman Maaref
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Farah Jayousi
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Dina B Hosseini
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aasim Khan
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Shayan Jannati
- Faculty of Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kosar Jabbari
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Thomas M Roston
- Division of Cardiology and Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shubhayan Sanatani
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Glen F Tibbits
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
6
|
Singer ES, Crowe J, Holliday M, Isbister JC, Lal S, Nowak N, Yeates L, Burns C, Rajagopalan S, Macciocca I, King I, Wacker J, Ingles J, Weintraub RG, Semsarian C, Bagnall RD. The burden of splice-disrupting variants in inherited heart disease and unexplained sudden cardiac death. NPJ Genom Med 2023; 8:29. [PMID: 37821546 PMCID: PMC10567745 DOI: 10.1038/s41525-023-00373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
There is an incomplete understanding of the burden of splice-disrupting variants in definitively associated inherited heart disease genes and whether these genes can amplify from blood RNA to support functional confirmation of splicing outcomes. We performed burden testing of rare splice-disrupting variants in people with inherited heart disease and sudden unexplained death compared to 125,748 population controls. ClinGen definitively disease-associated inherited heart disease genes were amplified using RNA extracted from fresh blood, derived cardiomyocytes, and myectomy tissue. Variants were functionally assessed and classified for pathogenicity. We found 88 in silico-predicted splice-disrupting variants in 128 out of 1242 (10.3%) unrelated participants. There was an excess burden of splice-disrupting variants in PKP2 (5.9%), FLNC (2.7%), TTN (2.8%), MYBPC3 (8.2%) and MYH7 (1.3%), in distinct cardiomyopathy subtypes, and KCNQ1 (3.6%) in long QT syndrome. Blood RNA supported the amplification of 21 out of 31 definitive disease-associated inherited heart disease genes. Our functional studies confirmed altered splicing in six variants. Eleven variants of uncertain significance were reclassified as likely pathogenic based on functional studies and six were used for cascade genetic testing in 12 family members. Our study highlights that splice-disrupting variants are a significant cause of inherited heart disease, and that analysis of blood RNA confirms splicing outcomes and supports variant pathogenicity classification.
Collapse
Affiliation(s)
- Emma S Singer
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Joshua Crowe
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mira Holliday
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Julia C Isbister
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Sean Lal
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Natalie Nowak
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Laura Yeates
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Charlotte Burns
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | - Ivan Macciocca
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Ingrid King
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Julie Wacker
- Department of Cardiology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Jodie Ingles
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Robert G Weintraub
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
- Department of Cardiology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Kistamás K, Müller A, Muenthaisong S, Lamberto F, Zana M, Dulac M, Leal F, Maziz A, Costa P, Bernotiene E, Bergaud C, Dinnyés A. Multifactorial approaches to enhance maturation of human iPSC-derived cardiomyocytes. J Mol Liq 2023; 387:122668. [DOI: 10.1016/j.molliq.2023.122668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Gotthardt M, Badillo-Lisakowski V, Parikh VN, Ashley E, Furtado M, Carmo-Fonseca M, Schudy S, Meder B, Grosch M, Steinmetz L, Crocini C, Leinwand L. Cardiac splicing as a diagnostic and therapeutic target. Nat Rev Cardiol 2023; 20:517-530. [PMID: 36653465 DOI: 10.1038/s41569-022-00828-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Despite advances in therapeutics for heart failure and arrhythmias, a substantial proportion of patients with cardiomyopathy do not respond to interventions, indicating a need to identify novel modifiable myocardial pathobiology. Human genetic variation associated with severe forms of cardiomyopathy and arrhythmias has highlighted the crucial role of alternative splicing in myocardial health and disease, given that it determines which mature RNA transcripts drive the mechanical, structural, signalling and metabolic properties of the heart. In this Review, we discuss how the analysis of cardiac isoform expression has been facilitated by technical advances in multiomics and long-read and single-cell sequencing technologies. The resulting insights into the regulation of alternative splicing - including the identification of cardiac splice regulators as therapeutic targets and the development of a translational pipeline to evaluate splice modulators in human engineered heart tissue, animal models and clinical trials - provide a basis for improved diagnosis and therapy. Finally, we consider how the medical and scientific communities can benefit from facilitated acquisition and interpretation of splicing data towards improved clinical decision-making and patient care.
Collapse
Affiliation(s)
- Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany.
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Victor Badillo-Lisakowski
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany
| | - Victoria Nicole Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Euan Ashley
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marta Furtado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sarah Schudy
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Heidelberg-Mannheim), Heidelberg, Germany
| | - Markus Grosch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Lars Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Claudia Crocini
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Leslie Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
9
|
O'Neill MJ, Chen SN, Rumping L, Johnson R, van Slegtenhorst M, Glazer AM, Yang T, Solus JF, Laudeman J, Mitchell DW, Vanags LR, Kroncke BM, Anderson K, Gao S, Verdonschot JAJ, Brunner H, Hellebrekers D, Taylor MRG, Roden DM, Wessels MW, Lekanne Dit Deprez RH, Fatkin D, Mestroni L, Shoemaker MB. Multicenter clinical and functional evidence reclassifies a recurrent noncanonical filamin C splice-altering variant. Heart Rhythm 2023; 20:1158-1166. [PMID: 37164047 PMCID: PMC10530503 DOI: 10.1016/j.hrthm.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Truncating variants in filamin C (FLNC) can cause arrhythmogenic cardiomyopathy (ACM) through haploinsufficiency. Noncanonical splice-altering variants may contribute to this phenotype. OBJECTIVE The purpose of this study was to investigate the clinical and functional consequences of a recurrent FLNC intronic variant of uncertain significance (VUS), c.970-4A>G. METHODS Clinical data in 9 variant heterozygotes from 4 kindreds were obtained from 5 tertiary health care centers. We used in silico predictors and functional studies with peripheral blood and patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Isolated RNA was studied by reverse transcription polymerase chain reaction. iPSC-CMs were further characterized at baseline and after nonsense-mediated decay (NMD) inhibition, using quantitative polymerase chain reaction (qPCR), RNA-sequencing, and cellular electrophysiology. American College of Medical Genetics and Genomics (ACMG) criteria were used to adjudicate variant pathogenicity. RESULTS Variant heterozygotes displayed a spectrum of disease phenotypes, spanning from mild ventricular dysfunction with palpitations to severe ventricular arrhythmias requiring device shocks or progressive cardiomyopathy requiring heart transplantation. Consistent with in silico predictors, the c.970-4A>G FLNC variant activated a cryptic splice acceptor site, introducing a 3-bp insertion containing a premature termination codon. NMD inhibition upregulated aberrantly spliced transcripts by qPCR and RNA-sequencing. Patch clamp studies revealed irregular spontaneous action potentials, increased action potential duration, and increased sodium late current in proband-derived iPSC-CMs. These findings fulfilled multiple ACMG criteria for pathogenicity. CONCLUSION Clinical, in silico, and functional evidence support the prediction that the intronic c.970-4A>G VUS disrupts splicing and drives ACM, enabling reclassification from VUS to pathogenic.
Collapse
Affiliation(s)
- Matthew J O'Neill
- Vanderbilt University School of Medicine, Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee
| | - Suet Nee Chen
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynne Rumping
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Renee Johnson
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | | | - Andrew M Glazer
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tao Yang
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joseph F Solus
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julie Laudeman
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Devyn W Mitchell
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Loren R Vanags
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brett M Kroncke
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katherine Anderson
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shanshan Gao
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Han Brunner
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Debby Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Dan M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marja W Wessels
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Cardiology Department, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - M Benjamin Shoemaker
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
10
|
Htet M, Lei S, Bajpayi S, Zoitou A, Chamakioti M, Tampakakis E. The role of noncoding genetic variants in cardiomyopathy. Front Cardiovasc Med 2023; 10:1116925. [PMID: 37283586 PMCID: PMC10239966 DOI: 10.3389/fcvm.2023.1116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Cardiomyopathies remain one of the leading causes of morbidity and mortality worldwide. Environmental risk factors and genetic predisposition account for most cardiomyopathy cases. As with all complex diseases, there are significant challenges in the interpretation of the molecular mechanisms underlying cardiomyopathy-associated genetic variants. Given the technical improvements and reduced costs of DNA sequence technologies, an increasing number of patients are now undergoing genetic testing, resulting in a continuously expanding list of novel mutations. However, many patients carry noncoding genetic variants, and although emerging evidence supports their contribution to cardiac disease, their role in cardiomyopathies remains largely understudied. In this review, we summarize published studies reporting on the association of different types of noncoding variants with various types of cardiomyopathies. We focus on variants within transcriptional enhancers, promoters, intronic sites, and untranslated regions that are likely associated with cardiac disease. Given the broad nature of this topic, we provide an overview of studies that are relatively recent and have sufficient evidence to support a significant degree of causality. We believe that more research with additional validation of noncoding genetic variants will provide further mechanistic insights on the development of cardiac disease, and noncoding variants will be increasingly incorporated in future genetic screening tests.
Collapse
Affiliation(s)
- Myo Htet
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Shunyao Lei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Sheetal Bajpayi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Asimina Zoitou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | | | - Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
11
|
Ogi DA, Jin S. Transcriptome-Powered Pluripotent Stem Cell Differentiation for Regenerative Medicine. Cells 2023; 12:1442. [PMID: 37408278 DOI: 10.3390/cells12101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
Pluripotent stem cells are endless sources for in vitro engineering human tissues for regenerative medicine. Extensive studies have demonstrated that transcription factors are the key to stem cell lineage commitment and differentiation efficacy. As the transcription factor profile varies depending on the cell type, global transcriptome analysis through RNA sequencing (RNAseq) has been a powerful tool for measuring and characterizing the success of stem cell differentiation. RNAseq has been utilized to comprehend how gene expression changes as cells differentiate and provide a guide to inducing cellular differentiation based on promoting the expression of specific genes. It has also been utilized to determine the specific cell type. This review highlights RNAseq techniques, tools for RNAseq data interpretation, RNAseq data analytic methods and their utilities, and transcriptomics-enabled human stem cell differentiation. In addition, the review outlines the potential benefits of the transcriptomics-aided discovery of intrinsic factors influencing stem cell lineage commitment, transcriptomics applied to disease physiology studies using patients' induced pluripotent stem cell (iPSC)-derived cells for regenerative medicine, and the future outlook on the technology and its implementation.
Collapse
Affiliation(s)
- Derek A Ogi
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA
- Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
12
|
Rayani K, Davies B, Cheung M, Comber D, Roberts JD, Tadros R, Green MS, Healey JS, Simpson CS, Sanatani S, Steinberg C, MacIntyre C, Angaran P, Duff H, Hamilton R, Arbour L, Leather R, Seifer C, Fournier A, Atallah J, Kimber S, Makanjee B, Alqarawi W, Cadrin-Tourigny J, Joza J, Gardner M, Talajic M, Bagnall RD, Krahn AD, Laksman ZWM. Identification and in-silico characterization of splice-site variants from a large cardiogenetic national registry. Eur J Hum Genet 2023; 31:512-520. [PMID: 36138163 PMCID: PMC10172209 DOI: 10.1038/s41431-022-01193-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Splice-site variants in cardiac genes may predispose carriers to potentially lethal arrhythmias. To investigate, we screened 1315 probands and first-degree relatives enrolled in the Canadian Hearts in Rhythm Organization (HiRO) registry. 10% (134/1315) of patients in the HiRO registry carry variants within 10 base-pairs of the intron-exon boundary with 78% (104/134) otherwise genotype negative. These 134 probands were carriers of 57 unique variants. For each variant, American College of Medical Genetics and Genomics (ACMG) classification was revisited based on consensus between nine in silico tools. Due in part to the in silico algorithms, seven variants were reclassified from the original report, with the majority (6/7) downgraded. Our analyses predicted 53% (30/57) of variants to be likely/pathogenic. For the 57 variants, an average of 9 tools were able to score variants within splice sites, while 6.5 tools responded for variants outside these sites. With likely/pathogenic classification considered a positive outcome, the ACMG classification was used to calculate sensitivity/specificity of each tool. Among these, Combined Annotation Dependent Depletion (CADD) had good sensitivity (93%) and the highest response rate (131/134, 98%), dbscSNV was also sensitive (97%), and SpliceAI was the most specific (64%) tool. Splice variants remain an important consideration in gene elusive inherited arrhythmia syndromes. Screening for intronic variants, even when restricted to the ±10 positions as performed here may improve genetic testing yield. We compare 9 freely available in silico tools and provide recommendations regarding their predictive capabilities. Moreover, we highlight several novel cardiomyopathy-associated variants which merit further study.
Collapse
Affiliation(s)
- Kaveh Rayani
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brianna Davies
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Cheung
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Drake Comber
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
| | - Martin S Green
- Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | - Christian Steinberg
- Institut Universitaire de Cardiologie et Pneumologie de Quebec, Laval University, Quebec City, QC, Canada
| | - Ciorsti MacIntyre
- Division of Cardiology, QEII Health Sciences Center, Halifax, NS, Canada
| | - Paul Angaran
- St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Henry Duff
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Robert Hamilton
- Division of Cardiology, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Laura Arbour
- Division of Medical Genetics, Island Health, Victoria, BC, Canada
| | | | - Colette Seifer
- Section of Cardiology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Anne Fournier
- Division of Pediatric Cardiology, CHU Sainte-Justine, Universite de Montreal, Montreal, QC, Canada
| | - Joseph Atallah
- Division of Pediatric Cardiology, University of Alberta Stollery Children's Hospital, Edmonton, AB, Canada
| | - Shane Kimber
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Bhavanesh Makanjee
- Heart Health Institute, Scarborough Health Network, Scarborough, ON, Canada
| | - Wael Alqarawi
- Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
| | - Jacqueline Joza
- Division of Cardiology, McGill University Health Centre, Montreal, QC, Canada
| | - Martin Gardner
- Division of Cardiology, QEII Health Sciences Center, Halifax, NS, Canada
| | - Mario Talajic
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Andrew D Krahn
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Zachary W M Laksman
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Identification of Two Homozygous Variants in MYBPC3 and SMYD1 Genes Associated with Severe Infantile Cardiomyopathy. Genes (Basel) 2023; 14:genes14030659. [PMID: 36980931 PMCID: PMC10048717 DOI: 10.3390/genes14030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Mutations in cardiac genes are one of the primary causes of infantile cardiomyopathy. In this study, we report the genetic findings of two siblings carrying variations in the MYBPC3 and SMYD1 genes. The first patient is a female proband exhibiting hypertrophic cardiomyopathy (HCM) and biventricular heart failure carrying a truncating homozygous MYBPC3 variant c.1224-52G>A (IVS13-52G>A) and a novel homozygous variant (c.302A>G; p.Asn101Ser) in the SMYD1 gene. The second patient, the proband’s sibling, is a male infant diagnosed with hypertrophic cardiomyopathy and carries the same homozygous MYBPC3 variant. While this specific MYBPC3 variant (c.1224-52G>A, IVS13-52G>A) has been previously reported to be associated with adult-onset hypertrophic cardiomyopathy, this is the first report linking it to infantile cardiomyopathy. In addition, this work describes, for the first time, a novel SMYD1 variant (c.302A>G; p.Asn101Ser) that has never been reported. We performed a histopathological evaluation of tissues collected from both probands and show that these variants lead to myofibrillar disarray, reduced and irregular mitochondrial cristae and cardiac fibrosis. Together, these results provide critical insight into the molecular functionality of these genes in human cardiac physiology.
Collapse
|
14
|
O’Neill MJ, Wada Y, Hall LD, Mitchell DW, Glazer AM, Roden DM. Functional Assays Reclassify Suspected Splice-Altering Variants of Uncertain Significance in Mendelian Channelopathies. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003782. [PMID: 36197721 PMCID: PMC9772980 DOI: 10.1161/circgen.122.003782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Rare protein-altering variants in SCN5A, KCNQ1, and KCNH2 are major causes of Brugada syndrome and the congenital long QT syndrome. While splice-altering variants lying outside 2-bp canonical splice sites can cause these diseases, their role remains poorly described. We implemented 2 functional assays to assess 12 recently reported putative splice-altering variants of uncertain significance and 1 likely pathogenic variant without functional data observed in Brugada syndrome and long QT syndrome probands. METHODS We deployed minigene assays to assess the splicing consequences of 10 variants. Three variants incompatible with the minigene approach were introduced into control induced pluripotent stem cells by CRISPR genome editing. We differentiated cells into induced pluripotent stem cell-derived cardiomyocytes and studied splicing outcomes by reverse transcription-polymerase chain reaction. We used the American College of Medical Genetics and Genomics functional assay criteria (PS3/BS3) to reclassify variants. RESULTS We identified aberrant splicing, with presumed disruption of protein sequence, in 8/10 variants studied using the minigene assay and 1/3 studied in induced pluripotent stem cell-derived cardiomyocytes. We reclassified 8 variants of uncertain significance to likely pathogenic, 1 variant of uncertain significance to likely benign, and 1 likely pathogenic variant to pathogenic. CONCLUSIONS Functional assays reclassified splice-altering variants outside canonical splice sites in Brugada Syndrome- and long QT syndrome-associated genes.
Collapse
Affiliation(s)
- Matthew J. O’Neill
- Vanderbilt University School of Medicine, Medical Scientist
Training Program, Vanderbilt University
| | - Yuko Wada
- Vanderbilt Center for Arrhythmia Research and Therapeutics
(VanCART), Division of Clinical Pharmacology, Department of Medicine
| | - Lynn D. Hall
- Vanderbilt Center for Arrhythmia Research and Therapeutics
(VanCART), Division of Clinical Pharmacology, Department of Medicine
| | - Devyn W. Mitchell
- Vanderbilt Center for Arrhythmia Research and Therapeutics
(VanCART), Division of Clinical Pharmacology, Department of Medicine
| | - Andrew M. Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics
(VanCART), Division of Clinical Pharmacology, Department of Medicine
| | - Dan M. Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics
(VanCART), Departments of Medicine, Pharmacology, and Biomedical Informatics,
Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
15
|
Singer ES, Bagnall RD. Splicing Functional Assays Into the Genetic Testing Pipeline. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003949. [PMID: 36350765 DOI: 10.1161/circgen.122.003949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Emma S Singer
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute (E.S.S., R.D.B.), The University of Sydney, NSW, Australia.,Faculty of Medicine and Health (E.S.S., R.D.B.), The University of Sydney, NSW, Australia
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute (E.S.S., R.D.B.), The University of Sydney, NSW, Australia.,Faculty of Medicine and Health (E.S.S., R.D.B.), The University of Sydney, NSW, Australia
| |
Collapse
|
16
|
Torrado M, Maneiro E, Lamounier Junior A, Fernández-Burriel M, Sánchez Giralt S, Martínez-Carapeto A, Cazón L, Santiago E, Ochoa JP, McKenna WJ, Santomé L, Monserrat L. Identification of an elusive spliceogenic MYBPC3 variant in an otherwise genotype-negative hypertrophic cardiomyopathy pedigree. Sci Rep 2022; 12:7284. [PMID: 35508642 PMCID: PMC9068804 DOI: 10.1038/s41598-022-11159-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
The finding of a genotype-negative hypertrophic cardiomyopathy (HCM) pedigree with several affected members indicating a familial origin of the disease has driven this study to discover causative gene variants. Genetic testing of the proband and subsequent family screening revealed the presence of a rare variant in the MYBPC3 gene, c.3331−26T>G in intron 30, with evidence supporting cosegregation with the disease in the family. An analysis of potential splice-altering activity using several splicing algorithms consistently yielded low scores. Minigene expression analysis at the mRNA and protein levels revealed that c.3331−26T>G is a spliceogenic variant with major splice-altering activity leading to undetectable levels of properly spliced transcripts or the corresponding protein. Minigene and patient mRNA analyses indicated that this variant induces complete and partial retention of intron 30, which was expected to lead to haploinsufficiency in carrier patients. As most spliceogenic MYBPC3 variants, c.3331−26T>G appears to be non-recurrent, since it was identified in only two additional unrelated probands in our large HCM cohort. In fact, the frequency analysis of 46 known splice-altering MYBPC3 intronic nucleotide substitutions in our HCM cohort revealed 9 recurrent and 16 non-recurrent variants present in a few probands (≤ 4), while 21 were not detected. The identification of non-recurrent elusive MYBPC3 spliceogenic variants that escape detection by in silico algorithms represents a challenge for genetic diagnosis of HCM and contributes to solving a fraction of genotype-negative HCM cases.
Collapse
Affiliation(s)
- Mario Torrado
- Cardiovascular Research Group, University of A Coruña, Campus de Oza, Building Fortín, 15006, A Coruña, Spain. .,Biomedical Research Institute of A Coruña, A Coruña, Spain.
| | - Emilia Maneiro
- Biomedical Research Institute of A Coruña, A Coruña, Spain. .,Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain.
| | - Arsonval Lamounier Junior
- Cardiovascular Research Group, University of A Coruña, Campus de Oza, Building Fortín, 15006, A Coruña, Spain.,Biomedical Research Institute of A Coruña, A Coruña, Spain.,Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain.,Medical School, Universidade Vale do Rio Doce, Governador Valadares, MG, Brazil
| | | | | | | | - Laura Cazón
- Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain
| | - Elisa Santiago
- Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain
| | - Juan Pablo Ochoa
- Biomedical Research Institute of A Coruña, A Coruña, Spain.,Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain
| | - William J McKenna
- Cardiovascular Research Group, University of A Coruña, Campus de Oza, Building Fortín, 15006, A Coruña, Spain.,Biomedical Research Institute of A Coruña, A Coruña, Spain.,Institute of Cardiovascular Science, University College London, London, UK
| | - Luis Santomé
- Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain
| | - Lorenzo Monserrat
- Biomedical Research Institute of A Coruña, A Coruña, Spain.,Cardiovascular Genetics, Health in Code, Business Center Marineda, Avenida de Arteixo 43, Local 1A, 15008, A Coruña, Spain
| |
Collapse
|
17
|
ABA Mediates Plant Development and Abiotic Stress via Alternative Splicing. Int J Mol Sci 2022; 23:ijms23073796. [PMID: 35409156 PMCID: PMC8998868 DOI: 10.3390/ijms23073796] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 02/01/2023] Open
Abstract
Alternative splicing (AS) exists in eukaryotes to increase the complexity and adaptability of systems under biophysiological conditions by increasing transcriptional and protein diversity. As a classic hormone, abscisic acid (ABA) can effectively control plant growth, improve stress resistance, and promote dormancy. At the transcriptional level, ABA helps plants respond to the outside world by regulating transcription factors through signal transduction pathways to regulate gene expression. However, at the post-transcriptional level, the mechanism by which ABA can regulate plant biological processes by mediating alternative splicing is not well understood. Therefore, this paper briefly introduces the mechanism of ABA-induced alternative splicing and the role of ABA mediating AS in plant response to the environment and its own growth.
Collapse
|
18
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
19
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
20
|
Suay-Corredera C, Pricolo MR, Herrero-Galán E, Velázquez-Carreras D, Sánchez-Ortiz D, García-Giustiniani D, Delgado J, Galano-Frutos JJ, García-Cebollada H, Vilches S, Domínguez F, Molina MS, Barriales-Villa R, Frisso G, Sancho J, Serrano L, García-Pavía P, Monserrat L, Alegre-Cebollada J. Protein haploinsufficiency drivers identify MYBPC3 variants that cause hypertrophic cardiomyopathy. J Biol Chem 2021; 297:100854. [PMID: 34097875 PMCID: PMC8260873 DOI: 10.1016/j.jbc.2021.100854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease. Variants in MYBPC3, the gene encoding cardiac myosin-binding protein C (cMyBP-C), are the leading cause of HCM. However, the pathogenicity status of hundreds of MYBPC3 variants found in patients remains unknown, as a consequence of our incomplete understanding of the pathomechanisms triggered by HCM-causing variants. Here, we examined 44 nontruncating MYBPC3 variants that we classified as HCM-linked or nonpathogenic according to cosegregation and population genetics criteria. We found that around half of the HCM-linked variants showed alterations in RNA splicing or protein stability, both of which can lead to cMyBP-C haploinsufficiency. These protein haploinsufficiency drivers associated with HCM pathogenicity with 100% and 94% specificity, respectively. Furthermore, we uncovered that 11% of nontruncating MYBPC3 variants currently classified as of uncertain significance in ClinVar induced one of these molecular phenotypes. Our strategy, which can be applied to other conditions induced by protein loss of function, supports the idea that cMyBP-C haploinsufficiency is a fundamental pathomechanism in HCM.
Collapse
Affiliation(s)
| | - Maria Rosaria Pricolo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | - Javier Delgado
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan José Galano-Frutos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain
| | - Helena García-Cebollada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Vilches
- Heart Failure and Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain
| | - Fernando Domínguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María Sabater Molina
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain; Hospital C. Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Roberto Barriales-Villa
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Unidad de Cardiopatías Familiares, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; CEINGE Biotecnologie Avanzate, scarl, Naples, Italy
| | - Javier Sancho
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, Spain
| | | | | |
Collapse
|