1
|
Abstract
PURPOSE OF REVIEW : Familial combined hyperlipidemia (FCH), defined by concurrently elevated plasma triglyceride (TG) and low-density lipoprotein (LDL) cholesterol, has long been investigated to characterize its genetic basis. Despite almost half a century of searching, a single gene cause for the phenotype has not yet been identified. RECENT FINDINGS : Recent studies using next-generation genetic analytic methods confirm that FCH has a polygenic basis, with a clear large contribution from the accumulation of small-to-moderate effect common single nucleotide polymorphisms (SNPs) throughout the genome that is associated with raising TG, and probably also those raising LDL cholesterol. On the other hand, rare monogenic variants, such as those causing familial hypercholesterolemia, play a negligible role, if any. Genetic profiling suggests that patients with FCH and hypertriglyceridemia share a strong polygenic basis and show a similar profile of multiple TG-raising common SNPs. SUMMARY : Recent progress in genomics has shown that most if not all of the genetic susceptibility to FCH is polygenic in nature. Future research should include larger cohort studies, with wider ancestral diversity, ancestry-specific polygenic scores, and investigation of epigenetic and lifestyle factors to help further elucidate the causative agents at play in cases where the genetic etiology remains to be defined.
Collapse
Affiliation(s)
| | - Robert A Hegele
- Robarts Research Institute
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Prediction of Drug Targets for Specific Diseases Leveraging Gene Perturbation Data: A Machine Learning Approach. Pharmaceutics 2022; 14:pharmaceutics14020234. [PMID: 35213968 PMCID: PMC8878225 DOI: 10.3390/pharmaceutics14020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Identification of the correct targets is a key element for successful drug development. However, there are limited approaches for predicting drug targets for specific diseases using omics data, and few have leveraged expression profiles from gene perturbations. We present a novel computational approach for drug target discovery based on machine learning (ML) models. ML models are first trained on drug-induced expression profiles with outcomes defined as whether the drug treats the studied disease. The goal is to “learn” the expression patterns associated with treatment. Then, the fitted ML models were applied to expression profiles from gene perturbations (overexpression (OE)/knockdown (KD)). We prioritized targets based on predicted probabilities from the ML model, which reflects treatment potential. The methodology was applied to predict targets for hypertension, diabetes mellitus (DM), rheumatoid arthritis (RA), and schizophrenia (SCZ). We validated our approach by evaluating whether the identified targets may ‘re-discover’ known drug targets from an external database (OpenTargets). Indeed, we found evidence of significant enrichment across all diseases under study. A further literature search revealed that many candidates were supported by previous studies. For example, we predicted PSMB8 inhibition to be associated with the treatment of RA, which was supported by a study showing that PSMB8 inhibitors (PR-957) ameliorated experimental RA in mice. In conclusion, we propose a new ML approach to integrate the expression profiles from drugs and gene perturbations and validated the framework. Our approach is flexible and may provide an independent source of information when prioritizing drug targets.
Collapse
|
3
|
Taghizadeh E, Mirzaei F, Jalilian N, Ghayour Mobarhan M, Ferns GA, Pasdar A. A novel mutation in
USF1
gene is associated with familial combined hyperlipidemia. IUBMB Life 2019; 72:616-623. [DOI: 10.1002/iub.2186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Eskandar Taghizadeh
- Department of Medical Genetics, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
- Cellular and Molecular Research CenterYasuj University of Medical Sciences Yasuj Iran
| | - Farzaneh Mirzaei
- Department of Medical Genetics, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Nazanin Jalilian
- Department of Clinical biochemistry, School of MedicineKermanshah University of Medical Sciences Kermanshah Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Centre, School of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Gordon A. Ferns
- Department of Medical EducationBrighton and Sussex Medical School Perso Falmer Brighton UK
| | - Alireza Pasdar
- Department of Medical Genetics, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
- Medical Genetics Research Centre, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
- Division of Applied Medicine, Medical School, University of Aberdeen Foresterhill Aberdeen UK
| |
Collapse
|
4
|
The Regulation of Cbf1 by PAS Kinase Is a Pivotal Control Point for Lipogenesis vs. Respiration in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:33-46. [PMID: 30381292 PMCID: PMC6325914 DOI: 10.1534/g3.118.200663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PAS kinase 1 (Psk1) is a key regulator of respiration in Saccharomyces cerevisiae. Herein the molecular mechanisms of this regulation are explored through the characterization of its substrate, Centromere binding factor 1 (Cbf1). CBF1-deficient yeast displayed a significant decrease in cellular respiration, while PAS kinase-deficient yeast, or yeast harboring a Cbf1 phosphosite mutant (T211A) displayed a significant increase. Transmission electron micrographs showed an increased number of mitochondria in PAS kinase-deficient yeast consistent with the increase in respiration. Although the CBF1-deficient yeast did not appear to have an altered number of mitochondria, a mitochondrial proteomics study revealed significant differences in the mitochondrial composition of CBF1-deficient yeast including altered Atp3 levels, a subunit of the mitochondrial F1-ATP synthase complex. Both beta-galactosidase reporter assays and western blot analysis confirmed direct transcriptional control of ATP3 by Cbf1. In addition, we confirmed the regulation of yeast lipid genes LAC1 and LAG1 by Cbf1. The human homolog of Cbf1, Upstream transcription factor 1 (USF1), is also known to be involved in lipid biogenesis. Herein, we provide the first evidence for a role of USF1 in respiration since it appeared to complement Cbf1in vivo as determined by respiration phenotypes. In addition, we confirmed USF1 as a substrate of human PAS kinase (hPASK) in vitro. Combined, our data supports a model in which Cbf1/USF1 functions to partition glucose toward respiration and away from lipid biogenesis, while PAS kinase inhibits respiration in part through the inhibition of Cbf1/USF1.
Collapse
|
5
|
Per-Arnt-Sim Kinase (PASK) Deficiency Increases Cellular Respiration on a Standard Diet and Decreases Liver Triglyceride Accumulation on a Western High-Fat High-Sugar Diet. Nutrients 2018; 10:nu10121990. [PMID: 30558306 PMCID: PMC6316003 DOI: 10.3390/nu10121990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes and the related disease metabolic syndrome are epidemic in the United States, in part due to a shift in diet and decrease in physical exercise. PAS kinase is a sensory protein kinase associated with many of the phenotypes of these diseases, including hepatic triglyceride accumulation and metabolic dysregulation in male mice placed on a high-fat diet. Herein we provide the first characterization of the effects of western diet (high-fat high-sugar, HFHS) on Per-Arnt-Sim kinase mice (PASK−/−) and the first characterization of both male and female PASK−/− mice. Soleus muscle from the PASK−/− male mice displayed a 2-fold higher oxidative phosphorylation capacity than wild type (WT) on the normal chow diet. PASK−/− male mice were also resistant to hepatic triglyceride accumulation on the HFHS diet, displaying a 2.7-fold reduction in hepatic triglycerides compared to WT mice on the HFHS diet. These effects on male hepatic triglyceride were further explored through mass spectrometry-based lipidomics. The absence of PAS kinase was found to affect many of the 44 triglycerides analyzed, preventing hepatic triglyceride accumulation in response to the HFHS diet. In contrast, the female mice showed resistance to hepatic triglyceride accumulation on the HFHS diet regardless of genotype, suggesting the effects of PAS kinase may be masked.
Collapse
|
6
|
Zhou X, Zhu HQ, Ma CQ, Li HG, Liu FF, Chang H, Lu J. Two polymorphisms of USF1 gene (-202G>A and -844C>T) may be associated with hepatocellular carcinoma susceptibility based on a case-control study in Chinese Han population. Med Oncol 2014; 31:301. [PMID: 25367853 DOI: 10.1007/s12032-014-0301-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prototype of liver cancer, which is closely related to manifested metabolism of lip and glucose. Upstream transcription factor 1 (USF1) is an important transcription factor in human genome, and it regulates the expression of multiple genes associated with lipid and glucose metabolism. This study aims at investigating the correlation between seven common USF1 polymorphisms (i.e., -1994 G>A, -202 G>A, 7998 A>G, -844 C>T, 9042 C>G, 9441 T>C, and -2083 G>A) and the risk of HCC. Elucidation of the interaction might be of vital importance to the diagnosis and prognosis of HCC. One hundred and fifty-five HCC patients and 160 healthy controls from a Chinese Han population were involved in this study. Tag single-nucleotide polymorphisms (SNPs) were identified with reference to CBI-dbSNP and HapMap databases. DNA was extracted from blood samples, and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was conducted to determine the polymorphisms of USF1. Odds ratio (OR) and 95% confidence interval were applied to evaluate the difference of genotype distribution. Seven SNPs were selected to be representatives. No significant difference was observed concerning -1994 G>A, 7998 A>G, 9042 C>G, 9441 T>C, and -2083 G>A polymorphisms (all P > 0.05). A significantly elevated genotype frequency regarding -202 G>A polymorphism was observed in HCC patients [AA vs. GG: OR 2.13 (1.13-4.01), P = 0.019; AA vs. GG+GA: OR 2.22 (1.32-3.75), P = 0.003; A allele vs. G allele: OR 1.46 (1.07-2.01), P = 0.018]. Subjects carrying mutant -844 C>T genotypes also had a higher risk of HCC [CT vs. CC: OR 1.88 (1.17-3.04), P = 0.009; CT+TT vs. CC: OR 1.83 (1.17-2.86), P = 0.008; T allele vs. C allele: OR 1.49 (1.06-2.09), P = 0.020]. Further studies are recommended to validate our findings in different ethnicity and to clarify the functional relationship between USF1 polymorphisms and the susceptibility of HCC.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Hepatobiliary Surgery, Provincial Hospital Affiliated to Shandong University (East District), No. 9677 Jingshi Road, Jinan, 250014, Shandong Province, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Upstream Transcription Factor 1 (USF1) allelic variants regulate lipoprotein metabolism in women and USF1 expression in atherosclerotic plaque. Sci Rep 2014; 4:4650. [PMID: 24722012 PMCID: PMC3983598 DOI: 10.1038/srep04650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/26/2014] [Indexed: 11/25/2022] Open
Abstract
Upstream transcription factor 1 (USF1) allelic variants significantly influence future risk of cardiovascular disease and overall mortality in females. We investigated sex-specific effects of USF1 gene allelic variants on serum indices of lipoprotein metabolism, early markers of asymptomatic atherosclerosis and their changes during six years of follow-up. In addition, we investigated the cis-regulatory role of these USF1 variants in artery wall tissues in Caucasians. In the Cardiovascular Risk in Young Finns Study, 1,608 participants (56% women, aged 31.9 ± 4.9) with lipids and cIMT data were included. For functional study, whole genome mRNA expression profiling was performed in 91 histologically classified atherosclerotic samples. In females, serum total, LDL cholesterol and apoB levels increased gradually according to USF1 rs2516839 genotypes TT < CT < CC and rs1556259 AA < AG < GG as well as according to USF1 H3 (GCCCGG) copy number 0 < 1 < 2. Furthermore, the carriers of minor alleles of rs2516839 (C) and rs1556259 (G) of USF1 gene had decreased USF1 expression in atherosclerotic plaques (P = 0.028 and 0.08, respectively) as compared to non-carriers. The genetic variation in USF1 influence USF1 transcript expression in advanced atherosclerosis and regulates levels and metabolism of circulating apoB and apoB-containing lipoprotein particles in sex-dependent manner, but is not a major determinant of early markers of atherosclerosis.
Collapse
|
9
|
Auer S, Hahne P, Soyal SM, Felder T, Miller K, Paulmichl M, Krempler F, Oberkofler H, Patsch W. Potential Role of Upstream Stimulatory Factor 1 Gene Variant in Familial Combined Hyperlipidemia and Related Disorders. Arterioscler Thromb Vasc Biol 2012; 32:1535-44. [DOI: 10.1161/atvbaha.112.245639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective—
Genetic studies implicated upstream stimulatory factor 1 (USF1) in familial combined hyperlipidemia because the rs2073658 minor allele was associated with reduced risk of familial combined hyperlipidemia and related disorders. The molecular mechanisms whereby rs2073658 influences trait expression have remained elusive.
Methods and Results—
Plasma lipids, rs2073658 genotypes (N=372), and hepatic transcript levels (N=96) of
USF1
and genes involved in hepatic lipoprotein production were determined in obese subjects. The rs2073658 minor allele was associated with reduced plasma triglycerides (TGs) (
P
<0.001), hepatic
USF1
(
P
<0.01), and microsomal TG transfer protein transcript levels (
P
<0.05). Functional studies in human hepatocellular carcinoma cells showed that rs2073658 is located in a forkhead box A2 (FOXA2) binding site and that major allele constructs displayed higher transcriptional activity than minor allele constructs. Knockdown of FOXA2 reduced the activity of major, but not minor allele constructs. Furthermore, an interaction between hepatic FOXA2 transcript levels and rs2073658 minor allele carrier status on hepatic
USF1
transcript levels was observed in vivo (
P
<0.05).
USF1
activated the transcription of FOXA2 and FOXA2 strongly activated the transcription of microsomal TG transfer protein.
Conclusion—
A feed-forward loop comprising activation of
USF1
transcription by FOXA2 and activation of FOXA2 transcription by
USF1
, driving microsomal TG transfer protein expression, is modulated by rs2073658. Hence, rs2073658 likely influences hepatic TG secretion.
Collapse
Affiliation(s)
- Simon Auer
- From the Department of Laboratory Medicine (S.A., P.H., S.M.S., T.F., H.O., W.P.) and Institute of Pharmacology (M.P., W.P.), Paracelsus Medical University, Salzburg, Austria; Departments of Surgery (K.M.) and Internal Medicine (F.K.), Krankenhaus Hallein, Salzburg, Austria
| | - Penelope Hahne
- From the Department of Laboratory Medicine (S.A., P.H., S.M.S., T.F., H.O., W.P.) and Institute of Pharmacology (M.P., W.P.), Paracelsus Medical University, Salzburg, Austria; Departments of Surgery (K.M.) and Internal Medicine (F.K.), Krankenhaus Hallein, Salzburg, Austria
| | - Selma M. Soyal
- From the Department of Laboratory Medicine (S.A., P.H., S.M.S., T.F., H.O., W.P.) and Institute of Pharmacology (M.P., W.P.), Paracelsus Medical University, Salzburg, Austria; Departments of Surgery (K.M.) and Internal Medicine (F.K.), Krankenhaus Hallein, Salzburg, Austria
| | - Thomas Felder
- From the Department of Laboratory Medicine (S.A., P.H., S.M.S., T.F., H.O., W.P.) and Institute of Pharmacology (M.P., W.P.), Paracelsus Medical University, Salzburg, Austria; Departments of Surgery (K.M.) and Internal Medicine (F.K.), Krankenhaus Hallein, Salzburg, Austria
| | - Karl Miller
- From the Department of Laboratory Medicine (S.A., P.H., S.M.S., T.F., H.O., W.P.) and Institute of Pharmacology (M.P., W.P.), Paracelsus Medical University, Salzburg, Austria; Departments of Surgery (K.M.) and Internal Medicine (F.K.), Krankenhaus Hallein, Salzburg, Austria
| | - Markus Paulmichl
- From the Department of Laboratory Medicine (S.A., P.H., S.M.S., T.F., H.O., W.P.) and Institute of Pharmacology (M.P., W.P.), Paracelsus Medical University, Salzburg, Austria; Departments of Surgery (K.M.) and Internal Medicine (F.K.), Krankenhaus Hallein, Salzburg, Austria
| | - Franz Krempler
- From the Department of Laboratory Medicine (S.A., P.H., S.M.S., T.F., H.O., W.P.) and Institute of Pharmacology (M.P., W.P.), Paracelsus Medical University, Salzburg, Austria; Departments of Surgery (K.M.) and Internal Medicine (F.K.), Krankenhaus Hallein, Salzburg, Austria
| | - Hannes Oberkofler
- From the Department of Laboratory Medicine (S.A., P.H., S.M.S., T.F., H.O., W.P.) and Institute of Pharmacology (M.P., W.P.), Paracelsus Medical University, Salzburg, Austria; Departments of Surgery (K.M.) and Internal Medicine (F.K.), Krankenhaus Hallein, Salzburg, Austria
| | - Wolfgang Patsch
- From the Department of Laboratory Medicine (S.A., P.H., S.M.S., T.F., H.O., W.P.) and Institute of Pharmacology (M.P., W.P.), Paracelsus Medical University, Salzburg, Austria; Departments of Surgery (K.M.) and Internal Medicine (F.K.), Krankenhaus Hallein, Salzburg, Austria
| |
Collapse
|
10
|
Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res 2010; 52:189-206. [PMID: 21041806 DOI: 10.1194/jlr.r009720] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plasma triglyceride (TG) concentration is reemerging as an important cardiovascular disease risk factor. More complete understanding of the genes and variants that modulate plasma TG should enable development of markers for risk prediction, diagnosis, prognosis, and response to therapies and might help specify new directions for therapeutic interventions. Recent genome-wide association studies (GWAS) have identified both known and novel loci associated with plasma TG concentration. However, genetic variation at these loci explains only ∼10% of overall TG variation within the population. As the GWAS approach may be reaching its limit for discovering genetic determinants of TG, alternative genetic strategies, such as rare variant sequencing studies and evaluation of animal models, may provide complementary information to flesh out knowledge of clinically and biologically important pathways in TG metabolism. Herein, we review genes recently implicated in TG metabolism and describe how some of these genes likely modulate plasma TG concentration. We also discuss lessons regarding plasma TG metabolism learned from various genomic and genetic experimental approaches. Treatment of patients with moderate to severe hypertriglyceridemia with existing therapies is often challenging; thus, gene products and pathways found in recent genetic research studies provide hope for development of more effective clinical strategies.
Collapse
Affiliation(s)
- Christopher T Johansen
- Department of Biochemistry, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | |
Collapse
|