1
|
Djaziri N, Burel C, Abbad L, Bakey Z, Piedagnel R, Lelongt B. Cleavage of periostin by MMP9 protects mice from kidney cystic disease. PLoS One 2023; 18:e0294922. [PMID: 38039285 PMCID: PMC10691688 DOI: 10.1371/journal.pone.0294922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
The matrix metalloproteinase MMP9 influences cellular morphology and function, and plays important roles in organogenesis and disease. It exerts both protective and deleterious effects in renal pathology, depending upon its specific substrates. To explore new functions for MMP9 in kidney cysts formation and disease progression, we generated a mouse model by breeding juvenile cystic kidney (jck) mice with MMP9 deficient mice. Specifically, we provide evidence that MMP9 is overexpressed in cystic tissue where its enzymatic activity is increased 7-fold. MMP9 deficiency in cystic kidney worsen cystic kidney diseases by decreasing renal function, favoring cyst expansion and fibrosis. In addition, we find that periostin is a new critical substrate for MMP9 and in its absence periostin accumulates in cystic lining cells. As periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney diseases, we propose that the control of periostin by MMP9 and its associated intracellular signaling pathways including integrins, integrin-linked kinase and focal adhesion kinase confers to MMP9 a protective effect on the severity of the disease.
Collapse
Affiliation(s)
- Nabila Djaziri
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Cindy Burel
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Lilia Abbad
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Zeineb Bakey
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Rémi Piedagnel
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Brigitte Lelongt
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| |
Collapse
|
2
|
Orlov EE, Nesterenko AM, Korotkova DD, Parshina EA, Martynova NY, Zaraisky AG. Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal-ventral pattern in Xenopus laevis embryos. Dev Cell 2021; 57:95-111.e12. [PMID: 34919801 DOI: 10.1016/j.devcel.2021.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/01/2021] [Accepted: 11/19/2021] [Indexed: 01/13/2023]
Abstract
How embryos scale patterning according to size is still not fully understood. Through in silico screening and analysis of reaction-diffusion systems that could be responsible for scaling, we predicted the existence of genes whose expression is sensitive to embryo size and which regulate the scaling of embryonic patterning. To find these scalers, we identified genes with strongly altered expression in half-size Xenopus laevis embryos compared with full-size siblings at the gastrula stage. Among found genes, we investigated the role of matrix metalloproteinase-3 (mmp3), which was most strongly downregulated in half-size embryos. We show that Mmp3 scales dorsal-ventral patterning by degrading the slowly diffusing embryonic inducers Noggin1 and Noggin2 but preventing cleavage of the more rapidly diffusing inducer Chordin via degradation of a Tolloid-type proteinase. In addition to unraveling the mechanism underlying the scaling of dorsal-ventral patterning, this work provides proof of principal for scalers identification in embryos of other species.
Collapse
Affiliation(s)
- Eugeny E Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey M Nesterenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Federal Center of Brain Research and Neurotechnology, Federal Medical Biological Agency, 117997 Moscow, Russia
| | - Daria D Korotkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Elena A Parshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalia Yu Martynova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
3
|
Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses. Cells 2021; 10:cells10082055. [PMID: 34440823 PMCID: PMC8391609 DOI: 10.3390/cells10082055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Long-term synaptic plasticity is shaped by the controlled reorganization of the synaptic proteome. A key component of this process is local proteolysis performed by the family of extracellular matrix metalloproteinases (MMPs). In recent years, considerable progress was achieved in identifying extracellular proteases involved in neuroplasticity phenomena and their protein substrates. Perisynaptic metalloproteinases regulate plastic changes at synapses through the processing of extracellular and membrane proteins. MMP9 was found to play a crucial role in excitatory synapses by controlling the NMDA-dependent LTP component. In addition, MMP3 regulates the L-type calcium channel-dependent form of LTP as well as the plasticity of neuronal excitability. Both MMP9 and MMP3 were implicated in memory and learning. Moreover, altered expression or mutations of different MMPs are associated with learning deficits and psychiatric disorders, including schizophrenia, addiction, or stress response. Contrary to excitatory drive, the investigation into the role of extracellular proteolysis in inhibitory synapses is only just beginning. Herein, we review the principal mechanisms of MMP involvement in the plasticity of excitatory transmission and the recently discovered role of proteolysis in inhibitory synapses. We discuss how different matrix metalloproteinases shape dynamics and turnover of synaptic adhesome and signal transduction pathways in neurons. Finally, we discuss future challenges in exploring synapse- and plasticity-specific functions of different metalloproteinases.
Collapse
|
4
|
Landi C, Vantaggiato L, Shaba E, Cameli P, Carleo A, d'Alessandro M, Bergantini L, Bargagli E, Bini L. Differential redox proteomic profiles of serum from severe asthma patients after one month of benralizumab and mepolizumab treatment. Pulm Pharmacol Ther 2021; 70:102060. [PMID: 34303823 DOI: 10.1016/j.pupt.2021.102060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Mepolizumab and Benralizumab are biological drugs for severe asthma patients able to reduce moderate-to-severe exacerbation rate (peripheral eosinophilial % mepolizumab 1.6 ± 1.2; benralizumab 0; p < 0.0001), improving the quality of life and lung function parameters (FEV1%: mepolizumab 87.1 ± 21.5; benralizumab 89.7 ± 15, p < 0.04). Here we report a preliminary redox proteomic study highlighting the level of oxidative burst present in serum from patients before and after one month of both treatments. Our results highlighted apolipoprotein A1 oxidation after Mepolizumab treatment, that could be related to HDL functionality and could represent a potential biomarker for the treatment. On the other hand, after one month of Benralizumab we detected higher oxidation levels of ceruloplasmin and transthyretin, considered an important oxidative stress biomarker which action help to maintain redox homeostasis.
Collapse
Affiliation(s)
- C Landi
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, Siena, Italy.
| | - L Vantaggiato
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, Siena, Italy
| | - E Shaba
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, Siena, Italy
| | - P Cameli
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - A Carleo
- Department of Pulmonology, Hannover Medical School, Hannover, Germany
| | - M d'Alessandro
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - L Bergantini
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - E Bargagli
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - L Bini
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Inactivation of EMILIN-1 by Proteolysis and Secretion in Small Extracellular Vesicles Favors Melanoma Progression and Metastasis. Int J Mol Sci 2021; 22:ijms22147406. [PMID: 34299025 PMCID: PMC8303474 DOI: 10.3390/ijms22147406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Several studies have demonstrated that melanoma-derived extracellular vesicles (EVs) are involved in lymph node metastasis; however, the molecular mechanisms involved are not completely defined. Here, we found that EMILIN-1 is proteolyzed and secreted in small EVs (sEVs) as a novel mechanism to reduce its intracellular levels favoring metastasis in mouse melanoma lymph node metastatic cells. Interestingly, we observed that EMILIN-1 has intrinsic tumor and metastasis suppressive-like properties reducing effective migration, cell viability, primary tumor growth, and metastasis. Overall, our analysis suggests that the inactivation of EMILIN-1 by proteolysis and secretion in sEVs reduce its intrinsic tumor suppressive activities in melanoma favoring tumor progression and metastasis.
Collapse
|
6
|
Abstract
Significance: The vascular extracellular matrix (ECM) not only provides mechanical stability but also manipulates vascular cell behaviors, which are crucial for vascular function and homeostasis. ECM remodeling, which alters vascular wall mechanical properties and exposes vascular cells to bioactive molecules, is involved in the development and progression of hypertension. Recent Advances: This brief review summarized the dynamic changes in ECM components and their modification and degradation during hypertension and after antihypertensive treatment. We also discussed how alterations in the ECM amount, assembly, mechanical properties, and degradation fragment generation provide input into the pathological process of hypertension. Critical Issues: Although the relevance between ECM remodeling and hypertension has been recognized, the underlying mechanism by which ECM remodeling initiates the development of hypertension remains unclear. Therefore, the modulation of ECM remodeling on arterial stiffness and hypertension in genetically modified rodent models is summarized in this review. The circulating biomarkers based on ECM metabolism and therapeutic strategies targeting ECM disorders in hypertension are also introduced. Future Directions: Further research will provide more comprehensive understanding of ECM remodeling in hypertension by the application of matridomic and degradomic approaches. The better understanding of mechanisms underlying vascular ECM remodeling may provide novel potential therapeutic strategies for preventing and treating hypertension. Antioxid. Redox Signal. 34, 765-783.
Collapse
Affiliation(s)
- Zeyu Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
7
|
Lan KF, Shen YQ, Li Y, Ling CL, Gong YM, Xia SC, Guo XH, Ding X. Chemokine C-C motif ligand 8 in periodontal ligament during orthodontic tooth movement. Arch Oral Biol 2021; 123:104996. [PMID: 33453555 DOI: 10.1016/j.archoralbio.2020.104996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To investigate the roles of chemokine (C-C motif) ligand 8 (CCL8) in periodontal ligament during orthodontic tooth movement (OTM). METHODS Bioinformatics analyzed 100 genes in human periodontal ligament cells that were most upregulated after 48 hours of mechanical stress, and these genes were classified through GO and KEGG databases. Nickel-titanium closed-coil springs were placed between right first molar and incisors to produce 20 cN of orthodontic force in eight-week-old male SD rats for 1 and 2 days, followed by immunohistochemical staining of CCL8. Human periodontal ligament fibroblasts (hPDLFs) were stimulated by 14% cyclic tension force (Flexcell FX-5000 T Tension System) or hypoxia conditions to mimic OTM for 1 and 2 days, then the resulting CCL8 were examined through ELISA. Scratching assay was performed by treating hPDLFs with different concentrations of CCL8 (1 ng/ml, 10 ng/ml, 100 ng/ml). The migration, proliferation, and adhesion abilities of 100 ng/ml CCL8-treated hPDLFs were also examined. qRT-PCR and western blot detected matrix metalloproteinase 3, periostin, and osteoprotegrin expressions of hPDLFs under 100 ng/ml CCL8. RESULTS Bioinformatic analysis demonstrated that CCL8 was upregulated after applying mechanical stress for 48 hours. CCL8 secretion showed upregulation after 24 hours of OTM applicationsin vivo and in vitro. CCL8-treated hPDLFs showed significant positive effects on cell proliferation and matrix metalloproteinase 3. It also inhibited periostin and osteoprotegrin expressions. CONCLUSIONS CCL8 was upregulated in periodontal ligament during initial stage of OTM. Although CCL8 in human periodontal ligaments showed no significant effects on cell migration ability, it did enhance cell proliferation and osteoclastogenesis.
Collapse
Affiliation(s)
- Keng-Fu Lan
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu-Qing Shen
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Li
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chuan-Liang Ling
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi-Ming Gong
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu-Chi Xia
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xue-Hua Guo
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaojun Ding
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; State key laboratory of molecular engineering of polymers, Fudan University., Shanghai 200438, China.
| |
Collapse
|
8
|
Barallobre-Barreiro J, Loeys B, Mayr M, Rienks M, Verstraeten A, Kovacic JC. Extracellular Matrix in Vascular Disease, Part 2/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2189-2203. [PMID: 32354385 DOI: 10.1016/j.jacc.2020.03.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 01/01/2023]
Abstract
Medium-sized and large arteries consist of 3 layers: the tunica intima, tunica media, and tunica adventitia. The tunica media accounts for the bulk of the vessel wall and is the chief determinant of mechanical compliance. It is primarily composed of circumferentially arranged layers of vascular smooth muscle cells that are separated by concentrically arranged elastic lamellae; a form of extracellular matrix (ECM). The tunica media is separated from the tunica intima and tunica adventitia, the innermost and outermost layers, respectively, by the internal and external elastic laminae. This second part of a 4-part JACC Focus Seminar discusses the contributions of the ECM to vascular homeostasis and pathology. Advances in genetics and proteomics approaches have fostered significant progress in our understanding of vascular ECM. This review highlights the important role of the ECM in vascular disease and the prospect of translating these discoveries into clinical disease biomarkers and potential future therapies.
Collapse
Affiliation(s)
| | - Bart Loeys
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Marieke Rienks
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Aline Verstraeten
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
9
|
Vaisar T, Hu JH, Airhart N, Fox K, Heinecke J, Nicosia RF, Kohler T, Potter ZE, Simon GM, Dix MM, Cravatt BF, Gharib SA, Dichek DA. Parallel Murine and Human Plaque Proteomics Reveals Pathways of Plaque Rupture. Circ Res 2020; 127:997-1022. [PMID: 32762496 PMCID: PMC7508285 DOI: 10.1161/circresaha.120.317295] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Plaque rupture is the proximate cause of most myocardial infarctions and many strokes. However, the molecular mechanisms that precipitate plaque rupture are unknown. OBJECTIVE By applying proteomic and bioinformatic approaches in mouse models of protease-induced plaque rupture and in ruptured human plaques, we aimed to illuminate biochemical pathways through which proteolysis causes plaque rupture and identify substrates that are cleaved in ruptured plaques. METHODS AND RESULTS We performed shotgun proteomics analyses of aortas of transgenic mice with macrophage-specific overexpression of urokinase (SR-uPA+/0 mice) and of SR-uPA+/0 bone marrow transplant recipients, and we used bioinformatic tools to evaluate protein abundance and functional category enrichment in these aortas. In parallel, we performed shotgun proteomics and bioinformatics studies on extracts of ruptured and stable areas of freshly harvested human carotid plaques. We also applied a separate protein-analysis method (protein topography and migration analysis platform) to attempt to identify substrates and proteolytic fragments in mouse and human plaque extracts. Approximately 10% of extracted aortic proteins were reproducibly altered in SR-uPA+/0 aortas. Proteases, inflammatory signaling molecules, as well as proteins involved with cell adhesion, the cytoskeleton, and apoptosis, were increased. ECM (Extracellular matrix) proteins, including basement-membrane proteins, were decreased. Approximately 40% of proteins were altered in ruptured versus stable areas of human carotid plaques, including many of the same functional categories that were altered in SR-uPA+/0 aortas. Collagens were minimally altered in SR-uPA+/0 aortas and ruptured human plaques; however, several basement-membrane proteins were reduced in both SR-uPA+/0 aortas and ruptured human plaques. Protein topography and migration analysis platform did not detect robust increases in proteolytic fragments of ECM proteins in either setting. CONCLUSIONS Parallel studies of SR-uPA+/0 mouse aortas and human plaques identify mechanisms that connect proteolysis with plaque rupture, including inflammation, basement-membrane protein loss, and apoptosis. Basement-membrane protein loss is a prominent feature of ruptured human plaques, suggesting a major role for basement-membrane proteins in maintaining plaque stability.
Collapse
Affiliation(s)
- Tomáš Vaisar
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jie H Hu
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Nathan Airhart
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Kate Fox
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jay Heinecke
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Roberto F Nicosia
- Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (R.F.N.), VA Puget Sound Health Care System, Seattle, WA
| | - Ted Kohler
- Departments of Surgery (T.K.), University of Washington, Seattle.,Departments of Surgery (T.K.), VA Puget Sound Health Care System, Seattle, WA
| | - Zachary E Potter
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | | | - Melissa M Dix
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Sina A Gharib
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - David A Dichek
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle
| |
Collapse
|
10
|
Metalloproteases: On the Watch in the Hematopoietic Niche. Trends Immunol 2019; 40:1053-1070. [DOI: 10.1016/j.it.2019.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/15/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
|
11
|
Coats CJ, Heywood WE, Virasami A, Ashrafi N, Syrris P, Dos Remedios C, Treibel TA, Moon JC, Lopes LR, McGregor CGA, Ashworth M, Sebire NJ, McKenna WJ, Mills K, Elliott PM. Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001974. [PMID: 30562113 DOI: 10.1161/circgen.117.001974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is characterized by a complex phenotype that is only partly explained by the biological effects of individual genetic variants. The aim of this study was to use proteomic analysis of myocardial tissue to explore the postgenomic phenotype. METHODS Label-free proteomic analysis was used initially to compare protein profiles in myocardial samples from 11 patients with HCM undergoing surgical myectomy with control samples from 6 healthy unused donor hearts. Differentially expressed proteins of interest were validated in myocardial samples from 65 unrelated individuals (HCM [n=51], controls [n=7], and aortic stenosis [n=7]) by the development and use of targeted multiple reaction monitoring-based triple quadrupole mass spectrometry. RESULTS In this exploratory study, 1586 proteins were identified with 151 proteins differentially expressed in HCM samples compared with controls ( P<0.05). Protein expression profiling showed that many proteins identified in the initial discovery study were associated with metabolism, muscle contraction, calcium regulation, and oxidative stress. Proteins downregulated in HCM versus controls included creatine kinase M-type, fructose-bisphosphate aldolase A, and phosphoglycerate mutase ( P<0.001). Proteins upregulated in HCM included lumican, carbonic anhydrase 3, desmin, α-actin skeletal, and FHL1 (four and a half LIM domain protein 1; P<0.01). Myocardial lumican concentration correlated with the left atrial area (ρ=0.34, P=0.015), late gadolinium enhancement on cardiac magnetic resonance imaging ( P=0.03) and the presence of a pathogenic sarcomere mutation ( P=0.04). CONCLUSIONS The myocardial proteome of HCM provides supporting evidence for dysregulation of metabolic and structural proteins. The finding that lumican is raised in HCM hearts provides insight into the myocardial fibrosis that characterizes this disease.
Collapse
Affiliation(s)
- Caroline J Coats
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Wendy E Heywood
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Alex Virasami
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Nadia Ashrafi
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Petros Syrris
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Cris Dos Remedios
- Department of Anatomy and Histology, Bosch Institute, The University of Sydney, New South Wales, Australia (C.d.R.)
| | - Thomas A Treibel
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - James C Moon
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Luis R Lopes
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Christopher G A McGregor
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Michael Ashworth
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Neil J Sebire
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - William J McKenna
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Kevin Mills
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Perry M Elliott
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| |
Collapse
|
12
|
Kalogeropoulos K, Treschow AF, Auf dem Keller U, Escalante T, Rucavado A, Gutiérrez JM, Laustsen AH, Workman CT. Protease Activity Profiling of Snake Venoms Using High-Throughput Peptide Screening. Toxins (Basel) 2019; 11:toxins11030170. [PMID: 30893860 PMCID: PMC6468401 DOI: 10.3390/toxins11030170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/22/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) and snake venom serine proteinases (SVSPs) are among the most abundant enzymes in many snake venoms, particularly among viperids. These proteinases are responsible for some of the clinical manifestations classically seen in viperid envenomings, including hemorrhage, necrosis, and coagulopathies. The objective of this study was to investigate the enzymatic activities of these proteins using a high-throughput peptide library to screen for the proteinase targets of the venoms of five viperid (Echis carinatus, Bothrops asper, Daboia russelii, Bitis arietans, Bitis gabonica) and one elapid (Naja nigricollis) species of high medical importance. The proteinase activities of these venoms were each tested against 360 peptide substrates, yielding 2160 activity profiles. A nonlinear regression model that accurately described the observed enzymatic activities was fitted to the experimental data, allowing for the comparison of cleavage rates across species. In this study, previously unknown protein targets of snake venom proteinases were identified, potentially implicating novel human and animal proteins that may be involved in the pathophysiology of viper envenomings. The functional relevance of these targets was further evaluated and discussed. These new findings may contribute to our understanding of the clinical manifestations and underlying biochemical mechanisms of snakebite envenoming by viperid species.
Collapse
Affiliation(s)
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark.
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | | | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
13
|
Coats CJ, Heywood WE, Virasami A, Ashrafi N, Syrris P, dos Remedios C, Treibel TA, Moon JC, Lopes LR, McGregor CG, Ashworth M, Sebire NJ, McKenna WJ, Mills K, Elliott PM. Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018. [DOI: 10.1161/circgenetics.117.001974] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Caroline J. Coats
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Wendy E. Heywood
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Alex Virasami
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Nadia Ashrafi
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Petros Syrris
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Cris dos Remedios
- Department of Anatomy and Histology, Bosch Institute, The University of Sydney, New South Wales, Australia (C.d.R.)
| | - Thomas A. Treibel
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - James C. Moon
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Luis R. Lopes
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Christopher G.A. McGregor
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Michael Ashworth
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Neil J. Sebire
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - William J. McKenna
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Kevin Mills
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Perry M. Elliott
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| |
Collapse
|
14
|
Gineyts E, Bonnet N, Bertholon C, Millet M, Pagnon-Minot A, Borel O, Geraci S, Bonnelye E, Croset M, Suhail A, Truica C, Lamparella N, Leitzel K, Hartmann D, Chapurlat R, Lipton A, Garnero P, Ferrari S, Clézardin P, Rousseau JC. The C-Terminal Intact Forms of Periostin (iPTN) Are Surrogate Markers for Osteolytic Lesions in Experimental Breast Cancer Bone Metastasis. Calcif Tissue Int 2018; 103:567-580. [PMID: 29916127 DOI: 10.1007/s00223-018-0444-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022]
Abstract
Periostin is an extracellular matrix protein that actively contributes to tumor progression and metastasis. Here, we hypothesized that it could be a marker of bone metastasis formation. To address this question, we used two polyclonal antibodies directed against the whole molecule or its C-terminal domain to explore the expression of intact and truncated forms of periostin in the serum and tissues (lung, heart, bone) of wild-type and periostin-deficient mice. In normal bones, periostin was expressed in the periosteum and specific periostin proteolytic fragments were found in bones, but not in soft tissues. In animals bearing osteolytic lesions caused by 4T1 cells, C-terminal intact periostin (iPTN) expression disappeared at the invasive front of skeletal tumors where bone-resorbing osteoclasts were present. In vitro, we found that periostin was a substrate for osteoclast-derived cathepsin K, generating proteolytic fragments that were not recognized by anti-periostin antibodies directed against iPTN. In vivo, using an in-house sandwich immunoassay aimed at detecting iPTN only, we observed a noticeable reduction of serum periostin levels (- 26%; P < 0.002) in animals bearing osteolytic lesions caused by 4T1 cells. On the contrary, this decrease was not observed in women with breast cancer and bone metastases when periostin was measured with a human assay detecting total periostin. Collectively, these data showed that mouse periostin was degraded at the bone metastatic sites, potentially by cathepsin K, and that the specific measurement of iPTN in serum should assist in detecting bone metastasis formation in breast cancer.
Collapse
Affiliation(s)
- Evelyne Gineyts
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Nicolas Bonnet
- Division of Bone Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Cindy Bertholon
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Marjorie Millet
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | | | - Olivier Borel
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
- Rheumatology Department, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Sandra Geraci
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Edith Bonnelye
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Martine Croset
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Ali Suhail
- Penn State Hershey Medical Center, Hershey, PA, USA
| | | | | | - Kim Leitzel
- Penn State Hershey Medical Center, Hershey, PA, USA
| | | | - Roland Chapurlat
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
- Rheumatology Department, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Allan Lipton
- Penn State Hershey Medical Center, Hershey, PA, USA
| | - Patrick Garnero
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Serge Ferrari
- Division of Bone Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Philippe Clézardin
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Jean-Charles Rousseau
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France.
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France.
| |
Collapse
|
15
|
Behr Andersen C, Lindholt JS, Urbonavicius S, Halekoh U, Jensen PS, Stubbe J, Rasmussen LM, Beck HC. Abdominal Aortic Aneurysms Growth Is Associated With High Concentrations of Plasma Proteins in the Intraluminal Thrombus and Diseased Arterial Tissue. Arterioscler Thromb Vasc Biol 2018; 38:2254-2267. [DOI: 10.1161/atvbaha.117.310126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Porosity of the intraluminal thrombus (ILT) is believed to convey biologically active components from the bloodstream toward the aneurismal wall. Accumulation of molecules in the abdominal aortic aneurysmatic tissue may influence vascular protein turnover and regulate abdominal aortic aneurysm growth. We sought to identify proteins with concentrations in the ILT and the abdominal aortic aneurysm wall which associate with aneurysmal expansion rate.
Approach and Results—
Proteomic analysis by liquid chromatography tandem-mass spectrometry of separated wall and ILT samples was correlated with preoperative aneurysmal growth rate in 24 individuals operated electively for infrarenal abdominal aortic aneurysm. The median preoperative growth rate was 3.8 mm/y (interquartile range, 3) and the mean observational time was 3.3±1.7 years. Plasma components dominated the group of proteins with tissue concentrations, which correlate positively with growth rates (
P
<0.001, Fisher exact test, both in the ILT and the wall). In contrast, in the wall and thrombus samples, ECM (extracellular matrix) proteins were significantly more prevalent in the group of proteins with negative correlations to growth rates (
P
<0.05, Fisher exact test). Similarly, a long series of proteins, related to cellular functions correlated negatively to growth rates.
Conclusions—
When the preoperative aneurysmatic growth rate has been high, the concentration of many plasma proteins residing in the ILT and the aneurysmatic tissue is also high, compatible with the hypothesis of increased tissue porosity and accumulation of plasma components as a driver of aneurysm expansion. Moreover, many matrix and cellular proteins which are found in high concentrations in slower-growing aneurysms provides new knowledge about potential treatment targets.
Collapse
Affiliation(s)
- Carsten Behr Andersen
- From the Cardiovascular Research Unit, Department of Vascular Surgery, Viborg Hospital, Denmark (C.B.A., J.S.L., S.U.)
| | - Jes S. Lindholt
- From the Cardiovascular Research Unit, Department of Vascular Surgery, Viborg Hospital, Denmark (C.B.A., J.S.L., S.U.)
- Department of Heart, Lung and Vascular Surgery T (J.S.L.)
- Centre for Individualised Medicine of Arterial Diseases, Cardiovascular Centre of Excellence (J.S.L., P.S.J., J.S., L.M.R., H.C.B.)
| | - Sigitas Urbonavicius
- From the Cardiovascular Research Unit, Department of Vascular Surgery, Viborg Hospital, Denmark (C.B.A., J.S.L., S.U.)
| | | | - Pia Søndergaard Jensen
- Centre for Individualised Medicine of Arterial Diseases, Cardiovascular Centre of Excellence (J.S.L., P.S.J., J.S., L.M.R., H.C.B.)
- Department of Clinical Biochemistry and Pharmacology, Centre for Clinical Proteomics (P.S.J., L.M.R., H.C.B.), Odense University Hospital, Denmark
| | - Jane Stubbe
- Centre for Individualised Medicine of Arterial Diseases, Cardiovascular Centre of Excellence (J.S.L., P.S.J., J.S., L.M.R., H.C.B.)
- Cardiovascular and Renal Research (J.S.), University of Southern Denmark, Odense
| | - Lars Melholt Rasmussen
- Centre for Individualised Medicine of Arterial Diseases, Cardiovascular Centre of Excellence (J.S.L., P.S.J., J.S., L.M.R., H.C.B.)
- Department of Clinical Biochemistry and Pharmacology, Centre for Clinical Proteomics (P.S.J., L.M.R., H.C.B.), Odense University Hospital, Denmark
| | - Hans Christian Beck
- Centre for Individualised Medicine of Arterial Diseases, Cardiovascular Centre of Excellence (J.S.L., P.S.J., J.S., L.M.R., H.C.B.)
- Department of Clinical Biochemistry and Pharmacology, Centre for Clinical Proteomics (P.S.J., L.M.R., H.C.B.), Odense University Hospital, Denmark
| |
Collapse
|
16
|
Metalloproteinases in atherosclerosis. Eur J Pharmacol 2017; 816:93-106. [DOI: 10.1016/j.ejphar.2017.09.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022]
|
17
|
Wang Y, Song J, Marquez-Lago TT, Leier A, Li C, Lithgow T, Webb GI, Shen HB. Knowledge-transfer learning for prediction of matrix metalloprotease substrate-cleavage sites. Sci Rep 2017; 7:5755. [PMID: 28720874 PMCID: PMC5515926 DOI: 10.1038/s41598-017-06219-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/08/2017] [Indexed: 11/24/2022] Open
Abstract
Matrix Metalloproteases (MMPs) are an important family of proteases that play crucial roles in key cellular and disease processes. Therefore, MMPs constitute important targets for drug design, development and delivery. Advanced proteomic technologies have identified type-specific target substrates; however, the complete repertoire of MMP substrates remains uncharacterized. Indeed, computational prediction of substrate-cleavage sites associated with MMPs is a challenging problem. This holds especially true when considering MMPs with few experimentally verified cleavage sites, such as for MMP-2, -3, -7, and -8. To fill this gap, we propose a new knowledge-transfer computational framework which effectively utilizes the hidden shared knowledge from some MMP types to enhance predictions of other, distinct target substrate-cleavage sites. Our computational framework uses support vector machines combined with transfer machine learning and feature selection. To demonstrate the value of the model, we extracted a variety of substrate sequence-derived features and compared the performance of our method using both 5-fold cross-validation and independent tests. The results show that our transfer-learning-based method provides a robust performance, which is at least comparable to traditional feature-selection methods for prediction of MMP-2, -3, -7, -8, -9 and -12 substrate-cleavage sites on independent tests. The results also demonstrate that our proposed computational framework provides a useful alternative for the characterization of sequence-level determinants of MMP-substrate specificity.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jiangning Song
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Monash University, Melbourne, VIC, 3800, Australia
| | - Tatiana T Marquez-Lago
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - André Leier
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Chen Li
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Geoffrey I Webb
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China.
| |
Collapse
|
18
|
Rabkin SW. The Role Matrix Metalloproteinases in the Production of Aortic Aneurysm. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:239-265. [PMID: 28413030 DOI: 10.1016/bs.pmbts.2017.02.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) have been implicated in the pathogenesis of aortic aneurysm because the histology of thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA) is characterized by the loss of smooth muscle cells in the aortic media and the destruction of extracellular matrix (ECM). Furthermore, AAA have evidence of inflammation and the cellular elements involved in inflammation such as macrophages can produce and/or activate MMPs This chapter focuses on human aortic aneurysm that are not due to specific known genetic causes because this type of aneurysm is the more common type. This chapter will also focus on MMP protein expression rather than on genetic data which may not necessarily translate to increased MMP protein expression. There are supporting data that certain MMPs are increased in the aortic wall. For TAA, it is most notably MMP-1, -9, -12, and -14 and MMP-2 when a bicuspid aortic valve is present. For AAA, it is MMP-1, -2, -3, -9, -12, and -13. The data are weaker or insufficient for the other MMPs. Several studies of gene polymorphisms support MMP-9 for TAA and MMP-3 for AAA as potentially important factors. The signaling pathways in the aorta that can lead to MMP activation include JNK, JAK/stat, osteopontin, and AMP-activated protein kinase alpha2. Substrates in the human vasculature for MMP-3, MMP-9, or MMP-14 include collagen, elastin, ECM glycoprotein, and proteoglycans. Confirmed and potential substrates for MMPs, maintain aortic size and function so that a reduction in their content relative to other components of the aortic wall may produce a failure to maintain aortic size leading to dilatation and aneurysm formation.
Collapse
|
19
|
Aguirre A, Blázquez-Prieto J, Amado-Rodriguez L, López-Alonso I, Batalla-Solís E, González-López A, Sánchez-Pérez M, Mayoral-Garcia C, Gutiérrez-Fernández A, Albaiceta GM. Matrix metalloproteinase-14 triggers an anti-inflammatory proteolytic cascade in endotoxemia. J Mol Med (Berl) 2017; 95:487-497. [DOI: 10.1007/s00109-017-1510-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/04/2016] [Accepted: 01/17/2017] [Indexed: 12/21/2022]
|
20
|
Maiorani O, Pivetta E, Capuano A, Modica TME, Wassermann B, Bucciotti F, Colombatti A, Doliana R, Spessotto P. Neutrophil elastase cleavage of the gC1q domain impairs the EMILIN1-α4β1 integrin interaction, cell adhesion and anti-proliferative activity. Sci Rep 2017; 7:39974. [PMID: 28074935 PMCID: PMC5225433 DOI: 10.1038/srep39974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix glycoprotein EMILIN1 exerts a wide range of functions mainly associated with its gC1q domain. Besides providing functional significance for adhesion and migration, the direct interaction between α4β1 integrin and EMILIN1-gC1q regulates cell proliferation, transducing net anti-proliferative effects. We have previously demonstrated that EMILIN1 degradation by neutrophil elastase (NE) is a specific mechanism leading to the loss of functions disabling its regulatory properties. In this study we further analysed the proteolytic activity of NE, MMP-3, MMP-9, and MT1-MMP on EMILIN1 and found that MMP-3 and MT1-MMP partially cleaved EMILIN1 but without affecting the functional properties associated with the gC1q domain, whereas NE was able to fully impair the interaction of gC1q with the α4β1 integrin by cleaving this domain outside of the E933 integrin binding site. By a site direct mutagenesis approach we mapped the bond between S913 and R914 residues and selected the NE-resistant R914W mutant still able to interact with the α4β1 integrin after NE treatment. Functional studies showed that NE impaired the EMILIN1-α4β1 integrin interaction by cleaving the gC1q domain in a region crucial for its proper structural conformation, paving the way to better understand NE effects on EMILIN1-cell interaction in pathological context.
Collapse
Affiliation(s)
- Orlando Maiorani
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Eliana Pivetta
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Alessandra Capuano
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Teresa Maria Elisa Modica
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Bruna Wassermann
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Francesco Bucciotti
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Alfonso Colombatti
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Roberto Doliana
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Paola Spessotto
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| |
Collapse
|
21
|
Mechanisms of NMDA Receptor- and Voltage-Gated L-Type Calcium Channel-Dependent Hippocampal LTP Critically Rely on Proteolysis That Is Mediated by Distinct Metalloproteinases. J Neurosci 2017; 37:1240-1256. [PMID: 28069922 DOI: 10.1523/jneurosci.2170-16.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/21/2016] [Accepted: 11/12/2016] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) is widely perceived as a memory substrate and in the hippocampal CA3-CA1 pathway, distinct forms of LTP depend on NMDA receptors (nmdaLTP) or L-type voltage-gated calcium channels (vdccLTP). LTP is also known to be effectively regulated by extracellular proteolysis that is mediated by various enzymes. Herein, we investigated whether in mice hippocampal slices these distinct forms of LTP are specifically regulated by different metalloproteinases (MMPs). We found that MMP-3 inhibition or knock-out impaired late-phase LTP in the CA3-CA1 pathway. Interestingly, late-phase LTP was also decreased by MMP-9 blockade. When both MMP-3 and MMP-9 were inhibited, both early- and late-phase LTP was impaired. Using immunoblotting, in situ zymography, and immunofluorescence, we found that LTP induction was associated with an increase in MMP-3 expression and activity in CA1 stratum radiatum. MMP-3 inhibition and knock-out prevented the induction of vdccLTP, with no effect on nmdaLTP. L-type channel-dependent LTP is known to be impaired by hyaluronic acid digestion. We found that slice treatment with hyaluronidase occluded the effect of MMP-3 blockade on LTP, further confirming a critical role for MMP-3 in this form of LTP. In contrast to the CA3-CA1 pathway, LTP in the mossy fiber-CA3 projection did not depend on MMP-3, indicating the pathway specificity of the actions of MMPs. Overall, our study indicates that the activation of perisynaptic MMP-3 supports L-type channel-dependent LTP in the CA1 region, whereas nmdaLTP depends solely on MMP-9. SIGNIFICANCE STATEMENT Various types of long-term potentiation (LTP) are correlated with distinct phases of memory formation and retrieval, but the underlying molecular signaling pathways remain poorly understood. Extracellular proteases have emerged as key players in neuroplasticity phenomena. The present study found that L-type calcium channel-dependent LTP in the CA3-CA1 hippocampal projection is critically regulated by the activity of matrix metalloprotease 3 (MMP-3), in contrast to NMDAR-dependent LTP regulated by MMP-9. Moreover, the induction of LTP was associated with an increase in MMP-3 expression and activity. Finally, we found that the digestion of hyaluronan, a principal extracellular matrix component, disrupted the MMP-3-dependent component of LTP. These results indicate that distinct MMPs might act as molecular switches for specific types of LTP.
Collapse
|
22
|
Stamenkovic V, Stamenkovic S, Jaworski T, Gawlak M, Jovanovic M, Jakovcevski I, Wilczynski GM, Kaczmarek L, Schachner M, Radenovic L, Andjus PR. The extracellular matrix glycoprotein tenascin-C and matrix metalloproteinases modify cerebellar structural plasticity by exposure to an enriched environment. Brain Struct Funct 2017; 222:393-415. [PMID: 27089885 DOI: 10.1007/s00429-016-1224-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 04/04/2016] [Indexed: 02/05/2023]
Abstract
The importance of the extracellular matrix (ECM) glycoprotein tenascin-C (TnC) and the ECM degrading enzymes, matrix metalloproteinases (MMPs) -2 and -9, in cerebellar histogenesis is well established. This study aimed to examine whether there is a functional relationship between these molecules in regulating structural plasticity of the lateral deep cerebellar nucleus. To this end, starting from postnatal day 21, TnC- or MMP-9-deficient mice were exposed to an enriched environment (EE). We show that 8 weeks of exposure to EE leads to reduced lectin-based staining of perineuronal nets (PNNs), reduction in the size of GABAergic and increase in the number and size of glutamatergic synaptic terminals in wild-type mice. Conversely, TnC-deficient mice showed reduced staining of PNNs compared to wild-type mice maintained under standard conditions, and exposure to EE did not further reduce, but even slightly increased PNN staining. EE did not affect the densities of the two types of synaptic terminals in TnC-deficient mice, while the size of inhibitory, but not excitatory synaptic terminals was increased. In the time frame of 4-8 weeks, MMP-9, but not MMP-2, was observed to influence PNN remodeling and cerebellar synaptic plasticity as revealed by measurement of MMP-9 activity and colocalization with PNNs and synaptic markers. These findings were supported by observations on MMP-9-deficient mice. The present study suggests that TnC contributes to the regulation of structural plasticity in the cerebellum and that interactions between TnC and MMP-9 are likely to be important for these processes to occur.
Collapse
Affiliation(s)
- Vera Stamenkovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Stefan Stamenkovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Tomasz Jaworski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Maciej Gawlak
- Laboratory of Physiology and Pathophysiology, Center for Preclinical Research and Technology, The Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Milos Jovanovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Igor Jakovcevski
- Experimental Neurophysiology, University Hospital Cologne, 50931, Cologne, Germany
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, 53175, Bonn, Germany
| | - Grzegorz M Wilczynski
- Laboratory of Neuromorphology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Lidija Radenovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Pavle R Andjus
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|
23
|
Talmi-Frank D, Altboum Z, Solomonov I, Udi Y, Jaitin D, Klepfish M, David E, Zhuravlev A, Keren-Shaul H, Winter D, Gat-Viks I, Mandelboim M, Ziv T, Amit I, Sagi I. Extracellular Matrix Proteolysis by MT1-MMP Contributes to Influenza-Related Tissue Damage and Mortality. Cell Host Microbe 2016; 20:458-470. [DOI: 10.1016/j.chom.2016.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/19/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
|
24
|
Abstract
The vasculature is essential for proper organ function. Many pathologies are directly and indirectly related to vascular dysfunction, which causes significant morbidity and mortality. A common pathophysiological feature of diseased vessels is extracellular matrix (ECM) remodelling. Analysing the protein composition of the ECM by conventional antibody-based techniques is challenging; alternative splicing or post-translational modifications, such as glycosylation, can mask epitopes required for antibody recognition. By contrast, proteomic analysis by mass spectrometry enables the study of proteins without the constraints of antibodies. Recent advances in proteomic techniques make it feasible to characterize the composition of the vascular ECM and its remodelling in disease. These developments may lead to the discovery of novel prognostic and diagnostic markers. Thus, proteomics holds potential for identifying ECM signatures to monitor vascular disease processes. Furthermore, a better understanding of the ECM remodelling processes in the vasculature might make ECM-associated proteins more attractive targets for drug discovery efforts. In this review, we will summarize the role of the ECM in the vasculature. Then, we will describe the challenges associated with studying the intricate network of ECM proteins and the current proteomic strategies to analyse the vascular ECM in metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- M Lynch
- King's British Heart Foundation Centre, King's College London, London, UK
| | | | | | - M Mayr
- King's British Heart Foundation Centre, King's College London, London, UK.
| |
Collapse
|
25
|
Lindsey ML, Hall ME, Harmancey R, Ma Y. Adapting extracellular matrix proteomics for clinical studies on cardiac remodeling post-myocardial infarction. Clin Proteomics 2016; 13:19. [PMID: 27651752 PMCID: PMC5024439 DOI: 10.1186/s12014-016-9120-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/15/2016] [Indexed: 01/16/2023] Open
Abstract
Following myocardial infarction (MI), the left ventricle (LV) undergoes a series of cardiac wound healing responses that involve stimulation of robust inflammation to clear necrotic myocytes and tissue debris and induction of extracellular matrix (ECM) protein synthesis to generate a scar. Proteomic strategies provide us with a means to index the ECM proteins expressed in the LV, quantify amounts, determine functions, and explore interactions. This review will focus on the efforts taken in the proteomics research field that have expanded our understanding of post-MI LV remodeling, concentrating on the strengths and limitations of different proteomic approaches to glean information that is specific to ECM turnover in the post-MI setting. We will discuss how recent advances in sample preparation and labeling protocols increase our successes at detecting components of the cardiac ECM proteome. We will summarize how proteomic approaches, focusing on the ECM compartment, have progressed over time to current gel-free methods using decellularized fractions or labeling strategies that will be useful for clinical applications. This review will provide an overview of how cardiac ECM proteomics has evolved over the last decade and will provide insight into future directions that will drive forward our understanding of cardiac ECM turnover in the post-MI LV.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505 USA ; Division of Cardiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS USA ; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS USA
| | - Michael E Hall
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505 USA ; Division of Cardiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS USA
| | - Romain Harmancey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505 USA
| | - Yonggang Ma
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505 USA
| |
Collapse
|
26
|
Barallobre-Barreiro J, Lynch M, Yin X, Mayr M. Systems biology-opportunities and challenges: the application of proteomics to study the cardiovascular extracellular matrix. Cardiovasc Res 2016; 112:626-636. [PMID: 27635058 PMCID: PMC5157133 DOI: 10.1093/cvr/cvw206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 12/29/2022] Open
Abstract
Systems biology approaches including proteomics are becoming more widely used in cardiovascular research. In this review article, we focus on the application of proteomics to the cardiac extracellular matrix (ECM). ECM remodelling is a hallmark of many cardiovascular diseases. Proteomic techniques using mass spectrometry (MS) provide a platform for the comprehensive analysis of ECM proteins without a priori assumptions. Proteomics overcomes various constraints inherent to conventional antibody detection. On the other hand, studies that use whole tissue lysates for proteomic analysis mask the identification of the less abundant ECM constituents. In this review, we first discuss decellularization-based methods that enrich for ECM proteins in cardiac tissue, and how targeted MS allows for accurate protein quantification. The second part of the review will focus on post-translational modifications including hydroxylation and glycosylation and on the release of matrix fragments with biological activity (matrikines), all of which can be interrogated by proteomic techniques.
Collapse
Affiliation(s)
| | - Marc Lynch
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
27
|
Barallobre-Barreiro J, Gupta SK, Zoccarato A, Kitazume-Taneike R, Fava M, Yin X, Werner T, Hirt MN, Zampetaki A, Viviano A, Chong M, Bern M, Kourliouros A, Domenech N, Willeit P, Shah AM, Jahangiri M, Schaefer L, Fischer JW, Iozzo RV, Viner R, Thum T, Heineke J, Kichler A, Otsu K, Mayr M. Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation. Circulation 2016; 134:817-32. [PMID: 27559042 DOI: 10.1161/circulationaha.115.016423] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/27/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). METHODS Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. RESULTS ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. On enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were identified consistently in the flowthrough. Of all ECM proteins identified, decorin was found to be the most fragmented. Within its protein core, 18 different cleavage sites were identified. In contrast, less cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was detected predominantly in ventricles in comparison with atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had greater levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. CONCLUSIONS This proteomics study is the first to analyze the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages, can regulate the local bioavailability of antihypertrophic and profibrotic growth factors.
Collapse
Affiliation(s)
- Javier Barallobre-Barreiro
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Shashi K Gupta
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Anna Zoccarato
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Rika Kitazume-Taneike
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Marika Fava
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Xiaoke Yin
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Tessa Werner
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Marc N Hirt
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Anna Zampetaki
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Alessandro Viviano
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Mei Chong
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Marshall Bern
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Antonios Kourliouros
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Nieves Domenech
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Peter Willeit
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Ajay M Shah
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Marjan Jahangiri
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Liliana Schaefer
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Jens W Fischer
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Renato V Iozzo
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Rosa Viner
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Thomas Thum
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Joerg Heineke
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Antoine Kichler
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Kinya Otsu
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.)
| | - Manuel Mayr
- From King's British Heart Foundation Centre, King's College London, United Kingdom (J.B.-B., A. Zoccarato, R.K.-T., M.F., X.Y., A. Zampetaki, M.C., P.W., A.M.S., K.O., M.M.); Institute for Molecular and Translational Therapeutic Strategies, MH-Hannover, Germany (S.K.G., T.T.); St George's Hospital, NHS Trust, London, United Kingdom (M.F., A.V., A.K., M.J.); University Medical Center Hamburg-Eppendorf, Germany (T.W., M.N.H.); Protein Metrics, San Carlos, CA (M.B.); Biobanco A Coruña, INIBIC-Complexo Hospitalario Universitario de A Coruña, Spain (N.D.); Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany (L.S.); Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany (J.W.F.); Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (R.V.I.); Thermo Fisher Scientific, San Jose, CA (R.V.); Experimental Cardiology, Department of Cardiology and Angiology, MH-Hannover, Germany (J.H.); and Laboratoire Vecteurs: Synthèse et Applications Thérapeutiques, UMR 7199 CNRS Université de Strasbourg, Illkirch, France (A.K.).
| |
Collapse
|
28
|
Barallobre-Barreiro J, Oklu R, Lynch M, Fava M, Baig F, Yin X, Barwari T, Potier DN, Albadawi H, Jahangiri M, Porter KE, Watkins MT, Misra S, Stoughton J, Mayr M. Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins. Cardiovasc Res 2016; 110:419-30. [PMID: 27068509 PMCID: PMC4872879 DOI: 10.1093/cvr/cvw075] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 03/26/2016] [Indexed: 01/08/2023] Open
Abstract
AIMS Extracellular matrix remodelling has been implicated in a number of vascular conditions, including venous hypertension and varicose veins. However, to date, no systematic analysis of matrix remodelling in human veins has been performed. METHODS AND RESULTS To understand the consequences of venous hypertension, normal and varicose veins were evaluated using proteomics approaches targeting the extracellular matrix. Varicose saphenous veins removed during phlebectomy and normal saphenous veins obtained during coronary artery bypass surgery were collected for proteomics analysis. Extracellular matrix proteins were enriched from venous tissues. The proteomics analysis revealed the presence of >150 extracellular matrix proteins, of which 48 had not been previously detected in venous tissue. Extracellular matrix remodelling in varicose veins was characterized by a loss of aggrecan and several small leucine-rich proteoglycans and a compensatory increase in collagen I and laminins. Gene expression analysis of the same tissues suggested that the remodelling process associated with venous hypertension predominantly occurs at the protein rather than the transcript level. The loss of aggrecan in varicose veins was paralleled by a reduced expression of aggrecanases. Chymase and tryptase β1 were among the up-regulated proteases. The effect of these serine proteases on the venous extracellular matrix was further explored by incubating normal saphenous veins with recombinant enzymes. Proteomics analysis revealed extensive extracellular matrix degradation after digestion with tryptase β1. In comparison, chymase was less potent and degraded predominantly basement membrane-associated proteins. CONCLUSION The present proteomics study provides unprecedented insights into the expression and degradation of structural and regulatory components of the vascular extracellular matrix in varicosis.
Collapse
Affiliation(s)
| | - Rahmi Oklu
- Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, AZ, USA
| | - Marc Lynch
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Marika Fava
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK St George's Hospital, NHS Trust, London, UK
| | - Ferheen Baig
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Temo Barwari
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - David N Potier
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Hassan Albadawi
- Division of Vascular Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Karen E Porter
- Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Michael T Watkins
- Division of Vascular Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sanjay Misra
- Division of Vascular and Interventional Radiology, Mayo Clinic, Rochester, MN, USA
| | - Julianne Stoughton
- Division of Vascular Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
29
|
Padmanabhan Iyer R, Chiao YA, Flynn ER, Hakala K, Cates CA, Weintraub ST, de Castro Brás LE. Matrix metalloproteinase-9-dependent mechanisms of reduced contractility and increased stiffness in the aging heart. Proteomics Clin Appl 2015; 10:92-107. [PMID: 26415707 DOI: 10.1002/prca.201500038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/12/2015] [Accepted: 09/22/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE Matrix metalloproteinases (MMPs) collectively degrade all extracellular matrix (ECM) proteins. Of the MMPs, MMP-9 has the strongest link to the development of cardiac dysfunction. Aging associates with increased MMP-9 expression in the left ventricle (LV) and reduced cardiac function. We investigated the effect of MMP-9 deletion on the cardiac ECM in aged animals. EXPERIMENTAL DESIGN We used male and female middle-aged (10- to16-month old) and old (20- to 24-month old) wild-type (WT) and MMP-9 null mice (n = 6/genotype/age). LVs were decellularized to remove highly abundant mitochondrial proteins that could mask identification of relative lower abundant components, analyzed by shotgun proteomics, and proteins of interest validated by immunoblot. RESULTS Elastin microfibril interface-located protein 1 (EMILIN-1) decreased with age in WT (p < 0.05), but not in MMP-9 null. EMILIN-1 promotes integrin-dependent cell adhesion and EMILIN-1 deficiency has been associated with vascular stiffening. Talin-2, a cytoskeletal protein, was elevated with age in WT (p < 0.05), and MMP-9 deficiency blunted this increase. Talin-2 is highly expressed in adult cardiac myocytes, transduces mechanical force to the ECM, and is activated by increases in substrate stiffness. Our results suggest that MMP-9 deletion may reduce age-related myocardial stiffness, which may explain improved cardiac function in MMP-9 null animals. CONCLUSIONS We identified age-related changes in the cardiac proteome that are MMP-9 dependent, suggesting MMP-9 as a possible therapeutic target for the aging patient.
Collapse
Affiliation(s)
- Rugmani Padmanabhan Iyer
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Ying Ann Chiao
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Elizabeth R Flynn
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Kevin Hakala
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Courtney A Cates
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Susan T Weintraub
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lisandra E de Castro Brás
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
30
|
Langley SR, Mayr M. Comparative analysis of statistical methods used for detecting differential expression in label-free mass spectrometry proteomics. J Proteomics 2015; 129:83-92. [PMID: 26193490 DOI: 10.1016/j.jprot.2015.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 01/03/2023]
Abstract
UNLABELLED Label-free LC-MS/MS proteomics has proven itself to be a powerful method for evaluating protein identification and quantification from complex samples. For comparative proteomics, several methods have been used to detect the differential expression of proteins from such data. We have assessed seven methods used across the literature for detecting differential expression from spectral count quantification: Student's t-test, significance analysis of microarrays (SAM), normalised spectral abundance factor (NSAF), normalised spectral abundance factor-power law global error model (NSAF-PLGEM), spectral index (SpI), DESeq and QSpec. We used 2000 simulated datasets as well as publicly available data from a proteomic standards study to assess the ability of these methods to detect differential expression in varying effect sizes and proportions of differentially expressed proteins. At two false discovery rate (FDR) levels, we find that several of the methods detect differential expression within the data with reasonable precision, others detect differential expression at the expense of low precision, and finally, others which fail to identify any differentially expressed proteins. The inability of these seven methods to fully capture the differential landscape, even at the largest effect size, illustrates some of the limitations of the existing technologies and the statistical methodologies. SIGNIFICANCE In label-free mass spectrometry experiments, protein identification and quantification have always been important, but there is now a growing focus on comparative proteomics. Detecting differential expression in protein levels can inform on important biological mechanisms and provide direction for further study. Given the high cost and labour intensive nature of validation experiments, statistical methods are important for prioritising proteins of interest. Here, we have performed a comparative analysis to investigate the statistical methodologies for detecting differential expression and provide a reference for future experimental designs. This article is part of a Special Issue entitled: Computational Proteomics.
Collapse
Affiliation(s)
- Sarah R Langley
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK; King's British Heart Foundation Centre, King's College London, London, UK.
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| |
Collapse
|
31
|
Taylor SH, Yeung CYC, Kalson NS, Lu Y, Zigrino P, Starborg T, Warwood S, Holmes DF, Canty-Laird EG, Mauch C, Kadler KE. Matrix metalloproteinase 14 is required for fibrous tissue expansion. eLife 2015; 4:e09345. [PMID: 26390284 PMCID: PMC4684142 DOI: 10.7554/elife.09345] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/20/2015] [Indexed: 12/13/2022] Open
Abstract
Type I collagen-containing fibrils are major structural components of the extracellular matrix of vertebrate tissues, especially tendon, but how they are formed is not fully understood. MMP14 is a potent pericellular collagenase that can cleave type I collagen in vitro. In this study, we show that tendon development is arrested in Scleraxis-Cre::Mmp14 lox/lox mice that are unable to release collagen fibrils from plasma membrane fibripositors. In contrast to its role in collagen turnover in adult tissue, MMP14 promotes embryonic tissue formation by releasing collagen fibrils from the cell surface. Notably, the tendons grow to normal size and collagen fibril release from fibripositors occurs in Col-r/r mice that have a mutated collagen-I that is uncleavable by MMPs. Furthermore, fibronectin (not collagen-I) accumulates in the tendons of Mmp14-null mice. We propose a model for cell-regulated collagen fibril assembly during tendon development in which MMP14 cleaves a molecular bridge tethering collagen fibrils to the plasma membrane of fibripositors. DOI:http://dx.doi.org/10.7554/eLife.09345.001 A scaffold of proteins called the extracellular matrix surrounds each of the cells that make up our organs and tissues. This matrix, which contains fibres made of proteins called collagens, provides the physical support needed to hold organs and tissues together. This support is especially important in the tendons—a tough tissue that connects the muscle to bone—and other ‘connective’ tissues. An enzyme called MMP14 is able to cut through chains of collagen proteins. It belongs to a family of proteins that are involved in breaking down the extracellular matrix to enable cells to divide and for other important processes in cells. Some cancer cells exploit MMP14 to enable them to leave their tissue of origin and spread around the body. Therefore, when researchers bred mutant mice that lacked MMP14, they expected to see excessive growth of collagen fibres in the connective tissues of the mice. However, these mice actually have extremely thin, fragile connective tissue and die soon after birth. Earlier in 2015, a group of researchers demonstrated that the first stage of tendon development in mice involves the formation of collagen fibres, which are attached to structures that project from tendon cells called fibripositors. Then, soon after the mice are born, the fibripositors disappear and the collagen fibres are released into the extracellular matrix where they grow longer and become thicker. Now, Taylor, Yeung, Kalson et al.—including some of the researchers from the earlier work—have used electron microscopy to investigate how a lack of MMP14 leads to fragile tendons in young mice. The experiments show that MMP14 plays a crucial role in the first stage of tendon development by detaching the collagen fibres from the fibripositors. MMP14 also promotes the formation of new collagen fibres; the tendons of mutant mice that lack MMP14 have fewer collagen fibres than normal mice. Further experiments revealed that the release of collagen fibres from fibripositors does not require MMP14 to cleave the chains of collagen proteins themselves. Instead, it appears that MMP14 cleaves another protein that is associated with the fibres, called fibronectin. Taylor, Yeung, Kalson et al.'s findings show that MMP14 plays an important role in the development of tendons by releasing collagen fibres from fibripositors and promoting the formation of new fibres. The next challenge is to find out how MMP14 regulates the number of collagen fibres in mature tendons and other tissues, and how defects in this enzyme can lead to cancer and other diseases. DOI:http://dx.doi.org/10.7554/eLife.09345.002
Collapse
Affiliation(s)
- Susan H Taylor
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ching-Yan Chloé Yeung
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Nicholas S Kalson
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Paola Zigrino
- Department of Dermatology, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Tobias Starborg
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Stacey Warwood
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David F Holmes
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cornelia Mauch
- Department of Dermatology, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Karl E Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Duan JX, Rapti M, Tsigkou A, Lee MH. Expanding the Activity of Tissue Inhibitors of Metalloproteinase (TIMP)-1 against Surface-Anchored Metalloproteinases by the Replacement of Its C-Terminal Domain: Implications for Anti-Cancer Effects. PLoS One 2015; 10:e0136384. [PMID: 26308720 PMCID: PMC4550347 DOI: 10.1371/journal.pone.0136384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/04/2015] [Indexed: 01/02/2023] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). TIMP molecules are made up of two domains: an N-terminal domain that associates with the catalytic cleft of the metalloproteinases (MP) and a smaller C-terminal domain whose role in MP association is still poorly understood. This work is aimed at investigating the role of the C-terminal domain in MP selectivity. In this study, we replaced the C-terminal domain of TIMP-1 with those of TIMP-2, -3 and -4 to create a series of "T1:TX" chimeras. The affinity of the chimeras against ADAM10, ADAM17, MMP14 and MMP19 was investigated. We can show that replacement of the C-terminal domain by those of other TIMPs dramatically increased the affinity of TIMP-1 for some MPs. Furthermore, the chimeras were able to suppress TNF-α and HB-EGF shedding in cell-based setting. Unlike TIMP-1, T1:TX chimeras had no growth-promoting activity. Instead, the chimeras were able to inhibit cell migration and development in several cancer cell lines. Our findings have broadened the prospect of TIMPs as cancer therapeutics. The approach could form the basis of a new strategy for future TIMP engineering.
Collapse
Affiliation(s)
- Jing Xian Duan
- From the Department of Biological Sciences, Xian Jiaotong Liverpool University, 111 Ren Ai Road, Suzhou, China
| | - Magdalini Rapti
- Department of Oncology, Cambridge University, Cancer Research Institute, Cambridge, United Kingdom
| | - Anastasia Tsigkou
- From the Department of Biological Sciences, Xian Jiaotong Liverpool University, 111 Ren Ai Road, Suzhou, China
| | - Meng Huee Lee
- From the Department of Biological Sciences, Xian Jiaotong Liverpool University, 111 Ren Ai Road, Suzhou, China
- * E-mail:
| |
Collapse
|
33
|
New perspectives on bioactivity of olive oil: evidence from animal models, human interventions and the use of urinary proteomic biomarkers. Proc Nutr Soc 2015; 74:268-81. [DOI: 10.1017/s0029665115002323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Olive oil (OO) is the primary source of fat in the Mediterranean diet and has been associated with longevity and a lower incidence of chronic diseases, particularly CHD. Cardioprotective effects of OO consumption have been widely related with improved lipoprotein profile, endothelial function and inflammation, linked to health claims of oleic acid and phenolic content of OO. With CVD being a leading cause of death worldwide, a review of the potential mechanisms underpinning the impact of OO in the prevention of disease is warranted. The current body of evidence relies on mechanistic studies involving animal and cell-based models, epidemiological studies of OO intake and risk factor, small- and large-scale human interventions, and the emerging use of novel biomarker techniques associated with disease risk. Although model systems are important for mechanistic research nutrition, methodologies and experimental designs with strong translational value are still lacking. The present review critically appraises the available evidence to date, with particular focus on emerging novel biomarkers for disease risk assessment. New perspectives on OO research are outlined, especially those with scope to clarify key mechanisms by which OO consumption exerts health benefits. The use of urinary proteomic biomarkers, as highly specific disease biomarkers, is highlighted towards a higher translational approach involving OO in nutritional recommendations.
Collapse
|
34
|
Papke CL, Yamashiro Y, Yanagisawa H. MMP17/MT4-MMP and thoracic aortic aneurysms: OPNing new potential for effective treatment. Circ Res 2015; 117:109-12. [PMID: 26139854 PMCID: PMC4493766 DOI: 10.1161/circresaha.117.306851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Christina L Papke
- From the Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (C.L.P., H.Y.); and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan (Y.Y., H.Y.)
| | - Yoshito Yamashiro
- From the Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (C.L.P., H.Y.); and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan (Y.Y., H.Y.)
| | - Hiromi Yanagisawa
- From the Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (C.L.P., H.Y.); and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan (Y.Y., H.Y.).
| |
Collapse
|
35
|
Wang M, Kim SH, Monticone RE, Lakatta EG. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension 2015; 65:698-703. [PMID: 25667214 DOI: 10.1161/hypertensionaha.114.03618] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mingyi Wang
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD.
| | - Soo Hyuk Kim
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD
| | - Robert E Monticone
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD
| | - Edward G Lakatta
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD.
| |
Collapse
|
36
|
Hsieh LTH, Nastase MV, Zeng-Brouwers J, Iozzo RV, Schaefer L. Soluble biglycan as a biomarker of inflammatory renal diseases. Int J Biochem Cell Biol 2014; 54:223-35. [PMID: 25091702 DOI: 10.1016/j.biocel.2014.07.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
Chronic renal inflammation is often associated with a progressive accumulation of various extracellular matrix constituents, including several members of the small leucine-rich proteoglycan (SLRP) gene family. It is becoming increasingly evident that the matrix-unbound SLRPs strongly regulate the progression of inflammation and fibrosis. Soluble SLRPs are generated either via partial proteolytic processing of collagenous matrices or by de novo synthesis evoked by stress or injury. Liberated SLRPs can then bind to and activate Toll-like receptors, thus modulating downstream inflammatory signaling. Preclinical animal models and human studies have recently identified soluble biglycan as a key initiator and regulator of various inflammatory renal diseases. Biglycan, generated by activated macrophages, can enter the circulation and its elevated levels in plasma and renal parenchyma correlate with unfavorable renal function and outcome. In this review, we will focus on the critical role of soluble biglycan in inflammatory signaling in various renal disorders. Moreover, we will provide new data implicating proinflammatory effects of soluble decorin in unilateral ureteral obstruction. Finally, we will critically evaluate the potential application of soluble biglycan vis-à-vis other SLRPs (decorin, lumican and fibromodulin) as a promising target and novel biomarker of inflammatory renal diseases.
Collapse
Affiliation(s)
- Louise Tzung-Harn Hsieh
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Madalina-Viviana Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Alcaraz LB, Exposito JY, Chuvin N, Pommier RM, Cluzel C, Martel S, Sentis S, Bartholin L, Lethias C, Valcourt U. Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-β. ACTA ACUST UNITED AC 2014; 205:409-28. [PMID: 24821840 PMCID: PMC4018787 DOI: 10.1083/jcb.201308031] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transforming growth factor β (TGF-β) isoforms are secreted as inactive complexes formed through noncovalent interactions between the bioactive TGF-β entity and its N-terminal latency-associated peptide prodomain. Extracellular activation of the latent TGF-β complex is a crucial step in the regulation of TGF-β function for tissue homeostasis. We show that the fibrinogen-like (FBG) domain of the matrix glycoprotein tenascin-X (TNX) interacts physically with the small latent TGF-β complex in vitro and in vivo, thus regulating the bioavailability of mature TGF-β to cells by activating the latent cytokine into an active molecule. Activation by the FBG domain most likely occurs through a conformational change in the latent complex and involves a novel cell adhesion-dependent mechanism. We identify α11β1 integrin as a cell surface receptor for TNX and show that this integrin is crucial to elicit FBG-mediated activation of latent TGF-β and subsequent epithelial-to-mesenchymal transition in mammary epithelial cells.
Collapse
Affiliation(s)
- Lindsay B Alcaraz
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Suna G, Mayr M. Tracing the proteomic fingerprint of the diabetic aorta? CIRCULATION. CARDIOVASCULAR GENETICS 2014; 7:100-1. [PMID: 24736850 DOI: 10.1161/circgenetics.114.000592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Gonca Suna
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | | |
Collapse
|
39
|
Galea CA, Nguyen HM, George Chandy K, Smith BJ, Norton RS. Domain structure and function of matrix metalloprotease 23 (MMP23): role in potassium channel trafficking. Cell Mol Life Sci 2014; 71:1191-210. [PMID: 23912897 PMCID: PMC11113776 DOI: 10.1007/s00018-013-1431-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
MMP23 is a member of the matrix metalloprotease family of zinc- and calcium-dependent endopeptidases, which are involved in a wide variety of cellular functions. Its catalytic domain displays a high degree of structural homology with those of other metalloproteases, but its atypical domain architecture suggests that it may possess unique functional properties. The N-terminal MMP23 pro-domain contains a type-II transmembrane domain that anchors the protein to the plasma membrane and lacks the cysteine-switch motif that is required to maintain other MMPs in a latent state during passage to the cell surface. Instead of the C-terminal hemopexin domain common to other MMPs, MMP23 contains a small toxin-like domain (TxD) and an immunoglobulin-like cell adhesion molecule (IgCAM) domain. The MMP23 pro-domain can trap Kv1.3 but not closely-related Kv1.2 channels in the endoplasmic reticulum, preventing their passage to the cell surface, while the TxD can bind to the channel pore and block the passage of potassium ions. The MMP23 C-terminal IgCAM domain displays some similarity to Ig-like C2-type domains found in IgCAMs of the immunoglobulin superfamily, which are known to mediate protein-protein and protein-lipid interactions. MMP23 and Kv1.3 are co-expressed in a variety of tissues and together are implicated in diseases including cancer and inflammatory disorders. Further studies are required to elucidate the mechanism of action of this unique member of the MMP family.
Collapse
Affiliation(s)
- Charles A Galea
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia,
| | | | | | | | | |
Collapse
|
40
|
Pivetta E, Danussi C, Wassermann B, Modica TME, Del Bel Belluz L, Canzonieri V, Colombatti A, Spessotto P. Neutrophil elastase-dependent cleavage compromises the tumor suppressor role of EMILIN1. Matrix Biol 2014; 34:22-32. [PMID: 24513040 DOI: 10.1016/j.matbio.2014.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 12/20/2022]
Abstract
Proteolysis of the extracellular matrix (ECM) is a key event in tumor growth and progression. The breakdown of ECM can lead to the generation of bioactive fragments that promote cell growth and spread. EMILIN1, a multidomain glycoprotein expressed in several tissues, exerts a crucial regulatory function through the engagement of α4/α9 integrins. Unlike the majority of ECM molecules that elicit a proliferative program, the signals emitting from EMILIN1 engaged by α4/α9β1 integrins are antiproliferative. In this study, aimed to demonstrate if the suppressor role of EMILIN1 was related to its structural integrity, we tested the possibility that EMILIN1 could be specifically cleaved. Among the proteolytic enzymes released in the tumor microenvironment we showed that neutrophil elastase cleaved EMILIN1 in three/four major fragments. The consequence of this proteolytic process was the impairment of its anti-proliferative role. Accordingly, EMILIN1 was digested in sarcomas and ovarian cancers. Sarcoma specimens were infiltrated by neutrophils (PMNs) and stained positively for elastase. The present findings highlight the peculiar activity of PMN elastase in disabling EMILIN1 suppressor function.
Collapse
Affiliation(s)
- Eliana Pivetta
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Carla Danussi
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Bruna Wassermann
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | | | - Lisa Del Bel Belluz
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Vincenzo Canzonieri
- Division of Pathology, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Alfonso Colombatti
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy; Department of Medical and Biomedical Sciences, University of Udine, Italy; MATI (Microgravity, Ageing, Training, Immobility) Excellence Center, University of Udine, Italy
| | - Paola Spessotto
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy.
| |
Collapse
|
41
|
Farina AR, Mackay AR. Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression. Cancers (Basel) 2014; 6:240-96. [PMID: 24473089 PMCID: PMC3980597 DOI: 10.3390/cancers6010240] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/14/2022] Open
Abstract
Since its original identification as a leukocyte gelatinase/type V collagenase and tumour type IV collagenase, gelatinase B/matrix metalloproteinase (MMP)-9 is now recognised as playing a central role in many aspects of tumour progression. In this review, we relate current concepts concerning the many ways in which gelatinase B/MMP-9 influences tumour biology. Following a brief outline of the gelatinase B/MMP-9 gene and protein, we analyse the role(s) of gelatinase B/MMP-9 in different phases of the tumorigenic process, and compare the importance of gelatinase B/MMP-9 source in the carcinogenic process. What becomes apparent is the importance of inflammatory cell-derived gelatinase B/MMP-9 in tumour promotion, early progression and triggering of the "angiogenic switch", the integral relationship between inflammatory, stromal and tumour components with respect to gelatinase B/MMP-9 production and activation, and the fundamental role for gelatinase B/MMP-9 in the formation and maintenance of tumour stem cell and metastatic niches. It is also apparent that gelatinase B/MMP-9 plays important tumour suppressing functions, producing endogenous angiogenesis inhibitors, promoting inflammatory anti-tumour activity, and inducing apoptosis. The fundamental roles of gelatinase B/MMP-9 in cancer biology underpins the need for specific therapeutic inhibitors of gelatinase B/MMP-9 function, the use of which must take into account and substitute for tumour-suppressing gelatinase B/MMP-9 activity and also limit inhibition of physiological gelatinase B/MMP-9 function.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| |
Collapse
|
42
|
Fuchs JE, von Grafenstein S, Huber RG, Kramer C, Liedl KR. Substrate-driven mapping of the degradome by comparison of sequence logos. PLoS Comput Biol 2013; 9:e1003353. [PMID: 24244149 PMCID: PMC3828135 DOI: 10.1371/journal.pcbi.1003353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/05/2013] [Indexed: 12/27/2022] Open
Abstract
Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences. The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease substrate readout via principal component analysis and construction of protease specificity trees. Since our new metric is solely based on substrate data, we can engraft the protease tree including proteolytic enzymes of different evolutionary origin. Thereby, our analyses confirm pronounced overlaps in substrate recognition not only between proteases closely related on sequence basis but also between proteolytic enzymes of different evolutionary origin and catalytic type. To illustrate the applicability of our approach we analyze the distribution of targets of small molecules from the ChEMBL database in our substrate-based protease specificity trees. We observe a striking clustering of annotated targets in tree branches even though these grouped targets do not necessarily share similarity on protein sequence level. This highlights the value and applicability of knowledge acquired from peptide substrates in drug design of small molecules, e.g., for the prediction of off-target effects or drug repurposing. Consequently, our similarity metric allows to map the degradome and its associated drug target network via comparison of known substrate peptides. The substrate-driven view of protein-protein interfaces is not limited to the field of proteases but can be applied to any target class where a sufficient amount of known substrate data is available.
Collapse
Affiliation(s)
- Julian E. Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Susanne von Grafenstein
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Roland G. Huber
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Christian Kramer
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
43
|
Abdulkareem N, Skroblin P, Jahangiri M, Mayr M. Proteomics in aortic aneurysm - What have we learnt so far? Proteomics Clin Appl 2013; 7:504-15. [DOI: 10.1002/prca.201300016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/07/2013] [Accepted: 02/25/2013] [Indexed: 01/14/2023]
Affiliation(s)
- Nada Abdulkareem
- Department of Cardiothoracic Surgery; St. George's Hospital University of London; London UK
| | - Philipp Skroblin
- King's British Heart Foundation Centre; King's College London; London UK
| | - Marjan Jahangiri
- Department of Cardiothoracic Surgery; St. George's Hospital University of London; London UK
| | - Manuel Mayr
- King's British Heart Foundation Centre; King's College London; London UK
| |
Collapse
|
44
|
Arrell DK, Terzic A. Substrate-guided proteomics enhances degradome resolution. CIRCULATION. CARDIOVASCULAR GENETICS 2013; 6:7-9. [PMID: 23424255 DOI: 10.1161/circgenetics.111.000031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|