1
|
Ajay A, Rasoul D, Abdullah A, Lee Wei En B, Mashida K, Al-Munaer M, Ajay H, Duvva D, Mathew J, Adenaya A, Lip GYH, Sankaranarayanan R. Augmentation of natriuretic peptide (NP) receptor A and B (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) signalling as a therapeutic strategy in heart failure. Expert Opin Investig Drugs 2023; 32:1157-1170. [PMID: 38032188 DOI: 10.1080/13543784.2023.2290064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Heart failure is a complex, debilitating condition and despite advances in treatment, it remains a significant cause of morbidity and mortality worldwide. Therefore, the need for alternative treatment strategies is essential. In this review, we explore the therapeutic strategies of augmenting natriuretic peptide receptors (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) in heart failure. AREAS COVERED We aim to provide an overview of the evidence of preclinical and clinical studies on novel heart failure treatment strategies. Papers collected in this review have been filtered and screened following PubMed searches. This includes epigenetics, modulating enzyme activity in natriuretic peptide (NP) synthesis, gene therapy, modulation of downstream signaling by augmenting soluble guanylate cyclase (sGC) and phosphodiesterase (PDE) inhibition, nitrates, c-GMP-dependent protein kinase, synthetic and designer NP and RNA therapy. EXPERT OPINION The novel treatment strategies mentioned above have shown great potential, however, large randomized controlled trials are still lacking. The biggest challenge is translating the results seen in preclinical trials into clinical trials. We recommend a multi-disciplinary team approach with cardiologists, geneticist, pharmacologists, bioengineers, researchers, regulators, and patients to improve heart failure outcomes. Future management can involve telemedicine, remote monitoring, and artificial intelligence to optimize patient care.
Collapse
Affiliation(s)
- Ashwin Ajay
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Debar Rasoul
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Alend Abdullah
- General Medicine, The Dudley Group NHS Foundation Trust Dudley, Dudley, United Kingdom
| | - Benjamin Lee Wei En
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Knievel Mashida
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| | | | - Hanan Ajay
- General Medicine, Southport and Ormskirk Hospital NHS Trust, Southport, United Kingdom
| | - Dileep Duvva
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Jean Mathew
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Adeoye Adenaya
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Cedar House, University of Liverpool, Liverpool, United Kingdom
- Cardiology Department, Liverpool Heart & Chest Hospital NHS Trust, Liverpool, United Kingdom
- Cardiology Department, Liverpool John Moores University, Liverpool, United Kingdom
| | - Rajiv Sankaranarayanan
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Gladysheva IP, Sullivan RD, Reed GL. Falling corin and ANP activity levels accelerate development of heart failure and cardiac fibrosis. Front Cardiovasc Med 2023; 10:1120487. [PMID: 37388639 PMCID: PMC10309071 DOI: 10.3389/fcvm.2023.1120487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/03/2023] [Indexed: 07/01/2023] Open
Affiliation(s)
| | | | - Guy L. Reed
- Correspondence: Inna P. Gladysheva Guy L. Reed
| |
Collapse
|
3
|
Sarzani R, Allevi M, Di Pentima C, Schiavi P, Spannella F, Giulietti F. Role of Cardiac Natriuretic Peptides in Heart Structure and Function. Int J Mol Sci 2022; 23:ijms232214415. [PMID: 36430893 PMCID: PMC9697447 DOI: 10.3390/ijms232214415] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP) are true hormones produced and released by cardiomyocytes, exerting several systemic effects. Together with C-type NP (CNP), mainly expressed by endothelial cells, they also exert several paracrine and autocrine activities on the heart itself, contributing to cardiovascular (CV) health. In addition to their natriuretic, vasorelaxant, metabolic and antiproliferative systemic properties, NPs prevent cardiac hypertrophy, fibrosis, arrhythmias and cardiomyopathies, counteracting the development and progression of heart failure (HF). Moreover, recent studies revealed that a protein structurally similar to NPs mainly produced by skeletal muscles and osteoblasts called musclin/osteocrin is able to interact with the NPs clearance receptor, attenuating cardiac dysfunction and myocardial fibrosis and promoting heart protection during pathological overload. This narrative review is focused on the direct activities of this molecule family on the heart, reporting both experimental and human studies that are clinically relevant for physicians.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Correspondence: (R.S.); Tel.: +39-071-5964696
| | - Massimiliano Allevi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| | - Paola Schiavi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Francesco Spannella
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| |
Collapse
|
4
|
Abassi Z, Khoury EE, Karram T, Aronson D. Edema formation in congestive heart failure and the underlying mechanisms. Front Cardiovasc Med 2022; 9:933215. [PMID: 36237903 PMCID: PMC9553007 DOI: 10.3389/fcvm.2022.933215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Congestive heart failure (HF) is a complex disease state characterized by impaired ventricular function and insufficient peripheral blood supply. The resultant reduced blood flow characterizing HF promotes activation of neurohormonal systems which leads to fluid retention, often exhibited as pulmonary congestion, peripheral edema, dyspnea, and fatigue. Despite intensive research, the exact mechanisms underlying edema formation in HF are poorly characterized. However, the unique relationship between the heart and the kidneys plays a central role in this phenomenon. Specifically, the interplay between the heart and the kidneys in HF involves multiple interdependent mechanisms, including hemodynamic alterations resulting in insufficient peripheral and renal perfusion which can lead to renal tubule hypoxia. Furthermore, HF is characterized by activation of neurohormonal factors including renin-angiotensin-aldosterone system (RAAS), sympathetic nervous system (SNS), endothelin-1 (ET-1), and anti-diuretic hormone (ADH) due to reduced cardiac output (CO) and renal perfusion. Persistent activation of these systems results in deleterious effects on both the kidneys and the heart, including sodium and water retention, vasoconstriction, increased central venous pressure (CVP), which is associated with renal venous hypertension/congestion along with increased intra-abdominal pressure (IAP). The latter was shown to reduce renal blood flow (RBF), leading to a decline in the glomerular filtration rate (GFR). Besides the activation of the above-mentioned vasoconstrictor/anti-natriuretic neurohormonal systems, HF is associated with exceptionally elevated levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). However, the supremacy of the deleterious neurohormonal systems over the beneficial natriuretic peptides (NP) in HF is evident by persistent sodium and water retention and cardiac remodeling. Many mechanisms have been suggested to explain this phenomenon which seems to be multifactorial and play a major role in the development of renal hyporesponsiveness to NPs and cardiac remodeling. This review focuses on the mechanisms underlying the development of edema in HF with reduced ejection fraction and refers to the therapeutic maneuvers applied today to overcome abnormal salt/water balance characterizing HF.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
- Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
- *Correspondence: Zaid Abassi,
| | - Emad E. Khoury
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Tony Karram
- Department of Vascular Surgery and Kidney Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
5
|
Gladysheva IP, Sullivan RD, Ramanathan K, Reed GL. Soluble (Pro)Renin Receptor Levels Are Regulated by Plasma Renin Activity and Correlated with Edema in Mice and Humans with HFrEF. Biomedicines 2022; 10:biomedicines10081874. [PMID: 36009420 PMCID: PMC9405551 DOI: 10.3390/biomedicines10081874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
Symptomatic heart failure with reduced ejection fraction (HFrEF) is characterized by edema and chronic pathological activation of the classical renin–angiotensin–aldosterone system (RAAS). The soluble (pro)renin receptor (s(P)RR) is released into circulation by proteolytic cleavage of tissue expressed (P)RR and is a candidate biomarker of RAAS activation. However, previous studies linked elevated levels of s(P)RR in patients with HFrEF to renal dysfunction. Utilizing prospectively enrolled patients with comparable rEF, we show that increased plasma levels of s(P)RR are associated with symptomatic HF (characterized by edema), independent of chronic renal dysfunction. We also found that s(P)RR levels were positively correlated with patient plasma renin activity (PRA). Normotensive mice with dilated cardiomyopathy (DCM) and HFrEF, without renal dysfunction, showed plasma s(P)RR and PRA patterns similar to human HFrEF patients. Plasma s(P)RR levels positively correlated with PRA and systemic edema, but not with EF, resembling findings in patients with HFrEF without chronic kidney dysfunction. In female DCM mice with elevated PRA levels and plasma s(P)RR levels, a randomized, blinded trial comparing the direct renin inhibitor, aliskiren vs. vehicle control, showed that direct renin inhibition normalized PRA, lowered s(P)RR, and prevented symptomatic HFrEF. Considered in light of previous findings, these data suggest that, in HFrEF, in the absence of renal dysfunction, elevation of plasma s(P)RR levels is caused by increased PRA and associated with the development of systemic edema.
Collapse
Affiliation(s)
- Inna P. Gladysheva
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (R.D.S.); (G.L.R.)
- Correspondence: ; Tel.: +1-(602)-827-2919
| | - Ryan D. Sullivan
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (R.D.S.); (G.L.R.)
| | | | - Guy L. Reed
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (R.D.S.); (G.L.R.)
| |
Collapse
|
6
|
Hernandez M, Sullivan RD, McCune ME, Reed GL, Gladysheva IP. Sodium-Glucose Cotransporter-2 Inhibitors Improve Heart Failure with Reduced Ejection Fraction Outcomes by Reducing Edema and Congestion. Diagnostics (Basel) 2022; 12:989. [PMID: 35454037 PMCID: PMC9024630 DOI: 10.3390/diagnostics12040989] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Pathological sodium-water retention or edema/congestion is a primary cause of heart failure (HF) decompensation, clinical symptoms, hospitalization, reduced quality of life, and premature mortality. Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) based therapies reduce hospitalization due to HF, improve functional status, quality, and duration of life in patients with HF with reduced ejection fraction (HFrEF) independently of their glycemic status. The pathophysiologic mechanisms and molecular pathways responsible for the benefits of SGLT-2i in HFrEF remain inconclusive, but SGLT-2i may help HFrEF by normalizing salt-water homeostasis to prevent clinical edema/congestion. In HFrEF, edema and congestion are related to compromised cardiac function. Edema and congestion are further aggravated by renal and pulmonary abnormalities. Treatment of HFrEF patients with SGLT-2i enhances natriuresis/diuresis, improves cardiac function, and reduces natriuretic peptide plasma levels. In this review, we summarize current clinical research studies related to outcomes of SGLT-2i treatment in HFrEF with a specific focus on their contribution to relieving or preventing edema and congestion, slowing HF progression, and decreasing the rate of rehospitalization and cardiovascular mortality.
Collapse
Affiliation(s)
- Michelle Hernandez
- Department of Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; (M.H.); (R.D.S.); (M.E.M.); (G.L.R.)
- School of Medicine, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico
| | - Ryan D. Sullivan
- Department of Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; (M.H.); (R.D.S.); (M.E.M.); (G.L.R.)
| | - Mariana E. McCune
- Department of Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; (M.H.); (R.D.S.); (M.E.M.); (G.L.R.)
| | - Guy L. Reed
- Department of Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; (M.H.); (R.D.S.); (M.E.M.); (G.L.R.)
| | - Inna P. Gladysheva
- Department of Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; (M.H.); (R.D.S.); (M.E.M.); (G.L.R.)
| |
Collapse
|
7
|
Jiang N, Jiang B, Zhang X, Yong W, Zhuang S. Evaluation of CORIN in patients with heart failure: A systematic review and meta-analysis. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221130650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objectives: We aim to evaluate the association between CORIN and heart failure. Methods: This study used PubMed, EMBASE, Cochrane database, and China National Knowledge Database (CNKI) to search for CORIN-related full-text articles with heart failure patients. We drew forest plots, performed sensitivity and bias analyses based on the included data. Next, we used Review Manager 5.2 software to assess the heterogeneity among selected articles. Results: Our meta-analysis results showed there was significant relationship between CORIN and heart failure (HF). There was significant difference of CORIN between heart failure group and control group (MD = −293.88, 95% confidence interval [-380.26, −207.49], p < .00001; heterogeneity p < .0001, I2= 97%) and there was significant difference in CORIN between ischemic group and non-ischemic group (MD = 88.79, 95% confidence interval [70.46107.12], heterogeneity p < .000, p = 0.94, l2= 0%). In subgroup analysis, there were significant differences in three different HF levels. Limited publication bias was observed, and this study was robust. Conclusion: In short, the results showed that CORIN was closely related with heart failure and might be helpful in the diagnosis of heart failure.
Collapse
Affiliation(s)
- Nianxin Jiang
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Jiang
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuan Zhang
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yong
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaowei Zhuang
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Khoury EE, Fokra A, Kinaneh S, Knaney Y, Aronson D, Abassi Z. Distribution of Cardiac and Renal Corin and Proprotein Convertase Subtilisin/Kexin-6 in the Experimental Model of Cardio-Renal Syndrome of Various Severities. Front Physiol 2021; 12:673497. [PMID: 34733169 PMCID: PMC8558519 DOI: 10.3389/fphys.2021.673497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
Congestive heart failure (CHF) often leads to progressive cardiac hypertrophy and salt/water retention. However, its pathogenesis remains largely unclarified. Corin, a cardiac serine protease, is responsible for converting proANP and proBNP to biologically active peptides. Although the involvement of corin in cardiac hypertrophy and heart failure was extensively studied, the alterations in corin and proprotein convertase subtilisin/kexin-6 (PCSK6), a key enzyme in the conversion of procorin to corin, has not been studied simultaneously in the cardiac and renal tissues in cardiorenal syndrome. Thus, this study aims to examine the status of PCSK6/corin in the cardiac and renal tissues of rats with CHF induced by the creation of aorto-caval fistula (ACF). We divided rats with ACF into two subgroups based on the pattern of their urinary sodium excretion, namely, compensated and decompensated. Placement of ACF led to cardiac hypertrophy, pulmonary congestion, and renal dysfunction, which were more profound in the decompensated subgroup. Corin immunoreactive peptides were detected in all heart chambers at the myocyte membranal and cytosolic localization and in the renal tissue, especially in the apical membrane of the proximal tubule, mTAL, and the collecting duct. Interestingly, the expression and abundance of corin in both the cardiac ventricles and renal tissues were significantly increased in compensated animals as compared with the decompensated state. Noteworthy, the abundance of PCSK6 in these tissues followed a similar pattern as corin. In contrast, furin expression was upregulated in the cardiac and renal tissues in correlation with CHF severity. We hypothesize that the obtained upregulation of cardiac and renal PCSK6/corin in rats with compensated CHF may represent a compensatory response aiming at maintaining normal Na+ balance, whereas the decline in these two enzymes may contribute to the pathogenesis of avid sodium retention, cardiac hypertrophy, and blunted atrial natriuretic peptide/brain natriuretic peptide actions in decompensated CHF.
Collapse
Affiliation(s)
- Emad E Khoury
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ahmad Fokra
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Safa Kinaneh
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yara Knaney
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
9
|
Tripathi R, Sullivan RD, Fan THM, Mehta RM, Gladysheva IP, Reed GL. A Low-Sodium Diet Boosts Ang (1-7) Production and NO-cGMP Bioavailability to Reduce Edema and Enhance Survival in Experimental Heart Failure. Int J Mol Sci 2021; 22:4035. [PMID: 33919841 PMCID: PMC8070795 DOI: 10.3390/ijms22084035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Sodium restriction is often recommended in heart failure (HF) to block symptomatic edema, despite limited evidence for benefit. However, a low-sodium diet (LSD) activates the classical renin-angiotensin-aldosterone system (RAAS), which may adversely affect HF progression and mortality in patients with dilated cardiomyopathy (DCM). We performed a randomized, blinded pre-clinical trial to compare the effects of a normal (human-equivalent) sodium diet and a LSD on HF progression in a normotensive model of DCM in mice that has translational relevance to human HF. The LSD reduced HF progression by suppressing the development of pleural effusions (p < 0.01), blocking pathological increases in systemic extracellular water (p < 0.001) and prolonging median survival (15%, p < 0.01). The LSD activated the classical RAAS by increasing plasma renin activity, angiotensin II and aldosterone levels. However, the LSD also significantly up-elevated the counter-regulatory RAAS by boosting plasma angiotensin converting enzyme 2 (ACE2) and angiotensin (1-7) levels, promoting nitric oxide bioavailability and stimulating 3'-5'-cyclic guanosine monophosphate (cGMP) production. Plasma HF biomarkers associated with poor outcomes, such as B-type natriuretic peptide and neprilysin were decreased by a LSD. Cardiac systolic function, blood pressure and renal function were not affected. Although a LSD activates the classical RAAS system, we conclude that the LSD delayed HF progression and mortality in experimental DCM, in part through protective stimulation of the counter-regulatory RAAS to increase plasma ACE2 and angiotensin (1-7) levels, nitric oxide bioavailability and cGMP production.
Collapse
Affiliation(s)
- Ranjana Tripathi
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Ryan D Sullivan
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Tai-Hwang M Fan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Radhika M Mehta
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Inna P Gladysheva
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Guy L Reed
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| |
Collapse
|
10
|
Niu Y, Zhang S, Gu X, Zhou T, Li F, Liu M, Wu Q, Dong N. Recombinant Soluble Corin Improves Cardiac Function in Mouse Models of Heart Failure. J Am Heart Assoc 2021; 10:e019961. [PMID: 33759549 PMCID: PMC8174325 DOI: 10.1161/jaha.120.019961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Corin is a transmembrane protease that activates ANP and BNP (atrial and B‐type natriuretic peptides). Impaired corin expression and function are associated with heart failure. In this study, we characterized a soluble form of corin (sCorin) and examined its effects on cardiac morphology and function in mouse heart failure models. Methods and Results sCorin, consisting of the full‐length extracellular fragment of human corin with an engineered activation site, was expressed in Chinese hamster ovary cells, purified from the conditioned medium with affinity chromatography, and characterized in pro‐ANP processing assays in vitro and pharmacokinetic studies in mice. Effects of sCorin on mouse models of heart failure induced by left coronary artery ligation and transverse aortic constriction were assessed by ELISA analysis of plasma markers, histologic examination, and echocardiography. We showed that purified and activated sCorin converted pro‐ANP to ANP that stimulated cGMP production in cultured cells. In mice, intravenously and intraperitoneally administered sCorin had plasma half‐lives of 3.5±0.1 and 8.3±0.3 hour, respectively. In the mouse heart failure models, intraperitoneal injection of sCorin increased plasma ANP, BNP, and cGMP levels; lowered plasma levels of NT‐proANP (N‐terminal‐pro‐ANP), angiotensin II, and aldosterone; reduced cardiac hypertrophy and fibrosis; and improved cardiac function. Conclusions We show that sCorin treatment enhanced natriuretic peptide processing and activity, suppressed the renin‐angiotensin‐aldosterone system, and improved cardiac morphology and function in mice with failing hearts.
Collapse
Affiliation(s)
- Yayan Niu
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China.,MOH Key Laboratory of Thrombosis and Hemostasis Jiangsu Institute of HematologySoochow University Suzhou China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China.,MOH Key Laboratory of Thrombosis and Hemostasis Jiangsu Institute of HematologySoochow University Suzhou China
| | - Xiabing Gu
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China.,MOH Key Laboratory of Thrombosis and Hemostasis Jiangsu Institute of HematologySoochow University Suzhou China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China
| | - Feng Li
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China.,MOH Key Laboratory of Thrombosis and Hemostasis Jiangsu Institute of HematologySoochow University Suzhou China
| | - Meng Liu
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China
| | - Qingyu Wu
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China.,Cardiovascular & Metabolic Sciences Lerner Research InstituteCleveland Clinic Cleveland OH
| | - Ningzheng Dong
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China.,MOH Key Laboratory of Thrombosis and Hemostasis Jiangsu Institute of HematologySoochow University Suzhou China
| |
Collapse
|
11
|
Cardiac-Specific Overexpression of Catalytically Inactive Corin Reduces Edema, Contractile Dysfunction, and Death in Mice with Dilated Cardiomyopathy. Int J Mol Sci 2019; 21:ijms21010203. [PMID: 31892216 PMCID: PMC6981738 DOI: 10.3390/ijms21010203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
Humans with dilated cardiomyopathy (DCM) and heart failure (HF) develop low levels of corin, a multi-domain, cardiac-selective serine protease involved in natriuretic peptide cleavage and sodium and water regulation. However, experimental restoration of corin levels markedly attenuates HF progression. To determine whether the beneficial effects of corin in HF require catalytic activity, we engineered cardiac overexpression of an enzymatically inactive corin transgene (corin-Tg(i)). On a wild-type (WT) background, corin-Tg(i) had no evident phenotypic effects. However, in a well-established genetic model of DCM, corin-Tg(i)/DCM mice had increased survival (p < 0.01 to 0.001) vs. littermate corin-WT/DCM controls. Pleural effusion (p < 0.01), lung edema (p < 0.05), systemic extracellular free water (p < 0.01), and heart weight were decreased (p < 0.01) in corin-Tg(i)/DCM vs. corin-WT/DCM mice. Cardiac ejection fraction and fractional shortening improved (p < 0.01), while ventricular dilation decreased (p < 0.0001) in corin-Tg(i)/DCM mice. Plasma atrial natriuretic peptide, cyclic guanosine monophosphate, and neprilysin were significantly decreased. Cardiac phosphorylated glycogen synthase kinase-3β (pSer9-GSK3β) levels were increased in corin(i)-Tg/DCM mice (p < 0.01). In summary, catalytically inactive corin-Tg(i) decreased fluid retention, improved contractile function, decreased HF biomarkers, and diminished cardiac GSK3β activity. Thus, the protective effects of cardiac corin on HF progression and survival in experimental DCM do not require the serine protease activity of the molecule.
Collapse
|
12
|
Renin Activity in Heart Failure with Reduced Systolic Function-New Insights. Int J Mol Sci 2019; 20:ijms20133182. [PMID: 31261774 PMCID: PMC6651297 DOI: 10.3390/ijms20133182] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Regardless of the cause, symptomatic heart failure (HF) with reduced ejection fraction (rEF) is characterized by pathological activation of the renin–angiotensin–aldosterone system (RAAS) with sodium retention and extracellular fluid expansion (edema). Here, we review the role of active renin, a crucial, upstream enzymatic regulator of the RAAS, as a prognostic and diagnostic plasma biomarker of heart failure with reduced ejection fraction (HFrEF) progression; we also discuss its potential as a pharmacological bio-target in HF therapy. Clinical and experimental studies indicate that plasma renin activity is elevated with symptomatic HFrEF with edema in patients, as well as in companion animals and experimental models of HF. Plasma renin activity levels are also reported to be elevated in patients and animals with rEF before the development of symptomatic HF. Modulation of renin activity in experimental HF significantly reduces edema formation and the progression of systolic dysfunction and improves survival. Thus, specific assessment and targeting of elevated renin activity may enhance diagnostic and therapeutic precision to improve outcomes in appropriate patients with HFrEF.
Collapse
|
13
|
Neutrophil-Initiated Myocardial Inflammation and Its Modulation by B-Type Natriuretic Peptide: A Potential Therapeutic Target. Int J Mol Sci 2018; 20:ijms20010129. [PMID: 30602672 PMCID: PMC6337677 DOI: 10.3390/ijms20010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
Activation of neutrophils is a critically important component of the innate immune response to bacterial and chemical stimuli, and culminates in the “neutrophil burst”, which facilitates neutrophil phagocytosis via the release of superoxide anion radical (O2−) from NADPH oxidase. Excessive and/or prolonged neutrophil activation results in substantial tissue injury and increases in vascular permeability—resulting in sustained tissue infiltration with neutrophils and monocytes, and persistent vasomotor dysfunction. Cardiovascular examples of such changes include acute and chronic systolic and diastolic heart failure (“heart failure with preserved ejection fraction”), and the catecholamine-induced inflammatory disorder takotsubo syndrome. We have recently demonstrated that B-type natriuretic peptide (BNP), acting via inhibition of activation of neutrophil NADPH oxidase, is an important negative modulator of the “neutrophil burst”, though its effectiveness in limiting tissue injury is partially lost in acute heart failure. The potential therapeutic implications of these findings, regarding the development of new means of treating both acute and chronic cardiac injury states, are discussed.
Collapse
|
14
|
Possible Enzymatic Downregulation of the Natriuretic Peptide System in Patients with Reduced Systolic Function and Heart Failure: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7279036. [PMID: 30148170 PMCID: PMC6083548 DOI: 10.1155/2018/7279036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/28/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Background In patients with reduced systolic function, the natriuretic peptide system affects heart failure (HF) progression, but the expression of key activating (corin) and degrading enzymes (neprilysin) is not well understood. Methods and Results This pilot study (n=48) compared plasma levels of corin, neprilysin, ANP, BNP, and cGMP in control patients with normal ejection fractions (mean EF 63 ± 3%) versus patients with systolic dysfunction, with (EF 24 ± 8%) and without (EF 27 ± 7%) decompensated HF (dHF), as defined by Framingham and BNP criteria. Mean ages, use of beta blockers, and ACE-inhibitors-angiotensin receptor blockers were similar between the groups. Corin levels were depressed in systolic dysfunction patients (797 ± 346 pg/ml) versus controls (1188 ± 549, p<0.02), but levels were not affected by dHF (p=0.77). In contrast, levels of neprilysin (p<0.01), cGMP (p<0.001), and ANP (p<0.001) were higher in systolic dysfunction patients than controls and were the highest in patients with dHF. Conclusions Levels of neprilysin, ANP, BNP, and cGMP increased in patients with reduced systolic function and were the highest in dHF patients. Conversely, corin levels were low in patients with reduced EF with or without dHF. This pattern suggests possible enzymatic downregulation of natriuretic peptide activity in patients with reduced EF, which may have diagnostic and prognostic implications.
Collapse
|
15
|
Zhu Z, Zhang Q, Peng H, Zhong C, Liu Y, Huangfu X, Tian Y, Chao X, Jin J, Zhang Y. Association between plasma proANP and hyperuricemia in Chinese Han women: a cross-sectional study. Clin Chem Lab Med 2017; 55:1160-1167. [DOI: 10.1515/cclm-2016-0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/07/2016] [Indexed: 11/15/2022]
Abstract
AbstractBackground:Association between pro-atrial natriuretic peptide (proANP) and hyperuricemia has not yet been investigated in population. This study aimed to examine the association in Chinese Han women.Methods:We measured plasma proANP, serum uric acid, and other traditional biomarkers in 1360 women older than 30 years residing in the Gusu district of Suzhou City. Association between plasma proANP and hyperuricemia was analyzed in women aged ≥45 years and those aged <45 years, respectively.Results:In women aged ≥45 years, the odds ratio (OR) [95% confidence interval (CI)] of hyperuricemia with high proANP (over the median) was 0.57 (0.34–0.97) compared to those with low proANP (p=0.040). After adjustment for age and other potential covariates, a high plasma proANP was associated with a decreased risk of hyperuricemia in women aged ≥45 years (OR 0.40; 95% CI, 0.19–0.84), when the highest and lowest categories were compared. In contrast, there was no association between plasma proANP and hyperuricemia in women aged <45 years. We did not observe a significant interaction between age and proANP (pinteraction=0.113). Sensitivity analyses further confirmed these age-specific findings.Conclusions:Plasma proANP was significantly and inversely associated with hyperuricemia in Chinese Han women aged ≥45 years. This study suggests that an increased plasma proANP should be a protective factor of hyperuricemia among middle-aged and old women.
Collapse
|
16
|
Rajpal S, Alshawabkeh L, Opotowsky AR. Current Role of Blood and Urine Biomarkers in the Clinical Care of Adults with Congenital Heart Disease. Curr Cardiol Rep 2017; 19:50. [DOI: 10.1007/s11886-017-0860-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Localization of corin and atrial natriuretic peptide expression in human renal segments. Clin Sci (Lond) 2016; 130:1655-64. [PMID: 27343265 DOI: 10.1042/cs20160398] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
Abstract
Atrial natriuretic peptide (ANP)-mediated natriuretic response is a well-established cardiac endocrine function. Corin is a transmembrane protease that activates ANP in the heart. Corin expression has been detected in non-cardiac tissues including the kidney. Here we examined corin, pro-ANP/ANP and natriuretic peptide receptor-A (NPR-A) expression in human renal segments. By immunostaining and in situ hybridization, we found similar corin, pro-ANP/ANP and NPR-A protein and mRNA expression in human renal segments. The expression was most abundant in the proximal convoluted tubules and the medullary connecting ducts. In the proximal tubules, corin protein was present in the apical membrane region underneath the brush border where the ANP-degrading protease neprilysin was abundant. These results suggest that corin-mediated pro-ANP activation may occur in renal segments and that locally produced ANP may act in an autocrine manner to regulate sodium and water reabsorption in situ Our results also point to the proximal convoluted tubules as a major site for local ANP action. Such a renal corin/ANP autocrine mechanism may differ from the cardiac corin/ANP endocrine mechanism in regulating sodium homoeostasis under physiological and pathological conditions.
Collapse
|
18
|
Fathy SA, Abdel Hamid FF, Zabut BM, Jamee AF, Ali MAM, Abu Mustafa AM. Diagnostic utility of BNP, corin and furin as biomarkers for cardiovascular complications in type 2 diabetes mellitus patients. Biomarkers 2015; 20:460-9. [PMID: 26488448 DOI: 10.3109/1354750x.2015.1093032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CONTEXT The number of patients with type 2 diabetes mellitus (T2DM) is progressively increasing, and diabetic cardiovascular complications have become a public health problem. Brain or B-type natriuretic peptide (BNP) is a cardiac hormone synthesized as a pre-pro-peptide. pro-BNP is produced by cleaving the signal peptide then two proprotein convertases, corin and furin cleave pro-BNP to form a biologically active hormone. Two corin single nucleotide polymorphisms (SNPs) have been reported to alter corin protein conformation and impair its biological activity. OBJECTIVE We aimed to investigate the potential role of corin and furin in comparison to BNP as biomarkers for predicting cardiovascular complications in T2DM patients. The association of corin gene SNPs with corin levels was also examined. METHODS Seventy-five subjects were recruited in this study, including 25 T2DM patients with complications, 25 T2DM patients without complications as well as 25 healthy subjects. Plasma BNP, corin and furin levels were measured using enzyme-linked immunosorbent assays. Two corin SNPs were genotyped using allele specific oligonucleotide-polymerase chain reaction. RESULTS Both furin and BNP were found to be more sensitive than corin (80% versus 56%, p = 0.008), whereas furin showed higher specificity when compared to BNP (96% versus 84%, p = 0.041) and corin (96% versus 64%, p < 0.0001) in predicting cardiovascular complications in T2DM patients. Corin SNPs are not associated with corin levels, neither in the entire study cohort nor in the subgroup of T2DM patients with cardiovascular complications (p > 0.05). CONCLUSIONS Furin may be useful, either alone or in combination with other biomarkers, for cardiovascular risk stratification assessment in T2DM patients.
Collapse
Affiliation(s)
- Shadia A Fathy
- a Department of Biochemistry , Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Fatma F Abdel Hamid
- a Department of Biochemistry , Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Baker M Zabut
- b Biochemistry Department , Faculty of Science, Islamic University , Gaza , Palestine
| | - Amal F Jamee
- c Cardiology Department , El-Shifa Hospital , Gaza , Palestine , and
| | - Mohamed A M Ali
- a Department of Biochemistry , Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Ayman M Abu Mustafa
- d General Directorate of Human Resources Development, Ministry of Health , Gaza , Palestine
| |
Collapse
|
19
|
Lee R, Xu B, Rame JE, Felkin LE, Barton P, Dries DL. Regulated inositol-requiring protein 1-dependent decay as a mechanism of corin RNA and protein deficiency in advanced human systolic heart failure. J Am Heart Assoc 2015; 3:e001104. [PMID: 25516437 PMCID: PMC4338699 DOI: 10.1161/jaha.114.001104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background The compensatory actions of the endogenous natriuretic peptide system require adequate processing of natriuretic peptide pro‐hormones into biologically active, carboxyl‐terminal fragments. Natriuretic peptide pro‐peptide processing is accomplished by corin, a transmembrane serine protease expressed by cardiomyocytes. Brain natriuretic peptide (BNP) processing is inadequate in advanced heart failure and is independently associated with adverse outcomes; however, the molecular mechanisms causing impaired BNP processing are not understood. We hypothesized that the development of endoplasmic reticulum stress in cardiomyocytes in advanced heart failure triggers inositol‐requiring protein 1 (IRE1)‐dependent corin mRNA decay, which would favor a molecular substrate favoring impaired natriuretic peptide pro‐peptide processing. Methods and Results Two independent samples of hearts obtained from patients with advanced heart failure at transplant demonstrated that corin RNA was reduced as Atrial natriuretic peptide (ANP)/BNP RNA increased. Increases in spliced X‐box protein 1, a marker for IRE1‐endoribonuclease activity, were associated with decreased corin RNA. Moreover, ≈50% of the hearts demonstrated significant reductions in corin RNA and protein as compared to the nonfailing control sample. In vitro experiments demonstrated that induction of endoplasmic reticulum stress in cultured cardiomyocytes with thapsigargin activated IRE1's endoribonuclease activity and time‐dependent reductions in corin mRNA. In HL‐1 cells, overexpression of IRE1 activated IRE1 endoribonuclease activity and caused corin mRNA decay, whereas IRE1‐RNA interference with shRNA attenuated corin mRNA decay after induction of endoplasmic reticulum stress with thapsigargin. Pre‐treatment of cells with Actinomycin D to inhibit transcription did not alter the magnitude or time course of thapsigargin‐induced corin mRNA decline, supporting the hypothesis that this was the result of IRE1‐mediated corin mRNA degradation. Conclusions These data support the hypothesis that endoplasmic reticulum stress‐mediated, IRE1‐dependent targeted corin mRNA decay is a mechanism leading to corin mRNA resulting in corresponding corin protein deficiency may contribute to the pathophysiology of impaired natriuretic peptide pro‐hormone processing in humans processing in humans with advanced systolic heart failure.
Collapse
Affiliation(s)
- Rebecca Lee
- Division of Cardiovascular Medicine, Department of Internal Medicine, Cardiovascular Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | | | | | | | | |
Collapse
|
20
|
Solter PF, Oyama MA, Machen MC, Trafny DJ, Sisson DD. Detection by ELISA of C-terminal proBNP in plasma from cats with cardiomyopathy. Vet J 2015; 206:213-7. [PMID: 26324638 DOI: 10.1016/j.tvjl.2015.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/01/2015] [Accepted: 07/12/2015] [Indexed: 12/29/2022]
Abstract
The B-type natriuretic peptide prohormone (proBNP) is enzymatically cleaved into an inactive N-terminal peptide and a biologically active C-terminal peptide with many beneficial cardiorenal effects. The purpose of this study was to develop and test in cats with cardiomyopathy an immunoassay to quantify the concentrations of C-terminal proBNP in feline plasma. An anti-canine proBNP monoclonal antibody (UI-1021) was shown to have adequate binding affinity to proBNP 80-106 for use in a solid-phase immunoassay, and by epitope mapping to bind within positions 84-87 of feline proBNP. UI-1021 was paired with an affinity-purified rabbit polyclonal detection antibody to feline proBNP 100-106, in a sandwich ELISA with feline proBNP 80-106 standard. The linearity and analytical range and sensitivity of the assay were confirmed from 1.4 to 85 pmol/L. Spike recovery averaged 106.5% (95% confidence interval 78-135%). Within run and intra-assay coefficients of variation were <12%. A protease inhibitor mixture preserved proBNP 80-106 immunoreactivity for at least 5 days in plasma. Clinical verification of the ELISA was done using plasma from 13 cats with cardiomyopathy, whose C-terminal proBNP concentrations ranged from 1.7 to 78.8 pmol/L vs. <1.4-1.8 pmol/L in plasma from 18 healthy cats. Concentrations were found to be substantially lower than reported N-terminal proBNP concentrations, and similar to those of human heart failure patients where relative C-terminal BNP deficiencies have been proposed as contributory to the progression of the disease.
Collapse
Affiliation(s)
- Philip F Solter
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, USA.
| | - Mark A Oyama
- Department of Clinical Studies - Philadelphia, School of Veterinary Medicine, University of Pennsylvania, USA
| | - Maggie C Machen
- Department of Clinical Studies - Philadelphia, School of Veterinary Medicine, University of Pennsylvania, USA
| | - Dennis J Trafny
- Department of Clinical Studies - Philadelphia, School of Veterinary Medicine, University of Pennsylvania, USA
| | - D David Sisson
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, USA
| |
Collapse
|
21
|
PCSK6-mediated corin activation is essential for normal blood pressure. Nat Med 2015; 21:1048-53. [PMID: 26259032 DOI: 10.1038/nm.3920] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 07/13/2015] [Indexed: 12/22/2022]
Abstract
Hypertension is the most common cardiovascular disease, afflicting >30% of adults. The cause of hypertension in most individuals remains unknown, suggesting that additional contributing factors have yet to be discovered. Corin is a serine protease that activates the natriuretic peptides, thereby regulating blood pressure. It is synthesized as a zymogen that is activated by proteolytic cleavage. CORIN variants and mutations impairing corin activation have been identified in people with hypertension and pre-eclampsia. To date, however, the identity of the protease that activates corin remains elusive. Here we show that proprotein convertase subtilisin/kexin-6 (PCSK6, also named PACE4; ref. 10) cleaves and activates corin. In cultured cells, we found that corin activation was inhibited by inhibitors of PCSK family proteases and by small interfering RNAs blocking PCSK6 expression. Conversely, PCSK6 overexpression enhanced corin activation. In addition, purified PCSK6 cleaved wild-type corin but not the R801A variant that lacks the conserved activation site. Pcsk6-knockout mice developed salt-sensitive hypertension, and corin activation and pro-atrial natriuretic peptide processing activity were undetectable in these mice. Moreover, we found that CORIN variants in individuals with hypertension and pre-eclampsia were defective in PCSK6-mediated activation. We also identified a PCSK6 mutation that impaired corin activation activity in a hypertensive patient. Our results indicate that PCSK6 is the long-sought corin activator and is important for sodium homeostasis and normal blood pressure.
Collapse
|
22
|
Li D, Lu CJ, Hao G, Wright H, Woodward L, Liu K, Vergari E, Surdo NC, Herring N, Zaccolo M, Paterson DJ. Efficacy of B-Type Natriuretic Peptide Is Coupled to Phosphodiesterase 2A in Cardiac Sympathetic Neurons. Hypertension 2015; 66:190-8. [PMID: 25916722 DOI: 10.1161/hypertensionaha.114.05054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/26/2015] [Indexed: 12/23/2022]
Abstract
Elevated B-type natriuretic peptide (BNP) regulates cGMP-phosphodiesterase activity. Its elevation is regarded as an early compensatory response to cardiac failure where it can facilitate sympathovagal balance and cardiorenal homeostasis. However, recent reports suggest a paradoxical proadrenergic action of BNP. Because phosphodiesterase activity is altered in cardiovascular disease, we tested the hypothesis that BNP might lose its efficacy by minimizing the action of cGMP on downstream pathways coupled to neurotransmission. BNP decreased norepinephrine release from atrial preparations in response to field stimulation and also significantly reduced the heart rate responses to sympathetic nerve stimulation in vitro. Using electrophysiological recording and fluorescence imaging, BNP also reduced the depolarization evoked calcium current and intracellular calcium transient in isolated cardiac sympathetic neurons. Pharmacological manipulations suggested that the reduction in the calcium transient was regulated by a cGMP/protein kinase G pathway. Fluorescence resonance energy transfer measurements for cAMP, and an immunoassay for cGMP, showed that BNP increased cGMP, but not cAMP. In addition, overexpression of phosphodiesterase 2A after adenoviral gene transfer markedly decreased BNP stimulation of cGMP and abrogated the BNP responses to the calcium current, intracellular calcium transient, and neurotransmitter release. These effects were reversed on inhibition of phosphodiesterase 2A. Moreover, phosphodiesterase 2A activity was significantly elevated in stellate neurons from the prohypertensive rat compared with the normotensive control. Our data suggest that abnormally high levels of phosphodiesterase 2A may provide a brake against the inhibitory action of BNP on sympathetic transmission.
Collapse
Affiliation(s)
- Dan Li
- From the Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| | - Chieh-Ju Lu
- From the Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Guoliang Hao
- From the Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Hannah Wright
- From the Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lavinia Woodward
- From the Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kun Liu
- From the Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Elisa Vergari
- From the Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicoletta C Surdo
- From the Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Neil Herring
- From the Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Manuela Zaccolo
- From the Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - David J Paterson
- From the Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
23
|
Lee R, Xu B, Rame JE, Felkin LE, Barton P, Dries DL. Regulated inositol-requiring protein 1-dependent decay as a mechanism of corin RNA and protein deficiency in advanced human systolic heart failure. J Am Heart Assoc 2014. [PMID: 25516437 DOI: 10.1161/jaha.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The compensatory actions of the endogenous natriuretic peptide system require adequate processing of natriuretic peptide pro‐hormones into biologically active, carboxyl‐terminal fragments. Natriuretic peptide pro‐peptide processing is accomplished by corin, a transmembrane serine protease expressed by cardiomyocytes. Brain natriuretic peptide (BNP) processing is inadequate in advanced heart failure and is independently associated with adverse outcomes; however, the molecular mechanisms causing impaired BNP processing are not understood. We hypothesized that the development of endoplasmic reticulum stress in cardiomyocytes in advanced heart failure triggers inositol‐requiring protein 1 (IRE1)‐dependent corin mRNA decay, which would favor a molecular substrate favoring impaired natriuretic peptide pro‐peptide processing. METHODS AND RESULTS Two independent samples of hearts obtained from patients with advanced heart failure at transplant demonstrated that corin RNA was reduced as Atrial natriuretic peptide (ANP)/BNP RNA increased. Increases in spliced X‐box protein 1, a marker for IRE1‐endoribonuclease activity, were associated with decreased corin RNA. Moreover, ≈50% of the hearts demonstrated significant reductions in corin RNA and protein as compared to the nonfailing control sample. In vitro experiments demonstrated that induction of endoplasmic reticulum stress in cultured cardiomyocytes with thapsigargin activated IRE1's endoribonuclease activity and time‐dependent reductions in corin mRNA. In HL‐1 cells, overexpression of IRE1 activated IRE1 endoribonuclease activity and caused corin mRNA decay, whereas IRE1‐RNA interference with shRNA attenuated corin mRNA decay after induction of endoplasmic reticulum stress with thapsigargin. Pre‐treatment of cells with Actinomycin D to inhibit transcription did not alter the magnitude or time course of thapsigargin‐induced corin mRNA decline, supporting the hypothesis that this was the result of IRE1‐mediated corin mRNA degradation. CONCLUSIONS These data support the hypothesis that endoplasmic reticulum stress‐mediated, IRE1‐dependent targeted corin mRNA decay is a mechanism leading to corin mRNA resulting in corresponding corin protein deficiency may contribute to the pathophysiology of impaired natriuretic peptide pro‐hormone processing in humans processing in humans with advanced systolic heart failure.
Collapse
Affiliation(s)
- Rebecca Lee
- Division of Cardiovascular Medicine, Department of Internal Medicine, Cardiovascular Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | | | | | | | | |
Collapse
|
24
|
Barnet CS, Liu X, Body SC, Collard CD, Shernan SK, Muehlschlegel JD, Jarolim P, Fox AA. Plasma corin decreases after coronary artery bypass graft surgery and is associated with postoperative heart failure: a pilot study. J Cardiothorac Vasc Anesth 2014; 29:374-81. [PMID: 25649697 DOI: 10.1053/j.jvca.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Corin is a natriuretic peptide-converting enzyme that cleaves precursor pro-B-type natriuretic peptide to active B-type natriuretic peptide (BNP) (diuretic, natriuretic, and vasodilatory properties). Increased plasma BNP is a known diagnostic and prognostic heart failure (HF) biomarker in ambulatory and surgical patients. Recent studies indicate that plasma corin is decreased significantly in chronic HF patients, yet perioperative plasma corin concentrations have not been assessed in cardiac surgical patients. The objectives of this study were to determine the effect of coronary artery bypass graft (CABG) surgery with cardiopulmonary bypass (CPB) on plasma corin concentrations and to assess the association between change in perioperative plasma corin concentration and long-term postoperative HF hospitalization or death. It was hypothesized that plasma corin concentrations decrease significantly from preoperative baseline during postoperative days 1 to 4 and that hospitalization or death from HF during the 5 years after surgery is associated with higher relative difference (preoperative baseline to postoperative nadir) in plasma corin concentrations. DESIGN Prospective observational pilot study. SETTING Two institutions: Brigham and Women's Hospital, Boston, Massachusetts and the Texas Heart Institute, St. Luke's Hospital, Houston, Texas. PARTICIPANTS 99 patients of European ancestry who underwent isolated primary CABG surgery with CPB. INTERVENTIONS Nonemergency isolated primary CABG surgery with CPB. MEASUREMENTS AND MAIN RESULTS Plasma corin concentration was assessed preoperatively and at 4 postoperative time points (postoperative days 1-4). HF hospitalization or HF death events during the 5 years after surgery were identified by review of hospital and death records. Postoperative plasma corin concentrations were significantly lower than preoperative baseline concentrations (p<0.0001). Perioperative corin concentrations were significantly higher in males than in females (p<0.0001). Fifteen patients experienced long-term postoperative HF events. Patients who experienced HF hospitalization or HF death during study follow-up had significantly higher relative difference in plasma corin concentration (preoperative baseline to postoperative nadir) than patients who did not experience HF events during study follow-up (p=0.03). CONCLUSIONS Plasma corin concentrations decrease significantly from preoperative concentrations after CABG surgery. HF hospitalization or HF death during the 5 years after CABG surgery with CPB is associated with larger relative decrease in plasma corin concentration from preoperative baseline. Further investigation is warranted to determine the role of corin in postoperative HF biology.
Collapse
Affiliation(s)
- Caryn S Barnet
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Anesthesiology, Fairfax Anesthesia Associates of American Anesthesiology and Virginia Commonwealth University Medical School INOVA campus, Falls Church, Virginia.
| | - Xiaoxia Liu
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Charles D Collard
- Division of Cardiovascular Anesthesia, Texas Heart Institute, St. Luke's Hospital, Houston, TX
| | - Stanton K Shernan
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Amanda A Fox
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
25
|
Abstract
Corin is a serine protease originally isolated from the heart. Functional studies show that corin is the long-sought enzyme responsible for activating cardiac natriuretic peptides. In mice, lack of corin prevents natriuretic peptide processing, causing salt-sensitive hypertension. In humans, corin variants and mutations that reduce corin activity have been identified in patients with hypertension and heart failure. Decreased plasma levels of corin antigen and activity have been reported in patients with heart failure and coronary artery disease. Low levels of urinary corin also have been found in patients with chronic kidney disease. Most recent studies show that corin also acts in the uterus to promote spiral artery remodeling and prevent pregnancy-induced hypertension. Here, we review the role of corin in natriuretic peptide processing and cardiovascular diseases such as hypertension, heart disease, pre-eclampsia, and chronic kidney disease.
Collapse
|
26
|
Peleg A, Ghanim D, Vered S, Hasin Y. Serum corin is reduced and predicts adverse outcome in non-ST-elevation acute coronary syndrome. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2014; 2:159-65. [PMID: 24222826 DOI: 10.1177/2048872613483588] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/02/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND OBJECTIVES The aim of the current study was to describe the role of corin, an enzyme that cleaves pro-atrial natriuretic peptide and pro-brain natriuretic peptide into their active peptides, in patients with acute coronary syndrome (ACS). METHODS Serum corin level was studied in patients with non-ST-elevation ACS who underwent percutaneous coronary intervention (n=152) and in control volunteers (n=103). RESULTS The corin level was lower in acute coronary syndrome patients (798±288 pg/ml) than in the controls (1165±613 pg/ml, p<0.0001). Those acute coronary syndrome patients who developed major adverse cardiovascular events (MACE; 60.9%) within 3 years of discharge had lower corin levels than the patients who did not experience major adverse cardiovascular events (698.16±233.67 vs. 952.1±297.81 pg/ml, p<0.0001). Using a multiple logistic regression model, corin level was a significant predictor of post-ACS MACE: p=0.0004 for 50 pg/ml steps, AUC 0.791, while p<0.0001, and AUC 0.804 using corin and brain natriuretic peptide as predictors. CONCLUSIONS Patients with non-ST-elevation ACS have lower serum corin levels than controls. Corin levels are lower in ACS patients who later experience MACE and thus might be predictor for MACE. This new putative biomarker may be useful, either alone or in combination with other biomarkers, for cardiovascular risk stratification assessment and outcome prediction in ACS patients.
Collapse
Affiliation(s)
- Aviva Peleg
- The Baruch Padeh Medical Center, Poriya, Tiberias, Israel ; Bar-Ilan University, The Faculty of Medicine, Zefat, Israel
| | | | | | | |
Collapse
|
27
|
|
28
|
Solter P. Paradoxes of natriuretic peptide therapy. Vet J 2013; 195:14-5. [DOI: 10.1016/j.tvjl.2012.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 09/11/2012] [Indexed: 11/30/2022]
|
29
|
Benditt DG, Chen LY. Peptides in Postural Orthostatic Tachycardia Syndrome. J Am Coll Cardiol 2012; 60:321-3. [DOI: 10.1016/j.jacc.2012.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
|
30
|
Corin in clinical laboratory diagnostics. Clin Chim Acta 2011; 413:378-83. [PMID: 22093942 DOI: 10.1016/j.cca.2011.10.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 12/11/2022]
Abstract
Corin is a transmembrane serine protease identified in the heart, where it converts natriuretic peptides from inactive precursors to mature active forms. Studies in animal models and patients with hypertension and heart disease demonstrate that corin is critical in maintaining normal blood pressure and cardiac function. Like many proteolytic enzymes, corin expression and activity are regulated. Cell biology experiments indicate that transcriptional control, intracellular protein trafficking, cell surface targeting, zymogen activation and ectodomain shedding are important mechanisms in regulating corin expression and activity in the heart. More recently, soluble corin was detected in human blood and its levels were found to be reduced in patients with heart failure (HF). These findings indicate that corin deficiency may be involved in the pathogenesis of HF and suggest that soluble corin may be used as a biomarker for the disease. In this review, we describe the function and regulation of corin and discuss recent studies of soluble corin in human blood and its potential use as a biomarker for HF.
Collapse
|