1
|
Canadian Contributions in Fibroblast Biology. Cells 2022; 11:cells11152272. [PMID: 35892569 PMCID: PMC9331635 DOI: 10.3390/cells11152272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Fibroblasts are stromal cells found in virtually every tissue and organ of the body. For many years, these cells were often considered to be secondary in functional importance to parenchymal cells. Over the past 2 decades, focused research into the roles of fibroblasts has revealed important roles for these cells in the homeostasis of healthy tissue, and has demonstrated that activation of fibroblasts to myofibroblasts is a key step in disease initiation and progression in many tissues, with fibrosis now recognized as not only an outcome of disease, but also a central contributor to tissue dysfunction, particularly in the heart and lungs. With a growing understanding of both fibroblast and myofibroblast heterogeneity, and the deciphering of the humoral and mechanical cues that impact the phenotype of these cells, fibroblast biology is rapidly becoming a major focus in biomedical research. In this review, we provide an overview of fibroblast and myofibroblast biology, particularly in the heart, and including a discussion of pathophysiological processes such as fibrosis and scarring. We then discuss the central role of Canadian researchers in moving this field forwards, particularly in cardiac fibrosis, and highlight some of the major contributions of these individuals to our understanding of fibroblast and myofibroblast biology in health and disease.
Collapse
|
2
|
Martins-Marques T. Connecting different heart diseases through intercellular communication. Biol Open 2021; 10:bio058777. [PMID: 34494646 PMCID: PMC8443862 DOI: 10.1242/bio.058777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Well-orchestrated intercellular communication networks are pivotal to maintaining cardiac homeostasis and to ensuring adaptative responses and repair after injury. Intracardiac communication is sustained by cell-cell crosstalk, directly via gap junctions (GJ) and tunneling nanotubes (TNT), indirectly through the exchange of soluble factors and extracellular vesicles (EV), and by cell-extracellular matrix (ECM) interactions. GJ-mediated communication between cardiomyocytes and with other cardiac cell types enables electrical impulse propagation, required to sustain synchronized heart beating. In addition, TNT-mediated organelle transfer has been associated with cardioprotection, whilst communication via EV plays diverse pathophysiological roles, being implicated in angiogenesis, inflammation and fibrosis. Connecting various cell populations, the ECM plays important functions not only in maintaining the heart structure, but also acting as a signal transducer for intercellular crosstalk. Although with distinct etiologies and clinical manifestations, intercellular communication derailment has been implicated in several cardiac disorders, including myocardial infarction and hypertrophy, highlighting the importance of a comprehensive and integrated view of complex cell communication networks. In this review, I intend to provide a critical perspective about the main mechanisms contributing to regulate cellular crosstalk in the heart, which may be considered in the development of future therapeutic strategies, using cell-based therapies as a paradigmatic example. This Review has an associated Future Leader to Watch interview with the author.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
3
|
Liu Z, Tao B, Fan S, Cui S, Pu Y, Qiu L, Xia H, Xu L. Over-expression of microRNA-145 drives alterations in β-adrenergic signaling and attenuates cardiac remodeling in heart failure post myocardial infarction. Aging (Albany NY) 2020; 12:11603-11622. [PMID: 32554856 PMCID: PMC7343449 DOI: 10.18632/aging.103320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Background: Numerous studies have highlighted the crucial role of microRNA-145 (miR-145) in coronary atherosclerosis and myocardial ischemia reperfusion injury. However, effects of miR-145 on β-adrenergic signaling and cardiac remodeling in heart failure (HF) remains unclarified. Methods and Results: We established HF model in rats with left anterior descending coronary artery (LAD) occlusion. Four weeks after LAD ligation, rats showed substantial aggravation of cardiac dilation and electrophysiological instability. Up-regulation of miR-145 ameliorated HF-induced myocardial fibrosis and prolonged action potential duration. Echocardiography revealed increased basal contractility and decreased left ventricular inner-diameter in miR-145 over-expressed heart, while cardiac response to β-adrenergic receptor (βAR) stimulation was reduced. Furthermore, miR-145 increased L-type calcium current (ICa) density while decreased ICa response to β-adrenergic stimulation with isoproterenol. The alterations in βAR signaling might be predominant due to miR-145-mediated activation of Akt/CREB cascades. At high frequency pacing, Ca2+ transient, cell shortening and frequency of Ca2+ waves were significantly improved in AD-miR-145 group. Western blotting revealed that increased expression of Cav1.2, Ca2+-ATPase, β2AR, GNAI3 and decreased level of CaMKII might be attributed to the cardioprotective effects of miR-145. Conclusion: miR-145 effectively alleviates HF-related cardiac remodeling by improving cardiac dilation, fibrosis, intracellular Ca2+ mishandling and electrophysiological instability.
Collapse
Affiliation(s)
- Zhebo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Bo Tao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Suzhen Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Yong Pu
- Renmin Hospital of Hannan, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
4
|
Komura S, Satake T, Goto A, Aoki H, Shibata H, Ito K, Hirakawa A, Yamada Y, Akiyama H. Induced pluripotent stem cell-derived tenocyte-like cells promote the regeneration of injured tendons in mice. Sci Rep 2020; 10:3992. [PMID: 32132649 PMCID: PMC7055210 DOI: 10.1038/s41598-020-61063-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Tendons are dense fibrous structures that attach muscles to bones. Healing of tendon injuries is a clinical challenge owing to poor regenerative potential and scarring. Here, we created reporter mice that express EGFP, driven by the promoter of the tendon-specific Scleraxis (Scx) transcription-factor gene; we then generated induced pluripotent stem cells (iPSCs) from these mice. Utilising these fluorescently labelled iPSCs, we developed a tenogenic differentiation protocol. The iPSC-derived EGFP-positive cells exhibited elevated expression of tendon-specific genes, including Scx, Mohawk, Tenomodulin, and Fibromodulin, indicating that they have tenocyte-like properties. Finally, we demonstrated that these cells promoted tendon regeneration in mice after transplantation into injured tendons reducing scar formation via paracrine effect. Our data demonstrate that the tenogenic differentiation protocol successfully provided functional cells from iPSCs. We propose that pluripotent stem cell-based therapy using this protocol will provide an effective therapeutic approach for tendon injuries.
Collapse
Affiliation(s)
- Shingo Komura
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan. .,Laboratory of Stem Cell Oncology, Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| | - Takashi Satake
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Atsushi Goto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hirofumi Shibata
- Laboratory of Stem Cell Oncology, Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kenji Ito
- Laboratory of Stem Cell Oncology, Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.,Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Akihiro Hirakawa
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Yasuhiro Yamada
- Laboratory of Stem Cell Oncology, Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.,Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| |
Collapse
|
5
|
Johnston EF, Gillis TE. Transforming growth factor-β1 induces differentiation of rainbow trout ( Oncorhynchus mykiss) cardiac fibroblasts into myofibroblasts. ACTA ACUST UNITED AC 2018; 221:jeb.189167. [PMID: 30397172 DOI: 10.1242/jeb.189167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/29/2018] [Indexed: 01/07/2023]
Abstract
The collagen content of the rainbow trout heart increases in response to cold acclimation and decreases with acclimation to warm temperatures. This ability to remodel the myocardial extracellular matrix (ECM) makes these fish useful models to study the cellular pathways involved in collagen regulation in the vertebrate heart. Remodelling of the ECM in the mammalian heart is regulated, in part, by myofibroblasts which arise from pre-existing fibroblasts in response to transforming growth factor-β1 (TGF-β1). We have previously demonstrated that treatment of cultured rainbow trout cardiac fibroblasts with human TGF-β1 causes an increase in collagen production. Here, we showed that repetitive treatment of rainbow trout cardiac fibroblasts with a physiologically relevant concentration of human recombinant TGF-β1 results in a ∼29-fold increase in phosphorylated small mothers against decapentaplegic 2 (pSmad2); a 2.9-fold increase in vinculin protein, a 1.2-fold increase in cellular size and a 3-fold increase in filamentous actin (F-actin). These are common markers of the transition of fibroblasts to myofibroblasts. Cells treated with TGF-β1 also had highly organized cytoskeletal α-smooth muscle actin, as well as increased transcript abundances of mmp-9, timp-2 and col1a1 Furthermore, using gelatin zymography, we demonstrated that TGF-β1 treatment causes a 5.3-fold increase in gelatinase activity. Together, these results suggest that trout cardiac fibroblasts have the capacity to differentiate into myofibroblasts and that this cell type can increase extracellular collagen turnover via gelatinase activity. Cardiac myofibroblasts are, therefore, likely involved in the remodelling of the cardiac ECM in the trout heart during thermal acclimation.
Collapse
Affiliation(s)
- Elizabeth F Johnston
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G-2W1, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G-2W1, Canada
| |
Collapse
|
6
|
Mayfield AE, Kanda P, Nantsios A, Parent S, Mount S, Dixit S, Ye B, Seymour R, Stewart DJ, Davis DR. Interleukin-6 Mediates Post-Infarct Repair by Cardiac Explant-Derived Stem Cells. Am J Cancer Res 2017; 7:4850-4861. [PMID: 29187908 PMCID: PMC5706104 DOI: 10.7150/thno.19435] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/08/2017] [Indexed: 12/16/2022] Open
Abstract
Although patient-sourced cardiac explant-derived stem cells (EDCs) provide an exogenous source of new cardiomyocytes post-myocardial infarction, poor long-term engraftment indicates that the benefits seen in clinical trials are likely paracrine-mediated. Of the numerous cytokines produced by EDCs, interleukin-6 (IL-6) is the most abundant; however, its role in cardiac repair is uncertain. In this study, a custom short-hairpin oligonucleotide lentivirus was used to knockdown IL-6 in human EDCs, revealing an unexpected pro-healing role for the cytokine. METHODS EDCs were cultured from atrial appendages donated by patients undergoing clinically indicated cardiac surgery. The effects of lentiviral mediated knockdown of IL-6 was evaluated using in vitro and in vivo models of myocardial ischemia. RESULTS Silencing IL-6 in EDCs abrogated much of the benefits conferred by cell transplantation and revealed that IL-6 prompts cardiac fibroblasts and macrophages to reduce myocardial scarring while increasing the generation of new cardiomyocytes and recruitment of blood stem cells. CONCLUSIONS This study suggests that IL-6 plays a pivotal role in EDC-mediated cardiac repair and may provide a means of increasing cell-mediated repair of ischemic myocardium.
Collapse
|
7
|
Jiang L, Chen FX, Zang ST, Yang QF. Betulinic acid prevents high glucose-induced expression of extracellular matrix protein in cardiac fibroblasts by inhibiting the TGF-β1/Smad signaling pathway. Mol Med Rep 2017; 16:6320-6325. [DOI: 10.3892/mmr.2017.7323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 03/07/2017] [Indexed: 11/06/2022] Open
|
8
|
Bioactive Extracellular Matrix Scaffold Promotes Adaptive Cardiac Remodeling and Repair. JACC Basic Transl Sci 2017; 2:450-464. [PMID: 30062163 PMCID: PMC6034485 DOI: 10.1016/j.jacbts.2017.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022]
Abstract
Acellular ECM scaffolds retain bioactive properties capable of stimulating endogenous myocardial repair pathways that could be leveraged therapeutically to promote adaptive cardiac remodeling toward functional recovery after ischemic injury. In rodents with MI, acellular bioactive ECM scaffolds surgically implanted on the epicardium stimulate adaptive cardiac repair and functional recovery with therapeutic effects highly dependent on the bioinductive properties of the biomaterial. Interaction of human cardiac fibroblasts with bioactive ECM scaffolds can induce a robust FGF-dependent cell-mediated vasculogenic paracrine response capable of stimulating functional blood vessel assembly. Acellular bioactive ECM scaffolds surgically implanted on the epicardium post-MI can reprogram resident fibroblasts and stimulate adaptive proreparative pathways enhancing functional recovery. A novel surgical strategy for tissue repair is introduced that can be performed as an adjunct to conventional surgical revascularization with minimal translational challenges.
Structural cardiac remodeling after ischemic injury can induce a transition to heart failure from progressive loss of cardiac function. Cellular regenerative therapies are promising but face significant translational hurdles. Tissue extracellular matrix (ECM) holds the necessary environmental cues to stimulate cell-based endogenous myocardial repair pathways and promote adaptive remodeling toward functional recovery. Heart epicardium has emerged as an important anatomic niche for endogenous repair pathways including vasculogenesis and cardiogenesis. We show that acellular ECM scaffolds surgically implanted on the epicardium following myocardial infarction (MI) can attenuate structural cardiac remodeling and improve functional recovery. We assessed the efficacy of this strategy on post-MI functional recovery by comparing intact bioactive scaffolds with biologically inactivated ECM scaffolds. We confirm that bioactive properties within the acellular ECM biomaterial are essential for the observed functional benefits. We show that interaction of human cardiac fibroblasts with bioactive ECM can induce a robust cell-mediated vasculogenic paracrine response capable of functional blood vessel assembly. Fibroblast growth factor-2 is uncovered as a critical regulator of this novel bioinductive effect. Acellular bioactive ECM scaffolds surgically implanted on the epicardium post-MI can reprogram resident fibroblasts and stimulate adaptive pro-reparative pathways enhancing functional recovery. We introduce a novel surgical strategy for tissue repair that can be performed as an adjunct to conventional surgical revascularization with minimal translational challenges.
Collapse
Key Words
- ANOVA, analysis of variance
- ECM, extracellular matrix
- EF, ejection fraction
- EMT, epithelial-to-mesenchymal transition
- FGF, fibroblast growth factor
- HGF, hepatocyte growth factor
- HUVEC, human umbilical vein endothelial cell
- LV, left ventricle
- MI, myocardial infarction
- SIS-ECM, small intestinal submucosal extracellular matrix
- VEGF, vascular endothelial growth factor
- extracellular matrix
- regeneration
- vasculogenesis
Collapse
|
9
|
Wang P, Shu B, Xu Y, Zhu J, Liu J, Zhou Z, Chen L, Zhao J, Liu X, Qi S, Xiong K, Xie J. Basic fibroblast growth factor reduces scar by inhibiting the differentiation of epidermal stem cells to myofibroblasts via the Notch1/Jagged1 pathway. Stem Cell Res Ther 2017; 8:114. [PMID: 28511663 PMCID: PMC5434520 DOI: 10.1186/s13287-017-0549-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Background Basic fibroblast growth factor (bFGF) plays an important role in promoting wound healing and reducing scar, but the possible molecular mechanisms are still unclear. Our previous studies have found that activating the Notch1/Jagged1 pathway can inhibit the differentiation of epidermal stem cells (ESCs) to myofibroblasts (MFB). Herein, we document that bFGF reduces scar by inhibiting the differentiation of ESCs to MFB via activating the Notch1/Jagged1 pathway. Methods In in-vitro study, ESCs were isolated from 10 neonatal SD rats (1–3 days old), cultured in keratinocyte serum-free medium, and divided into six groups: bFGF group, bFGF + SU5402 group, bFGF + DAPT group, siJagged1 group, bFGF + siJagged1 group, and control group. Jagged1 of the ESCs in the siJagged1 group and bFGF + siJagged1 group was knocked down by small-interfering RNA transfection. Expression of ESC markers (CK15/CK10), MFB markers (α-SMA, Collagen I, Collagen III), and Notch1/Jagged1 components (Jagged1, Notch1, Hes1) was detected by FCM, qRT-PCR, and western blot analysis to study the relationships of bFGF, ESCs, and Notch1/Jagged1 pathway. In in-vivo study, the wound healing time and scar hyperplasia were observed on rabbit ear scar models. The quality of wound healing was estimated by hematoxylin and eosin staining and Masson staining. Expression of ESC markers, MFB markers and Notch1/Jagged1 components was elucidated by immunohistochemistry, immunofluorescence, and western blot analysis. Results The in-vitro study showed that bFGF could significantly upregulate the expression of ESC markers and Notch1/Jagged1 components, while downregulating the expression of MFB markers at the same time. However, these effects could be obviously decreased when we knocked down Jagged1 or added DAPT. Similarly, in in-vivo study, bFGF also exhibited its functions in inhibiting the differentiation of rabbit ESCs to MFB by activating the Notch1/Jagged1 pathway, which improved the wound healing quality and alleviated scar significantly. Conclusion These results provide evidence that bFGF can reduce scar by inhibiting the differentiation of ESCs to MFB via the Notch1/Jagged1 pathway, and present a new promising potential direction for the treatment of scar.
Collapse
Affiliation(s)
- Peng Wang
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Bin Shu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Yingbin Xu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Jiayuan Zhu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Jian Liu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Ziheng Zhou
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Lei Chen
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Jingling Zhao
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Xusheng Liu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Shaohai Qi
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, 410013, People's Republic of China
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province, 510080, People's Republic of China.
| |
Collapse
|
10
|
Dassanayaka S, Brainard RE, Watson LJ, Long BW, Brittian KR, DeMartino AM, Aird AL, Gumpert AM, Audam TN, Kilfoil PJ, Muthusamy S, Hamid T, Prabhu SD, Jones SP. Cardiomyocyte Ogt limits ventricular dysfunction in mice following pressure overload without affecting hypertrophy. Basic Res Cardiol 2017; 112:23. [PMID: 28299467 PMCID: PMC5555162 DOI: 10.1007/s00395-017-0612-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/08/2017] [Indexed: 10/20/2022]
Abstract
The myocardial response to pressure overload involves coordination of multiple transcriptional, posttranscriptional, and metabolic cues. The previous studies show that one such metabolic cue, O-GlcNAc, is elevated in the pressure-overloaded heart, and the increase in O-GlcNAcylation is required for cardiomyocyte hypertrophy in vitro. Yet, it is not clear whether and how O-GlcNAcylation participates in the hypertrophic response in vivo. Here, we addressed this question using patient samples and a preclinical model of heart failure. Protein O-GlcNAcylation levels were increased in myocardial tissue from heart failure patients compared with normal patients. To test the role of OGT in the heart, we subjected cardiomyocyte-specific, inducibly deficient Ogt (i-cmOgt -/-) mice and Ogt competent littermate wild-type (WT) mice to transverse aortic constriction. Deletion of cardiomyocyte Ogt significantly decreased O-GlcNAcylation and exacerbated ventricular dysfunction, without producing widespread changes in metabolic transcripts. Although some changes in hypertrophic and fibrotic signaling were noted, there were no histological differences in hypertrophy or fibrosis. We next determined whether significant differences were present in i-cmOgt -/- cardiomyocytes from surgically naïve mice. Interestingly, markers of cardiomyocyte dedifferentiation were elevated in Ogt-deficient cardiomyocytes. Although no significant differences in cardiac dysfunction were apparent after recombination, it is possible that such changes in dedifferentiation markers could reflect a larger phenotypic shift within the Ogt-deficient cardiomyocytes. We conclude that cardiomyocyte Ogt is not required for cardiomyocyte hypertrophy in vivo; however, loss of Ogt may exert subtle phenotypic differences in cardiomyocytes that sensitize the heart to pressure overload-induced ventricular dysfunction.
Collapse
Affiliation(s)
- Sujith Dassanayaka
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Robert E Brainard
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Lewis J Watson
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
- Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY, USA
| | - Bethany W Long
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Kenneth R Brittian
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Angelica M DeMartino
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Allison L Aird
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Timothy N Audam
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Peter J Kilfoil
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Senthilkumar Muthusamy
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Tariq Hamid
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
- Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sumanth D Prabhu
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
- Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven P Jones
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA.
| |
Collapse
|
11
|
Epicardial infarct repair with bioinductive extracellular matrix promotes vasculogenesis and myocardial recovery. J Heart Lung Transplant 2016; 35:661-70. [PMID: 26987597 DOI: 10.1016/j.healun.2016.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/15/2015] [Accepted: 01/10/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Infarcted myocardium can remodel after successful reperfusion, resulting in left ventricular dilation and heart failure. Epicardial infarct repair (EIR) using a bioinductive extracellular matrix (ECM) biomaterial is a novel surgical approach to promote endogenous myocardial repair and functional recovery after myocardial infarction. Using a pre-clinical porcine model of coronary ischemia-reperfusion, we assessed the effects of EIR on regional functional recovery, safety, and possible mechanisms of benefit. METHODS An ECM biomaterial (CorMatrix ECM) was applied to the epicardium after 75 minutes of coronary ischemia in a porcine model. Following ischemia-reperfusion injury, animals were randomly assigned in 2:1 fashion to EIR (n = 8) or sham treatment (n = 4). Serial cardiac magnetic resonance imaging was performed on normal (n = 4) and study animals at baseline (1 week) and 6 weeks after treatment. Myocardial function and tissue characteristics were assessed. RESULTS Functional myocardial recovery was significantly increased by EIR compared with sham treatment (change in regional myocardial contraction at 6 weeks, 28.6 ± 14.0% vs 4.2 ± 13.5% wall thickening, p < 0.05). Animals receiving EIR had reduced adhesions compared with animals receiving sham treatment (1.44 ± 0.51 vs 3.08 ± 0.89, p < 0.05). Myocardial fibrosis was not increased, and EIR did not cause myocardial constriction, as left ventricular compliance by passive pressure distention at matched volumes was similar between groups (13.9 ± 4.0 mm Hg in EIR group vs 16.0 ± 5.2 mm Hg in sham group, p = 0.61). Animals receiving EIR showed evidence of vasculogenesis in the region of functional recovery. CONCLUSIONS In addition to the beneficial effects of successful reperfusion, EIR using a bioinductive ECM enhances myocardial repair and functional recovery. Clinical translation of EIR early after myocardial infarction as an adjunct to surgical revascularization may be warranted in the future.
Collapse
|
12
|
Sassoli C, Chellini F, Squecco R, Tani A, Idrizaj E, Nosi D, Giannelli M, Zecchi-Orlandini S. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment. Lasers Surg Med 2015; 48:318-32. [PMID: 26660509 DOI: 10.1002/lsm.22441] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. MATERIALS AND METHODS NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. RESULTS Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the expression of Smad3, the TGF-β1 downstream signaling molecule. CONCLUSION Low intensity irradiation with 635 ± 5 nm diode laser inhibited TGF-β1/Smad3-mediated fibroblast-myofibroblast transition and this effect involved the modulation of TRPC1 ion channels. These data contribute to support the potential anti-fibrotic effect of LLLT and may offer further informations for considering this therapy as a promising therapeutic tool for the treatment of tissue fibrosis.
Collapse
Affiliation(s)
- Chiara Sassoli
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Flaminia Chellini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Roberta Squecco
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - Alessia Tani
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Eglantina Idrizaj
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - Daniele Nosi
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Marco Giannelli
- Odontostomatologic Laser Therapy Center, Via dell' Olivuzzo 162, 50143, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
13
|
Deckx S, Carai P, Bateman J, Heymans S, Papageorgiou AP. Breeding Strategy Determines Rupture Incidence in Post-Infarct Healing WARPing Cardiovascular Research. PLoS One 2015; 10:e0139199. [PMID: 26406320 PMCID: PMC4583407 DOI: 10.1371/journal.pone.0139199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/09/2015] [Indexed: 01/28/2023] Open
Abstract
Background Von Willebrand A domain Related Protein (WARP), is a recently identified extracellular matrix protein. Based upon its involvement in matrix biology and its expression in the heart, we hypothesized that WARP regulates cardiac remodeling processes in the post-infarct healing process. Methods and results In the mouse model of myocardial infarction (MI), WARP expression increased in the infarcted area 3-days post-MI. In the healthy myocardium WARP localized with perlecan in the basement membrane, which was disrupted upon injury. In vitro studies showed high expression of WARP by cardiac fibroblasts, which further increases upon TGFβ stimulation. Furthermore, WARP expression correlated with aSMA and COL1 expression, markers of fibroblast to myofibroblast transition, in vivo and in vitro. Finally, WARP knockdown in vitro affected extra- and intracellular basic fibroblast growth factor production in myofibroblasts. To investigate the function for WARP in infarction healing, we performed an MI study in WARP knockout (KO) mice backcrossed more than 10 times on an Australian C57Bl/6-J background and bred in-house, and compared to wild type (WT) mice of the same C57Bl/6-J strain but of commercial European origin. WARP KO mice showed no mortality after MI, whereas 40% of the WT mice died due to cardiac rupture. However, when WARP KO mice were backcrossed on the European C57Bl/6-J background and bred heterozygous in-house, the previously seen protective effect in the WARP KO mice after MI was lost. Importantly, comparison of the cardiac response post-MI in WT mice bred heterozygous in-house versus commercially purchased WT mice revealed differences in cardiac rupture. Conclusion These data demonstrate a redundant role for WARP in the wound healing process after MI but demonstrate that the continental/breeding/housing origin of mice of the same C57Bl6-J strain is critical in determining the susceptibility to cardiac rupture and stress the importance of using the correct littermate controls.
Collapse
Affiliation(s)
- Sophie Deckx
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
- Centre for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
- * E-mail:
| | - Paolo Carai
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
- Centre for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
| | - John Bateman
- Murdoch Children’s Research Institute, University of Melbourne, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
- Centre for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
| | - Anna-Pia Papageorgiou
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
- Centre for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
| |
Collapse
|
14
|
Jackson R, Tilokee EL, Latham N, Mount S, Rafatian G, Strydhorst J, Ye B, Boodhwani M, Chan V, Ruel M, Ruddy TD, Suuronen EJ, Stewart DJ, Davis DR. Paracrine Engineering of Human Cardiac Stem Cells With Insulin-Like Growth Factor 1 Enhances Myocardial Repair. J Am Heart Assoc 2015; 4:e002104. [PMID: 26363004 PMCID: PMC4599498 DOI: 10.1161/jaha.115.002104] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Insulin-like growth factor 1 (IGF-1) activates prosurvival pathways and improves postischemic cardiac function, but this key cytokine is not robustly expressed by cultured human cardiac stem cells. We explored the influence of an enhanced IGF-1 paracrine signature on explant-derived cardiac stem cell-mediated cardiac repair. METHODS AND RESULTS Receptor profiling demonstrated that IGF-1 receptor expression was increased in the infarct border zones of experimentally infarcted mice by 1 week after myocardial infarction. Human explant-derived cells underwent somatic gene transfer to overexpress human IGF-1 or the green fluorescent protein reporter alone. After culture in hypoxic reduced-serum media, overexpression of IGF-1 enhanced proliferation and expression of prosurvival transcripts and prosurvival proteins and decreased expression of apoptotic markers in both explant-derived cells and cocultured neonatal rat ventricular cardiomyocytes. Transplant of explant-derived cells genetically engineered to overexpress IGF-1 into immunodeficient mice 1 week after infarction boosted IGF-1 content within infarcted tissue and long-term engraftment of transplanted cells while reducing apoptosis and long-term myocardial scarring. CONCLUSIONS Paracrine engineering of explant-derived cells to overexpress IGF-1 provided a targeted means of improving cardiac stem cell-mediated repair by enhancing the long-term survival of transplanted cells and surrounding myocardium.
Collapse
Affiliation(s)
| | | | | | - Seth Mount
- University of Ottawa Heart InstituteOttawa, Canada
| | | | | | - Bin Ye
- University of Ottawa Heart InstituteOttawa, Canada
| | | | - Vincent Chan
- University of Ottawa Heart InstituteOttawa, Canada
| | - Marc Ruel
- University of Ottawa Heart InstituteOttawa, Canada
| | | | | | | | - Darryl R Davis
- University of Ottawa Heart InstituteOttawa, Canada
- Correspondence to: Darryl R. Davis, MD, University of Ottawa Heart Institute, H3214 40 Ruskin Ave, Ottawa, Ontario, Canada K1Y4W7. E-mail:
| |
Collapse
|
15
|
Svystonyuk DA, Ngu JMC, Mewhort HEM, Lipon BD, Teng G, Guzzardi DG, Malik G, Belke DD, Fedak PWM. Fibroblast growth factor-2 regulates human cardiac myofibroblast-mediated extracellular matrix remodeling. J Transl Med 2015; 13:147. [PMID: 25948488 PMCID: PMC4438633 DOI: 10.1186/s12967-015-0510-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/28/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Tissue fibrosis and chamber remodeling is a hallmark of the failing heart and the final common pathway for heart failure of diverse etiologies. Sustained elevation of pro-fibrotic cytokine transforming growth factor-beta1 (TGFβ1) induces cardiac myofibroblast-mediated fibrosis and progressive structural tissue remodeling. OBJECTIVES We examined the effects of low molecular weight fibroblast growth factor (LMW-FGF-2) on human cardiac myofibroblast-mediated extracellular matrix (ECM) dysregulation and remodeling. METHODS Human cardiac biopsies were obtained during open-heart surgery and myofibroblasts were isolated, passaged, and seeded within type I collagen matrices. To induce myofibroblast activation and ECM remodeling, myofibroblast-seeded collagen gels were exposed to TGFβ1. The extent of ECM contraction, myofibroblast activation, ECM dysregulation, and cell apoptosis was determined in the presence of LMW-FGF-2 and compared to its absence. Using a novel floating nylon-grid supported thin collagen gel culture platform system, myofibroblast activation and local ECM remodeling around isolated single cells was imaged using confocal microscopy and quantified by image analysis. RESULTS TGFβ1 induced significant myofibroblast activation and ECM dysregulation as evidenced by collagen gel contraction, structural ECM remodeling, collagen synthesis, ECM degradation, and altered TIMP expression. LMW-FGF-2 significantly attenuated TGFβ1 induced myofibroblast-mediated ECM remodeling. These observations were similar using either ventricular or atrial-derived cardiac myofibroblasts. In addition, for the first time using individual cells, LMW-FGF-2 was observed to attenuate cardiac myofibroblast activation and prevent local cell-mediated ECM perturbations. CONCLUSIONS LMW-FGF-2 attenuates human cardiac myofibroblast-mediated ECM remodeling and may prevent progressive maladaptive chamber remodeling and tissue fibrosis for patients with diverse structural heart diseases.
Collapse
Affiliation(s)
- Daniyil A Svystonyuk
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Janet M C Ngu
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Holly E M Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Brodie D Lipon
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Guoqi Teng
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - David G Guzzardi
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Getanshu Malik
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Darrell D Belke
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| |
Collapse
|
16
|
Ngu JMC, Teng G, Meijndert HC, Mewhort HE, Turnbull JD, Stetler-Stevenson WG, Fedak PWM. Human cardiac fibroblast extracellular matrix remodeling: dual effects of tissue inhibitor of metalloproteinase-2. Cardiovasc Pathol 2014; 23:335-43. [PMID: 25060386 PMCID: PMC6295929 DOI: 10.1016/j.carpath.2014.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/07/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Tissue inhibitor of metalloproteinase-2 (TIMP-2) is an endogenous inhibitor of matrix metalloproteinases (MMPs) that attenuates maladaptive cardiac remodeling in ischemic heart failure. We examined the effects of TIMP-2 on human cardiac fibroblast activation and extracellular matrix (ECM) remodeling. METHODS Human cardiac fibroblasts within a three-dimensional collagen matrix were assessed for phenotype conversion, ECM architecture and key molecular regulators of ECM remodeling after differential exposure to TIMP-2 and Ala+TIMP-2 (a modified TIMP-2 analogue devoid of MMP inhibitory activity). RESULTS TIMP-2 induced opposite effects on human cardiac fibroblast activation and ECM remodeling depending on concentration. TIMP-2 activated fibroblasts into contractile myofibroblasts that remodeled ECM. At higher concentrations (>10 nM), TIMP-2 inhibited fibroblast activation and prevented ECM remodeling. As compared to profibrotic cytokine transforming growth factor (TGF)-beta1, TIMP-2 activated fibroblasts and remodeled ECM without a net accumulation of matrix elements. TIMP-2 increased total protease activity as compared to TGF-beta1. Ala+TIMP-2 exposure revealed that the actions of TIMP-2 on cardiac fibroblast activation are independent of its effects on MMP inhibition. In the presence of GM6001, a broad-spectrum MMP inhibitor, TIMP-2-mediated ECM contraction was completely abolished, indicating that TIMP-2-mediated fibroblast activation is MMP dependent. CONCLUSION TIMP-2 functions in a contextual fashion such that the effect on cardiac fibroblasts depends on the tissue microenvironment. These observations highlight potential clinical challenges in using TIMP-2 as a therapeutic strategy to attenuate postinjury cardiac remodeling.
Collapse
Affiliation(s)
- Janet M C Ngu
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Guoqi Teng
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Hans Christopher Meijndert
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Holly E Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Jeannine D Turnbull
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | | | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada.
| |
Collapse
|
17
|
Koivumäki JT, Clark RB, Belke D, Kondo C, Fedak PWM, Maleckar MMC, Giles WR. Na(+) current expression in human atrial myofibroblasts: identity and functional roles. Front Physiol 2014; 5:275. [PMID: 25147525 PMCID: PMC4124488 DOI: 10.3389/fphys.2014.00275] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/07/2014] [Indexed: 12/19/2022] Open
Abstract
In the mammalian heart fibroblasts have important functional roles in both healthy conditions and diseased states. During pathophysiological challenges, a closely related myofibroblast cell population emerges, and can have distinct, significant roles. Recently, it has been reported that human atrial myofibroblasts can express a Na+ current, INa. Some of the biophysical properties and molecular features suggest that this INa is due to expression of Nav 1.5, the same Na+ channel α subunit that generates the predominant INa in myocytes from adult mammalian heart. In principle, expression of Nav 1.5 could give rise to regenerative action potentials in the fibroblasts/myofibroblasts. This would suggest an active as opposed to passive role for fibroblasts/myofibroblasts in both the “trigger” and the “substrate” components of cardiac rhythm disturbances. Our goals in this preliminary study were: (i) to confirm and extend the electrophysiological characterization of INa in a human atrial fibroblast/myofibroblast cell population maintained in conventional 2-D tissue culture; (ii) to identify key molecular properties of the α and β subunits of these Na+ channel(s); (iii) to define the biophysical and pharmacological properties of this INa; (iv) to integrate the available multi-disciplinary data, and attempt to illustrate its functional consequences, using a mathematical model in which the human atrial myocyte is coupled via connexins to fixed numbers of fibroblasts/myofibroblasts in a syncytial arrangement. Our experimental findings confirm that a significant fraction (approximately 40–50%) of these human atrial myofibroblasts can express INa. However, our data suggest that INa may be generated by a combination of Nav 1.9, Nav 1.2, and Nav 1.5. Our results, when complemented with mathematical modeling, provide a background for re-evaluating pharmacological management of supraventricular rhythm disorders, e.g., persistent atrial fibrillation.
Collapse
Affiliation(s)
- Jussi T Koivumäki
- Simula Research Laboratory, Center for Biomedical Computing and Center for Cardiological Innovation Oslo, Norway
| | - Robert B Clark
- Faculty of Kinesiology, University of Calgary Calgary, AB, Canada
| | - Darrell Belke
- Faculty of Kinesiology, University of Calgary Calgary, AB, Canada
| | - Colleen Kondo
- Faculty of Kinesiology, University of Calgary Calgary, AB, Canada
| | - Paul W M Fedak
- Division of Cardiothoracic Surgery, Department of Cardiac Sciences, University of Calgary Calgary, AB, Canada
| | - Mary M C Maleckar
- Simula Research Laboratory, Center for Biomedical Computing and Center for Cardiological Innovation Oslo, Norway
| | - Wayne R Giles
- Faculty of Kinesiology, University of Calgary Calgary, AB, Canada
| |
Collapse
|
18
|
Huang CC, Liao ZX, Chen DY, Hsiao CW, Chang Y, Sung HW. Injectable cell constructs fabricated via culture on a thermoresponsive methylcellulose hydrogel system for the treatment of ischemic diseases. Adv Healthc Mater 2014; 3:1133-48. [PMID: 24470263 DOI: 10.1002/adhm.201300605] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/06/2013] [Indexed: 01/06/2023]
Abstract
Cell transplantation via direct intramuscular injection is a promising therapy for patients with ischemic diseases. However, following injections, retention of transplanted cells in engrafted areas remains problematic, and can be deleterious to cell-transplantation therapy. In this Progress Report, a thermoresponsive hydrogel system composed of aqueous methylcellulose (MC) blended with phosphate-buffered saline is constructed to grow cell sheet fragments and cell bodies for the treatment of ischemic diseases. The as-prepared MC hydrogel system undergoes a sol-gel reversible transition upon heating or cooling at ≈32 °C. Via this unique property, the grown cell sheet fragments (cell bodies) can be harvested without using proteolytic enzymes; consequently, their inherent extracellular matrices (ECMs) and integrative adhesive agents remain well preserved. In animal studies using rats and pigs with experimentally created myocardial infarction, the injected cell sheet fragments (cell bodies) become entrapped in the interstices of muscular tissues and adhere to engraftment sites, while a minimal number of cells exist in the group receiving dissociated cells. Moreover, transplantation of cell sheet fragments (cell bodies) significantly increases vascular density, thereby improving the function of an infarcted heart. These experimental results demonstrate that cell sheet fragments (cell bodies) function as a cell-delivery construct by providing a favorable ECM environment to retain transplanted cells locally and consequently, improving the efficacy of therapeutic cell transplantation.
Collapse
Affiliation(s)
- Chieh-Cheng Huang
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan (ROC)
| | - Zi-Xian Liao
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan (ROC)
| | - Ding-Yuan Chen
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan (ROC)
| | - Chun-Wen Hsiao
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan (ROC)
| | - Yen Chang
- Division of Cardiovascular Surgery; Veterans General Hospital at Taichung; Taichung 40705 Taiwan (ROC)
- College of Medicine, National Yang-Ming University; Taipei 11221 Taiwan (ROC)
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu 30013 Taiwan (ROC)
| |
Collapse
|
19
|
Bracey NA, Gershkovich B, Chun J, Vilaysane A, Meijndert HC, Wright JR, Fedak PW, Beck PL, Muruve DA, Duff HJ. Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. J Biol Chem 2014; 289:19571-84. [PMID: 24841199 DOI: 10.1074/jbc.m114.550624] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat containing PYD-3 (NLRP3) is a pattern recognition receptor that is implicated in the pathogenesis of inflammation and chronic diseases. Although much is known regarding the NLRP3 inflammasome that regulates proinflammatory cytokine production in innate immune cells, the role of NLRP3 in non-professional immune cells is unclear. Here we report that NLRP3 is expressed in cardiac fibroblasts and increased during TGFβ stimulation. NLRP3-deficient cardiac fibroblasts displayed impaired differentiation and R-Smad activation in response to TGFβ. Only the central nucleotide binding domain of NLRP3 was required to augment R-Smad signaling because the N-terminal Pyrin or C-terminal leucine-rich repeat domains were dispensable. Interestingly, NLRP3 regulation of myofibroblast differentiation proceeded independently from the inflammasome, IL-1β/IL-18, or caspase 1. Instead, mitochondrially localized NLRP3 potentiated reactive oxygen species to augment R-Smad activation. In vivo, NLRP3-deficient mice were protected against angiotensin II-induced cardiac fibrosis with preserved cardiac architecture and reduced collagen 1. Together, these results support a distinct role for NLRP3 in non-professional immune cells independent from the inflammasome to regulate differential aspects of wound healing and chronic disease.
Collapse
Affiliation(s)
| | | | | | | | | | - James R Wright
- Department of Pathology and Laboratory Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
20
|
Rybinski B, Franco-Barraza J, Cukierman E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol Genomics 2014; 46:223-44. [PMID: 24520152 PMCID: PMC4035661 DOI: 10.1152/physiolgenomics.00158.2013] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/04/2014] [Indexed: 02/07/2023] Open
Abstract
For decades tumors have been recognized as "wounds that do not heal." Besides the commonalities that tumors and wounded tissues share, the process of wound healing also portrays similar characteristics with chronic fibrosis. In this review, we suggest a tight interrelationship, which is governed as a concurrence of cellular and microenvironmental reactivity among wound healing, chronic fibrosis, and cancer development/progression (i.e., the WHFC triad). It is clear that the same cell types, as well as soluble and matrix elements that drive wound healing (including regeneration) via distinct signaling pathways, also fuel chronic fibrosis and tumor progression. Hence, here we review the relationship between fibrosis and cancer through the lens of wound healing.
Collapse
Affiliation(s)
- Brad Rybinski
- Cancer Biology Program, Fox Chase Cancer Center/Temple Health, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
21
|
Sassoli C, Nosi D, Tani A, Chellini F, Mazzanti B, Quercioli F, Zecchi-Orlandini S, Formigli L. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells. Exp Cell Res 2014; 323:297-313. [PMID: 24631289 DOI: 10.1016/j.yexcr.2014.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 03/01/2014] [Accepted: 03/03/2014] [Indexed: 12/11/2022]
Abstract
Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7(+) satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration.
Collapse
Affiliation(s)
- Chiara Sassoli
- Dept. of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy
| | - Daniele Nosi
- Dept. of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy
| | - Alessia Tani
- Dept. of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy
| | - Flaminia Chellini
- Dept. of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy
| | - Benedetta Mazzanti
- Dept. of Experimental and Clinical Medicine-Section of Haematology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy
| | - Franco Quercioli
- CNR-National Institute of Optics (INO), Largo Enrico Fermi 6, 50125 Arcetri-Florence, Italy
| | - Sandra Zecchi-Orlandini
- Dept. of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy
| | - Lucia Formigli
- Dept. of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy.
| |
Collapse
|
22
|
Ramkisoensing AA, de Vries AAF, Atsma DE, Schalij MJ, Pijnappels DA. Interaction between myofibroblasts and stem cells in the fibrotic heart: balancing between deterioration and regeneration. Cardiovasc Res 2014; 102:224-31. [DOI: 10.1093/cvr/cvu047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
23
|
Mewhort HEM, Turnbull JD, Meijndert HC, Ngu JMC, Fedak PWM. Epicardial infarct repair with basic fibroblast growth factor-enhanced CorMatrix-ECM biomaterial attenuates postischemic cardiac remodeling. J Thorac Cardiovasc Surg 2013; 147:1650-9. [PMID: 24075463 DOI: 10.1016/j.jtcvs.2013.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/23/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Dysregulation of extracellular matrix (ECM) following myocardial infarction is a key contributor to myocardial fibrosis, chamber dilation, and progression to heart failure. Basic fibroblast growth factor is a potent inhibitor of fibrosis. We propose a novel surgical procedure leveraging a commercially available ECM biomaterial for the treatment of ischemic heart failure. METHODS Epicardial infarct repair using CorMatrix-ECM biomaterial patch (CorMatrix Cardiovascular Inc, Roswell, Ga) was compared with sham in a rat myocardial infarction model. Key indices of ischemic remodeling, including inflammation, fibrosis, and myocardial performance were evaluated 16 weeks post-treatment. RESULTS Histology and immunohistochemistry demonstrated comprehensive integration of CorMatrix-ECM biomaterial patch without evidence of immune reaction and an increase in basic fibroblast growth factor expression in treated animals. Functional analysis by serial echocardiography of normal (n = 13), sham (n = 15), nonenhanced CorMatrix-ECM patch (n = 18), and basic fibroblast growth factor-enhanced CorMatrix-ECM patch (n = 10) animals revealed an improvement in ejection fraction in basic fibroblast growth factor-enhanced CorMatrix-ECM patch animals compared with shams (55.3% ± 8.0% vs 35.1% ± 7.6%; P < .001). Prevention of left ventricle remodeling was also confirmed by pressure volume loop analysis, which demonstrated reduced left ventricular end diastolic volumes in basic fibroblast growth factor-enhanced CorMatrix-ECM patch animals (n = 5) compared with shams (n = 6) (208.0 ± 59.3 μL vs 363. 1 ± 108.7 μL; P < .01) and improved left ventricle contractility in nonenhanced CorMatrix-ECM patch (n = 7) and basic fibroblast growth factor-enhanced CorMatrix-ECM patch animals compared with shams (0.709 ± 0.306 and 0.609 ± 0.160 vs 0.437 ± 0.218; P < .05). CONCLUSIONS Epicardial infarct repair with basic growth factor-enhanced CorMatrix-ECM biomaterial patch attenuates myocardial remodeling and improves cardiac performance after subacute myocardial infarction in a rat coronary ligation model. These observations establish proof-of-concept for this novel surgical approach.
Collapse
Affiliation(s)
- Holly E M Mewhort
- Campbell Cardiovascular Translational Research Program, Division of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Jeannine D Turnbull
- Campbell Cardiovascular Translational Research Program, Division of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - H Christopher Meijndert
- Campbell Cardiovascular Translational Research Program, Division of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Janet M C Ngu
- Campbell Cardiovascular Translational Research Program, Division of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Campbell Cardiovascular Translational Research Program, Division of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
24
|
Tao H, Shi KH, Yang JJ, Huang C, Liu LP, Li J. Epigenetic regulation of cardiac fibrosis. Cell Signal 2013; 25:1932-8. [PMID: 23602934 DOI: 10.1016/j.cellsig.2013.03.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/01/2013] [Accepted: 03/28/2013] [Indexed: 02/05/2023]
Abstract
Cardiac fibrosis is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal function. In recent years, despite the underlying mechanisms of cardiac fibrosis are still unknown, numerous studies suggest that epigenetic modifications impact on the development of cardiac fibrosis. Epigenetic modifications control cell proliferation, differentiation, migration, and so on. Epigenetic modifications contain three main processes: DNA methylation, histone modifications, and silencing by microRNAs. We here outline the recent work pertaining to epigenetic changes in cardiac fibrosis. This review focuses on the epigenetic regulation of cardiac fibrosis.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | | | | | | | | | | |
Collapse
|
25
|
Turner NA, Porter KE. Function and fate of myofibroblasts after myocardial infarction. FIBROGENESIS & TISSUE REPAIR 2013; 6:5. [PMID: 23448358 PMCID: PMC3599637 DOI: 10.1186/1755-1536-6-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/10/2013] [Indexed: 01/27/2023]
Abstract
The importance of cardiac fibroblasts in the regulation of myocardial remodelling following myocardial infarction (MI) is becoming increasingly recognised. Studies over the last few decades have reinforced the concept that cardiac fibroblasts are much more than simple homeostatic regulators of extracellular matrix turnover, but are integrally involved in all aspects of the repair and remodelling of the heart that occurs following MI. The plasticity of fibroblasts is due in part to their ability to undergo differentiation into myofibroblasts. Myofibroblasts are specialised cells that possess a more contractile and synthetic phenotype than fibroblasts, enabling them to effectively repair and remodel the cardiac interstitium to manage the local devastation caused by MI. However, in addition to their key role in cardiac restoration and healing, persistence of myofibroblast activation can drive pathological fibrosis, resulting in arrhythmias, myocardial stiffness and progression to heart failure. The aim of this review is to give an appreciation of both the beneficial and detrimental roles of the myofibroblast in the remodelling heart, to describe some of the major regulatory mechanisms controlling myofibroblast differentiation including recent advances in the microRNA field, and to consider how this cell type could be exploited therapeutically.
Collapse
Affiliation(s)
- Neil A Turner
- Division of Cardiovascular and Diabetes Research, and Multidisciplinary Cardiovascular Research Centre, School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
26
|
Mathison M, Gersch RP, Nasser A, Lilo S, Korman M, Fourman M, Hackett N, Shroyer K, Yang J, Ma Y, Crystal RG, Rosengart TK. In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium with vascular endothelial growth factor. J Am Heart Assoc 2012; 1:e005652. [PMID: 23316332 PMCID: PMC3540681 DOI: 10.1161/jaha.112.005652] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/11/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND In situ cellular reprogramming offers the possibility of regenerating functional cardiomyocytes directly from scar fibroblasts, obviating the challenges of cell implantation. We hypothesized that pretreating scar with gene transfer of the angiogenic vascular endothelial growth factor (VEGF) would enhance the efficacy of this strategy. METHODS AND RESULTS Gata4, Mef2c, and Tbx5 (GMT) administration via lentiviral transduction was demonstrated to transdifferentiate rat fibroblasts into (induced) cardiomyocytes in vitro by cardiomyocyte marker studies. Fisher 344 rats underwent coronary ligation and intramyocardial administration of an adenovirus encoding all 3 major isoforms of VEGF (AdVEGF-All6A(+)) or an AdNull control vector (n=12/group). Lentivirus encoding GMT or a GFP control was administered to each animal 3 weeks later, followed by histologic and echocardiographic analyses. GMT administration reduced the extent of fibrosis by half compared with GFP controls (12 ± 2% vs 24 ± 3%, P<0.01) and reduced the number of myofibroblasts detected in the infarct zone by 4-fold. GMT-treated animals also demonstrated greater density of cardiomyocyte-specific marker beta myosin heavy chain 7(+) cells compared with animals receiving GFP with or without VEGF (P<0.01). Ejection fraction was significantly improved after GMT vs GFP administration (12 ± 3% vs -7 ± 3%, P<0.01). Eight (73%) GFP animals but no GMT animals demonstrated decreased ejection fraction during this interval (P<0.01). Also, improvement in ejection fraction was 4-fold greater in GMT/VEGF vs GMT/null animals (17 ± 2% vs 4 ± 1%, P<0.05). CONCLUSIONS VEGF administration to infarcted myocardium enhances the efficacy of GMT-mediated cellular reprogramming in improving myocardial function and reducing the extent of myocardial fibrosis compared with the use of GMT or VEGF alone.
Collapse
Affiliation(s)
- Megumi Mathison
- Department of Surgery, Stony Brook University Medical Center, Stony Brook, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|