1
|
Fayyaz AU, Eltony M, Prokop LJ, Koepp KE, Borlaug BA, Dasari S, Bois MC, Margulies KB, Maleszewski JJ, Wang Y, Redfield MM. Pathophysiological insights into HFpEF from studies of human cardiac tissue. Nat Rev Cardiol 2025; 22:90-104. [PMID: 39198624 PMCID: PMC11750620 DOI: 10.1038/s41569-024-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/01/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major, worldwide health-care problem. Few therapies for HFpEF exist because the pathophysiology of this condition is poorly defined and, increasingly, postulated to be diverse. Although perturbations in other organs contribute to the clinical profile in HFpEF, altered cardiac structure, function or both are the primary causes of this heart failure syndrome. Therefore, studying myocardial tissue is fundamental to improve pathophysiological insights and therapeutic discovery in HFpEF. Most studies of myocardial changes in HFpEF have relied on cardiac tissue from animal models without (or with limited) confirmatory studies in human cardiac tissue. Animal models of HFpEF have evolved based on theoretical HFpEF aetiologies, but these models might not reflect the complex pathophysiology of human HFpEF. The focus of this Review is the pathophysiological insights gained from studies of human HFpEF myocardium. We outline the rationale for these studies, the challenges and opportunities in obtaining myocardial tissue from patients with HFpEF and relevant comparator groups, the analytical approaches, the pathophysiological insights gained to date and the remaining knowledge gaps. Our objective is to provide a roadmap for future studies of cardiac tissue from diverse cohorts of patients with HFpEF, coupling discovery biology with measures to account for pathophysiological diversity.
Collapse
Affiliation(s)
- Ahmed U Fayyaz
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Muhammad Eltony
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Larry J Prokop
- Mayo Clinic College of Medicine and Science, Library Reference Service, Rochester, MN, USA
| | - Katlyn E Koepp
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Barry A Borlaug
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Mayo Clinic College of Medicine and Science, Computational Biology, Rochester, MN, USA
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joesph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ying Wang
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Margaret M Redfield
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Mondal NK, Li S, Elsenousi AE, Mattar A, Nordick KV, Lamba HK, Hochman-Mendez C, Rosengart TK, Liao KK. NADPH oxidase overexpression and mitochondrial OxPhos impairment are more profound in human hearts donated after circulatory death than brain death. Am J Physiol Heart Circ Physiol 2024; 326:H548-H562. [PMID: 38180451 DOI: 10.1152/ajpheart.00616.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
This study investigated cardiac stress and mitochondrial oxidative phosphorylation (OxPhos) in human donation after circulatory death (DCD) hearts regarding warm ischemic time (WIT) and subsequent cold storage and compared them with that of human brain death donor (DBD) hearts. A total of 24 human hearts were procured for the research study-6 in the DBD group and 18 in the DCD group. DCD group was divided into three groups (n = 6) based on different WITs (20, 40, and 60 min). All hearts received del Nido cardioplegia before being placed in normal saline cold storage for 6 h. Left ventricular biopsies were performed at hours 0, 2, 4, and 6. Cardiac stress [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits: 47-kDa protein of phagocyte oxidase (p47phox), 91-kDa glycoprotein of phagocyte oxidase (gp91phox)] and mitochondrial oxidative phosphorylation [OxPhos, complex I (NADH dehydrogenase) subunit of ETC (CI)-complex V (ATP synthase) subunit of ETC (CV)] proteins were measured in cardiac tissue and mitochondria respectively. Modulation of cardiac stress and mitochondrial dysfunction were observed in both DCD and DBD hearts. However, DCD hearts suffered more cardiac stress (overexpressed NADPH oxidase subunits) and diminished mitochondrial OxPhos than DBD hearts. The severity of cardiac stress and impaired oxidative phosphorylation in DCD hearts correlated with the longer WIT and subsequent cold storage time. More drastic changes were evident in DCD hearts with a WIT of 60 min or more. Activation of NADPH oxidase via overproduction of p47phox and gp91phox proteins in cardiac tissue may be responsible for cardiac stress leading to diminished mitochondrial oxidative phosphorylation. These protein changes can be used as biomarkers for myocardium damage and might help assess DCD and DBD heart transplant suitability.NEW & NOTEWORTHY First human DCD heart research studied cardiac stress and mitochondrial dysfunction concerning WIT and the efficacy of del Nido cardioplegia as an organ procurement solution and subsequent cold storage. Mild to moderate cardiac stress and mitochondrial dysfunction were noticed in DCD hearts with WIT 20 and 40 min and cold storage for 4 and 2 h, respectively. These changes can serve as biomarkers, allowing interventions to preserve mitochondria and extend WIT in DCD hearts.
Collapse
Affiliation(s)
- Nandan K Mondal
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, Texas, United States
| | - Shiyi Li
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Abdussalam E Elsenousi
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Aladdein Mattar
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Katherine V Nordick
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Harveen K Lamba
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, Texas, United States
| | - Todd K Rosengart
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Kenneth K Liao
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
3
|
Schroder JN, Patel CB, DeVore AD, Casalinova S, Koomalsingh KJ, Shah AS, Anyanwu AC, D'Alessandro DA, Mudy K, Sun B, Strueber M, Khaghani A, Shudo Y, Esmailian F, Liao K, Pagani FD, Silvestry S, Wang IW, Salerno CT, Absi TS, Madsen JC, Mancini D, Fiedler AG, Milano CA, Smith JW. Increasing Utilization of Extended Criteria Donor Hearts for Transplantation: The OCS Heart EXPAND Trial. JACC. HEART FAILURE 2024; 12:438-447. [PMID: 38276933 DOI: 10.1016/j.jchf.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Extended criteria donor (ECD) hearts available with donation after brain death (DBD) are underutilized for transplantation due to limitations of cold storage. OBJECTIVES This study evaluated use of an extracorporeal perfusion system on donor heart utilization and post-transplant outcomes in ECD DBD hearts. METHODS In this prospective, single-arm, multicenter study, adult heart transplant recipients received ECD hearts using an extracorporeal perfusion system if hearts met study criteria. The primary outcome was a composite of 30-day survival and absence of severe primary graft dysfunction (PGD). Secondary outcomes were donor heart utilization rate, 30-day survival, and incidence of severe PGD. The safety outcome was the mean number of heart graft-related serious adverse events within 30 days. Additional outcomes included survival through 2 years benchmarked to concurrent nonrandomized control subjects. RESULTS A total of 173 ECD DBD hearts were perfused; 150 (87%) were successfully transplanted; 23 (13%) did not meet study transplantation criteria. At 30 days, 92% of patients had survived and had no severe PGD. The 30-day survival was 97%, and the incidence of severe PGD was 6.7%. The mean number of heart graft-related serious adverse events within 30 days was 0.17 (95% CI: 0.11-0.23). Patient survival was 93%, 89%, and 86% at 6, 12, and 24 months, respectively, and was comparable with concurrent nonrandomized control subjects. CONCLUSIONS Use of an extracorporeal perfusion system resulted in successfully transplanting 87% of donor hearts with excellent patient survival to 2 years post-transplant and low rates of severe PGD. The ability to safely use ECD DBD hearts could substantially increase the number of heart transplants and expand access to patients in need. (International EXPAND Heart Pivotal Trial [EXPANDHeart]; NCT02323321; Heart EXPAND Continued Access Protocol; NCT03835754).
Collapse
Affiliation(s)
| | | | - Adam D DeVore
- Duke University Hospital, Durham, North Carolina, USA
| | | | | | - Ashish S Shah
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Karol Mudy
- Minneapolis Heart Institute at Abbott Northwestern Hospital, Minneapolis, Minnesota, USA
| | - Benjamin Sun
- Minneapolis Heart Institute at Abbott Northwestern Hospital, Minneapolis, Minnesota, USA
| | | | | | - Yasuhiro Shudo
- Stanford University Medical Center, Stanford, California, USA
| | | | | | | | | | - I-Wen Wang
- Memorial Healthcare System, Hollywood, Florida, USA
| | | | - Tarek S Absi
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joren C Madsen
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Donna Mancini
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amy G Fiedler
- University of California-San Francisco, San Francisco, California, USA
| | | | - Jason W Smith
- University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Coliță CI, Olaru DG, Coliță D, Hermann DM, Coliță E, Glavan D, Popa-Wagner A. Induced Coma, Death, and Organ Transplantation: A Physiologic, Genetic, and Theological Perspective. Int J Mol Sci 2023; 24:ijms24065744. [PMID: 36982814 PMCID: PMC10059721 DOI: 10.3390/ijms24065744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
In the clinic, the death certificate is issued if brain electrical activity is no longer detectable. However, recent research has shown that in model organisms and humans, gene activity continues for at least 96 h postmortem. The discovery that many genes are still working up to 48 h after death questions our definition of death and has implications for organ transplants and forensics. If genes can be active up to 48 h after death, is the person technically still alive at that point? We discovered a very interesting parallel between genes that were upregulated in the brain after death and genes upregulated in the brains that were subjected to medically-induced coma, including transcripts involved in neurotransmission, proteasomal degradation, apoptosis, inflammation, and most interestingly, cancer. Since these genes are involved in cellular proliferation, their activation after death could represent the cellular reaction to escape mortality and raises the question of organ viability and genetics used for transplantation after death. One factor limiting the organ availability for transplantation is religious belief. However, more recently, organ donation for the benefit of humans in need has been seen as “posthumous giving of organs and tissues can be a manifestation of love spreading also to the other side of death”.
Collapse
Affiliation(s)
- Cezar-Ivan Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Denissa-Greta Olaru
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Daniela Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Dirk M. Hermann
- Chair of Vascular Neurology, Dementia and Ageing, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Eugen Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Daniela Glavan
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
- Correspondence: (D.G.); (A.P.-W.)
| | - Aurel Popa-Wagner
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
- Chair of Vascular Neurology, Dementia and Ageing, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
- Correspondence: (D.G.); (A.P.-W.)
| |
Collapse
|
5
|
Tang PC, Haft JW, Lei I, Wang Z, Chen YE, Abou El Ela A, Wu X, Pitt B, Aaronson KD, Pagani FD. Impact of donor blood type on outcomes after prolonged allograft ischemic times. J Thorac Cardiovasc Surg 2022; 164:981-993.e8. [PMID: 33558115 PMCID: PMC11170339 DOI: 10.1016/j.jtcvs.2020.12.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/29/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The study objective was to determine the influence of allograft ischemic time on heart transplant outcomes among ABO donor organ types given limited prior reports of its survival impact. METHODS We identified 32,454 heart transplants (2000-2016) from the United Network for Organ Sharing database. Continuous and categoric variables were analyzed by parametric and nonparametric testing. Survival was determined using log-rank or Cox regression tests. Propensity matching adjusted for preoperative variables. RESULTS By comparing allograft ischemic time less than 4 hours (n = 6579) with 4 hours or more (n = 25,875), the hazard ratios for death at 15 years after prolonged ischemic time (≥4 hours) for blood types O, A, B, and AB were 1.106 (P < .001), 1.062 (P < .001), 1.059 (P = .062), and 1.114 (P = .221), respectively. Unadjusted data demonstrated higher mortality for transplantation of O versus non-O donor hearts for ischemic time 4 hours or more (hazard ratio, 1.164; P < .001). After propensity matching, O donor hearts continued to have worse survival if preserved for 4 hours or more (hazard ratio, 1.137, P = .008), but not if ischemic time was less than 4 hours (hazard ratio, 1.042, P = .113). In a matched group with 4 hours or more of ischemic time, patients receiving O donor organs were more likely to experience death from primary graft dysfunction (2.5% vs 1.7%, P = .052) and chronic allograft rejection (1.9% vs 1.1%, P = .021). No difference in death from primary graft dysfunction or chronic allograft rejection was seen with less than 4 hours of ischemic time (P > .150). CONCLUSIONS Compared with non-O donor hearts, transplantation with O donor hearts with ischemic time 4 hours or more leads to worse survival, with higher rates of primary graft dysfunction and chronic rejection. Caution should be practiced when considering donor hearts with the O blood type when anticipating extended cold ischemic times.
Collapse
Affiliation(s)
- Paul C Tang
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich.
| | - Jonathan W Haft
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Ienglam Lei
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Zhong Wang
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Y Eugene Chen
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich; Division of Cardiovascular Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Ashraf Abou El Ela
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Xiaoting Wu
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| | - Bertram Pitt
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Keith D Aaronson
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Francis D Pagani
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Mich
| |
Collapse
|
6
|
Tang PC, Wu X, Zhang M, Likosky D, Haft JW, Lei I, Abou El Ela A, Si MS, Aaronson KD, Pagani FD. Determining optimal donor heart ischemic times in adult cardiac transplantation. J Card Surg 2022; 37:2042-2050. [PMID: 35488767 PMCID: PMC9325483 DOI: 10.1111/jocs.16558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
Objectives Unsupervised statistical determination of optimal allograft ischemic time (IT) on heart transplant outcomes among ABO donor heart types. Methods We identified 36,145 heart transplants (2000–2018) from the United Network for Organ Sharing database. Continuous and categorical variables were analyzed with parametric and nonparametric testing. Determination of IT cutoffs for survival analysis was performed using Contal and O'Quigley univariable method and Vito Muggeo multivariable segmented modeling. Results Univariable and multivariable IT threshold determination revealed a cutoff at about 3 h. The hourly increase in survival risk with ≥3 h IT is asymmetrically experienced at the early 90 days (hazard ratio [HR] = 1.29, p < .001) and up to 1‐year time point (HR = 1.16, p < .001). Beyond 1 year the risk of prolonged IT is less impactful (HR = 1.04, p = .022). Longer IT was associated with more postoperative complications such as stroke (2.7% vs. 2.3, p = .042), dialysis (11.6% vs. 9.1%, p < .001) and death from primary graft dysfunction (1.8% vs. 1.2%, p < .001). O blood type donor hearts with IT ≥ 3 h has significantly increased hourly mortality risk at 90 days (HR = 1.27, p < .001), 90 days to 1 year (HR = 1.22, p < .001) and >1 year (HR = 1.05, p = .041). For non‐O blood types with ≥3 h IT hourly mortality risk was increased at 90 days (HR = 1.33, p < .001), but not at 90 days to 1 year (HR = 1.09, p = .146) nor ≥1 year (HR = 1.08, p = .237). Conclusions The donor heart IT threshold for survival determined from unbiased statistical modeling occurs at 3 h. With longer preservation times, transplantation with O donor hearts was associated with worse survival.
Collapse
Affiliation(s)
- Paul C Tang
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - Xiaoting Wu
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - Min Zhang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Ann Arbor, Michigan, USA
| | - Donald Likosky
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - Jonathan W Haft
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - Ienglam Lei
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - Ashraf Abou El Ela
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - Ming-Sing Si
- Division of Cardiac Surgery, Department of Surgery, University of California, Los Angeles, California, USA
| | - Keith D Aaronson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - Francis D Pagani
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Scott SR, March KL, Wang IW, Singh K, Liu J, Turrentine M, Sen CK, Wang M. Bone marrow- or adipose-mesenchymal stromal cell secretome preserves myocardial transcriptome profile and ameliorates cardiac damage following ex vivo cold storage. J Mol Cell Cardiol 2022; 164:1-12. [PMID: 34774548 PMCID: PMC8860861 DOI: 10.1016/j.yjmcc.2021.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heart transplantation, a life-saving approach for patients with end-stage heart disease, is limited by shortage of donor organs. While prolonged storage provides more organs, it increases the extent of ischemia. Therefore, we seek to understand molecular mechanisms underlying pathophysiological changes of donor hearts during prolonged storage. Additionally, considering mesenchymal stromal cell (MSC)-derived paracrine protection, we aim to test if MSC secretome preserves myocardial transcriptome profile and whether MSC secretome from a certain source provides the optimal protection in donor hearts during cold storage. METHODS AND RESULTS Isolated mouse hearts were divided into: no cold storage (control), 6 h cold storage (6 h-I), 6 h-I + conditioned media from bone marrow MSCs (BM-MSC CM), and 6 h-I + adipose-MSC CM (Ad-MSC CM). Deep RNA sequencing analysis revealed that compared to control, 6 h-I led to 266 differentially expressed genes, many of which were implicated in modulating mitochondrial performance, oxidative stress response, myocardial function, and apoptosis. BM-MSC CM and Ad-MSC CM restored these gene expression towards control. They also improved 6 h-I-induced myocardial functional depression, reduced inflammatory cytokine production, decreased apoptosis, and reduced myocardial H2O2. However, neither MSC-exosomes nor exosome-depleted CM recapitulated MSC CM-ameliorated apoptosis and CM-improved mitochondrial preservation during cold ischemia. Knockdown of Per2 by specific siRNA abolished MSC CM-mediated these protective effects in cardiomyocytes following 6 h cold storage. CONCLUSIONS Our results demonstrated that using MSC secretome (BM-MSCs and Ad-MSCs) during prolonged cold storage confers preservation of the normal transcriptional "fingerprint", and reduces donor heart damage. MSC-released soluble factors and exosomes may synergistically act for donor heart protection.
Collapse
Affiliation(s)
- Susan R Scott
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A
| | - Keith L March
- Division of Cardiovascular Medicine, Department of Medicine, IU School of Medicine, Indianapolis, IN, U.S.A,Division of Cardiovascular Medicine, Center for Regenerative Medicine, University of Florida, Gainesville, FL, U.S.A
| | - I-wen Wang
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A,Methodist Hospital, IU Health, IU School of Medicine, Indianapolis, IN, U.S.A
| | - Kanhaiya Singh
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A,Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, U.S.A
| | - Jianyun Liu
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A
| | - Mark Turrentine
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A
| | - Chandan K Sen
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A,Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, U.S.A
| | - Meijing Wang
- Department of Surgery, IU School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
8
|
Lei I, Huang W, Ward PA, Pober JS, Tellides G, Ailawadi G, Pagani FD, Landstrom AP, Wang Z, Mortensen RM, Cascalho M, Platt J, Eugene Chen Y, Lam HYK, Tang PC. Differential inflammatory responses of the native left and right ventricle associated with donor heart preservation. Physiol Rep 2021; 9:e15004. [PMID: 34435466 PMCID: PMC8387788 DOI: 10.14814/phy2.15004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Dysfunction and inflammation of hearts subjected to cold ischemic preservation may differ between left and right ventricles, suggesting distinct strategies for amelioration. METHODS AND RESULTS Explanted murine hearts subjected to cold ischemia for 0, 4, or 8 h in preservation solution were assessed for function during 60 min of warm perfusion and then analyzed for cell death and inflammation by immunohistochemistry and western blotting and total RNA sequencing. Increased cold ischemic times led to greater left ventricle (LV) dysfunction compared to right ventricle (RV). The LV experienced greater cell death assessed by TUNEL+ cells and cleaved caspase-3 expression (n = 4). While IL-6 protein levels were upregulated in both LV and RV, IL-1β, TNFα, IL-10, and MyD88 were disproportionately increased in the LV. Inflammasome components (NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3), adaptor molecule apoptosis-associated speck-like protein containing a CARD (ASC), cleaved caspase-1) and products (cleaved IL-1β and gasdermin D) were also more upregulated in the LV. Pathway analysis of RNA sequencing showed increased signaling related to tumor necrosis factor, interferon, and innate immunity with ex-vivo ischemia, but no significant differences were found between the LV and RV. Human donor hearts showed comparable inflammatory responses to cold ischemia with greater LV increases of TNFα, IL-10, and inflammasomes (n = 3). CONCLUSIONS Mouse hearts subjected to cold ischemia showed time-dependent contractile dysfunction and increased cell death, inflammatory cytokine expression and inflammasome expression that are greater in the LV than RV. However, IL-6 protein elevations and altered transcriptional profiles were similar in both ventricles. Similar changes are observed in human hearts.
Collapse
Affiliation(s)
- Ienglam Lei
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | - Wei Huang
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | - Peter A. Ward
- Department of PathologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Jordan S. Pober
- Department of ImmunobiologyYale UniversityNew HavenConnecticutUSA
| | | | - Gorav Ailawadi
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | - Francis D. Pagani
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | | | - Zhong Wang
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | - Richard M. Mortensen
- Department of Internal MedicineUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | - Marilia Cascalho
- Department of SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Jeffrey Platt
- Department of SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Yuqing Eugene Chen
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | | | - Paul C. Tang
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| |
Collapse
|
9
|
Benck L, Kransdorf EP, Emerson DA, Rushakoff J, Kittleson MM, Klapper EB, Megna DJ, Esmailian F, Halprin C, Trento A, Ramzy D, Czer LSC, Chang DH, Ebinger JE, Kobashigawa JA, Patel JK. Recipient and surgical factors trigger severe primary graft dysfunction after heart transplant. J Heart Lung Transplant 2021; 40:970-980. [PMID: 34272125 DOI: 10.1016/j.healun.2021.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Primary graft dysfunction (PGD) is a major cause of early mortality following heart transplant (HT). The International Society for Heart and Lung Transplantation (ISHLT) subdivides PGD into 3 grades of increasing severity. Most studies have assessed risk factors for PGD without distinguishing between PGD severity grade. We sought to identify recipient, donor and surgical risk factors specifically associated with mild/moderate or severe PGD. METHODS We identified 734 heart transplant recipients at our institution transplanted between January 1, 2012 and December 31, 2018. PGD was defined according to modified ISHLT criteria. Recipient, donor and surgical variables were analyzed by multinomial logistic regression with mild/moderate or severe PGD as the response. Variables significant in single variable modeling were subject to multivariable analysis via penalized logistic regression. RESULTS PGD occurred in 24% of the cohort (n = 178) of whom 6% (n = 44) had severe PGD. One-year survival was reduced in recipients with severe PGD but not in those with mild or moderate PGD. Multivariable analysis identified 3 recipient factors: prior cardiac surgery, recipient treatment with ACEI/ARB/ARNI plus MRA, recipient treatment with amiodarone plus beta-blocker, and 3 surgical factors: longer ischemic time, more red blood cell transfusions, and more platelet transfusions, that were associated with severe PGD. We developed a clinical risk score, ABCE, which provided acceptable discrimination and calibration for severe PGD. CONCLUSIONS Risk factors for mild/moderate PGD were largely distinct from those for severe PGD, suggesting a differing pathophysiology involving several biological pathways. Further research into mechanisms underlying the development of PGD is urgently needed.
Collapse
Affiliation(s)
- Lillian Benck
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Evan P Kransdorf
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Dominic A Emerson
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joshua Rushakoff
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Ellen B Klapper
- Transfusion Medicine, Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dominick J Megna
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Fardad Esmailian
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chelsea Halprin
- Transfusion Medicine, Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Alfredo Trento
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Danny Ramzy
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lawrence S C Czer
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - David H Chang
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joseph E Ebinger
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jon A Kobashigawa
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jignesh K Patel
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
10
|
Tang PC, Duggal NM, Haft JW, Aaronson KD, Pagani FD. Fate of preoperative moderate mitral regurgitation following left ventricular assist device implantation. J Card Surg 2021; 36:1843-1849. [PMID: 33604994 PMCID: PMC11196981 DOI: 10.1111/jocs.15428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We examined for improvements in preoperative moderate mitral regurgitation following continuous-flow left ventricular assist device (cfLVAD) implantation. METHODS From 2006 to 2020, 190 patients with moderate MR underwent cfVLAD implant without concomitant mitral valve (MV) surgery. Cardiac dimensions and contractility, as well as valve function, were assessed with an echocardiogram (echo) pre-cfLVAD, and at approximately 1 month post-cfLVAD. Outcomes were determined by retrospective chart review. RESULTS Median echo follow-up was 0.94 (0.53, 1.38) months. Residual significant moderate or greater MR was present in 30/190 (15.8%) on follow-up. Patients with significant residual MR had larger preoperative left ventricular internal diameters in diastole (74.4 ± 8.7 vs. 71.1.0 ± 9.1 mm, p = .034). Significant residual MR was associated with higher preoperative mean pulmonary artery pressures (OR = 1.055, p = .035) and pulmonary capillary wedge pressures (OR = 1.060, p = .034). Significant residual MR on echo was not associated with any survival difference (p = .325). The 1, 5, and 10 year survival were 89.9%, 55.2%, and 34.2%, respectively. CONCLUSIONS For patients with moderate MR undergoing LVAD implantation, the likelihood of significant residual MR is low and mitral intervention in this population is not recommended. However, select patients with larger preoperative left heart dimensions and pulmonary vascular pressures may be at risk for persistent residual MR.
Collapse
Affiliation(s)
- Paul C. Tang
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - Neal M. Duggal
- Department of Anesthesiology, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - Jonathan W. Haft
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - Keith D. Aaronson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - Francis D. Pagani
- Department of Cardiac Surgery, University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Kvietkauskas M, Zitkute V, Leber B, Strupas K, Stiegler P, Schemmer P. The Role of Metabolomics in Current Concepts of Organ Preservation. Int J Mol Sci 2020; 21:6607. [PMID: 32927605 PMCID: PMC7555311 DOI: 10.3390/ijms21186607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
In solid organ transplantation (Tx), both survival rates and quality of life have improved dramatically over the last few decades. Each year, the number of people on the wait list continues to increase, widening the gap between organ supply and demand. Therefore, the use of extended criteria donor grafts is growing, despite higher susceptibility to ischemia-reperfusion injury (IRI) and consecutive inferior Tx outcomes. Thus, tools to characterize organ quality prior to Tx are crucial components for Tx success. Innovative techniques of metabolic profiling revealed key pathways and mechanisms involved in IRI occurring during organ preservation. Although large-scale trials are needed, metabolomics appears to be a promising tool to characterize potential biomarkers, for the assessment of graft quality before Tx and evaluate graft-related outcomes. In this comprehensive review, we summarize the currently available literature on the use of metabolomics in solid organ Tx, with a special focus on metabolic profiling during graft preservation to assess organ quality prior to Tx.
Collapse
Affiliation(s)
- Mindaugas Kvietkauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Viktorija Zitkute
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
| |
Collapse
|