1
|
Zijderhand CF, Peek JJ, Sjatskig J, Manintveld OC, Bekkers JA, Bogers AJJC, Caliskan K. Influence of the Outflow Graft Angular Position on the Outcomes in Patients With a Left Ventricular Assist Device. ASAIO J 2024; 70:861-867. [PMID: 38595102 DOI: 10.1097/mat.0000000000002189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
This study aimed to explore the potential impact of the angular position of the outflow graft on thromboembolic events and aortic valve regurgitation in people with a left ventricular assist device (LVAD). We analyzed contrast computed tomography (CT) data of patients with LVAD implantation between 2016 and 2021. Three-dimensional reconstructions of the outflow graft and aortic arch were performed to calculate the horizontal (azimuth) angle and vertical (polar) angle, as well as the relative distance between the outflow graft, aortic valve, and brachiocephalic artery. Among 59 patients (median age 57, 68% male), a vertical angle ≥107° correlated significantly with increased cerebrovascular accidents (hazard ratio [HR]: 5.8, 95% confidence interval [CI]: 1.3-26.3, p = 0.022) and gastrointestinal bleeding (HR: 3.4, 95% CI: 1.0-11.2, p = 0.049) during a median 25 month follow-up. No significant differences were found between the vertical angle and aortic valve regurgitation or survival. The horizontal angle and relative distance did not show differences regarding clinical adverse events. This study emphasizes the importance of the LVAD outflow graft angular position to prevent life-threatening thromboembolic events. This study suggests the need for prospective research to further validate these findings.
Collapse
Affiliation(s)
- Casper F Zijderhand
- From the Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jette J Peek
- From the Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jelena Sjatskig
- From the Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Olivier C Manintveld
- Thoraxcenter, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jos A Bekkers
- From the Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ad J J C Bogers
- From the Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kadir Caliskan
- Thoraxcenter, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Coraducci F, De Zan G, Fedele D, Costantini P, Guaricci AI, Pavon AG, Teske A, Cramer MJ, Broekhuizen L, Van Osch D, Danad I, Velthuis B, Suchá D, van der Bilt I, Pizzi C, Russo AD, Oerlemans M, van Laake LW, van der Harst P, Guglielmo M. Cardiac magnetic resonance in advanced heart failure. Echocardiography 2024; 41:e15849. [PMID: 38837443 DOI: 10.1111/echo.15849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
Heart failure (HF) is a chronic and progressive disease that often progresses to an advanced stage where conventional therapy is insufficient to relieve patients' symptoms. Despite the availability of advanced therapies such as mechanical circulatory support or heart transplantation, the complexity of defining advanced HF, which requires multiple parameters and multimodality assessment, often leads to delays in referral to dedicated specialists with the result of a worsening prognosis. In this review, we aim to explore the role of cardiac magnetic resonance (CMR) in advanced HF by showing how CMR is useful at every step in managing these patients: from diagnosis to prognostic stratification, hemodynamic evaluation, follow-up and advanced therapies such as heart transplantation. The technical challenges of scanning advanced HF patients, which often require troubleshooting of intracardiac devices and dedicated scans, will be also discussed.
Collapse
Affiliation(s)
| | - Giulia De Zan
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Damiano Fedele
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda, Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Bologna, Italy
| | - Pietro Costantini
- Department of Radiology, Ospedale Universitario Maggiore della Carità di Novara, University of Eastern Piedmont, Novara, Italy
| | - Andrea Igoren Guaricci
- Department of Emergency and Organ Transplantation, Institute of Cardiovascular Disease, University Hospital Policlinico of Bari, Bari, Italy
| | - Anna Giulia Pavon
- Division of Cardiology, Cardiocentro Ticino Institute Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Arco Teske
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Maarten Jan Cramer
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lysette Broekhuizen
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dirk Van Osch
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ibrahim Danad
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Birgitta Velthuis
- Division of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dominika Suchá
- Division of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ivo van der Bilt
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
- Cardiology Department, HAGA Ziekenhuis, Den Haag, The Netherlands
| | - Carmine Pizzi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda, Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Bologna, Italy
| | | | - Marish Oerlemans
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Linda W van Laake
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Pim van der Harst
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marco Guglielmo
- Division Heart and Lung, Cardiology Department, University Medical Centre Utrecht, Utrecht, The Netherlands
- Cardiology Department, HAGA Ziekenhuis, Den Haag, The Netherlands
| |
Collapse
|
3
|
Huo M, Giridharan GA, Sethu P, Qu P, Qin K, Wang Y. Numerical simulation analysis of multi-scale computational fluid dynamics on hemodynamic parameters modulated by pulsatile working modes for the centrifugal and axial left ventricular assist devices. Comput Biol Med 2024; 169:107788. [PMID: 38091724 DOI: 10.1016/j.compbiomed.2023.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Continuous flow (CF) left ventricular assist devices (LVAD) operate at a constant speed mode, which could result in increased risk of adverse events due to reduced vascular pulsatility. Consequently, pump speed modulation algorithms have been proposed to augment vascular pulsatility. However, the quantitative local hemodynamic effects on the aorta when the pump is operating with speed modulation using different types of CF-LVADs are still under investigation. The computational fluid dynamics (CFD) study was conducted to quantitatively elucidate the hemodynamic effects on a clinical patient-specific aortic model under different speed patterns of CF-LVADs. Pressure distribution, wall shear stress (WSS), time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), and velocity were calculated to compare their differences at constant and pulsatile speeds under centrifugal and axial LVAD support. Results showed that pulse pressure on the aorta was significantly larger under pulsatile speed mode than that under constant speed mode for both CF-LVADs, indicating enhanced aorta pulsatility, as well as the higher peak blood flow velocity on some representative slices of aorta. Pulsatile speed modulation enhanced peak WSS compared to constant speed; high TAWSS region appeared near the branch of left common carotid artery and distal aorta regardless of speed modes and CF-LVADs but these regions also had low OSI; RRT was almost the same for all the cases. This study may provide a basis for the scientific and reasonable selection of the pulsatile speed patterns of CF-LVADs for treating heart failure patients.
Collapse
Affiliation(s)
- Mingming Huo
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
| | | | - Palaniappan Sethu
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine and Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peng Qu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Kairong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Yu Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
4
|
Gu Z, Ong CW, Mi Y, Seetharaman A, Ling RR, Ramanathan K, Leo HL. The Impact of Left Ventricular Assist Device Outflow Graft Positioning on Aortic Hemodynamics: Improving Flow Dynamics to Mitigate Aortic Insufficiency. Biomimetics (Basel) 2023; 8:465. [PMID: 37887596 PMCID: PMC10604423 DOI: 10.3390/biomimetics8060465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Heart failure is a global health concern with significant implications for healthcare systems. Left ventricular assist devices (LVADs) provide mechanical support for patients with severe heart failure. However, the placement of the LVAD outflow graft within the aorta has substantial implications for hemodynamics and can lead to aortic insufficiency during long-term support. This study employs computational fluid dynamics (CFD) simulations to investigate the impact of different LVAD outflow graft locations on aortic hemodynamics. The introduction of valve morphology within the aorta geometry allows for a more detailed analysis of hemodynamics at the aortic root. The results demonstrate that the formation of vortex rings and subsequent vortices during the high-velocity jet flow from the graft interacted with the aortic wall. Time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) indicate that modification of the outflow graft location changes mechanical states within the aortic wall and aortic valve. Among the studied geometric factors, both the height and inclination angle of the LVAD outflow graft are important in controlling retrograde flow to the aortic root, while the azimuthal angle primarily determines the rotational direction of blood flow in the aortic arch. Thus, precise positioning of the LVAD outflow graft emerges as a critical factor in optimizing patient outcomes by improving the hemodynamic environment.
Collapse
Affiliation(s)
- Zhuohan Gu
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore; (Z.G.); (A.S.)
| | - Chi Wei Ong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Yongzhen Mi
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Ashwin Seetharaman
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore; (Z.G.); (A.S.)
| | - Ryan Ruiyang Ling
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore (K.R.)
| | - Kollengode Ramanathan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore (K.R.)
- Cardiothoracic Intensive Care Unit, National University Heart Centre Singapore, National Univeristy Health System, Singapore 119228, Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore; (Z.G.); (A.S.)
| |
Collapse
|
5
|
Grinstein J, Belkin MN, Kalantari S, Bourque K, Salerno C, Pinney S. Adverse Hemodynamic Consequences of Continuous Left Ventricular Mechanical Support: JACC Review Topic of the Week. J Am Coll Cardiol 2023; 82:70-81. [PMID: 37380306 DOI: 10.1016/j.jacc.2023.04.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/30/2023]
Abstract
Left ventricular assist devices (LVADs) provide lifesaving therapy for patients with advanced heart failure. The recognition of pump thrombosis, stroke, and nonsurgical bleeding as hemocompatibility-related adverse events (HRAEs) led to pump design improvements and reduced adverse event rates. However, continuous flow can predispose patients to right-sided heart failure (RHF) and aortic insufficiency (AI), especially as patients live longer with their device. Given the hemodynamic contributions to AI and RHF, these comorbidities can be classified as hemodynamic-related events (HDREs). Hemodynamic-driven events are time dependent and often manifest later than HRAEs. This review examines the emerging strategies to mitigate HDREs, with a focus on defining best practices for AI and RHF. As we head into the next generation of LVAD technology, it is important to differentiate HDREs from HRAEs so that we can continue to advance the field and improve the true durability of the pump-patient continuum.
Collapse
Affiliation(s)
- Jonathan Grinstein
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| | - Mark N Belkin
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sara Kalantari
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Kevin Bourque
- Heart Failure Division, Abbott, Burlington, Massachusetts, USA
| | - Christopher Salerno
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Sean Pinney
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Si MS, Sood V, Biniwale R, Peng D. Considerations of valvular heart disease in children with ventricular assist devices. Front Cardiovasc Med 2023; 10:1056663. [PMID: 37034354 PMCID: PMC10075362 DOI: 10.3389/fcvm.2023.1056663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Ventricular assist devices have become a valuable tool in the treatment of heart failure in children. The use of ventricular assist devices has decreased mortality in children with end-stage heart failure awaiting transplant. It is not uncommon for children with end-stage heart failure associated with cardiomyopathy or congenital heart disease to have significant systemic semilunar and atrioventricular valve regurgitation, which can impact the efficiency and efficacy of hemodynamic support provided by a ventricular assist device. Therefore, implanting clinicians should carefully assess for valve abnormalities that may need repair and impact device selection and cannulation strategy to effectively support this diverse population. The purpose of this review is to provide an overview of this important and relevant topic and to discuss strategies for managing these patients.
Collapse
Affiliation(s)
- Ming-Sing Si
- Department of Pediatrics, Division of Pediatric Cardiology, University of Michigan, C.S. Mott Children’s Hospital, Ann Arbor, MI, United States
- Correspondence: Ming-Sing Si
| | - Vikram Sood
- Department of Cardiac Surgery, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, United States
| | - Reshma Biniwale
- Department of Pediatrics, Division of Pediatric Cardiology, University of Michigan, C.S. Mott Children’s Hospital, Ann Arbor, MI, United States
| | - David Peng
- Department of Cardiac Surgery, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, Division of Cardiac Surgery, University of California, Los Angeles, Mattel Children’s Hospital, Los Angeles, CA, United States
| |
Collapse
|
7
|
Acharya D, Kazui T, Al Rameni D, Acharya T, Betterton E, Juneman E, Loyaga-Rendon R, Lotun K, Shetty R, Chatterjee A. Aortic valve disorders and left ventricular assist devices. Front Cardiovasc Med 2023; 10:1098348. [PMID: 36910539 PMCID: PMC9996073 DOI: 10.3389/fcvm.2023.1098348] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Aortic valve disorders are important considerations in advanced heart failure patients being evaluated for left ventricular assist devices (LVAD) and those on LVAD support. Aortic insufficiency (AI) can be present prior to LVAD implantation or develop de novo during LVAD support. It is usually a progressive disorder and can lead to impaired LVAD effectiveness and heart failure symptoms. Severe AI is associated with worsening hemodynamics, increased hospitalizations, and decreased survival in LVAD patients. Diagnosis is made with echocardiographic, device assessment, and/or catheterization studies. Standard echocardiographic criteria for AI are insufficient for accurate diagnosis of AI severity. Management of pre-existing AI includes aortic repair or replacement at the time of LVAD implant. Management of de novo AI on LVAD support is challenging with increased risks of repeat surgical intervention, and percutaneous techniques including transcatheter aortic valve replacement are assuming greater importance. In this manuscript, we provide a comprehensive approach to contemporary diagnosis and management of aortic valve disorders in the setting of LVAD therapy.
Collapse
Affiliation(s)
- Deepak Acharya
- Division of Cardiovascular Diseases, University of Arizona, Tucson, AZ, United States
| | - Toshinobu Kazui
- Division of Cardiovascular Surgery, University of Arizona, Tucson, AZ, United States
| | - Dina Al Rameni
- Division of Cardiovascular Surgery, University of Arizona, Tucson, AZ, United States
| | - Tushar Acharya
- Division of Cardiovascular Diseases, University of Arizona, Tucson, AZ, United States
| | - Edward Betterton
- Artificial Heart Program, University of Arizona, Tucson, AZ, United States
| | - Elizabeth Juneman
- Division of Cardiovascular Diseases, University of Arizona, Tucson, AZ, United States
| | | | - Kapildeo Lotun
- Division of Cardiology, Carondelet Medical Center, Tucson, AZ, United States
| | - Ranjith Shetty
- Division of Cardiology, Carondelet Medical Center, Tucson, AZ, United States
| | - Arka Chatterjee
- Division of Cardiovascular Diseases, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
8
|
Mathur M, Brozovich JM, Rausch MK. A Brief Note on Building Augmented Reality Models for Scientific Visualization. FINITE ELEMENTS IN ANALYSIS AND DESIGN : THE INTERNATIONAL JOURNAL OF APPLIED FINITE ELEMENTS AND COMPUTER AIDED ENGINEERING 2023; 213:103851. [PMID: 37168239 PMCID: PMC10168105 DOI: 10.1016/j.finel.2022.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Augmented reality (AR) has revolutionized the video game industry by providing interactive, three-dimensional visualization. Interestingly, AR technology has only been sparsely used in scientific visualization. This is, at least in part, due to the significant technical challenges previously associated with creating and accessing such models. To ease access to AR for the scientific community, we introduce a novel visualization pipeline with which they can create and render AR models. We demonstrate our pipeline by means of finite element results, but note that our pipeline is generally applicable to data that may be represented through meshed surfaces. Specifically, we use two open-source software packages, ParaView and Blender. The models are then rendered through the <model-viewer> platform, which we access through Android and iOS smartphones. To demonstrate our pipeline, we build AR models from static and time-series results of finite element simulations discretized with continuum, shell, and beam elements. Moreover, we openly provide python scripts to automate this process. Thus, others may use our framework to create and render AR models for their own research and teaching activities.
Collapse
Affiliation(s)
- Mrudang Mathur
- University of Texas at Austin, Department of Mechanical Engineering, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America
| | - Josef M Brozovich
- University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, 2617 Wichita Street, Austin, 78712, TX, United States of America
| | - Manuel K Rausch
- University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, 2617 Wichita Street, Austin, 78712, TX, United States of America
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America
- University of Texas at Austin, Oden Institute for Computational Engineering and Sciences, 201 E 24th Street, Austin, 78712, TX, United States of America
| |
Collapse
|
9
|
Patient-Specific Image-Based Computational Fluid Dynamics Analysis of Abdominal Aorta and Branches. J Pers Med 2022; 12:jpm12091502. [PMID: 36143287 PMCID: PMC9503755 DOI: 10.3390/jpm12091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
The complicated abdominal aorta and its branches are a portion of the circulatory system prone to developing atherosclerotic plaque and aneurysms. These disorders are closely connected to the changing blood flow environment that the area’s complicated architecture produces (between celiac artery and iliac artery bifurcation); this phenomenon is widespread at arterial bifurcations. Based on computed tomography angiography (CTA) scans, this current work offers a numerical analysis of a patient-specific reconstruction of the abdominal aorta and its branches to identify and emphasize the most likely areas to develop atherosclerosis. The simulations were run following the heart cycle and under physiological settings. The wall shear stress (WSS), velocity field, and streamlines were examined. According to the findings, complex flow is primarily present at the location of arterial bifurcations, where abnormal flow patterns create recirculation zones with low and fluctuating WSS (<0.5 Pa), which are known to affect endothelial homeostasis and cause adverse vessel remodeling. The study provides a patient-specific hemodynamic analysis model, which couples in vivo CT imaging with in silico simulation under physiological circumstances. The study offers quantitative data on the range fluctuations of important hemodynamic parameters, such as WSS and recirculation region expansion, which are directly linked to the onset and progression of atherosclerosis. The findings could also help drug targeting at this vascular level by understanding blood flow patterns in the abdominal aorta and its branches.
Collapse
|
10
|
Anbazhakan S, Rios Coronado PE, Sy-Quia ANL, Seow LW, Hands AM, Zhao M, Dong ML, Pfaller MR, Amir ZA, Raftrey BC, Cook CK, D’Amato G, Fan X, Williams IM, Jha SK, Bernstein D, Nieman K, Pașca AM, Marsden AL, Horse KR. Blood flow modeling reveals improved collateral artery performance during the regenerative period in mammalian hearts. NATURE CARDIOVASCULAR RESEARCH 2022; 1:775-790. [PMID: 37305211 PMCID: PMC10256232 DOI: 10.1038/s44161-022-00114-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/07/2022] [Indexed: 06/13/2023]
Abstract
Collateral arteries bridge opposing artery branches, forming a natural bypass that can deliver blood flow downstream of an occlusion. Inducing coronary collateral arteries could treat cardiac ischemia, but more knowledge on their developmental mechanisms and functional capabilities is required. Here we used whole-organ imaging and three-dimensional computational fluid dynamics modeling to define spatial architecture and predict blood flow through collaterals in neonate and adult mouse hearts. Neonate collaterals were more numerous, larger in diameter and more effective at restoring blood flow. Decreased blood flow restoration in adults arose because during postnatal growth coronary arteries expanded by adding branches rather than increasing diameters, altering pressure distributions. In humans, adult hearts with total coronary occlusions averaged 2 large collaterals, with predicted moderate function, while normal fetal hearts showed over 40 collaterals, likely too small to be functionally relevant. Thus, we quantify the functional impact of collateral arteries during heart regeneration and repair-a critical step toward realizing their therapeutic potential.
Collapse
Affiliation(s)
- Suhaas Anbazhakan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Pamela E. Rios Coronado
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | | | - Lek Wei Seow
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Aubrey M. Hands
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Mingming Zhao
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melody L. Dong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Martin R. Pfaller
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
| | - Zhainib A. Amir
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Brian C. Raftrey
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Gaetano D’Amato
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Xiaochen Fan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ian M. Williams
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sawan K. Jha
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Koen Nieman
- Departments of Cardiovascular Medicine and Radiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Anca M. Pașca
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
| | - Alison L. Marsden
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kristy Red Horse
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford, CA, 94305, USA
| |
Collapse
|