1
|
Nozaki YO, Fujimoto S, Takahashi D, Kudo A, Kawaguchi YO, Sato H, Kudo H, Takamura K, Hiki M, Dohi T, Tomizawa N, Kumamaru KK, Aoki S, Minamino T. Additional prognostic impact of plaque characterization with on-site CT-derived fractional flow reserve in coronary CT angiography. J Cardiol 2024; 84:336-341. [PMID: 38876399 DOI: 10.1016/j.jjcc.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND On-site computed tomography-derived fractional flow reserve (CT-FFR) is a feasible method for examining lesion-specific ischemia, and plaque analysis of coronary CT angiography (CCTA) is useful for predicting future cardiac events. However, their utility and association on a per-vessel level remain unclear. METHODS We analyzed vessels showing 50-90 % stenosis on CCTA where planned revascularization was not performed after CCTA within 90 days. Relevant features, including CT-FFR and the plaque burden [necrotic core to the total plaque volume (% necrotic core), and non-calcified plaque (NCP) to vessel volume (% NCP)] using a novel algorithm for analyzing plaque to predict vessel-oriented composite outcomes (VOCO), including cardiac death, non-fatal myocardial infarction, and unplanned vessel-related revascularization, were assessed. RESULTS In 256 patients (68.7 ± 9.4 years; 73.8 % male) with 354 vessels (10.5 % CT-FFR ≤ 0.80), VOCO occurred in 24 vessels (6.8 %) during a median follow-up of 3.6 years. Multivariable Cox analysis revealed CT-FFR ≤ 0.80 had the pronounced impact on VOCO, and moreover, higher % necrotic core and % NCP were independently associated with VOCO [adjusted hazard ratio 3.43 (95 % confidence interval 1.42-8.29) and 4.05 (1.19-13.71), respectively], especially for vessels with CT-FFR > 0.80. CONCLUSIONS In vessels without planned revascularization, per-vessel CT-FFR ≤ 0.80 was the notable predictor of future cardiac events. Additionally, necrotic core volume and NCP were identified as independent predictors along with CT-FFR.
Collapse
Affiliation(s)
- Yui O Nozaki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinichiro Fujimoto
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Daigo Takahashi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayako Kudo
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuko O Kawaguchi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideyuki Sato
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Radiological Technology, Juntendo University Hospital, Tokyo, Japan
| | - Hikaru Kudo
- Department of Radiological Technology, Juntendo University Hospital, Tokyo, Japan
| | - Kazuhisa Takamura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Makoto Hiki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomotaka Dohi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuo Tomizawa
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kanako K Kumamaru
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
2
|
Stefanati M, Corti A, Corino VDA, Bennett MR, Teng Z, Dubini G, Rodriguez Matas JF. Effect of variability of mechanical properties on the predictive capabilities of vulnerable coronary plaques. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108271. [PMID: 38878362 DOI: 10.1016/j.cmpb.2024.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Coronary plaque rupture is a precipitating event responsible for two thirds of myocardial infarctions. Currently, the risk of plaque rupture is computed based on demographic, clinical, and image-based adverse features. However, using these features the absolute event rate per single higher-risk lesion remains low. This work studies the power of a novel framework based on biomechanical markers accounting for material uncertainty to stratify vulnerable and non-vulnerable coronary plaques. METHODS Virtual histology intravascular ultrasounds from 55 patients, 29 affected by acute coronary syndrome and 26 affected by stable angina pectoris, were included in this study. Two-dimensional vessel cross-sections for finite element modeling (10 sections per plaque) incorporating plaque structure (medial tissue, loose matrix, lipid core and calcification) were reconstructed. A Montecarlo finite element analysis was performed on each section to account for material variability on three biomechanical markers: peak plaque structural stress at diastolic and systolic pressure, and peak plaque stress difference between systolic and diastolic pressures, together with the luminal pressure. Machine learning decision tree classifiers were trained on 75% of the dataset and tested on the remaining 25% with a combination of feature selection techniques. Performance against classification trees based on geometric markers (i.e., luminal, external elastic membrane and plaque areas) was also performed. RESULTS Our results indicate that the plaque structural stress outperforms the classification capacity of the combined geometric markers only (0.82 vs 0.51 area under curve) when accounting for uncertainty in material parameters. Furthermore, the results suggest that the combination of the peak plaque structural stress at diastolic and systolic pressures with the maximum plaque structural stress difference between systolic and diastolic pressures together with the systolic pressure and the diastolic to systolic pressure gradient is a robust classifier for coronary plaques when the intrinsic variability in material parameters is considered (area under curve equal to [0.91-0.93]). CONCLUSION In summary, our results emphasize that peak plaque structural stress in combination with the patient's luminal pressure is a potential classifier of plaque vulnerability as it independently considers stress in all directions and incorporates total geometric and compositional features of atherosclerotic plaques.
Collapse
Affiliation(s)
- Marco Stefanati
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy.
| | - Anna Corti
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
| | - Valentina D A Corino
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy; CardioTech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Zhongzhao Teng
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom; Department of Radiology, University of Cambridge, School of Clinical Medicine, Box 218, Level 5, Hills Road, Cambridge, CB2 0QQ, United Kingdom; Nanjing Jingsan Medical Science and Technology, Ltd., 6# Shuiyougang Rd., Gulou, Nanjing, Jiangsu, China
| | - Gabriele Dubini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - José Félix Rodriguez Matas
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| |
Collapse
|
3
|
Dimitriadis K, Pyrpyris N, Theofilis P, Mantzouranis E, Beneki E, Kostakis P, Koutsopoulos G, Aznaouridis K, Aggeli K, Tsioufis K. Computed Tomography Angiography Identified High-Risk Coronary Plaques: From Diagnosis to Prognosis and Future Management. Diagnostics (Basel) 2024; 14:1671. [PMID: 39125547 PMCID: PMC11311283 DOI: 10.3390/diagnostics14151671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
CT angiography has become, in recent years, a main evaluating modality for patients with coronary artery disease (CAD). Recent advancements in the field have allowed us to identity not only the presence of obstructive disease but also the characteristics of identified lesions. High-risk coronary atherosclerotic plaques are identified in CT angiographies via a number of specific characteristics and may provide prognostic and therapeutic implications, aiming to prevent future ischemic events via optimizing medical treatment or providing coronary interventions. In light of new evidence evaluating the safety and efficacy of intervening in high-risk plaques, even in non-flow-limiting disease, we aim to provide a comprehensive review of the diagnostic algorithms and implications of plaque vulnerability in CT angiography, identify any differences with invasive imaging, analyze prognostic factors and potential future therapeutic options in such patients, as well as discuss new frontiers, including intervening in non-flow-limiting stenoses and the role of CT angiography in patient stratification.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.P.); (P.T.); (E.M.); (E.B.); (P.K.); (G.K.); (K.A.); (K.A.); (K.T.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Klüner LV, Chan K, Antoniades C. Using artificial intelligence to study atherosclerosis from computed tomography imaging: A state-of-the-art review of the current literature. Atherosclerosis 2024:117580. [PMID: 38852022 DOI: 10.1016/j.atherosclerosis.2024.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024]
Abstract
With the enormous progress in the field of cardiovascular imaging in recent years, computed tomography (CT) has become readily available to phenotype atherosclerotic coronary artery disease. New analytical methods using artificial intelligence (AI) enable the analysis of complex phenotypic information of atherosclerotic plaques. In particular, deep learning-based approaches using convolutional neural networks (CNNs) facilitate tasks such as lesion detection, segmentation, and classification. New radiotranscriptomic techniques even capture underlying bio-histochemical processes through higher-order structural analysis of voxels on CT images. In the near future, the international large-scale Oxford Risk Factors And Non-invasive Imaging (ORFAN) study will provide a powerful platform for testing and validating prognostic AI-based models. The goal is the transition of these new approaches from research settings into a clinical workflow. In this review, we present an overview of existing AI-based techniques with focus on imaging biomarkers to determine the degree of coronary inflammation, coronary plaques, and the associated risk. Further, current limitations using AI-based approaches as well as the priorities to address these challenges will be discussed. This will pave the way for an AI-enabled risk assessment tool to detect vulnerable atherosclerotic plaques and to guide treatment strategies for patients.
Collapse
Affiliation(s)
- Laura Valentina Klüner
- Acute Multidisciplinary Imaging and Interventional Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford NIHR Biomedical Research Centre, University of Oxford, United Kingdom
| | - Kenneth Chan
- Acute Multidisciplinary Imaging and Interventional Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford NIHR Biomedical Research Centre, University of Oxford, United Kingdom
| | - Charalambos Antoniades
- Acute Multidisciplinary Imaging and Interventional Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford NIHR Biomedical Research Centre, University of Oxford, United Kingdom.
| |
Collapse
|
5
|
Meloni A, Maffei E, Clemente A, De Gori C, Occhipinti M, Positano V, Berti S, La Grutta L, Saba L, Cau R, Bossone E, Mantini C, Cavaliere C, Punzo B, Celi S, Cademartiri F. Spectral Photon-Counting Computed Tomography: Technical Principles and Applications in the Assessment of Cardiovascular Diseases. J Clin Med 2024; 13:2359. [PMID: 38673632 PMCID: PMC11051476 DOI: 10.3390/jcm13082359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Spectral Photon-Counting Computed Tomography (SPCCT) represents a groundbreaking advancement in X-ray imaging technology. The core innovation of SPCCT lies in its photon-counting detectors, which can count the exact number of incoming x-ray photons and individually measure their energy. The first part of this review summarizes the key elements of SPCCT technology, such as energy binning, energy weighting, and material decomposition. Its energy-discriminating ability represents the key to the increase in the contrast between different tissues, the elimination of the electronic noise, and the correction of beam-hardening artifacts. Material decomposition provides valuable insights into specific elements' composition, concentration, and distribution. The capability of SPCCT to operate in three or more energy regimes allows for the differentiation of several contrast agents, facilitating quantitative assessments of elements with specific energy thresholds within the diagnostic energy range. The second part of this review provides a brief overview of the applications of SPCCT in the assessment of various cardiovascular disease processes. SPCCT can support the study of myocardial blood perfusion and enable enhanced tissue characterization and the identification of contrast agents, in a manner that was previously unattainable.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Erica Maffei
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Carmelo De Gori
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Mariaelena Occhipinti
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Vicenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Sergio Berti
- Diagnostic and Interventional Cardiology Department, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Ludovico La Grutta
- Department of Radiology, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (CA), Italy; (L.S.); (R.C.)
| | - Riccardo Cau
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (CA), Italy; (L.S.); (R.C.)
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy;
| | - Cesare Mantini
- Department of Radiology, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Carlo Cavaliere
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Bruna Punzo
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Simona Celi
- BioCardioLab, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| |
Collapse
|
6
|
Carande EJ, Salim TS, Chase A, Sekar B, Aldalati O, Hailan A, Khurana A, Smith D, Obaid DR. Computed tomography defined femoral artery plaque composition predicts vascular complications during transcatheter aortic valve implantation. Br J Radiol 2023; 96:20230296. [PMID: 37747290 PMCID: PMC10646661 DOI: 10.1259/bjr.20230296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023] Open
Abstract
OBJECTIVE Vascular and bleeding complications after transcatheter aortic valve implantation (TAVI) are common and lead to increased morbidity and mortality. Analysis of plaque at the arterial access site may improve prediction of complications. METHODS We investigated the association between demographic and procedural risk factors for Valve Academic Research Consortium (VARC-3) vascular complications in patients undergoing transfemoral TAVI with use of a vascular closure device (ProGlide® or MANTA®) in this retrospective cohort study. The ability of pre-procedure femoral CT angiography to predict complications was investigated including a novel method of quantifying plaque composition of the common femoral artery using plaque maps created with patient specific X-ray attenuation cut-offs. RESULTS 23 vascular complications occurred in the 299 patients in the study group (7.7%). There were no demographic risk factors associated with vascular complications and no statistical difference between use of closure device (ProGlide® vs MANTA®) and vascular complications. Vascular complications after TAVI were associated with sheath size (OR 1.36, 95% CI 1.08-1.76, P 0.01) and strongly associated with CT-derived necrotic core volume in the common femoral artery of the procedural side (OR 17.49, 95% CI 1.21-226.60, P 0.03). CONCLUSION Plaque map analysis of the common femoral artery by CT angiography reveals patients with greater necrotic core are at increased risk of VARC-3 vascular complications. ADVANCES IN KNOWLEDGE The novel measurement of necrotic core volume in the common femoral artery on the procedural side by CT analysis was associated with post-TAVI vascular complications, which can be used to highlight increased risk.
Collapse
Affiliation(s)
- Elliott J. Carande
- Cwm Taff Morgannwg University Health Board, Princess of Wales Hospital, Coity Road, Bridgend, United Kingdom
| | - Tarik S Salim
- Swansea Bay University Health Board, Morriston Hospital, Swansea, United Kingdom
| | - Alexander Chase
- Swansea Bay University Health Board, Morriston Hospital, Swansea, United Kingdom
| | - Baskar Sekar
- Swansea Bay University Health Board, Morriston Hospital, Swansea, United Kingdom
| | - Omar Aldalati
- Swansea Bay University Health Board, Morriston Hospital, Swansea, United Kingdom
| | - Ahmed Hailan
- Swansea Bay University Health Board, Morriston Hospital, Swansea, United Kingdom
| | - Ayush Khurana
- Swansea Bay University Health Board, Morriston Hospital, Swansea, United Kingdom
| | - Dave Smith
- Swansea Bay University Health Board, Morriston Hospital, Swansea, United Kingdom
| | | |
Collapse
|
7
|
Alyami B, Santer M, Seetharam K, Velu D, Gadde E, Patel B, Hamirani YS. Non-Calcified Coronary Artery Plaque on Coronary Computed Tomography Angiogram: Prevalence and Significance. Tomography 2023; 9:1755-1771. [PMID: 37736993 PMCID: PMC10514817 DOI: 10.3390/tomography9050140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE We aimed to assess the prevalence of non-calcified plaque (NCP) on computed tomography angiography (CCTA) in symptomatic and asymptomatic individuals. In addition, we seek to compare plaque assessment on CCTA with intravascular ultrasound-virtual histology (IVUS-VH) and to assess the prognostic value of non-calcified plaques (NCPs). BACKGROUND The CCTA can characterize coronary plaques and help quantify burden. Furthermore, it can provide additional prognostic information which can enable further risk stratification of patients. METHODS We performed a broad comprehensive review of the current literature pertaining to CCTA and primarily isolated NCP in symptomatic and asymptomatic patients. In addition, our review included studies correlating plaque on CT with IVUS-VH. CONCLUSIONS NCP is the initial precursor of calcified plaque and serves as a prominent marker of early coronary atherosclerosis. By detecting NCP during early stages, several measures can be implemented which can alter the evolutionary course of the underlying disease. This can potentially lead to a lower incidence of cardiovascular events.
Collapse
Affiliation(s)
- Bandar Alyami
- Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (B.A.); (M.S.); (B.P.)
| | - Matthew Santer
- Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (B.A.); (M.S.); (B.P.)
| | - Karthik Seetharam
- Department of Cardiology, Heart and Vascular Institute, West Virginia University, Morgantown, WV 26506, USA; (K.S.); (D.V.)
| | - Dhivya Velu
- Department of Cardiology, Heart and Vascular Institute, West Virginia University, Morgantown, WV 26506, USA; (K.S.); (D.V.)
| | - Eswar Gadde
- Department of Medicine, West Virginia University, Charleston, WV 25304, USA;
| | - Bansari Patel
- Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (B.A.); (M.S.); (B.P.)
| | - Yasmin S. Hamirani
- Department of Cardiology, Heart and Vascular Institute, West Virginia University, Morgantown, WV 26506, USA; (K.S.); (D.V.)
| |
Collapse
|
8
|
Welty FK, Hariri E, Asbeutah AA, Daher R, Amangurbanova M, Chedid G, Elajami TK, Alfaddagh A, Malik A. Regression of Coronary Fatty Plaque and Risk of Cardiac Events According to Blood Pressure Status: Data From a Randomized Trial of Eicosapentaenoic Acid and Docosahexaenoic Acid in Patients With Coronary Artery Disease. J Am Heart Assoc 2023; 12:e030071. [PMID: 37681568 PMCID: PMC10547278 DOI: 10.1161/jaha.123.030071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Background Residual risk of cardiovascular events and plaque progression remains despite reduction in low-density lipoprotein cholesterol. Factors contributing to residual risk remain unclear. The authors examined the role of eicosapentaenoic acid and docosahexaenoic acid in coronary plaque regression and its predictors. Methods and Results A total of 240 patients with stable coronary artery disease were randomized to eicosapentaenoic acid plus docosahexaenoic acid (3.36 g/d) or none for 30 months. Patients were stratified by regression or progression of coronary fatty plaque measured by coronary computed tomographic angiography. Cardiac events were ascertained. The mean±SD age was 63.0±7.7 years, mean low-density lipoprotein cholesterol level was <2.07 mmol/L, and median triglyceride level was <1.38 mmol/L. Regressors had a 14.9% reduction in triglycerides that correlated with fatty plaque regression (r=0.135; P=0.036). Compared with regressors, progressors had higher cardiac events (5% vs 22.3%, respectively; P<0.001) and a 2.89-fold increased risk of cardiac events (95% CI, 1.1-8.0; P=0.034). Baseline non-high-density lipoprotein cholesterol level <2.59 mmol/L (100 mg/dL) and systolic blood pressure <125 mm Hg were significant independent predictors of fatty plaque regression. Normotensive patients taking eicosapentaenoic acid plus docosahexaenoic acid had regression of noncalcified coronary plaque that correlated with triglyceride reduction (r=0.35; P=0.034) and a significant decrease in neutrophil/lymphocyte ratio. In contrast, hypertensive patients had no change in noncalcified coronary plaque or neutrophil/lymphocyte ratio. Conclusions Triglyceride reduction, systolic blood pressure <125 mm Hg, and non-high-density lipoprotein cholesterol <2.59 mmol/L were associated with coronary plaque regression and reduced cardiac events. Normotensive patients had greater benefit than hypertensive patients potentially due to lower levels of inflammation. Future studies should examine the role of inflammation in plaque regression. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT01624727.
Collapse
Affiliation(s)
- Francine K. Welty
- Division of CardiologyBeth Israel Deaconess Medical CenterBostonMAUSA
| | | | | | - Ralph Daher
- Gilbert and Rose‐Marie Chagoury School of MedicineLebanese American UniversityByblosLebanon
| | | | - Georges Chedid
- Gilbert and Rose‐Marie Chagoury School of MedicineLebanese American UniversityByblosLebanon
| | - Tarec K. Elajami
- Division of CardiologyBeth Israel Deaconess Medical CenterBostonMAUSA
| | | | - Abdulaziz Malik
- Division of CardiologyBeth Israel Deaconess Medical CenterBostonMAUSA
| |
Collapse
|
9
|
Pugliese L, Ricci F, Sica G, Scaglione M, Masala S. Non-Contrast and Contrast-Enhanced Cardiac Computed Tomography Imaging in the Diagnostic and Prognostic Evaluation of Coronary Artery Disease. Diagnostics (Basel) 2023; 13:2074. [PMID: 37370969 DOI: 10.3390/diagnostics13122074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
In recent decades, cardiac computed tomography (CT) has emerged as a powerful non-invasive tool for risk stratification, as well as the detection and characterization of coronary artery disease (CAD), which remains the main cause of morbidity and mortality in the world. Advances in technology have favored the increasing use of cardiac CT by allowing better performance with lower radiation doses. Coronary artery calcium, as assessed by non-contrast CT, is considered to be the best marker of subclinical atherosclerosis, and its use is recommended for the refinement of risk assessment in low-to-intermediate risk individuals. In addition, coronary CT angiography (CCTA) has become a gate-keeper to invasive coronary angiography (ICA) and revascularization in patients with acute chest pain by allowing the assessment not only of the extent of lumen stenosis, but also of its hemodynamic significance if combined with the measurement of fractional flow reserve or perfusion imaging. Moreover, CCTA provides a unique incremental value over functional testing and ICA by imaging the vessel wall, thus allowing the assessment of plaque burden, composition, and instability features, in addition to perivascular adipose tissue attenuation, which is a marker of vascular inflammation. There exists the potential to identify the non-obstructive lesions at high risk of progression to plaque rupture by combining all of these measures.
Collapse
Affiliation(s)
- Luca Pugliese
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Francesca Ricci
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Giacomo Sica
- Radiology Unit, Monaldi Hospital, 80131 Napoli, Italy
| | - Mariano Scaglione
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Salvatore Masala
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
10
|
Salem AM, Davis J, Gopalan D, Rudd JHF, Clarke SC, Schofield PM, Bennett MR, Brown AJ, Obaid DR. Characteristics of conventional high-risk coronary plaques and a novel CT defined thin-cap fibroatheroma in patients undergoing CCTA with stable chest pain. Clin Imaging 2023; 101:69-76. [PMID: 37311397 DOI: 10.1016/j.clinimag.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Coronary computed tomography angiography (CCTA) can identify high-risk coronary plaque types. However, the inter-observer variability for high-risk plaque features, including low attenuation plaque (LAP), positive remodelling (PR), and the Napkin-Ring sign (NRS), may reduce their utility, especially amongst less experienced readers. METHODOLOGY In a prospective study, we compared the prevalence, location and inter-observer variability of both conventional CT-defined high-risk plaques with a novel index based on quantifying the ratio of necrotic core to fibrous plaque using individualised X-ray attenuation cut-offs (the CT-defined thin-cap fibroatheroma - CT-TCFA) in 100 patients followed-up for 7 years. RESULTS In total, 346 plaques were identified in all patients. Seventy-two (21%) of all plaques were classified by conventional CT parameters as high-risk (either NRS or PR and LAP combined), and 43 (12%) of plaques were considered high-risk using the novel CT-TCFA definition of (Necrotic Core/fibrous plaque ratio of >0.9). The majority (80%) of the high-risk plaques (LAP&PR, NRS and CT-TCFA) were located in the proximal and mid-LAD and RCA. The kappa co-efficient of inter-observer variability (k) for NRS was 0.4 and for PR and LAP combined 0.4. While the kappa co-efficient of inter-observer variability (k) for the new CT-TCFA definition was 0.7. During follow-up, patients with either conventional high-risk plaques or CT-TCFAs were significantly more likely to have MACE (Major adverse cardiovascular events) compared to patients without coronary plaques (p value 0.03 & 0.03, respectively). CONCLUSION The novel CT-TCFA is associated with MACE and has improved inter-observer variability compared with current CT-defined high-risk plaques.
Collapse
Affiliation(s)
- Ahmed M Salem
- Cardiology Department, Swansea Bay University Health Board, UK; Institute of Life Sciences-2, Swansea University Medical School, UK
| | - Joel Davis
- Southampton General Hospital, Southampton, UK
| | | | - James H F Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Sarah C Clarke
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | | | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Adam J Brown
- The School of Clinical Sciences at Monash Health, Melbourne, Australia
| | - Daniel R Obaid
- Cardiology Department, Swansea Bay University Health Board, UK; Institute of Life Sciences-2, Swansea University Medical School, UK.
| |
Collapse
|
11
|
Obaid DR, Okonji I, Cheng SF, Giannopoulos AA, Kamalathevan P, Halcox J, Rodriguez-Justo M, Richards T. Identification of vulnerable carotid plaque with histologically validated CT-derived plaque maps. Br J Radiol 2023:20220982. [PMID: 37183910 DOI: 10.1259/bjr.20220982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVES Ruptured carotid plaque causes stroke, but differentiating rupture-prone necrotic core from fibrous tissue with CT is limited by overlap of X-ray attenuation. We investigated the ability of CT-derived plaque maps created from ratios of plaque/contrast attenuation to identify histologically proven vulnerable plaques. METHODS Seventy patients underwent carotid CT angiography and carotid endarterectomy. A derivation cohort of 20 patients had CT images matched with histology and carotid plaque components attenuation defined. In a validation cohort of 50 patients, CT-derived plaque maps were compared in 43 symptomatic vs 40 asymptomatic carotid plaques and accuracy detecting vulnerable plaques calculated. RESULTS In 250 plaque areas co-registered with histology, the median attenuation (HU) of necrotic core 43(26-63), fibrous plaque 127(110-162) and calcified plaque 964 (816-1207) created significantly different ratios of plaque/contrast attenuation. CT-derived plaque maps revealed symptomatic plaques had larger necrotic core than asymptomatic (13.5%(5.9-33.3) vs 7.4%(2.3-14.3), p = 0.004) with large necrotic core predicting symptoms (area under ROC curve 0.68, p = 0.004). Twenty-four of 47 carotid plaques were histologically classified as most vulnerable (Starry-Type VI). Plaque maps revealed Type VI plaques had a greater necrotic core volume than Type IV/V plaques and a necrotic core/fibrous plaque ratio >0.5 distinguished Type VI plaques with sensitivity 75.0% (55.1-88.0) and specificity of 39.1% (22.2-59.2). CONCLUSIONS Carotid plaque components can be differentiated by CT using a ratio of plaque/contrast attenuation. CT-derived plaque map volumes of necrotic core help distinguished the most vulnerable plaques. ADVANCES IN KNOWLEDGE CT-derived plaque maps based on plaque/contrast attenuation may provide new markers of carotid plaque vulnerability.
Collapse
Affiliation(s)
| | - Ike Okonji
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Suk F Cheng
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | - Toby Richards
- Department of Surgery, University of Western Australia, Perth, Australia
| |
Collapse
|
12
|
Tonet E, Boccadoro A, Micillo M, Cocco M, Cossu A, Pompei G, Giganti M, Campo G. Coronary Computed Tomography Angiography: Beyond Obstructive Coronary Artery Disease. Life (Basel) 2023; 13:1086. [PMID: 37240730 PMCID: PMC10223586 DOI: 10.3390/life13051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Nowadays, coronary computed tomography angiography (CCTA) has a role of paramount importance in the diagnostic algorithm of ischemic heart disease (IHD), both in stable coronary artery disease (CAD) and acute chest pain. Alongside the quantification of obstructive coronary artery disease, the recent technologic developments in CCTA provide additional relevant information that can be considered as "novel markers" for risk stratification in different settings, including ischemic heart disease, atrial fibrillation, and myocardial inflammation. These markers include: (i) epicardial adipose tissue (EAT), associated with plaque development and the occurrence of arrhythmias; (ii) late iodine enhancement (LIE), which allows the identification of myocardial fibrosis; and (iii) plaque characterization, which provides data about plaque vulnerability. In the precision medicine era, these emerging markers should be integrated into CCTA evaluation to allow for the bespoke interventional and pharmacological management of each patient.
Collapse
Affiliation(s)
- Elisabetta Tonet
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Cona, Italy
| | - Alberto Boccadoro
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Cona, Italy
| | - Marco Micillo
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Cona, Italy
| | - Marta Cocco
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Cona, Italy
| | - Alberto Cossu
- Department of Morphology, Surgery and Experimental Medicine, Section of Radiology, University of Ferrara, 44121 Ferrara, Italy
| | - Graziella Pompei
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Cona, Italy
| | - Melchiore Giganti
- Department of Morphology, Surgery and Experimental Medicine, Section of Radiology, University of Ferrara, 44121 Ferrara, Italy
| | - Gianluca Campo
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Cona, Italy
| |
Collapse
|
13
|
Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging. Sci Rep 2023; 13:4119. [PMID: 36914717 PMCID: PMC10011570 DOI: 10.1038/s41598-023-31343-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
To improve the assessment of carotid plaque vulnerability, a comprehensive characterization of their composition is paramount. Multispectral photoacoustic imaging (MSPAI) can provide plaque composition based on their absorption spectra. However, although various spectral unmixing methods have been developed to characterize different tissue constituents, plaque analysis remains a challenge since its composition is highly complex and diverse. In this study, we employed an adapted piecewise convex multiple-model endmember detection method to identify carotid plaque constituents. Additionally, we explore the selection of the imaging wavelengths in linear models by conditioning the coefficient matrix and its synergy with our unmixing approach. We verified our method using plaque mimicking phantoms and performed ex-vivo MSPAI on carotid endarterectomy samples in a spectral range from 500 to 1300 nm to identify the main spectral features of plaque materials for vulnerability assessment. After imaging, the samples were processed for histological analysis to validate the photoacoustic decomposition. Results show that our approach can perform spectral unmixing and classification of highly heterogeneous biological samples without requiring an extensive fluence correction, enabling the identification of relevant components to assess plaque vulnerability.
Collapse
|
14
|
Militello C, Prinzi F, Sollami G, Rundo L, La Grutta L, Vitabile S. CT Radiomic Features and Clinical Biomarkers for Predicting Coronary Artery Disease. Cognit Comput 2023. [DOI: 10.1007/s12559-023-10118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AbstractThis study was aimed to investigate the predictive value of the radiomics features extracted from pericoronaric adipose tissue — around the anterior interventricular artery (IVA) — to assess the condition of coronary arteries compared with the use of clinical characteristics alone (i.e., risk factors). Clinical and radiomic data of 118 patients were retrospectively analyzed. In total, 93 radiomics features were extracted for each ROI around the IVA, and 13 clinical features were used to build different machine learning models finalized to predict the impairment (or otherwise) of coronary arteries. Pericoronaric radiomic features improved prediction above the use of risk factors alone. In fact, with the best model (Random Forest + Mutual Information) the AUROC reached $$0.820 \pm 0.076$$
0.820
±
0.076
. As a matter of fact, the combined use of both types of features (i.e., radiomic and clinical) allows for improved performance regardless of the feature selection method used. Experimental findings demonstrated that the use of radiomic features alone achieves better performance than the use of clinical features alone, while the combined use of both clinical and radiomic biomarkers further improves the predictive ability of the models. The main contribution of this work concerns: (i) the implementation of multimodal predictive models, based on both clinical and radiomic features, and (ii) a trusted system to support clinical decision-making processes by means of explainable classifiers and interpretable features.
Collapse
|
15
|
Hennessey B, Pareek N, Macaya F, Yeoh J, Shlofmitz E, Gonzalo N, Hill J, Escaned J. Contemporary percutaneous management of coronary calcification: current status and future directions. Open Heart 2023; 10:e002182. [PMID: 36796870 PMCID: PMC9936324 DOI: 10.1136/openhrt-2022-002182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
Severe coronary artery calcification is one of the greatest challenges in attaining success in percutaneous coronary intervention, limiting acute and long-term results. In many cases, plaque preparation is a critical prerequisite for delivery of devices across calcific stenoses and also to achieve adequate luminal dimensions. Recent advances in intracoronary imaging and adjunctive technologies now allow the operator to select the most appropriate strategy in each individual case. In this review, we will revisit the distinct advantages of a complete assessment of coronary artery calcification with imaging and application of appropriate and contemporary plaque modification technologies in achieving durable results in this complex lesion subset.
Collapse
Affiliation(s)
- Breda Hennessey
- Hospital Clinico San Carlos Instituto Cardiovascular, Madrid, Comunidad de Madrid, Spain
| | - Nilesh Pareek
- King's College Hospital NHS Foundation Trust, London, UK
- School of Cardiovascular Medicine & Sciences, BHF Centre of Excellence, King's College London, London, UK
| | - Fernando Macaya
- Hospital Clinico San Carlos Instituto Cardiovascular, Madrid, Comunidad de Madrid, Spain
- King's College Hospital NHS Foundation Trust, London, UK
| | - Julian Yeoh
- King's College Hospital NHS Foundation Trust, London, UK
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Nieves Gonzalo
- Hospital Clinico San Carlos Instituto Cardiovascular, Madrid, Comunidad de Madrid, Spain
| | - Jonathan Hill
- King's College Hospital NHS Foundation Trust, London, UK
- Royal Brompton Hospital, London, UK
| | - Javier Escaned
- Hospital Clinico San Carlos Instituto Cardiovascular, Madrid, Comunidad de Madrid, Spain
| |
Collapse
|
16
|
Shanmukha KD, Paluvai H, Lomada SK, Gokara M, Kalangi SK. Histone deacetylase (HDACs) inhibitors: Clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:119-152. [DOI: 10.1016/bs.pmbts.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
17
|
Subclinical Hypertension-Mediated Organ Damage (HMOD) in Hypertension: Atherosclerotic Cardiovascular Disease (ASCVD) and Calcium Score. High Blood Press Cardiovasc Prev 2023; 30:17-27. [PMID: 36376777 PMCID: PMC9908727 DOI: 10.1007/s40292-022-00551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Calcium controls numerous events within the vessel wall. Permeability of the endothelium is calcium dependent, as are platelet activation and adhesion, vascular smooth muscle proliferation and migration, and synthesis of fibrous connective tissue. Double-helix computerized tomography is a noninvasive technique that can detect, measure, and compare coronary calcification in the coronary arteries. Despite some convincing evidence about the prognostic value and usefulness of coronary artery calcium score (CACS) in the stratification of cardiovascular risk in the high risk general population and also in hypertensive patients, current guidelines for the management of hypertension, do not include such evaluation among the recommended procedures to be performed in the majority of patients even with the intent to detect hypertension-mediated organ damage (HMOD) in an early phase. On the contrary, the European Society of Cardiology guidelines for the diagnosis and management of chronic coronary syndromes, the 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease, and the 2018 Cholesterol Clinical Practice Guidelines indicate that the evaluation of CACS may be of some usefulness in specific subpopulations, although this view is not accepted in the US Preventive Services Task Force document. Very recently, the European Society of Cardiology Guidelines on cardiovascular disease prevention in clinical practice stated that CACS estimation may be considered to improve risk classification around treatment decision thresholds. In conclusion, the use of CACS as a diagnostic tool is still controversial. While some evidence exists about is ability to improve stratification of cardiovascular risk in primary prevention, in particular in selected patients who are at intermediate or borderline risk of atherosclerotic cardiovascular disease, there is insufficient evidence to use it as a standard means to assess HMOD.
Collapse
|
18
|
Zhao J, Zhang H, Liu C, Zhang Y, Xie C, Wang M, Wang C, Wang S, Xue Y, Liang S, Gao Y, Cong H, Li C, Zhou J. Identification of vulnerable non-culprit lesions by coronary computed tomography angiography in patients with chronic coronary syndrome and diabetes mellitus. Front Cardiovasc Med 2023; 10:1143119. [PMID: 37034343 PMCID: PMC10076802 DOI: 10.3389/fcvm.2023.1143119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Background Among patients with diabetes mellitus (DM) and chronic coronary syndrome (CCS), non-culprit lesions (NCLs) are responsible for a substantial number of future major adverse cardiovascular events (MACEs). Thus, we aimed to establish the natural history relationship between adverse plaque characteristics (APCs) of NCLs non-invasively identified by coronary computed tomography angiography (CCTA) and subsequent MACEs in these patients. Methods Between January 2016 and January 2019, 523 patients with DM and CCS were included in the present study after CCTA and successful percutaneous coronary intervention (PCI). All patients were followed up for MACEs (the composite of cardiac death, myocardial infarction, and unplanned coronary revascularization) until January 2022, and the independent clinical event committee classified MACEs as indeterminate, culprit lesion (CL), and NCL-related. The primary outcome was MACEs arising from untreated NCLs during the follow-up. The association between plaque characteristics detected by CCTA and primary outcomes was determined by Marginal Cox proportional hazard regression. Results Overall, 1,248 NCLs of the 523 patients were analyzed and followed up for a median of 47 months. The cumulative rates of indeterminate, CL, and NCL-related MACEs were 2.3%, 14.5%, and 20.5%, respectively. On multivariate analysis, NCLs associated with recurrent MACEs were more likely to be characterized by a plaque burden >70% [hazard ratio (HR), 4.35, 95% confidence interval (CI): 2.92-6.44], a low-density non-calcified plaque (LDNCP) volume >30 mm3 (HR: 3.40, 95% CI: 2.07-5.56), a minimal luminal area (MLA) <4 mm2 (HR: 2.30, 95% CI: 1.57-3.36), or a combination of three APCs (HR: 13.69, 95% CI: 9.34-20.12, p < 0.0001) than those not associated with recurrent MACEs. Sensitivity analysis regarding all indeterminate MACEs as NCL-related ones demonstrated similar results. Conclusions In DM patients who presented with CCS and underwent PCI, half of the MACEs occurring during the follow-up were attributable to recurrence at the site of NCLs. NCLs responsible for unanticipated MACEs were frequently characterized by a large plaque burden and LDNCP volume, a small MLA, or a combination of these APCs, as determined by CCTA.
Collapse
Affiliation(s)
- Jia Zhao
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Hong Zhang
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin Chest Hospital, Tianjin, China
| | - Chang Liu
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Ying Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Cun Xie
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Minghui Wang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Chengjian Wang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Shuo Wang
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Xue
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Shuo Liang
- Department of Radiology, Tianjin Chest Hospital, Tianjin, China
| | - Yufan Gao
- Department of Radiology, Tianjin Chest Hospital, Tianjin, China
| | - Hongliang Cong
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Chunjie Li
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
- Correspondence: Chunjie Li Jia Zhou
| | - Jia Zhou
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
- Correspondence: Chunjie Li Jia Zhou
| |
Collapse
|
19
|
Emfietzoglou M, Mavrogiannis MC, Samaras A, Rampidis GP, Giannakoulas G, Kampaktsis PN. The role of cardiac computed tomography in predicting adverse coronary events. Front Cardiovasc Med 2022; 9:920119. [PMID: 35911522 PMCID: PMC9334665 DOI: 10.3389/fcvm.2022.920119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiac computed tomography (CCT) is now considered a first-line diagnostic test for suspected coronary artery disease (CAD) providing a non-invasive, qualitative, and quantitative assessment of the coronary arteries and pericoronary regions. CCT assesses vascular calcification and coronary lumen narrowing, measures total plaque burden, identifies plaque composition and high-risk plaque features and can even assist with hemodynamic evaluation of coronary lesions. Recent research focuses on computing coronary endothelial shear stress, a potent modulator in the development and progression of atherosclerosis, as well as differentiating an inflammatory from a non-inflammatory pericoronary artery environment using the simple measurement of pericoronary fat attenuation index. In the present review, we discuss the role of the above in the diagnosis of coronary atherosclerosis and the prediction of adverse cardiovascular events. Additionally, we review the current limitations of cardiac computed tomography as an imaging modality and highlight how rapid technological advancements can boost its capacity in predicting cardiovascular risk and guiding clinical decision-making.
Collapse
Affiliation(s)
- Maria Emfietzoglou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michail C. Mavrogiannis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | - Polydoros N. Kampaktsis
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Polydoros N. Kampaktsis
| |
Collapse
|
20
|
Theofilis P, Sagris M, Antonopoulos AS, Oikonomou E, Tsioufis K, Tousoulis D. Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques. Tomography 2022; 8:1742-1758. [PMID: 35894012 PMCID: PMC9326642 DOI: 10.3390/tomography8040147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
- Correspondence:
| | - Marios Sagris
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| | - Alexios S. Antonopoulos
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| | - Evangelos Oikonomou
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| | - Dimitris Tousoulis
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| |
Collapse
|
21
|
Pantea-Roșan LR, Bungau SG, Radu AF, Pantea VA, Moisi MI, Vesa CM, Behl T, Nechifor AC, Babes EE, Stoicescu M, Gitea D, Iovanovici DC, Bustea C. A Narrative Review of the Classical and Modern Diagnostic Methods of the No-Reflow Phenomenon. Diagnostics (Basel) 2022; 12:diagnostics12040932. [PMID: 35453980 PMCID: PMC9029120 DOI: 10.3390/diagnostics12040932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
The incidence of the no-reflow (NR) phenomenon varies depending on the diagnostic criteria used. If just the angiographic criteria are considered (i.e., a degree of thrombolysis in myocardial infarction ≤2), it will be found that the incidence of NR is quite low; on the other hand, when the myocardial NR is taken into account (i.e., a decrease in the quality of myocardial reperfusion expressed by the degree of myocardial blush), the real incidence is higher. Thus, the early establishment of a diagnosis of NR and the administration of specific treatment can lead to its reversibility. Otherwise, regardless of the follow-up period, patients with NR have a poor prognosis. In the present work, we offer a comprehensive perspective on diagnostic tools for NR detection, for improving the global management of patients with arterial microvasculature damage, which is a topic of major interest in the cardiology field, due to its complexity and its link with severe clinical outcomes.
Collapse
Affiliation(s)
- Larisa Renata Pantea-Roșan
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (L.R.P.-R.); (E.E.B.); (M.S.)
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania;
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Correspondence: (S.G.B.); (A.-F.R.)
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania;
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania; (M.I.M.); (C.M.V.); (C.B.)
- Correspondence: (S.G.B.); (A.-F.R.)
| | - Vlad Alin Pantea
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mădălina Ioana Moisi
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania; (M.I.M.); (C.M.V.); (C.B.)
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania; (M.I.M.); (C.M.V.); (C.B.)
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania;
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (L.R.P.-R.); (E.E.B.); (M.S.)
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (L.R.P.-R.); (E.E.B.); (M.S.)
| | - Daniela Gitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Diana Carina Iovanovici
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania;
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania; (M.I.M.); (C.M.V.); (C.B.)
| |
Collapse
|
22
|
Antonopoulos AS, Angelopoulos A, Tsioufis K, Antoniades C, Tousoulis D. Cardiovascular risk stratification by coronary computed tomography angiography imaging: current state-of-the-art. Eur J Prev Cardiol 2022; 29:608-624. [PMID: 33930129 DOI: 10.1093/eurjpc/zwab067] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Current cardiovascular risk stratification by use of clinical risk score systems or plasma biomarkers is good but less than satisfactory in identifying patients at residual risk for coronary events. Recent clinical evidence puts now further emphasis on the role of coronary anatomy assessment by coronary computed tomography angiography (CCTA) for the management of patients with stable ischaemic heart disease. Available computed tomography (CT) technology allows the quantification of plaque burden, identification of high-risk plaques, or the functional assessment of coronary lesions for ischaemia detection and revascularization for refractory angina symptoms. The current CT armamentum is also further enhanced by perivascular Fat Attenuation Index (FAI), a non-invasive metric of coronary inflammation, which allows for the first time the direct quantification of the residual vascular inflammatory burden. Machine learning and radiomic features' extraction and spectral CT for tissue characterization are also expected to maximize the diagnostic and prognostic yield of CCTA. The combination of anatomical, functional, and biological information on coronary circulation by CCTA offers a unique toolkit for the risk stratification of patients, and patient selection for targeted aggressive prevention strategies. We hereby provide a review of the current state-of-the art in the field and discuss how integrating the full capacities of CCTA into clinical care pathways opens new opportunities for the tailored management of coronary artery disease.
Collapse
Affiliation(s)
- Alexios S Antonopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, 114 Vas. Sofias Avenue, 11527, Athens, Greece
- RDM Division of Cardiovascular Medicine, Oxford Academic CT Programme, University of Oxford, John Radcliffe Hospital, Headley Way, OX3 9DU Oxford, UK
| | - Andreas Angelopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, 114 Vas. Sofias Avenue, 11527, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, 114 Vas. Sofias Avenue, 11527, Athens, Greece
| | - Charalambos Antoniades
- RDM Division of Cardiovascular Medicine, Oxford Academic CT Programme, University of Oxford, John Radcliffe Hospital, Headley Way, OX3 9DU Oxford, UK
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, 114 Vas. Sofias Avenue, 11527, Athens, Greece
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Multicenter studies showed that the characterization of coronary atherosclerosis by coronary computed tomography (CT) angiography (CCTA) provides independent and incremental prognostic value above and beyond traditional measures of coronary artery disease (CAD) and is able to identify patients at risk of future event. Aim of the present review is to expound the major imaging plaque features associated with increased risk of coronary event and to review the data supporting the usefulness of CCTA as tool for plaque assessment and for monitoring the changes in atherosclerotic burden. RECENT FINDINGS The evaluation of coronary atherosclerosis, including the measurement of imaging risk scores (e.g. CT-adapted Leaman score) was demonstrated as independent long-term predictor of acute coronary events. In particular, qualitative (remodelling index, low-attenuation plaque, napkin-ring sign, small spotty calcifications) and quantitative (plaque burden, total-, noncalcific- and fibrofatty plaque volume) plaque features were associated with increased risk. CCTA was also demonstrated to accurately quantify plaque volume vs. intravascular ultrasound and findings from PARADIGM and EVAPORATE studies supported the use of CCTA as noninvasive tool to follow the effect of medication on plaque progression/regression. Finally, interesting relationship between plaque features, coronary physiology and biomarkers have been described. SUMMARY Latest guidelines on the management of patients with stable CAD recommended CCTA in Class I of evidence, particularly when 'information on atherosclerosis are desired', underlining the usefulness of CCTA to characterize and quantify the atherosclerotic burden.
Collapse
|
24
|
Wu C, Liu X, Ghista D, Yin Y, Zhang H. Effect of plaque compositions on fractional flow reserve in a fluid-structure interaction analysis. Biomech Model Mechanobiol 2021; 21:203-220. [PMID: 34713361 DOI: 10.1007/s10237-021-01529-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/13/2021] [Indexed: 01/14/2023]
Abstract
Coronary artery disease involves the reduction of blood flow to the myocardium due to atherosclerotic plaques. The findings of myocardial ischemia may indicate severe coronary stenosis, but many studies have demonstrated a mismatch between lumen stenosis and fractional flow reserve (FFR). Recently, some clinical studies have found that the composition of atherosclerotic plaques may be a potential missing link between stenosis and ischemia. To investigate the relationship between myocardial ischemia and plaque composition, we have developed and adopted a new fluid-structure interaction (FSI) patient-specific coronary plaque model, based on computed tomography angiography data, to assess the impact on FFR as a biomechanical indicator of ischemia. A total of 180 analyses have been performed in 3D-FSI coronary artery disease models based on plaque compositions, plaque location, and stenosis degree. Hemodynamic analysis of simulation results and comparisons with other methods has been conducted to validate our models. Our results have successfully verified that the different compositions of plaques have resulted in differences in the calculated FFR. The mean FFR values with lipid plaques are [Formula: see text] as compared to the mean FFR values in lesions with fibrous plaques [Formula: see text] and calcified plaques [Formula: see text]. Besides, FFR differences between the three different plaque compositions have been shown to increase as the diameter stenosis increased. Plaque composition affects vascular stiffness and vascular dilation ability, and thereby affects the stenosis degree, resulting in abnormal FFR leading to myocardial ischemia. This interrelationship can help to diagnose the cause of high-risk coronary artery disease, leading to myocardial ischemia.
Collapse
Affiliation(s)
- Chulin Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiujian Liu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dhanjoo Ghista
- University 2020 Foundation, Northborough, MA, 01532, USA
| | - Youbin Yin
- Shenzhen Keya Medical Technology Corporation, Shenzhen, 518172, China
| | - Heye Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
25
|
Chao CJ, Lakshmanan S, Ceponiene I, Luo Y, Nakanishi R, Nezarat N, Kanisawa M, Budoff MJ. New carotid plaque, but not the progression of intima-media thickness, predicts the progression of high-risk coronary plaque. Coron Artery Dis 2021; 32:554-560. [PMID: 33417340 DOI: 10.1097/mca.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Carotid intima-media thickness (CIMT) is regarded as a controversial risk marker for cardiovascular disease (CVD). We aimed to evaluate the role of CIMT and carotid plaque progression as predictors for the progression of coronary plaque and compositions. METHODS In the Garlic 4 study, asymptomatic patients with intermediate CVD risk (Framingham risk score 6-20%) were recruited for a serial carotid ultrasound, and coronary artery calcium score (CAC)/coronary computed tomography angiography (CCTA) studies for subclinical atherosclerosis at a baseline and 1 year. The association between progression of quantitatively measured coronary plaque compositions and the progression of CIMT/carotid plaque was analyzed. A P value <0.05 is considered as statistically significant. RESULTS Forty-seven consecutive patients were included. The mean age was 58.5 ± 6.6 years, and 69.1 % were male. New carotid plaque appeared in 34.0 % (n = 16) of participants, and 55.3 % (n = 26) of subjects had coronary plaque progression. In multilinear regression analysis, adjusted by age, gender, and statin use, the development of new carotid plaque was significantly associated with an increase in noncalcified coronary plaque [β (SE) 2.0 (0.9); P = 0.025] and necrotic core plaque (1.7 (0.6); P = 0.009). In contrast, CIMT progression was not associated with the progression of coronary plaque, or coronary artery calcium (CAC) (P = NS). CONCLUSION Compared to CIMT, carotid plaque is a better indicator of coronary plaque progression. The appearance of a new carotid plaque is associated with significant progression of necrotic core and noncalcified plaque, which are high-risk coronary plaque components.
Collapse
Affiliation(s)
- Chieh-Ju Chao
- Department of Cardiovascular Diseases, Mayo Clinic Arizona, Scottsdale, Arizona
- Lundquist Institute, California, USA
| | | | - Indre Ceponiene
- Lundquist Institute, California, USA
- Department of Cardiology, Lithuanian University of Health Sciences, Lithuania
| | | | | | | | | | | |
Collapse
|
26
|
Hybrid Imaging to Assess the Impact of Vulnerable Plaque on Post Myocardial Infarction Myocardial Scar. JOURNAL OF INTERDISCIPLINARY MEDICINE 2021. [DOI: 10.2478/jim-2021-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background: Multimodality imaging improves the accuracy of cardiac assessment in patients with prior myocardial infarction. The aim of this study was to investigate the association between coronary plaque vulnerability (PV) and myocardial viability in the territory irrigated by the infarct-related artery (IRA). Secondary objectives include evaluation of the systemic inflammation but also different cardiac risk scores (SYNTAX score, Duke jeopardy score, or calcium score) using hybrid imaging models of coronary computed tomography angiography (CCTA) and cardiac magnetic resonance (CMR) in patients who have suffered a previous myocardial infarction (MI). Material and methods: The study included 45 subjects with documented MI in the 30 days prior to study enrolment, who underwent CCTA and CMR examinations. Computational postprocessing of CCTA and CMR images was used to generate fused imaging models. Based on the vulnerability degree of the associated non-culprit lesion located proximally in the IRA, the study population was divided into 3 groups: Group 1 – subjects with no sign of vulnerability (n = 7); Group 2 – subjects with 1 or 2 CT vulnerability features (n = 28); and Group 3 – subjects with >2 features of vulnerability (n = 12). Results: CCTA features indicative for the severity of coronary artery disease were not different between groups in terms of calcium scoring (460 ± 501 vs. 579 ± 430 vs. 432 ± 494, p = 0.7) or SYNTAX score (25 ± 9.2 vs. 24.9 ± 8.3 vs. 20.2 ± 11.9, p = 0.4). However, after 1 month, infarct size and the Duke jeopardy score were associated with increased PV (infarct size 8.77 ± 3.4 g in Group 1, compared to 20.87 ± 8.3 g in Group 2 and 27.99 ± 11.8 g in Group 3 (p = 0.007), while the Duke jeopardy score was 4.4 ± 1.6 in Group 1, vs. 7.07 ± 2.1 in Group 2 vs. 7.5 ± 1.73 in Group 3 (p = 0.01). Inflammatory biomarkers were directly associated with coronary plaque vulnerability (p = 0.007 for hs-CRP and p = 0.038 for MMP-9). Conclusion: In patients with prior myocardial infarction, the size of myocardial scar was directly correlated with the vulnerability degree of coronary plaques and with systemic inflammation quantified during the acute phase of the coronary event. Hybrid imaging may help to identify the hemodynamically significant plaques with superior accuracy.
Collapse
|
27
|
Ueki Y, Yamaji K, Losdat S, Karagiannis A, Taniwaki M, Roffi M, Otsuka T, Koskinas KC, Holmvang L, Maldonado R, Pedrazzini G, Radu MD, Dijkstra J, Windecker S, Garcia-Garcia HM, Räber L. Discordance in the diagnostic assessment of vulnerable plaques between radiofrequency intravascular ultrasound versus optical coherence tomography among patients with acute myocardial infarction: insights from the IBIS-4 study. Int J Cardiovasc Imaging 2021; 37:2839-2847. [PMID: 34236570 PMCID: PMC8494667 DOI: 10.1007/s10554-021-02272-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/02/2021] [Indexed: 11/29/2022]
Abstract
We aimed to evaluate the diagnostic agreement between radiofrequency (RF) intravascular ultrasound (IVUS) and optical coherence tomography (OCT) for thin-cap fibroatheroma (TCFA) in non-infarct-related coronary arteries (non-IRA) in patients with ST-segment elevation myocardial infarction (STEMI). In the Integrated Biomarker Imaging Study (IBIS-4), 103 STEMI patients underwent OCT and RF-IVUS imaging of non-IRA after successful primary percutaneous coronary intervention and at 13-month follow-up. A coronary lesion was defined as a segment with ≥ 3 consecutive frames (≈1.2 mm) with plaque burden ≥ 40% as assessed by grayscale IVUS. RF-IVUS-derived TCFA was defined as a lesion with > 10% confluent necrotic core abutting to the lumen in > 10% of the circumference. OCT-TCFA was defined by a minimum cap thickness < 65 μm. The two modalities were matched based on anatomical landmarks using a dedicated matching software. Using grayscale IVUS, we identified 276 lesions at baseline (N = 146) and follow-up (N = 130). Using RF-IVUS, 208 lesions (75.4%) were classified as TCFA. Among them, OCT identified 14 (6.7%) TCFA, 60 (28.8%) thick-cap fibroatheroma (ThCFA), and 134 (64.4%) non-fibroatheroma. All OCT-TCFA (n = 14) were confirmed as RF-TCFA. The concordance rate between RF-IVUS and OCT for TCFA diagnosis was 29.7%. The reasons for discordance were: OCT-ThCFA (25.8%); OCT-fibrous plaque (34.0%); attenuation due to calcium (23.2%); attenuation due to macrophage (10.3%); no significant attenuation (6.7%). There was a notable discordance in the diagnostic assessment of TCFA between RF-IVUS and OCT. The majority of RF-derived TCFA were not categorized as fibroatheroma using OCT, while all OCT-TCFA were classified as TCFA by RF-IVUS. ClinicalTrials.gov Identifier NCT00962416.
Collapse
Affiliation(s)
- Yasushi Ueki
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Kyohei Yamaji
- Division of Cardiology, Kokura Memorial Hospital, Kitakyushu, Japan
| | | | | | - Masanori Taniwaki
- Department of Cardiology, Tokorozawa Heart Center, Tokorozawa, Japan
| | - Marco Roffi
- Division of Cardiology, University Hospital Geneva, Geneva, Switzerland
| | - Tatsuhiko Otsuka
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Konstantinos C Koskinas
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Lene Holmvang
- Heart Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rafaela Maldonado
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | | | - Maria D Radu
- Heart Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jouke Dijkstra
- Leiden University Medical Center, Leiden, the Netherlands
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Hector M Garcia-Garcia
- MedStar Cardiovacular Research Network, MedStar Washington Hospital Center, Washington, DC, USA
| | - Lorenz Räber
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
28
|
Cardiac Computed Tomography Radiomics for the Non-Invasive Assessment of Coronary Inflammation. Cells 2021; 10:cells10040879. [PMID: 33921502 PMCID: PMC8069372 DOI: 10.3390/cells10040879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
Radiomics, via the extraction of quantitative information from conventional radiologic images, can identify imperceptible imaging biomarkers that can advance the characterization of coronary plaques and the surrounding adipose tissue. Such an approach can unravel the underlying pathophysiology of atherosclerosis which has the potential to aid diagnostic, prognostic and, therapeutic decision making. Several studies have demonstrated that radiomic analysis can characterize coronary atherosclerotic plaques with a level of accuracy comparable, if not superior, to current conventional qualitative and quantitative image analysis. While there are many milestones still to be reached before radiomics can be integrated into current clinical practice, such techniques hold great promise for improving the imaging phenotyping of coronary artery disease.
Collapse
|
29
|
The Impact of Coronary Artery Calcification on Long-Term Cardiovascular Outcomes. JOURNAL OF INTERDISCIPLINARY MEDICINE 2021. [DOI: 10.2478/jim-2021-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Decades of research and experimental studies have investigated various strategies to prevent acute coronary events. However, significantly efficient preventive methods have not been developed and still remains a challenge to determine if a coronary atherosclerotic plaque will become vulnerable and unstable. This review aims to assess the significance of plaque vulnerability markers, more precisely the role of spotty calcifications in the development of major cardiac events, given that coronary calcification is a hallmark of atherosclerosis. Recent studies have suggested that microcalcifications, spotty calcifications, and the presence of the napkin-ring sign are predictive vulnerable plaque features, and their presence may cause plaque instability.
Collapse
|
30
|
Bajaj R, Garcia-Garcia HM, Courtney BK, Ramasamy A, Tufaro V, Erdogan E, Khan AH, Alves N, Rathod KS, Onuma Y, Serruys PW, Mathur A, Baumbach A, Bourantas C. Multi-modality intravascular imaging for guiding coronary intervention and assessing coronary atheroma: the Novasight Hybrid IVUS-OCT system. Minerva Cardiol Angiol 2021; 69:655-670. [PMID: 33703857 DOI: 10.23736/s2724-5683.21.05532-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intravascular imaging has evolved alongside interventional cardiology as an adjunctive tool for assessing plaque pathology and for guiding and optimising percutaneous coronary intervention (PCI) in challenging lesions. The two modalities which have dominated the field are intravascular ultrasound (IVUS), which relies on sound waves and optical coherence tomography (OCT), relying on light waves. These approaches however have limited efficacy in assessing plaque morphology and vulnerability that are essential for guiding PCI in complex lesions and identifying patient at risk that will benefit from emerging therapies targeting plaque evolution. These limitations are complementary and, in this context, it has been recognised and demonstrated in multi-modality studies that the concurrent use of IVUS and OCT can help overcome these deficits enabling a more complete and accurate plaque assessment. The Conavi Novasight Hybrid IVUS-OCT catheter is the first commercially available device that is capable of invasive clinical coronary assessment with simultaneously acquired and co-registered IVUS and OCT imaging. It represents a significant evolution in the field and is expected to have broad application in clinical practice and research. In this review article we present the limitations of standalone intravascular imaging techniques, summarise the data supporting the value of multimodality imaging in clinical practice and research, describe the Novasight Hybrid IVUS-OCT system and highlight the potential utility of this technology in coronary intervention and in the study of atherosclerosis.
Collapse
Affiliation(s)
- Retesh Bajaj
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Brian K Courtney
- Sunnybrook Research Institute, Schulich Heart Program, University of Toronto, Toronto, ON, Canada.,Conavi Medical, North York, ON, Canada
| | - Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Vincenzo Tufaro
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Emrah Erdogan
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Ameer H Khan
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Natasha Alves
- Sunnybrook Research Institute, Schulich Heart Program, University of Toronto, Toronto, ON, Canada
| | - Krishnaraj S Rathod
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yoshinobu Onuma
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Patrick W Serruys
- School of Medicine, National University of Ireland Galway, Galway, Ireland.,National Heart & Lung Institute, Imperial College London, London, UK
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Christos Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK - .,Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
31
|
Shaw LJ, Blankstein R, Bax JJ, Ferencik M, Bittencourt MS, Min JK, Berman DS, Leipsic J, Villines TC, Dey D, Al'Aref S, Williams MC, Lin F, Baskaran L, Litt H, Litmanovich D, Cury R, Gianni U, van den Hoogen I, R van Rosendael A, Budoff M, Chang HJ, E Hecht H, Feuchtner G, Ahmadi A, Ghoshajra BB, Newby D, Chandrashekhar YS, Narula J. Society of Cardiovascular Computed Tomography / North American Society of Cardiovascular Imaging - Expert Consensus Document on Coronary CT Imaging of Atherosclerotic Plaque. J Cardiovasc Comput Tomogr 2021; 15:93-109. [PMID: 33303383 DOI: 10.1016/j.jcct.2020.11.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coronary computed tomographic angiography (CCTA) provides a wealth of clinically meaningful information beyond anatomic stenosis alone, including the presence or absence of nonobstructive atherosclerosis and high-risk plaque features as precursors for incident coronary events. There is, however, no uniform agreement on how to identify and quantify these features or their use in evidence-based clinical decision-making. This statement from the Society of Cardiovascular Computed Tomography and North American Society of Cardiovascular Imaging addresses this gap and provides a comprehensive review of the available evidence on imaging of coronary atherosclerosis. In this statement, we provide standardized definitions for high-risk plaque (HRP) features and distill the evidence on the effectiveness of risk stratification into usable practice points. This statement outlines how this information should be communicated to referring physicians and patients by identifying critical elements to include in a structured CCTA report - the presence and severity of atherosclerotic plaque (descriptive statements, CAD-RADS™ categories), the segment involvement score, HRP features (e.g., low attenuation plaque, positive remodeling), and the coronary artery calcium score (when performed). Rigorous documentation of atherosclerosis on CCTA provides a vital opportunity to make recommendations for preventive care and to initiate and guide an effective care strategy for at-risk patients.
Collapse
Affiliation(s)
- Leslee J Shaw
- Weill Cornell School of Medicine, New York, NY, USA.
| | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - James K Min
- Weill Cornell School of Medicine; Cleerly, Inc. (started in 2020), New York, NY, USA
| | - Daniel S Berman
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Damini Dey
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Fay Lin
- Weill Cornell School of Medicine, New York, NY, USA
| | | | - Harold Litt
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Diana Litmanovich
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ricardo Cury
- Miami Cardiac and Vascular Institute and Baptist Health of South Florida, Miami, FL, USA
| | | | | | | | - Matthew Budoff
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | | | | | - Amir Ahmadi
- Mount Sinai School of Medicine, New York, NY, USA
| | | | - David Newby
- University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Jagat Narula
- Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
32
|
Liu H, Wingert A, Wang J, Zhang J, Wang X, Sun J, Chen F, Khalid SG, Jiang J, Zheng D. Extraction of Coronary Atherosclerotic Plaques From Computed Tomography Imaging: A Review of Recent Methods. Front Cardiovasc Med 2021; 8:597568. [PMID: 33644127 PMCID: PMC7903898 DOI: 10.3389/fcvm.2021.597568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Atherosclerotic plaques are the major cause of coronary artery disease (CAD). Currently, computed tomography (CT) is the most commonly applied imaging technique in the diagnosis of CAD. However, the accurate extraction of coronary plaque geometry from CT images is still challenging. Summary of Review: In this review, we focused on the methods in recent studies on the CT-based coronary plaque extraction. According to the dimension of plaque extraction method, the studies were categorized into two-dimensional (2D) and three-dimensional (3D) ones. In each category, the studies were analyzed in terms of data, methods, and evaluation. We summarized the merits and limitations of current methods, as well as the future directions for efficient and accurate extraction of coronary plaques using CT imaging. Conclusion: The methodological innovations are important for more accurate CT-based assessment of coronary plaques in clinical applications. The large-scale studies, de-blooming algorithms, more standardized datasets, and more detailed classification of non-calcified plaques could improve the accuracy of coronary plaque extraction from CT images. More multidimensional geometric parameters can be derived from the 3D geometry of coronary plaques. Additionally, machine learning and automatic 3D reconstruction could improve the efficiency of coronary plaque extraction in future studies.
Collapse
Affiliation(s)
- Haipeng Liu
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom.,Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Aleksandra Wingert
- Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Jian'an Wang
- Department of Cardiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jucheng Zhang
- Department of Clinical Engineering, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xinhong Wang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jianzhong Sun
- Department of Radiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Syed Ghufran Khalid
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Jun Jiang
- Department of Cardiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| |
Collapse
|
33
|
Lee R, Seok JW. An Update on [ 18F]Fluoride PET Imaging for Atherosclerotic Disease. J Lipid Atheroscler 2020; 9:349-361. [PMID: 33024730 PMCID: PMC7521973 DOI: 10.12997/jla.2020.9.3.349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is the leading cause of life-threatening morbidity and mortality, as the rupture of atherosclerotic plaques leads to critical atherothrombotic events such as myocardial infarction and ischemic stroke, which are the 2 most common causes of death worldwide. Vascular calcification is a complicated pathological process involved in atherosclerosis, and microcalcifications are presumed to increase the likelihood of plaque rupture. Despite many efforts to develop novel non-invasive diagnostic modalities, diagnostic techniques are still limited, especially before symptomatic presentation. From this point of view, vulnerable plaques are a direct target of atherosclerosis imaging. Anatomic imaging modalities have the limitation of only visualizing macroscopic structural changes, which occurs in later stages of disease, while molecular imaging modalities are able to detect microscopic processes and microcalcifications, which occur early in the disease process. Na[18F]-fluoride positron emission tomography/computed tomography could allow the early detection of plaque instability, which is deemed to be a primary goal in the prevention of cardiac or brain ischemic events, by quantifying the microcalcifications within vulnerable plaques and evaluating the atherosclerotic disease burden.
Collapse
Affiliation(s)
- Reeree Lee
- Department of Nuclear Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Ju Won Seok
- Department of Nuclear Medicine, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
34
|
Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. Int J Mol Sci 2020; 21:ijms21082992. [PMID: 32340284 PMCID: PMC7216001 DOI: 10.3390/ijms21082992] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a lipoprotein-driven inflammatory disorder leading to a plaque formation at specific sites of the arterial tree. After decades of slow progression, atherosclerotic plaque rupture and formation of thrombi are the major factors responsible for the development of acute coronary syndromes (ACSs). In this regard, the detection of high-risk (vulnerable) plaques is an ultimate goal in the management of atherosclerosis and cardiovascular diseases (CVDs). Vulnerable plaques have specific morphological features that make their detection possible, hence allowing for identification of high-risk patients and the tailoring of therapy. Plaque ruptures predominantly occur amongst lesions characterized as thin-cap fibroatheromas (TCFA). Plaques without a rupture, such as plaque erosions, are also thrombi-forming lesions on the most frequent pathological intimal thickening or fibroatheromas. Many attempts to comprehensively identify vulnerable plaque constituents with different invasive and non-invasive imaging technologies have been made. In this review, advantages and limitations of invasive and non-invasive imaging modalities currently available for the identification of plaque components and morphologic features associated with plaque vulnerability, as well as their clinical diagnostic and prognostic value, were discussed.
Collapse
|
35
|
Aengevaeren VL, Mosterd A, Sharma S, Prakken NHJ, Möhlenkamp S, Thompson PD, Velthuis BK, Eijsvogels TMH. Exercise and Coronary Atherosclerosis: Observations, Explanations, Relevance, and Clinical Management. Circulation 2020; 141:1338-1350. [PMID: 32310695 PMCID: PMC7176353 DOI: 10.1161/circulationaha.119.044467] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Physical activity and exercise training are effective strategies for reducing the risk of cardiovascular events, but multiple studies have reported an increased prevalence of coronary atherosclerosis, usually measured as coronary artery calcification, among athletes who are middle-aged and older. Our review of the medical literature demonstrates that the prevalence of coronary artery calcification and atherosclerotic plaques, which are strong predictors for future cardiovascular morbidity and mortality, was higher in athletes compared with controls, and was higher in the most active athletes compared with less active athletes. However, analysis of plaque morphology revealed fewer mixed plaques and more often only calcified plaques among athletes, suggesting a more benign composition of atherosclerotic plaques. This review describes the effects of physical activity and exercise training on coronary atherosclerosis in athletes who are middle-aged and older and aims to contribute to the understanding of the potential adverse effects of the highest doses of exercise training on the coronary arteries. For this purpose, we will review the association between exercise and coronary atherosclerosis measured using computed tomography, discuss the potential underlying mechanisms for exercise-induced coronary atherosclerosis, determine the clinical relevance of coronary atherosclerosis in middle-aged athletes and describe strategies for the clinical management of athletes with coronary atherosclerosis to guide physicians in clinical decision making and treatment of athletes with elevated coronary artery calcification scores.
Collapse
Affiliation(s)
- Vincent L Aengevaeren
- Department of Physiology (V.L.A., T.M.H.E.), Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Cardiology (V.L.A.), Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Mosterd
- Department of Cardiology, Meander Medical Center, Amersfoort, The Netherlands (A.M.)
| | - Sanjay Sharma
- Cardiology Clinical and Academic Group, St George's University of London, United Kingdom (S.S.)
| | - Niek H J Prakken
- Department of Radiology, University Medical Center Groningen, The Netherlands (N.H.J.P.)
| | - Stefan Möhlenkamp
- Clinic of Cardiology and Intensive Care Medicine, Bethanien Hospital Moers, Germany (S.M.)
| | | | - Birgitta K Velthuis
- Department of Radiology, University Medical Center Utrecht, The Netherlands (B.K.V.)
| | - Thijs M H Eijsvogels
- Department of Physiology (V.L.A., T.M.H.E.), Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Ramasamy A, Safi H, Moon J, Andiapen M, Rathod K, Maurovich-Horvat P, Bajaj R, Serruys P, Mathur A, Baumbach A, Pugliese F, Torii R, Bourantas C. Evaluation of the Efficacy of Computed Tomographic Coronary Angiography in Assessing Coronary Artery Morphology and Physiology: Rationale and Study Design. Cardiology 2020; 145:285-293. [DOI: 10.1159/000506537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 02/12/2020] [Indexed: 11/19/2022]
Abstract
Computed tomographic coronary angiography (CTCA) is a non-invasive imaging modality, which allows plaque burden and composition assessment and detection of plaque characteristics associated with increased vulnerability. In addition, CTCA-based coronary artery reconstruction enables local haemodynamic forces assessment, which regulate plaque formation and vascular inflammation and prediction of lesions that are prone to progress and cause events. However, the use of CTCA for vulnerable plaque detection in the clinical arena remains limited. To unlock the full potential of CTCA and enable its broad use, further work is needed to develop user-friendly processing tools that will allow fast and accurate analysis of CTCA, computational fluid dynamic modelling, and evaluation of the local haemodynamic forces. The present study aims to develop a seamless platform that will overcome the limitations of CTCA and enable fast and accurate evaluation of plaque morphology and physiology. We will analyse imaging data from 70 patients with coronary artery disease who will undergo state-of-the-art CTCA and near-infrared spectroscopy-intravascular ultrasound imaging and develop and train algorithms that will take advantage of the intravascular imaging data to optimise vessel segmentation and plaque characterisation. Furthermore, we will design an advanced module that will enable reconstruction of coronary artery anatomy from CTCA, blood flow simulation, shear stress estimation, and comprehensive visualisation of vessel pathophysiology. These advances are expected to facilitate the broad use of CTCA, not only for risk stratification but also for the evaluation of the effect of emerging therapies on plaque evolution.
Collapse
|
37
|
Matsumoto H, Watanabe S, Kyo E, Tsuji T, Ando Y, Eisenberg E, Otaki Y, Manabe O, Cadet S, Slomka PJ, Tamarappoo BK, Berman DS, Dey D. Improved Evaluation of Lipid-Rich Plaque at Coronary CT Angiography: Head-to-Head Comparison with Intravascular US. Radiol Cardiothorac Imaging 2019; 1:e190069. [PMID: 32076671 DOI: 10.1148/ryct.2019190069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023]
Abstract
Purpose To improve the evaluation of low-attenuation plaque (LAP) by using semiautomated software and to assess whether the use of a proposed automated function (LAP editor) that excludes voxels adjacent to the outer vessel wall improves the relationship between LAP and the presence and size of the lipid-rich component (LRC) verified at intravascular US. At coronary CT angiography, quantification of LAP can improve risk stratification. Plaque, defined as the area between the vessel and the lumen wall, is prone to partial volume effects from the surrounding pericoronary adipose tissue. Materials and Methods The percentage of LAP (%LAP), defined as the percentage of noncalcified plaque with an attenuation value lower than 30 HU (LAP/total plaque volume) at greater than or equal to 0 mm (%LAP0), greater than or equal to 0.1 mm (%LAP0.1), greater than or equal to 0.3 mm (%LAP0.3), greater than or equal to 0.5 mm (%LAP0.5), and greater than or equal to 0.7 mm (%LAP0.7) inward from the vessel wall boundaries, were quantified in 155 plaques in 90 patients who underwent coronary CT angiography before intravascular US. At intravascular US, the LRC was identified by using echo attenuation, and its size was measured by using the attenuation score (summed score/analysis length) based on the attenuation arc (1 = < 90°, 2 = 90° to < 180°, 3 = 180° to < 270°, 4 = 270°-360°) for every 1 mm. Results Use of LAP editing improved the ability for discriminating LRC (areas under receiver operating characteristic curve: 0.667 with %LAP0, 0.713 with %LAP0.1 [P < .001 for comparison with %LAP0]), 0.778 with %LAP0.3 [P < .001], 0.825 with %LAP0.5 [P < .001], 0.802 with %LAP0.7 [P = .002]). %LAP0.5 had the strongest correlation (r = 0.612, P < .001) with LRC size, whereas %LAP0 resulted in the weakest correlation (r = 0.307; P < .001). Conclusion Evaluation of LAP at coronary CT angiography can be significantly improved by excluding voxels that are adjacent to the vessel wall boundaries by 0.5 mm.Supplemental material is available for this article.© RSNA, 2019.
Collapse
Affiliation(s)
- Hidenari Matsumoto
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Satoshi Watanabe
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Eisho Kyo
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Takafumi Tsuji
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Yosuke Ando
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Evann Eisenberg
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Yuka Otaki
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Osamu Manabe
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Sebastien Cadet
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Piotr J Slomka
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Balaji K Tamarappoo
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Daniel S Berman
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Damini Dey
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| |
Collapse
|
38
|
Abstract
Unstable coronary plaques that are prone to erosion and rupture are the major cause of acute coronary syndromes. Our expanding understanding of the biological mechanisms of coronary atherosclerosis and rapid technological advances in the field of medical imaging has established cardiac computed tomography as a first-line diagnostic test in the assessment of suspected coronary artery disease, and as a powerful method of detecting the vulnerable plaque and patient. Cardiac computed tomography can provide a noninvasive, yet comprehensive, qualitative and quantitative assessment of coronary plaque burden, detect distinct high-risk morphological plaque features, assess the hemodynamic significance of coronary lesions and quantify the coronary inflammatory burden by tracking the effects of arterial inflammation on the composition of the adjacent perivascular fat. Furthermore, advances in machine learning, computational fluid dynamic modeling, and the development of targeted contrast agents continue to expand the capabilities of cardiac computed tomography imaging. In our Review, we discuss the current role of cardiac computed tomography in the assessment of coronary atherosclerosis, highlighting its dual function as a clinical and research tool that provides a wealth of structural and functional information, with far-reaching diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Evangelos K. Oikonomou
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Henry W. West
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Charalambos Antoniades
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
39
|
Vancheri F, Longo G, Vancheri S, Danial JSH, Henein MY. Coronary Artery Microcalcification: Imaging and Clinical Implications. Diagnostics (Basel) 2019; 9:E125. [PMID: 31547506 PMCID: PMC6963848 DOI: 10.3390/diagnostics9040125] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Strategies to prevent acute coronary and cerebrovascular events are based on accurate identification of patients at increased cardiovascular (CV) risk who may benefit from intensive preventive measures. The majority of acute CV events are precipitated by the rupture of the thin cap overlying the necrotic core of an atherosclerotic plaque. Hence, identification of vulnerable coronary lesions is essential for CV prevention. Atherosclerosis is a highly dynamic process involving cell migration, apoptosis, inflammation, osteogenesis, and intimal calcification, progressing from early lesions to advanced plaques. Coronary artery calcification (CAC) is a marker of coronary atherosclerosis, correlates with clinically significant coronary artery disease (CAD), predicts future CV events and improves the risk prediction of conventional risk factors. The relative importance of coronary calcification, whether it has a protective effect as a stabilizing force of high-risk atherosclerotic plaque has been debated until recently. The extent of calcium in coronary arteries has different clinical implications. Extensive plaque calcification is often a feature of advanced and stable atherosclerosis, which only rarely results in rupture. These macroscopic vascular calcifications can be detected by computed tomography (CT). The resulting CAC scoring, although a good marker of overall coronary plaque burden, is not useful to identify vulnerable lesions prone to rupture. Unlike macrocalcifications, spotty microcalcifications assessed by intravascular ultrasound or optical coherence tomography strongly correlate with plaque instability. However, they are below the resolution of CT due to limited spatial resolution. Microcalcifications develop in the earliest stages of coronary intimal calcification and directly contribute to plaque rupture producing local mechanical stress on the plaque surface. They result from a healing response to intense local macrophage inflammatory activity. Most of them show a progressive calcification transforming the early stage high-risk microcalcification into the stable end-stage macroscopic calcification. In recent years, new developments in noninvasive cardiovascular imaging technology have shifted the study of vulnerable plaques from morphology to the assessment of disease activity of the atherosclerotic lesions. Increased disease activity, detected by positron emission tomography (PET) and magnetic resonance (MR), has been shown to be associated with more microcalcification, larger necrotic core and greater rates of events. In this context, the paradox of increased coronary artery calcification observed in statin trials, despite reduced CV events, can be explained by the reduction of coronary inflammation induced by statin which results in more stable macrocalcification.
Collapse
Affiliation(s)
| | - Giovanni Longo
- Cardiovascular and Interventional Department, S.Elia Hospital, 93100 Caltanissetta, Italy.
| | - Sergio Vancheri
- Radiology Department, I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy.
| | - John S H Danial
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Michael Y Henein
- Institute of Public Health and Clinical Medicine, Umea University, 901 87 Umea, Sweden.
- Institute of Environment & Health and Societies, Brunel University, Middlesex SW17 0RE, UK.
- Molecular and Clinical Sciences Research Institute, St George's University, London UB8 3PH, UK.
| |
Collapse
|
40
|
Effect of tube potential and luminal contrast attenuation on atherosclerotic plaque attenuation by coronary CT angiography: In vivo comparison with intravascular ultrasound. J Cardiovasc Comput Tomogr 2019; 13:219-225. [DOI: 10.1016/j.jcct.2019.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/08/2018] [Indexed: 12/26/2022]
|
41
|
Syaifudin A, Ariatedja JB, Kaelani Y, Takeda R, Sasaki K. Vulnerability analysis on the interaction between Asymmetric stent and arterial layer. Biomed Mater Eng 2019; 30:309-322. [PMID: 31127751 DOI: 10.3233/bme-191054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The utilization of Asymmetric stent for recovering atherosclerotic diseases, particularly non-symmetric obstruction, is a quite challenging breakthrough treatment. In terms of eccentric plaque, the non-uniform stiffness of arterial layer causes the increasingly complex issues of vulnerability. This study investigated the vulnerability of the interaction between the Asymmetric stent and the surrounding arterial layer using structural transient dynamic analysis in ANSYS. Four combinations of stent deployment, i.e. the Sinusoidal stent expanded by the offset balloon, the Sinusoidal stent expanded by the ordinary cylindrical balloon, the Asymmetric stent expanded by the offset balloon, and the Asymmetric stent expanded by the ordinary cylindrical balloon, are generated for this comparative study. Multilayer material properties from recent in vitro experiments are adopted for the surrounding arterial layer, such as a fibrous cap, lipid core, diseased-healthy intima, and diseased-healthy media. In order to address plaque vulnerability, the Cauchy stresses and Hencky strains are used for stress measure because of convenience in comparison with the uniaxial/biaxial tension test data. The location-specific threshold value from the diseased human carotid artery is adopted for rupture criteria. The simulation indicated that as regards the eccentric plaque, the plaque vulnerability is caused by the plaque shape and components rather than caused by the geometrical structure of the stent or balloon expansion method. Nevertheless, the non-symmetric inflation of balloon, which leads against the plaque, contributed to an increase in the vulnerability of fibrous cap of fibroatheroma plaque.
Collapse
Affiliation(s)
- Achmad Syaifudin
- Department of Mechanical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Julendra B Ariatedja
- Department of Mechanical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Yusuf Kaelani
- Department of Mechanical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Ryo Takeda
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Katsuhiko Sasaki
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
42
|
Matsumoto H, Watanabe S, Kyo E, Tsuji T, Ando Y, Otaki Y, Cadet S, Gransar H, Berman DS, Slomka P, Tamarappoo BK, Dey D. Standardized volumetric plaque quantification and characterization from coronary CT angiography: a head-to-head comparison with invasive intravascular ultrasound. Eur Radiol 2019; 29:6129-6139. [PMID: 31028446 DOI: 10.1007/s00330-019-06219-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES We sought to evaluate the accuracy of standardized total plaque volume (TPV) measurement and low-density non-calcified plaque (LDNCP) assessment from coronary CT angiography (CTA) in comparison with intravascular ultrasound (IVUS). METHODS We analyzed 118 plaques without extensive calcifications from 77 consecutive patients who underwent CTA prior to IVUS. CTA TPV was measured with semi-automated software comparing both scan-specific (automatically derived from scan) and fixed attenuation thresholds. From CTA, %LDNCP was calculated voxels below multiple LDNCP thresholds (30, 45, 60, 75, and 90 Hounsfield units [HU]) within the plaque. On IVUS, the lipid-rich component was identified by echo attenuation, and its size was measured using attenuation score (summed score ∕ analysis length) based on attenuation arc (1 = < 90°; 2 = 90-180°; 3 = 180-270°; 4 = 270-360°) every 1 mm. RESULTS TPV was highly correlated between CTA using scan-specific thresholds and IVUS (r = 0.943, p < 0.001), with no significant difference (2.6 mm3, p = 0.270). These relationships persisted for calcification patterns (maximal IVUS calcium arc of 0°, < 90°, or ≥ 90°). The fixed thresholds underestimated TPV (- 22.0 mm3, p < 0.001) and had an inferior correlation with IVUS (p < 0.001) compared with scan-specific thresholds. A 45-HU cutoff yielded the best diagnostic performance for identification of lipid-rich component, with an area under the curve of 0.878 vs. 0.840 for < 30 HU (p = 0.023), and corresponding %LDNCP resulted in the strongest correlation with the lipid-rich component size (r = 0.691, p < 0.001). CONCLUSIONS Standardized noninvasive plaque quantification from CTA using scan-specific thresholds correlates highly with IVUS. Use of a < 45-HU threshold for LDNCP quantification improves lipid-rich plaque assessment from CTA. KEY POINTS • Standardized scan-specific threshold-based plaque quantification from coronary CT angiography provides an accurate total plaque volume measurement compared with intravascular ultrasound. • Attenuation histogram-based low-density non-calcified plaque quantification can improve lipid-rich plaque assessment from coronary CT angiography.
Collapse
Affiliation(s)
- Hidenari Matsumoto
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA.
| | - Satoshi Watanabe
- Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan
| | - Eisho Kyo
- Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan
| | - Takafumi Tsuji
- Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan
| | - Yosuke Ando
- Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan
| | - Yuka Otaki
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
| | - Sebastien Cadet
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
| | - Heidi Gransar
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
| | - Daniel S Berman
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
| | - Piotr Slomka
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
| | - Balaji K Tamarappoo
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
- The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
43
|
Liu T, Yuan X, Wang C, Sun M, Jin S, Dai X. Quantification of plaque characteristics detected by dual source computed tomography angiography to predict myocardial ischemia as assessed by single photon emission computed tomography myocardial perfusion imaging. Quant Imaging Med Surg 2019; 9:711-721. [PMID: 31143662 DOI: 10.21037/qims.2019.04.07] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background We aim to evaluate the relationship between quantitative plaque characteristics detected by dual-source computed tomography angiography (DSCTA) and myocardial ischemia as assessed by single photon emission computed tomography myocardial perfusion imaging (SPECT-MPI). Methods In this study, 460 consecutive patients with suspected coronary artery disease (CAD) underwent DSCTA and stress/rest SPECT-MPI, and 179 patients with coronary artery plaques were quantitatively analyzed. Quantitative coronary artery plaque measurements including total plaque volume, the volume of non-calcified plaque, calcified plaque volume, low-density noncalcified plaque volume, total plaque burden, calcified plaque burden, non-calcified plaque burden, low-density non-calcified plaque (LDNCP) burden, remodeling index, plaque length, maximum diameter stenosis were provided by the automated software (Release 5.6.5, Circle Cardiovascular Imaging, Canada). Univariate and multivariate logistic regression analysis was performed to assess the correlation between quantitative plaque characteristics and myocardial ischemia to determine if plaque characteristics were independent of clinical risk factors and significant CAD. Results One hundred and seventy-nine patients (65% males) with suspected-CAD, undergoing DSCTA and stress/rest SPECT-MPI and single vessel ischemia were considered. There were significant correlations between quantitative assessment of plaque features and myocardial ischemia with details as follow: total plaque volume [25.2 (17.8-37.8) vs. 15.6 (10.3-24.9) mm3, P<0.001], calcified plaque volume (1.6±7.1 vs. 2.3±6.4 mm3, P=0.019), non-calcified plaque volume [23.6 (16.6-35.9) vs. 14.6 (10.3-22.8) mm3, P<0.001)], LDNCP volume [4.9 (2.1-8.2) vs. 2.2 (1.0-5.5) mm3, P=0.003], total plaque burden (47.6%±17.1% vs. 36.2%±17.3%, P=0.002), calcified plaque burden (1.5%±5.5% vs. 2.9%±6.9%, P=0.014), non-calcified plaque burden (46.1%±18.8% vs. 33.3%±16.4%, P=0.001), LDNCP burden [12.3% (6.4-17.7) vs. 3.3% (1.6-5.3), P<0.001], remodeling index [1.2 (1.1-1.4) vs. 1.0 (1.1-1.2), P<0.001], plaque length [4.0 (3.2-6.1) vs. 3.3 (2.8-3.8) mm, P=0.009], maximum diameter stenosis [18.1% (10.0-52.9) vs. 12.9% (6.5-18.5), P=0.011]. In a multivariate analysis, low-density noncalcified plaque burden (OR 1.33; 95% CI, 1.16-1.53, P<0.001) remained a significant predictor of myocardial ischemia after adjusting for stenosis ≥50% and gender. The area under curve (AUC) of the model containing LDNCP burden, stenosis ≥50% and gender was 0.875 (95% CI, 0.812-0.938), which was significantly better than the model with stenosis ≥50% and gender (AUC 0.729; 95% CI, 0.633-0.825). Conclusions Quantitative plaque characteristics detected by DSCTA are independently correlated with the incidence of myocardial ischemia by SPECT-MPI in patients with suspected CAD.
Collapse
Affiliation(s)
- Ting Liu
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xue Yuan
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Congcong Wang
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Mingfei Sun
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Shiqi Jin
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xu Dai
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
44
|
Carotid artery plaque characterization with a wide-detector computed tomography using a dedicated post-processing 3D analysis: comparison with histology. Radiol Med 2019; 124:795-803. [PMID: 30903605 DOI: 10.1007/s11547-019-01026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE The characterization of atherosclerotic carotid plaque plays a key role in the identification of patients at risk. The aim of our work was to evaluate the potentialities of carotid computed tomography angiography (CCTA) in assessing composition of atherosclerotic plaque. MATERIALS AND METHODS We retrospectively evaluated 29 patients (7 women and 22 men, age range 54-81; mean age 69) who underwent carotid endarterectomy. All patients underwent pre-surgical CCTA using a 320-slice scanner. Post-processing reconstructions and analysis were performed using a specific software. Percentage of three different components of the atherosclerotic plaque (adipose, fibrotic and calcific) were classified based on Hounsfield unit values. Post-processing results were compared with histological analysis. Vessel and plaque parameters were compared using the Pearson correlation coefficient (r). Bland-Altman plots with 95% confidence intervals were calculated for correlation. McNemar's test was used for comparison of dichotomous variables. RESULTS A significant correlation between histology and CCTA was found with respect to the areas corresponding to adipose, fibrotic and calcified plaques. The existence of proportional bias was observed between the two quantifying methods with lower discrepancies found for the adipose and fibrotic plaque areas. The Bland-Altman analyses showed a mean bias of 3.2%, 2.5% and 0.6% between histology and CCTA, for adipose, fibrotic and calcified plaque areas, respectively. CONCLUSIONS Multi-detector CT angiography represents a valuable technique to assess quantitatively the composition of atherosclerotic plaques, with particular reference to the prevalence of fibrotic tissue, and is a useful diagnostic tool to improve risk stratification of patients for cerebral stroke.
Collapse
|
45
|
Does the Tube Voltage Affect the Characterization of Coronary Plaques on 100- and 120-kVp Computed Tomography Scans. J Comput Assist Tomogr 2019; 43:416-422. [PMID: 30762654 DOI: 10.1097/rct.0000000000000845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to compare the diagnostic performance of 100- and 120-kVp coronary computed tomography (CT) angiography (CCTA) scans for the identification of coronary plaque components. METHODS We included 116 patients with coronary plaques who underwent CCTA and integrated backscatter intravascular ultrasound studies. On 100-kVp scans, we observed 24 fibrous and 24 fatty/fibrofatty plaques; on 120-kVp scans, we noted 27 fibrous and 41 fatty/fibrofatty plaques. We compared the fibrous and the fatty/fibrofatty plaques, the CT number of the coronary lumen, and the radiation dose on scans obtained at 100 and 120 kVp. We also compared the area under the receiver operating characteristic (ROC) curve of the coronary plaques on 100- and 120-kVp scans with their ROC curves on integrated backscatter intravascular ultrasound images. RESULTS The mean CT numbers of fatty and fatty/fibrofatty plaques were 5.71 ± 36.5 and 76.6 ± 33.7 Hounsfield units (HU), respectively, on 100-kVp scans; on 120-kVp scans, they were 13.9 ± 29.4 and 54.5 ± 22.3 HU, respectively. The CT number of the coronary lumen was 323.1 ± 81.2 HU, and the radiation dose was 563.7 ± 81.2 mGy-cm on 100-kVp scans; these values were 279.3 ± 61.8 HU and 819.1 ± 115.1 mGy-cm on 120-kVp scans. The results of ROC curve analysis identified 30.5 HU as the optimal diagnostic cutoff value for 100-kVp scans (area under the curve = 0.93, 95% confidence interval = 0.87-0.99, sensitivity = 95.8%, specificity = 78.9%); for 120-kVp plaque images, the optimal cutoff was 37.4 HU (area under the curve = 0.87, 95% confidence interval = 0.79-0.96, sensitivity = 82.1%, specificity = 85.7%). CONCLUSIONS For the discrimination of coronary plaque components, the diagnostic performance of 100- and 120-kVp CCTA scans is comparable.
Collapse
|
46
|
Liu Y, Wang HB, Li X, Xiao JY, Wang JX, Reilly KH, Sun B, Gao J. Relationship between plaque composition by virtual histology intravascular ultrasound and clinical outcomes after percutaneous coronary intervention in saphenous vein graft disease patients: study protocol of a prospective cohort study. BMC Cardiovasc Disord 2018; 18:233. [PMID: 30541457 PMCID: PMC6291998 DOI: 10.1186/s12872-018-0975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/03/2018] [Indexed: 12/01/2022] Open
Abstract
Background Plaque composition and morphologic characteristics identified by virtual histology intravascular ultrasound (VH-IVUS) can determine plaques at increased risk of clinical events following percutaneous coronary intervention (PCI) among coronary artery disease (CAD) patients. However, there have been few studies to investigate the relationship between plaque composition of saphenous vein graft (SVG) by VH-IVUS and clinical outcomes in patients with saphenous vein graft disease (SVGD) undergoing PCI. The purpose of this study is to determine whether plaque components and characteristics by VH-IVUS can predict major adverse cardiac events (MACEs) among SVGD patients undergoing PCI. Methods/design This is a prospective cohort study conducted in Tianjin Chest Hospital, China. Participants with SVGD referred for PCI will be invited to participate in this study, and will be followed up at 1, 6, 12, 24 and 36 months post-PCI to assess clinical outcomes. The planned sample size is 175 subjects. We will recruit subjects with SVGD scheduled to receive PCI, aged 18–80 years, with a history of previous coronary artery bypass graft (CABG) surgery more than 1 year ago, and willing to participate in the study and sign informed consent. The composite primary study endpoint is the incidence of MACEs after PCI for SVGD, including death from cardiac causes, non-fatal myocardial infarction, unplanned target lesion revascularization (TLR) and target vessel revascularization (TVR). The primary outcome analysis will be presented as Kaplan-Meier estimates and the primary outcome analysis will be carried out using a Cox proportional hazards regression model. Discussion Once the predictive values of plaque components and characteristics by VH-IVUS on subsequent clinical outcomes are determined among SVGD patients undergoing PCI, an innovative prediction tool of clinical outcomes for SVGD patients undergoing PCI will be created, which may lead to the development of new methods of risk stratification and intervention guidance. Trial registration The study is registered to ClinicalTrials.gov (NCT03175952).
Collapse
Affiliation(s)
- Yin Liu
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai er zhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China
| | - Hai-Bo Wang
- Peking University Clinical Research Institute, Xueyuan Rd 38#, Haidian Dist, Beijing, 100191, People's Republic of China
| | - Xiang Li
- Peking University Clinical Research Institute, Xueyuan Rd 38#, Haidian Dist, Beijing, 100191, People's Republic of China
| | - Jian-Yong Xiao
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai er zhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China
| | - Ji-Xiang Wang
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai er zhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China
| | | | - Bo Sun
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai er zhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China
| | - Jing Gao
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai er zhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China.
| |
Collapse
|
47
|
Blooming Artifact Reduction in Coronary Artery Calcification by A New De-blooming Algorithm: Initial Study. Sci Rep 2018; 8:6945. [PMID: 29720611 PMCID: PMC5931966 DOI: 10.1038/s41598-018-25352-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/16/2018] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the use of de-blooming algorithm in coronary CT angiography (CCTA) for optimal evaluation of calcified plaques. Calcified plaques were simulated on a coronary vessel phantom and a cardiac motion phantom. Two convolution kernels, standard (STND) and high-definition standard (HD STND), were used for imaging reconstruction. A dedicated de-blooming algorithm was used for imaging processing. We found a smaller bias towards measurement of stenosis using the de-blooming algorithm (STND: bias 24.6% vs 15.0%, range 10.2% to 39.0% vs 4.0% to 25.9%; HD STND: bias 17.9% vs 11.0%, range 8.9% to 30.6% vs 0.5% to 21.5%). With use of de-blooming algorithm, specificity for diagnosing significant stenosis increased from 45.8% to 75.0% (STND), from 62.5% to 83.3% (HD STND); while positive predictive value (PPV) increased from 69.8% to 83.3% (STND), from 76.9% to 88.2% (HD STND). In the patient group, reduction in calcification volume was 48.1 ± 10.3%, reduction in coronary diameter stenosis over calcified plaque was 52.4 ± 24.2%. Our results suggest that the novel de-blooming algorithm could effectively decrease the blooming artifacts caused by coronary calcified plaques, and consequently improve diagnostic accuracy of CCTA in assessing coronary stenosis.
Collapse
|
48
|
Alfaddagh A, Elajami TK, Ashfaque H, Saleh M, Bistrian BR, Welty FK. Effect of Eicosapentaenoic and Docosahexaenoic Acids Added to Statin Therapy on Coronary Artery Plaque in Patients With Coronary Artery Disease: A Randomized Clinical Trial. J Am Heart Assoc 2017; 6:JAHA.117.006981. [PMID: 29246960 PMCID: PMC5779017 DOI: 10.1161/jaha.117.006981] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Although statins reduce cardiovascular events, residual risk remains. Therefore, additional modalities are needed to reduce risk. We evaluated the effect of eicosapentaenoic acid and docosahexaenoic acid in pharmacologic doses added to statin treatment on coronary artery plaque volume. Methods and Results A total of 285 subjects with stable coronary artery disease on statins were randomized to omega‐3 ethyl‐ester (1.86 g of eicosapentaenoic acid and 1.5 g of docosahexaenoic acid daily) or no omega‐3 (control) for 30 months. Coronary plaque volume was assessed by coronary computed tomographic angiography. Mean (SD) age was 63.0 (7.7) years; mean low‐density lipoprotein cholesterol ≤80 mg/dL. In the intention‐to‐treat analysis, our primary endpoint, noncalcified plaque volume, was not different between groups (P=0.14) but approached significance in the per protocol analysis (P=0.07). When stratified by age in the intention‐to‐treat analysis, younger omega‐3 subjects had significantly less progression of the primary endpoint, noncalcified plaque (P=0.013), and fibrous, calcified and total plaque. In plaque subtype analysis, controls had significant progression of fibrous plaque compared to no change in the omega‐3 ethyl‐ester group (median % change [interquartile range], 5.0% [−5.7, 20.0] versus −0.1% [−12.3, 14.5], respectively; P=0.018). Among those on low‐intensity statins, omega‐3 ethyl‐ester subjects had attenuation of fibrous plaque progression compared to controls (median % change [interquartile range], 0.3% [−12.8, 9.0] versus 4.8% [−5.1, 19.0], respectively; P=0.032). In contrast, those on high‐intensity statins had no difference in plaque change in either treatment arm. Conclusions High‐dose eicosapentaenoic acid and docosahexaenoic acid provided additional benefit to statins in preventing progression of fibrous coronary plaque in subjects adherent to therapy with well‐controlled low‐density lipoprotein cholesterol levels. The benefit on low‐intensity statin, but not high‐intensity statin, suggests that statin intensity affects plaque volume. Clinical Trial Registration URL: http://www.ClinicalTrials.gov. Unique identifier: NCT01624727.
Collapse
Affiliation(s)
- Abdulhamied Alfaddagh
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tarec K Elajami
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Hasan Ashfaque
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Mohamad Saleh
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Bruce R Bistrian
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Francine K Welty
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
49
|
Stellenwert der Herz-CT in der Diagnostik der koronaren Herzerkrankung. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2017. [DOI: 10.1007/s00398-017-0190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Analysis of Cardiovascular Tissue Components for the Diagnosis of Coronary Vulnerable Plaque from Intravascular Ultrasound Images. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:9837280. [PMID: 29065676 PMCID: PMC5320383 DOI: 10.1155/2017/9837280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/03/2017] [Accepted: 01/15/2017] [Indexed: 12/05/2022]
Abstract
The purpose of this study was to characterize cardiovascular tissue components and analyze the different tissue properties for predicting coronary vulnerable plaque from intravascular ultrasound (IVUS) images. For this purpose, sequential IVUS image frames were obtained from human coronary arteries using 20 MHz catheters. The plaque regions between the intima and media-adventitial borders were manually segmented in all IVUS images. Tissue components of the plaque regions were classified into having fibrous tissue (FT), fibrofatty tissue (FFT), necrotic core (NC), or dense calcium (DC). The media area and lumen diameter were also estimated simultaneously. In addition, the external elastic membrane (EEM) was computed to predict the vulnerable plaque after the tissue characterization. The reliability of manual segmentation was validated in terms of inter- and intraobserver agreements. The quantitative results found that the FT and the media as well as the NC would be good indicators for predicting vulnerable plaques in IVUS images. In addition, the lumen was not suitable for early diagnosis of vulnerable plaque because of the low significance compared to the other vessel parameters. To predict vulnerable plaque rupture, future study should have additional experiments using various tissue components, such as the EEM, FT, NC, and media.
Collapse
|